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We would like to do a quantum computation with as much
“natural” robustness as possible. Topological quantum
computing and adiabatic quantum computing both have
their own flavors of robustness. Can we combine them?

TQC is usually formulated in continuous spacetimes. Can
we perform TQC on a lattice”? How?

TQC operations are always assumed adiabatic. Can we
make this assumption explicit? How?
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Preliminaries

- Quantum Bit (qubit) — a two state quantum system
¥) = al0) +b[1), |af” +[b]" =1

- The basis of the qubit Hilbert space is the span of oz
eigenstates. | will use Z instead of oz, X instead of o,

etc.
Z10) = 10)
Z1) =-11)
X [0) =1)
X[1) = 0)



Quantum Codes

- Qubits are often fragile things. How can we combat this?
- The game: store & qubits in n qubits, where n > k
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This process is called encoding

- How?



Stabilizer Quantum Codes

- One way: stabilizer codes

. Pick a 2"-dimensional subspace of the 2"-dimensional total space;
call this the codespace C

- Define the stabilizer group S as those Pauli group elements that
act trivially on the codespace

Si€S, [p) eC = Sil) =v)

- These form a group since
$iS; ) = Si ) = ) = SiS; €S

- Additionally, since [.S;, S;] = 0, the stabilizer group is Abelian

Gottesman Ph.D. Thesis
arXiv:quant-ph/9705052



Stabilizer Quantum Codes
The codespace
wee—

Stabilizer group element

- States in the codespace are +1 eigenstates of stabilizer
group elements

- The stabilizer group has n — k generators (“checks”)

- Eigenvalues of stabilizer generators are 1, so each
specified stabilizer generator halves the Hilbert space



Stabilizer Quantum Codes

- Eigenvalues are x1, so each stabilizer generator halves
the Hilbert space




Stabilizer Quantum Codes

- How do the stabilizer generators detect errors?
- Note that elements of the Pauli group either commute or anti-

commute
- So, pick an operator O, |¢) € C
commute \ anti-commute
Si (O ¥) = O[y) =S (Oy)) = O¢)
/ — S (0 ) =—(0))
- — Oy) ¢C
Defining property of
the codespace (! \

This means O takes W) out of the
codespace. We call this a detectable error.



Stabilizer Quantum Codes

- So if we measure each stabilizer generator, there are two
cases

1. Measurement result is +1; two possibilities
- O is in the stabilizer group and thus a product of stabilizer generators

-Qisnota product of stabilizer generators and we call it a logical
operator; this is an undetectable error

S (O) = (O [))

2. Measurement result is —1
- (Dis a detectable error, and we may be able to recover

Si (O Y)) == (Ol4h))



Stabilizer Quantum Codes: An Example

0) — 000)

Encoding: ‘1> N ‘111>

3 qubits

‘ ‘ ‘ Stabilizer generators

A S1
J AR A So

Consider O = X R I ® 1

Is () a detectable error?

{Ov Sl} =0
0,55 =0

— () is a detectable error,
and it is detected by S 1-
Additionally, ) is
correctable in this case.

O |000) = |100)

S1 [100) =
S5 [100) =

— [100)
100}



Stabilizer Quantum Codes

- How do we operate on the encoded information?
- From the previous example

crooding. 10— 1000) S1=2®7Z%1
IS 1) 5 111) S =1QZ®Z

- Logical operators commute with all stabilizer generators
but are not in the stabilizer group

‘ ‘ ‘ There is actually some freedom
in these choices, since any
X7 XXX XX product X 1,.5; or Z1.S; wil
also satisfy the conditions for

A5 Z 11 logical operators



Stabilizer Quantum Codes

!

Topological Quantum Codes

!

Adiabatic Topological Quantum Computing



Topological Quantum Codes

- Topological codes are stabilizer codes with some nice
properties

- The stabilizer generators are local

- The logical operators are topological in nature (nonlocal). This
makes it hard for the environment to access the information.

- The codespace dimension depends solely on the topology
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The Toric Code

- The Toric Code was originally defined on a lattice on the
(surprise!) torus

- However, we will employ the planar version, which is
defined on a lattice in the plane

>

Kitaev, Fault-Tolerant Quantum Computing with Anyons,
Annals Phys. 303 (2003) 2-30



The Toric Code Stabilizer Generators

Edges: qubits

7 Faces: Z-type
stabilizer
7 7 generator

Vertices: X -type
stabilizer
generator




e
The Toric Code Logical Operators

Logical operators
for the planar Toric

Code. This is a
qubit encoded in
the surface.

“Smooth” ——

“Rough”
\

Face checks: 25
Vertex checks: 24
Qubits: 50

250

2~

This code has
one logical qubit.
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Topological Codes II: The Toric Code

- What happens if we change the boundary conditions?

Face checks: 25

Vertex checks: 35

Qubits: 50

250

50 — |

So with these boundaries,
no qubits are stored in the
surface. We will employ

surfaces like these. Where
will the qubits come from?




L
Topological Codes II: The Toric Code

- We will encode qubits in defects in the code.

- These defects will be introduced by removing some of the
stabilizer generators.

- Removing generators has the opposite effect of
iIntroducing them: each generator removed doubles the
dimension of the codespace.

Raussendorf et. al., A fault-tolerant one-way quantum computer,
Annals of Physics 321, 2242 (2006)

Fowler et. al., High threshold universal quantum computation on the surface code
Phys. Rev. A 80, 052312 (2009)



Toric Code Defects

“Smooth” defect

“Rough” defect
L~




Toric Code Defect Deformation

It is possible to move a defect by
measurements.

The surface begins with a
smooth defect at a particular
location.




Toric Code Defect Deformation

We begin by measuring X on the
edge in the direction we want to
move the defect.




