

ADIABATIC TOPOLOGICAL QUANTUM COMPUTING

Chris Cesare, April 6th, 2011

Joint work with: Andrew Landahl (SNL, UNM)
Dave Bacon (University of Washington)
Steve Flammia (Perimeter Institute)
Alice Neels (University of Washington)

cQuIC

We would like to do a quantum computation with as much “natural” robustness as possible. Topological quantum computing and adiabatic quantum computing both have their own flavors of robustness. Can we combine them?

TQC is usually formulated in continuous spacetimes. Can we perform TQC on a lattice? How?

TQC operations are always assumed adiabatic. Can we make this assumption explicit? How?

Stabilizer Quantum Codes

Topological Quantum Codes

Adiabatic Topological Quantum Computing

Stabilizer Quantum Codes

Topological Quantum Codes

Adiabatic Topological Quantum Computing

Preliminaries

- **Quantum Bit** (qubit) – a two state quantum system

$$|\psi\rangle = a|0\rangle + b|1\rangle, \quad |a|^2 + |b|^2 = 1$$

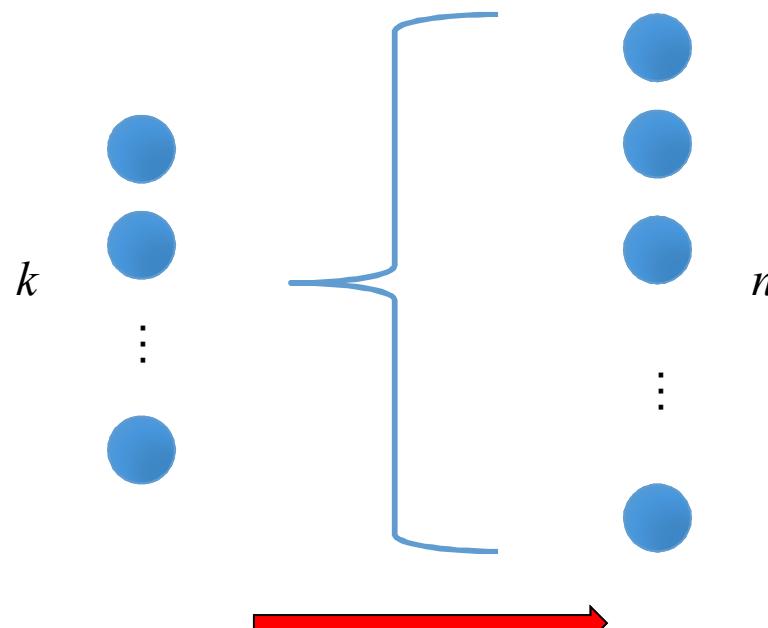
- The basis of the qubit Hilbert space is the span of σ_Z eigenstates. I will use Z instead of σ_Z , X instead of σ_X , etc.

$$\begin{aligned} Z|0\rangle &= |0\rangle \\ Z|1\rangle &= -|1\rangle \end{aligned}$$

$$\begin{aligned} X|0\rangle &= |1\rangle \\ X|1\rangle &= |0\rangle \end{aligned}$$

Quantum Codes

- Qubits are often fragile things. How can we combat this?
- The game: store k qubits in n qubits, where $n > k$



This process is called encoding

- How?

Stabilizer Quantum Codes

- One way: stabilizer codes
 - Pick a 2^k -dimensional subspace of the 2^n -dimensional total space; call this the **codespace** \mathcal{C}
 - Define the **stabilizer group** \mathcal{S} as those Pauli group elements that act trivially on the codespace

$$S_i \in \mathcal{S}, \quad |\psi\rangle \in \mathcal{C} \iff S_i |\psi\rangle = |\psi\rangle$$

- These form a group since

$$S_i S_j |\psi\rangle = S_i |\psi\rangle = |\psi\rangle \implies S_i S_j \in \mathcal{S}$$

