
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

US NDC System Modernization

Rational Unified Process Overview
Ryan Prescott

9 September 2013

1

SAND2013-7350P

Background

 The US NDC modernization project is following a software
engineering process based on the Rational Unified Process
(RUP)
 Demonstrated success on large (1+ Million LOC), complex, mission-

critical remote sensing projects

 RUP is an adaptable software engineering process framework
 Incremental & Iterative

 Architecture-centric

 Use-case driven

 Customizable based level of project formality

2

Core Elements of RUP

 Iterative development with parallel analysis, design,
implementation, and testing activities

 Product-focused, incremental development with releases of a
testable product at the end of each development iteration

 Risk-driven development addressing high-risk items first

 Early development of executable prototypes validating the
system architecture prior to full-scale development

 Use case analysis to support requirements definition and
traceability through system design, implementation & test

 Architecture modeling promotes consistency between design
and implementation

3

RUP Project Lifecycle - Phases

4

The project is divided into four
development phases:

1. Inception

 Define project scope

 Estimate cost and schedule

 Identify risks

 Define system requirements
 Specifications and use cases

 Prepare the supporting environment

2. Elaboration
 Elaborate system requirements

 Specifications and use cases

 Define the architecture
 Use case realizations

 Demonstrate an executable
prototype

 Develop a detailed plan for the
Construction phase

3. Construction
 Develop, integrate and test the

product

 Document the product

4. Transition
 Complete user acceptance testing

 Deploy the product to the user
community

 Train user community

Inception Elaboration Construction Transition

Project
Planning &
Requirements
Definition

System
Analysis &
Architecture
Definition

Product Development &
Integration

Deployment,
V&V & User
Training

RUP Project Lifecycle - Iterations

5

 Iteration: “A development loop
ending in a release of a subset
of the final product”

 Fixed duration – length
determined at project
inception (e.g. 6 months)

 Schedule driven

 Activity within an iteration
follows a traditional model
 Requirements, Design,

Implementation, Test,
Documentation

 The focus within an iteration
changes over the project’s life
 Early iterations are focused on

planning and high risk work

 Later iterations are focused on
development and delivery

 Iteration Reviews
 Current system capability is

demonstrated to the customer

Inception Elaboration Construction Transition

Project
Planning &
Requirements
Definition

System
Analysis &
Architecture
Definition

Product Development &
Integration

Deployment,
V&V & User
Training

Iteration

RequirementsRequirements

Analysis & DesignAnalysis & Design

ImplementationImplementation

Integration & TestIntegration & Test

• Requirements Specification & Use Case Definition

• Use Case & Architecture Development

• Detailed Design, Code & Unit Test

• Use Case & System Testing

It
e

ra
tio

n
 1

It
e

ra
tio

n
 1

It
e

ra
tio

n
 2

It
e

ra
tio

n
 2

It
e

ra
tio

n
 3

It
e

ra
tio

n
 3 ……

RUP Disciplines Across the Lifecycle

Best Practices

 Develop iteratively to reduce risk

 Manage requirements

 Employ a component-based
architecture

 Model software visually

 Continuously verify quality

 Control changes

Key Principles

 Adapt the Process

 Balance Competing Stakeholder
Priorities

 Collaborate Across Teams

 Demonstrate Value Iteratively

 Elevate Level of Abstraction

 Focus Continuously On Quality

6

Requirements Analysis & Design Implementation Test Deployment

System
Specification

System
Analysis

Architecture
Definition

Detailed Design,
Code & Unit

Test

Integration
Testing

System Testing
Turnover &

Training

Project Management

Configuration & Change Management

Environment

Workflow/Artifacts Each Iteration

Design
Model

System
Specs

Architecture
Model

Executable Software

Delivered
System

Documents

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

SSD 001

SSD 002

SSD 003

SSD 004

SSD 005

Use Case
Model

Source
Code

System Specification & Use Cases Analysis
 System specifications are defined based on the customer’s

requirements
 Requirements reflect the customer’s operational capability needs

 Specifications are developed by the project team as an elaboration of
the requirements

 Use cases are developed to further define the required
behavior of the system
 Each use case describes the interactions of an actor (user or

external interface) with the system to perform a single
function

 No specific architecture or implementation is expressed

 System specifications are mapped to the use cases,
establishing traceability

 Use cases form the basis of the system architecture
definition

 Use cases are modeled using UML
 Use Case documents are generated from the model

Use Case Model

System
Requirements

System
Specifications

Use Case
Reports

Traceability

Generate Use Case Diagram Activity Diagram

System Architecture Definition

 System architecture is defined based on the use
case model

 The architecture model includes a Use Case
Realization (UCR) for each use case

 UCRs describe the system architecture supporting
the associated use case (transition from “what” to
“how)

 UCRs are modeled in UML

 UCR documents are generated from the model

 Design artifacts such as the System Architecture
Document incorporate content from the
architecture model

 System specifications are mapped to the UCRs,
establishing traceability

System
Requirements

System
Specifications

Traceability

Generate

Use Case
Realization

Reports

Use Case Model

Software
Architecture
Description

Input To

Architecture
Model

Class Diagram State Machine Diagram Sequence Diagram Process Diagram

Implementation

 Implementation includes:

 Detailed design modeled in UML
 Pre-Implementation Design

 Optional Code generation from the
design model

 Implementation of logic in software

 Unit testing

 Code Reviews

 Testing developed code on test beds

Architecture
Model

Design Model

Source Code

Derived From

Integration Testing

1. Use Case Testing

 Test against Use Case Descriptions and UI
Prototypes

 Regression testing

2. Soak testing

 Execute the system for minimum required
duration to ensure correct system
performance

 Test system features and constraints that
can only be exercised with continuous
operation

 Monitor CPU, Memory, IO, etc.

 Supported by developers

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

Use Case Model

System
Specifications

Traceability

Executable
Software

 System is built and delivered to
system testbed every iteration

 System Testing

 Verifies functionality against
System specifications that are
ready to be verified

 Regression tests previously verified
system specifications

 Conducts acceptance testing
witnessed by the customer

System Testing

Traceability

Executable
Software

SSD 001

SSD 002

SSD 003

SSD 004

SSD 005

System
Specifications

Deployment

 User Manual and other documentation

 User Training

 Delivery of hardware and software

 Customer acceptance testing

 O&M post-deployment
 Operational site data available on test network

 Reach-back capability to bring logs from sites, replay as if live