Toric Code Defect Deformation

The measurement result is 1.

However, this single X
measurement anti-commutes
with the neighboring face check.
Thus the face check is removed
1+ X from the set of stabilizer
generators and replaced with +X




Toric Code Defect Deformation

Next, we want to reintroduce the
face check that was missing
originally. This requires
measuring Z Q Z Q@ Z Q Z
around the face.



Toric Code Defect Deformation

The measurement result is 1.

However, this measurement anti-
commutes with the previously
introduced stabilizer generator.
Thus, that generator is removed
andreplacedwith =2 Q® Z R Z Q@ Z



Toric Code Defect Deformation

The measurement result is 1.

However, this measurement anti-
commutes with the previously
introduced stabilizer generator.
Thus, that generator is removed
andreplacedwith =2 Q® Z R Z Q@ Z



Toric Code Defect Deformation

The defect has been moved!




Toric Code Defect Dynamics

We can use part of the preceding
sequence to create larger
defects which will be better
protected from logical errors.
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Toric Code Defect Dynamics

We can use part of the preceding
sequence to create larger
defects which will be better
protected from logical errors.

Higher weight 7,




Toric Code Defect Dynamics

We can also move defects
wholesale to another location.
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Toric Code Defect Dynamics

We can also move defects
wholesale to another location.




Toric Code Defect Dynamics

Moved!

All of these procedures work
equally well for rough defects
with some slight modifications.




CNOT with Defects

R =71

T Target rough qubit

— Control smooth qubit
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CNOT with Defects
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CNOT with Defects
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CNOT with Defects

X®I—- XX

T Target rough qubit

— Control smooth qubit




CNOT with Defects

IR X -1 X

T Target rough qubit

— Control smooth qubit




CNOT with Defects

IR X -1 X

T Target rough qubit

— Control smooth qubit




CNOT with Defects

IR X -1 X

D&
\\

T Target rough qubit

— Control smooth qubit




CNOT with Defects

IR X -1 X

T Target rough qubit

— Control smooth qubit
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CNOT with Defects

IR — 77

X®I—-X®X These relations are precisely how the
CNOT gate acts. Is it possible to do this
IR X —=>1%X defect braiding adiabatically?

R —=7Z7R1
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Codespace as Ground Space

- Consider the following Hamiltonian
H=-Y 5, & €(S)

- The ground space of this Hamiltonian is exactly the
codespace of the stabilizer code with generators §;

- Errors in the code appear as excitations out of the ground
space -> errors are suppressed energetically



L
Adiabatic TQC

- In TQC, braiding is always assumed to be adiabatic

- This work introduces explicit adiabatic braiding and uses
an explicit lattice model

- The tools can be extended more generally to “Adiabatic
Code Deformation”

Bacon and Flammia, Adiabatic Gate Teleportation,
Phys. Rev. Lett. 103, 120504 (2009)

Bacon and Flammia, Adiabatic Cluster State Quantum Computing,
Phys. Rev. A 82, 030303(R) (2010)
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Adiabatic TQC Defect Movement

- The adiabatic movement of defects simulates the
preceding measurement-based approach

H=...—Z2444—...

H=...— Xniddle —

- The following evolution succeeds in growing the defect

H(s)=1-5)(-2R2ZRZ®Z)+ s(—Xmiddle)
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Adiabatic TQC Defect Movement

H(s)=(1=85)(-2R®2ZR®ZR Z)+ s (—Xmiddle)

Energy
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Adiabatic TQC Defect Creation

- A defect can be created adiabatically

- Proposed evolution - —)

H(s)=(1=-$)(—202020Z-20Z0Z1Z)+s(—X)

AV4 /

_ Single new
Adjacent face checks check in the

middle

- How do we get to a degenerate ground space from a non-
degenerate one in an adiabatic fashion?
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Adiabatic TQC Defect Creation

- Only a topologically nontrivial operator couples the lowest
eigenstates that cross

Energy
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| \ Aren’t crossings bad for

adiabaticity?
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Adiabatic TQC Defect Creation

This has to happen to
couple those two states, and
during a real computation
this would be a high weight
operator. The environment is
unlikely to have access to
/ this degree of freedom. This
is why we use topological
codes in the first place!




L
Adiabatic TQC Measurement

To measure Z 1, shrink the
defect to its original size and
measure the weight six operator
around the perimeter.

The qubit becomes exposed to
this lower weight operator, but
since we are measuring in this
basis, the measurement
outcome is unaffected.




L
Adiabatic TQC Measurement

To measure X |, keep the
perimeter large and move the
defect near the appropriate
boundary to measure the weight
two operator.

The qubit becomes exposed to
this lower weight operator, but
e SINCE WE are measuring in this
basis, the measurement
outcome is unaffected.
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Adiabatic TQC Universality

- Smooth defects can be created in the +1 eigenstate of 7,
- Rough defects can be created in the +1 eigenstate of X,

- Measurements allow us to prepare the other eigenstates
of logical operators

- Braiding allows us to perform the CNOT gate

- We utilize magic states to achieve the other necessary
encoded gates



L
Adiabatic TQC Magic States

- Two ideas

- First, make the defect small and bring it near the appropriate
boundary, and simply measure the operator whose eigenstate is
the desired magic state, e.g. |+1)

Measure Y7,
& quickly grow _ Measure Y,
| larger B & destructively.

- Or, entangle the defect you want the magic state in with an ancilla
defect and measure the ancilla destructively

- Still a work in progress!
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Other Projects

- GSQC

- Adiabatic code for gaps and spectra

- Hadamard via ACD

- Explicitly adiabatic quantum double computations
- Holonomic vs. Topological QC

- Lattice gauge theories



Quantum Doubles

- If time permits



