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We would like to do a quantum computation with as much 
“natural” robustness as possible. Topological quantum 

computing and adiabatic quantum computing both have 
their own flavors of robustness. Can we combine them?

TQC is usually formulated in continuous spacetimes. Can 
we perform TQC on a lattice? How?

TQC operations are always assumed adiabatic. Can we 
make this assumption explicit? How?
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Preliminaries

• Quantum Bit (qubit) – a two state quantum system

• The basis of the qubit Hilbert space is the span of       
eigenstates. I will use    instead of      ,     instead of      , 
etc.



Quantum Codes

• Qubits are often fragile things. How can we combat this?

• The game: store k qubits in n qubits, where n > k

• How?
…

k
…

n

This process is called encoding



Stabilizer Quantum Codes

• One way: stabilizer codes
• Pick a     -dimensional subspace of the     -dimensional total space; 

call this the codespace

• Define the stabilizer group as those Pauli group elements that 
act trivially on the codespace

• These form a group since

• Additionally, since                      , the stabilizer group is Abelian

Gottesman Ph.D. Thesis
arXiv:quant-ph/9705052



Stabilizer Quantum Codes

• States in the codespace are +1 eigenstates of stabilizer 
group elements

• The stabilizer group has           generators (“checks”)

• Eigenvalues of stabilizer generators are ±1, so each 
specified stabilizer generator halves the Hilbert space

The codespace

Stabilizer group element



Stabilizer Quantum Codes

• Eigenvalues are ±1, so each stabilizer generator halves 
the Hilbert space

+1

+1

+1



Stabilizer Quantum Codes

• How do the stabilizer generators detect errors?
• Note that elements of the Pauli group either commute or anti-

commute

• So, pick an operator     , 

Defining property of 
the codespace !

This means      takes        out of the 
codespace. We call this a detectable error.

commute anti-commute



Stabilizer Quantum Codes

• So if we measure each stabilizer generator, there are two 
cases
1. Measurement result is +1; two possibilities

• is in the stabilizer group and thus a product of stabilizer generators

• is not a product of stabilizer generators and we call it a logical 
operator; this is an undetectable error

2. Measurement result is −1

• is a detectable error, and we may be able to recover



Stabilizer Quantum Codes: An Example

Encoding:

3 qubits

Stabilizer generators

Consider

Is      a detectable error?

is a detectable error, 
and it is detected by      . 
Additionally,      is 
correctable in this case.



Stabilizer Quantum Codes

• How do we operate on the encoded information?

• From the previous example

• Logical operators commute with all stabilizer generators 
but are not in the stabilizer group

Encoding:

There is actually some freedom 
in these choices, since any 
product              or              will 
also satisfy the conditions for 
logical operators
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Topological Quantum Codes

• Topological codes are stabilizer codes with some nice 
properties
• The stabilizer generators are local

• The logical operators are topological in nature (nonlocal). This 
makes it hard for the environment to access the information.

• The codespace dimension depends solely on the topology

Kitaev, Fault-Tolerant Quantum Computing with Anyons,
Annals Phys. 303 (2003) 2-30

Bombin and Martin-Delgado, Topological Quantum Distillation,
Phys.Rev.Lett. 97 (2006) 180501
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Bombin and Martin-Delgado, Quantum Measurements and Gates by Code Deformation,
J. Phys. A: Math. Theor. 42 (2009) 095302



The Toric Code

• The Toric Code was originally defined on a lattice on the 
(surprise!) torus

• However, we will employ the planar version, which is 
defined on a lattice in the plane

Kitaev, Fault-Tolerant Quantum Computing with Anyons,
Annals Phys. 303 (2003) 2-30



The Toric Code Stabilizer Generators

Edges: qubits

Faces:     -type 
stabilizer 
generator

Vertices:     -type 
stabilizer 
generator



The Toric Code Logical Operators

Logical operators 
for the planar Toric
Code. This is a 
qubit encoded in 
the surface.

Face checks: 25

Vertex checks: 24

Qubits: 50

“Smooth”

“Rough”

This code has 
one logical qubit.



Topological Codes II: The Toric Code

• What happens if we change the boundary conditions?

Face checks: 25

Vertex checks: 35

Qubits: 50

So with these boundaries, 
no qubits are stored in the 
surface. We will employ 
surfaces like these. Where 
will the qubits come from?



Topological Codes II: The Toric Code

• We will encode qubits in defects in the code.

• These defects will be introduced by removing some of the 
stabilizer generators.

• Removing generators has the opposite effect of 
introducing them: each generator removed doubles the 
dimension of the codespace.

Fowler et. al., High threshold universal quantum computation on the surface code
Phys. Rev. A 80, 052312 (2009)

Raussendorf et. al., A fault-tolerant one-way quantum computer,
Annals of Physics 321, 2242 (2006)



Toric Code Defects

“Smooth” defect

“Rough” defect



Toric Code Defect Deformation
It is possible to move a defect by 
measurements.