- Additionally, since $[S_i, S_j] = 0$, the stabilizer group is Abelian

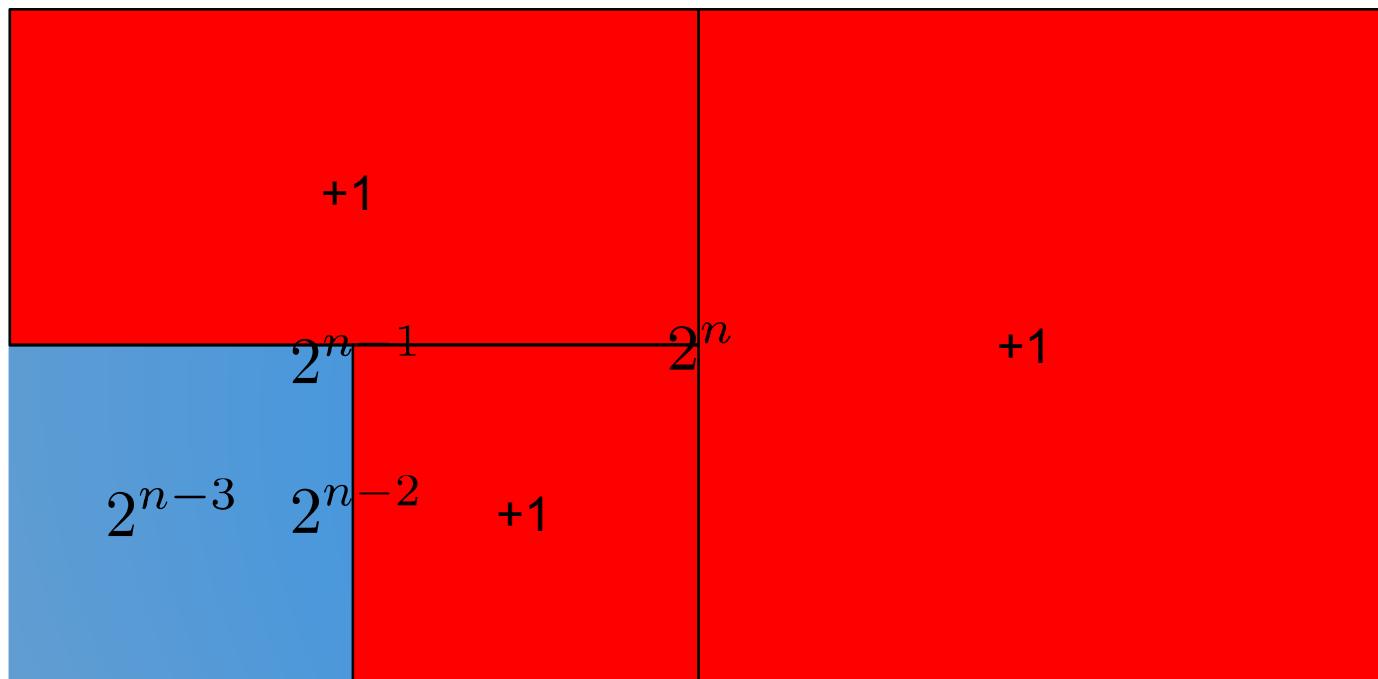
Stabilizer Quantum Codes

$$| \psi \rangle \in \mathcal{C} \quad \text{The codespace}$$
$$\iff S_i | \psi \rangle = | \psi \rangle \quad \text{Stabilizer group element}$$

- States in the codespace are $+1$ eigenstates of stabilizer group elements
- The stabilizer group has $n - k$ generators (“checks”)
- Eigenvalues of stabilizer generators are ± 1 , so each specified stabilizer generator halves the Hilbert space

Stabilizer Quantum Codes

- Eigenvalues are ± 1 , so each stabilizer generator halves the Hilbert space



Stabilizer Quantum Codes

- How do the stabilizer generators detect errors?
 - Note that elements of the Pauli group **either commute or anti-commute**
 - So, pick an operator O , $|\psi\rangle \in \mathcal{C}$

$$\begin{array}{ccc}
 O |\psi\rangle = OS_i |\psi\rangle & & \\
 \text{commute} \quad \swarrow \quad \searrow \quad \text{anti-commute} & & \\
 S_i (O |\psi\rangle) = O |\psi\rangle & & -S_i (O |\psi\rangle) = O |\psi\rangle \\
 & & \implies S_i (O |\psi\rangle) = - (O |\psi\rangle) \\
 & & \implies O |\psi\rangle \notin \mathcal{C} \\
 & & \downarrow \\
 \text{ining property of} & & \text{This means } O \text{ takes } |\psi\rangle \text{ out of the} \\
 \text{codespace } \mathcal{C}! & & \text{codespace. We call this a } \textcolor{red}{\text{detectable error}}.
 \end{array}$$

