


Exceptional service in the national interest

Implications of Microbiology for the WIPP

Christi D. Leigh, Ph.D.
Sandia National Laboratories
Presentation at Salt Club Meeting
Berlin Germany
September 16, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2013-XXXX

Gas Generation in the WIPP

Anoxic corrosion of Fe- and Al-base metals

- Steel waste containers and steels and other Fe-base metals in the waste
- Will produce H_2 ; could consume H_2O initially and release it later

Possible microbial consumption of cellulosic, plastic, and rubber (CPR) materials

- Could produce CO_2 , H_2S , N_2 , and CH_4 ; effect on H_2O budget is unclear

Alpha radiolysis of H_2O in brine, and of CPR materials

- Will produce H_2 , O_2 , other gases; and consume H_2O

Relative importance of these processes from the standpoint of gas generation:

- Corrosion \cong microbial activity $>>$ radiolysis

Requirements for Microbial Activity in WIPP

Halophilic or halotolerant microbes present when repository filled and sealed

Halophilic or halotolerant microbes survive for a significant fraction of the 10,000-year regulatory period

Sufficient H₂O present in brine in the repository and available to microbes

Sufficient electron acceptors present and available

Sufficient nutrients present and available

Microbes in the WIPP?

Halophiles present in the WIPP

Possible sources of these microbes

- Salt lakes in Nash Draw
 - Transport to the excavated areas via wind, the Air Intake Shaft, and the mine ventilation system
- Soils near the WIPP Site
 - Same transport mechanisms
- Salado Formation (Permian microbes)?
 - Viable Permian microbes reported by Vreeland et al. (2000). See also Parkes (2000)
 - Permian microbes still controversial (e.g., Hazen and Roedder, 2001; Vreeland et al., 2000)
 - Permian microbes (if present) not an issue for PA

Probability of Microbial Activity in WIPP

Probability of microbial gas generation implemented by the U.S. DOE's WIPP Project

- Significant microbial activity possible, but by no means certain
- Used in the 1996 CCA PA, 1997 PAVT, and CRA-2004 PA
- Certified by the U.S. EPA in 1998

Probability specified by the U.S. EPA for the CRA-2004 PABC and subsequent PAs

- Microbial activity is certain, but may not be significant because of the use of a sampled "effectiveness factor" (and lower gas-production rates) in PA

Implementation in WIPP PA

Conceptual model

- Sequential use of electron acceptors
- Potentially significant respiratory pathways
 - Denitrification
 - SO_4^{2-} reduction
 - Methanogenesis
- Insignificant respiratory pathways
 - Aerobic
 - Fe(III) reduction
 - Mn(IV) reduction

Rates

- Microbial activity produces gas at rates measured in long-term lab studies

Implementation in WIPP PA (cont.)

Reactions for potentially significant microbial respiratory pathways

- Denitrification
 - $C_6H_{10}O_5 + 4.8H^+ + 4.8NO_3^- \rightarrow 7.4H_2O + 6CO_2 + 2.4N_2$
 - CO_2 yield = 1 mol per mol of organic C consumed
- SO_4^{2-} reduction
 - $C_6H_{10}O_5 + 6H^+ + 3SO_4^{2-} \rightarrow 5H_2O + 6CO_2 + 3H_2S$
 - CO_2 yield = 1 mol per mol of organic C consumed
- Methanogenesis
 - $C_6H_{10}O_5 + H_2O \rightarrow 3CH_4 + 3CO_2$
 - CO_2 yield = 0.5 mol per mol of C consumed

Laboratory Studies

Mid-late 1970s

- **M. A. Molecke, SNL, Principal Investigator (PI)**
- **Carried out by investigators at the University of New Mexico**
- **Supported the development of the WIPP Waste Acceptance Criteria**

1988-2003

- **L. H. Brush and Y. Wang, both SNL, PIs**
- **Carried out by investigators at Stanford University and Brookhaven National Laboratory**
- **Used short-term experiments (a few years long) to establish parameters for the WIPP CCA PA and long-term experiments (≈ 10 years long) to establish less conservative parameters**

Laboratory Studies (cont.)