The surface begins with a 
smooth defect at a particular 
location.



Toric Code Defect Deformation
We begin by measuring     on the 
edge in the direction we want to 
move the defect.



Toric Code Defect Deformation
The measurement result is ±1. 

However, this single      
measurement anti-commutes 
with the neighboring face check. 
Thus the face check is removed 
from the set of stabilizer 
generators and replaced with



Toric Code Defect Deformation
Next, we want to reintroduce the 
face check that was missing 
originally. This requires 
measuring                          
around the face.



Toric Code Defect Deformation
The measurement result is ±1. 

However, this measurement anti-
commutes with the previously 
introduced stabilizer generator. 
Thus, that generator is removed 
and replaced with 



Toric Code Defect Deformation
The measurement result is ±1. 

However, this measurement anti-
commutes with the previously 
introduced stabilizer generator. 
Thus, that generator is removed 
and replaced with 



Toric Code Defect Deformation
The defect has been moved!



Toric Code Defect Dynamics
We can use part of the preceding 
sequence to create larger 
defects which will be better 
protected from logical errors.
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Toric Code Defect Dynamics
We can use part of the preceding 
sequence to create larger 
defects which will be better 
protected from logical errors.

Higher weight 



Toric Code Defect Dynamics
We can also move defects 
wholesale to another location.
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Toric Code Defect Dynamics
We can also move defects 
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Toric Code Defect Dynamics
Moved!

All of these procedures work 
equally well for rough defects 
with some slight modifications.



CNOT with Defects

Control smooth qubit

Target rough qubit
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CNOT with Defects

Control smooth qubit

Target rough qubit



CNOT with Defects

These relations are precisely how the 
CNOT gate acts. Is it possible to do this 
defect braiding adiabatically?
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Codespace as Ground Space

• Consider the following Hamiltonian

• The ground space of this Hamiltonian is exactly the 
codespace of the stabilizer code with generators

• Errors in the code appear as excitations out of the ground 
space  errors are suppressed energetically



Adiabatic TQC

• In TQC, braiding is always assumed to be adiabatic

• This work introduces explicit adiabatic braiding and uses 
an explicit lattice model

• The tools can be extended more generally to “Adiabatic 
Code Deformation”

Bacon and Flammia, Adiabatic Gate Teleportation,
Phys. Rev. Lett. 103, 120504 (2009)

Bacon and Flammia, Adiabatic Cluster State Quantum Computing,
Phys. Rev. A 82, 030303(R) (2010)



Adiabatic TQC Defect Movement

• The adiabatic movement of defects simulates the 
preceding measurement-based approach

• The following evolution succeeds in growing the defect



Adiabatic TQC Defect Movement
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Adiabatic TQC Defect Creation

• A defect can be created adiabatically 

• Proposed evolution

• How do we get to a degenerate ground space from a non-
degenerate one in an adiabatic fashion?

Adjacent face checks
Single new 
check in the 
middle



Adiabatic TQC Defect Creation

• Only a topologically nontrivial operator couples the lowest 
eigenstates that cross
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Aren’t crossings bad for 
adiabaticity?

This is the appropriate gap to examine



Adiabatic TQC Defect Creation

This has to happen to 
couple those two states, and 
during a real computation 
this would be a high weight 
operator. The environment is 
unlikely to have access to 
this degree of freedom. This 
is why we use topological 
codes in the first place!



Adiabatic TQC Measurement
To measure        shrink the 
defect to its original size and 
measure the weight six operator 
around the perimeter.

The qubit becomes exposed to 
this lower weight operator, but 
since we are measuring in this 
basis, the measurement 
outcome is unaffected.



Adiabatic TQC Measurement
To measure        keep the 
perimeter large and move the 
defect near the appropriate 
boundary to measure the weight 
two operator. 

The qubit becomes exposed to 
this lower weight operator, but 
since we are measuring in this 
basis, the measurement 
outcome is unaffected.



Adiabatic TQC Universality

• Smooth defects can be created in the +1 eigenstate of

• Rough defects can be created in the +1 eigenstate of

• Measurements allow us to prepare the other eigenstates
of logical operators

• Braiding allows us to perform the CNOT gate

• We utilize magic states to achieve the other necessary 
encoded gates  



Adiabatic TQC Magic States

• Two ideas
• First, make the defect small and bring it near the appropriate 

boundary, and simply measure the operator whose eigenstate is 
the desired magic state, e.g. 

• Or, entangle the defect you want the magic state in with an ancilla
defect and measure the ancilla destructively

• Still a work in progress!

Measure     , 
quickly grow 
larger

Measure      
destructively.



Other Projects

• GSQC

• Adiabatic code for gaps and spectra

• Hadamard via ACD

• Explicitly adiabatic quantum double computations

• Holonomic vs. Topological QC

• Lattice gauge theories



Quantum Doubles

• If time permits


