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Background

 The US NDC modernization project is following a software 
engineering process based on the Rational Unified Process 
(RUP)
 Demonstrated success on large (1+ Million LOC), complex, mission-

critical remote sensing projects

 RUP is an adaptable software engineering process framework
 Incremental & Iterative

 Architecture-centric

 Use-case driven

 Customizable based level of project formality
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Core Elements of RUP

 Iterative development with parallel analysis, design, 
implementation, and testing activities

 Product-focused, incremental development with releases of a 
testable product at the end of each development iteration

 Risk-driven development addressing high-risk items first

 Early development of executable prototypes validating the 
system architecture prior to full-scale development

 Use case analysis to support requirements definition and 
traceability through system design, implementation & test

 Architecture modeling promotes consistency between design 
and implementation
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RUP Project Lifecycle - Phases
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The project is divided into four 
development phases:

1. Inception

 Define project scope

 Estimate cost and schedule

 Identify risks

 Define system requirements
 Specifications and use cases

 Prepare the supporting environment

2. Elaboration
 Elaborate system requirements

 Specifications and use cases

 Define the architecture
 Use case realizations

 Demonstrate an executable 
prototype

 Develop a detailed plan for the 
Construction phase

3. Construction
 Develop, integrate and test the 

product

 Document the product

4. Transition
 Complete user acceptance testing

 Deploy the product to the user 
community

 Train user community
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RUP Project Lifecycle - Iterations
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 Iteration: “A development loop 
ending in a release of a subset 
of the final product”

 Fixed duration – length 
determined at project 
inception (e.g. 6 months)

 Schedule driven

 Activity within an iteration 
follows a traditional model
 Requirements, Design, 

Implementation, Test, 
Documentation

 The focus within an iteration 
changes over the project’s life
 Early iterations are focused on 

planning and high risk work

 Later iterations are focused on 
development and delivery

 Iteration Reviews
 Current system capability is 

demonstrated to the customer
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RUP Disciplines Across the Lifecycle

Best Practices

 Develop iteratively to reduce risk

 Manage requirements

 Employ a component-based 
architecture

 Model software visually

 Continuously verify quality

 Control changes

Key Principles

 Adapt the Process 

 Balance Competing Stakeholder 
Priorities 

 Collaborate Across Teams 

 Demonstrate Value Iteratively 

 Elevate Level of Abstraction 

 Focus Continuously On Quality 

6



Requirements Analysis & Design Implementation Test Deployment

System 
Specification

System 
Analysis

Architecture 
Definition

Detailed Design, 
Code & Unit 

Test

Integration 
Testing

System Testing
Turnover & 

Training

Project Management

Configuration & Change Management

Environment

Workflow/Artifacts Each Iteration

Design 
Model

System 
Specs

Architecture 
Model

Executable Software

Delivered 
System 

Documents

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

SSD 001

SSD 002

SSD 003

SSD 004

SSD 005

Use Case 
Model

Source 
Code



System Specification & Use Cases Analysis
 System specifications are defined based on the customer’s 

requirements
 Requirements reflect the customer’s operational capability needs

 Specifications are developed by the project team as an elaboration of 
the requirements

 Use cases are developed to further define the required 
behavior of the system 
 Each use case describes the interactions of an actor (user or 

external interface) with the system to perform a single 
function

 No specific architecture or implementation is expressed

 System specifications are mapped to the use cases, 
establishing traceability 

 Use cases form the basis of the system architecture 
definition

 Use cases are modeled using UML
 Use Case documents are generated from the model
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System Architecture Definition

 System architecture is defined based on the use 
case model

 The architecture model includes a Use Case 
Realization (UCR) for each use case

 UCRs describe the system architecture supporting 
the associated use case (transition from “what” to 
“how)

 UCRs are modeled in UML

 UCR documents are generated from the model

 Design artifacts such as the System Architecture 
Document incorporate content from the 
architecture model

 System specifications are mapped to the UCRs, 
establishing traceability 
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Implementation

 Implementation includes:

 Detailed design modeled in UML
 Pre-Implementation Design  

 Optional Code generation from the 
design model

 Implementation of logic in software

 Unit testing

 Code Reviews 

 Testing developed code on test beds
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Integration Testing

1. Use Case Testing 

 Test against Use Case Descriptions and UI 
Prototypes

 Regression testing

2. Soak testing

 Execute the system for minimum required 
duration to ensure correct system 
performance

 Test system features and constraints that 
can only be exercised with continuous 
operation

 Monitor CPU, Memory, IO, etc.

 Supported by developers 
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 System is built and delivered to 
system testbed every iteration

 System Testing

 Verifies functionality against 
System specifications that are 
ready to be verified 

 Regression tests previously verified 
system specifications

 Conducts acceptance testing 
witnessed by the customer
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Deployment

 User Manual and other documentation

 User Training

 Delivery of hardware and software

 Customer acceptance testing

 O&M post-deployment
 Operational site data available on test network

 Reach-back capability to bring logs from sites, replay as if live