Current

- Julie Swanson, LANL – CO, PI
- Experiments underway in Carlsbad, NM, to reduce conservatism

Use of MgO in the WIPP

Functions as the WIPP engineered barrier by consuming essentially all CO₂ that could be produced by microbial activity, thereby decreasing actinide solubilities

- Will prevent acidification of brine that would result if microbes consumed significant quantities of cellulosic, plastic, and rubber materials during the 10,000-year regulatory period
- Will limit the extent of complexation of actinide elements by CO₃²⁻
- Will buffer the pH at mildly basic values

Consumption of significant quantities of H₂O by MgO (and other materials) could also affect long-term performance

Geochemical Role of MgO in the WIPP

Reaction that will buffer f_{CO_2} initially

- $5Mg(OH)_2 + 4CO_2(\text{aq or gas}) \rightleftharpoons Mg_5(CO_3)_4(OH)_2 \bullet 4H_2O$
 - Hydromagnesite (5424) is metastable with respect to magnesite, but could persist for hundreds to thousands of years
 - The EPA has specified that the brucite-hydromagnesite carbonations reaction be used to calculate f_{CO_2} for actinide solubility calculations

Possible long-term f_{CO_2} buffer reaction

- $Mg(OH)_2 + CO_2(\text{aq or gas}) \rightleftharpoons MgCO_3 + H_2O(\text{aq or gas})$
 - Magnesite is stable with respect to hydromagnesite (5424), and is present in the Salado

Reaction that will buffer pH

- $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^-$

Predictions of Near-Field Conditions^A

$f_{CO_2} \cong 3.14 \times 10^{-6}$ atm (for both GWB and ERDA-6)

- $TIC \cong 3.79 \times 10^{-4}$ M (GWB) or 4.55×10^{-4} M (ERDA-6)

Very low f_{O_2} (at or even below the lower stability limit of H_2O on an Eh-pH diagram)

- H_2O unstable in the WIPP (reduced to H_2 by steels and other Fe-base metals, Al, and Pb)

A. Predicted for the minimum volume of brine required for a release from the repository to the surface. Compositions for larger volumes not shown

Predictions of Near-Field Conditions (cont.)^A

Brine pH

- **Pitzer pH = 8.82 (GWB) or 8.99 (ERDA-6)**
 - The Pitzer scale is an unofficial pH scale consistent with pH values calculated using single-ion activity coefficients based on the Pitzer activity-coefficient model and the Harvie-Møller-Weare (HMW) database (DB) for brines and evaporite minerals, extended to include Nd(III), Am(III), Cm(III), Th(IV), and Np(V).
 - T. J. Wolery of Lawrence Livermore National Laboratory in Livermore, CA, proposed the term “Pitzer scale” unofficially.

Brine pcH

- **pcH = 9.54 (GWB) or 9.69 (ERDA-6)**

A. Predicted for the minimum volume of brine required for a release from the repository to the surface. Compositions for larger volumes not shown

Effects of Microbial Activity on WIPP PA

H_2 from anoxic corrosion of Fe- and Al-base metals

- Will pressurize the repository to ≥ 8 MPa (hydrostatic pressure) in many PA vectors, which will result in direct brine releases (DBRs) of radionuclides to the surface
- Will pressurize the repository to ≈ 15 MPa (lithostatic pressure in some vectors)
 - Fracturing in the near field will limit pressurization to 15 MPa
 - Fracturing will be limited in extent and does not affect PA

Microbially generated gases will not affect repository pressure

- CO_2 will be consumed by MgO
- H_2S will be consumed by reactions with steel waste containers and steels and other Fe-base metals in the waste

Effects of Microbial Activity on PA (cont.)

Microbially generated gases will not increase actinide solubilities

- MgO will consume essentially all CO₂ and establish conditions favorable for actinide solubilities
- Microbial colloids could enhance actinide concentrations to some extent

Microbes will reductively immobilize actinides

Microbial activity will not affect the near-field region of a repository for spent fuel or HLW

- Microbes could reductively immobilize actinides in the far-field of a repository for spent fuel or HLW