Stabilizer Quantum Codes

- So if we *measure* each stabilizer generator, there are two cases
 1. Measurement result is $+1$; two possibilities
 - O is in the stabilizer group and thus **a product of stabilizer generators**
 - O is not a product of stabilizer generators and we call it a logical operator; this is **an undetectable error**

$$S_i(O|\psi\rangle) = (O|\psi\rangle)$$

2. Measurement result is -1
 - O is a **detectable error**, and we may be able to recover

$$S_i(O|\psi\rangle) = -(O|\psi\rangle)$$

Stabilizer Quantum Codes: An Example

Encoding:

$$\begin{aligned}|0\rangle &\rightarrow |000\rangle \\|1\rangle &\rightarrow |111\rangle\end{aligned}$$

3 qubits

$$\begin{aligned}Z \otimes Z \otimes I \\I \otimes Z \otimes Z\end{aligned}$$

Stabilizer generators

$$\begin{aligned}S_1 \\S_2\end{aligned}$$

Consider $O = X \otimes I \otimes I$

Is O a detectable error?

$$\begin{aligned}\{O, S_1\} &= 0 \\[O, S_2] &= 0\end{aligned}$$

$\implies O$ is a detectable error,
and it is detected by S_1 .
Additionally, O is
correctable in this case.

$$O |000\rangle = |100\rangle$$

$$\begin{aligned}S_1 |100\rangle &= -|100\rangle \\S_2 |100\rangle &= |100\rangle\end{aligned}$$

Stabilizer Quantum Codes

- **How do we operate on the encoded information?**
- From the previous example

Encoding: $|0\rangle \rightarrow |000\rangle$ $S_1 = Z \otimes Z \otimes I$
 $|1\rangle \rightarrow |111\rangle$ $S_2 = I \otimes Z \otimes Z$

- Logical operators commute with all stabilizer generators but are not in the stabilizer group

X_L	$X \otimes X \otimes X$
Z_L	$Z \otimes I \otimes I$

There is actually some freedom in these choices, since any product $X_L S_i$ or $Z_L S_i$ will also satisfy the conditions for logical operators

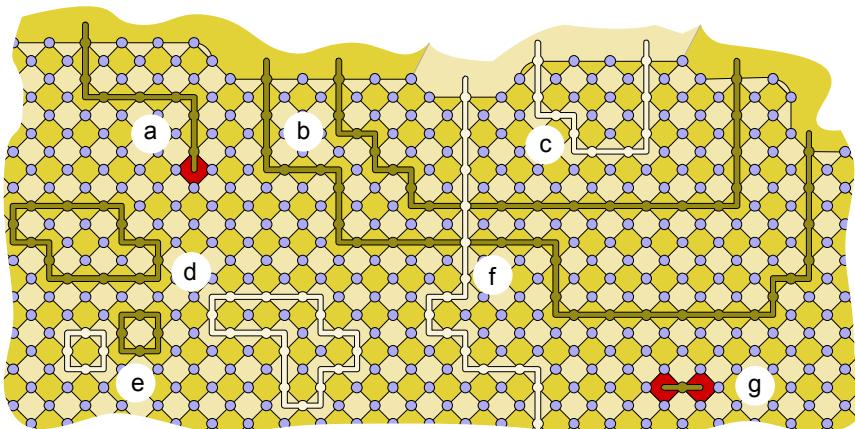
Stabilizer Quantum Codes

Topological Quantum Codes

Adiabatic Topological Quantum Computing

Topological Quantum Codes

- Topological codes are stabilizer codes with some nice properties
 - The stabilizer generators are local
 - The logical operators are topological in nature (nonlocal). This makes it hard for the environment to access the information.
- The codespace dimension depends solely on the topology



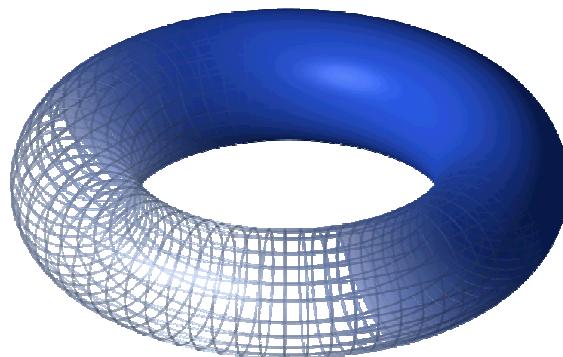
Bombin and Martin-Delgado, Topological Quantum Distillation,
Phys. Rev. Lett. 97 (2006) 180501

Kitaev, Fault-Tolerant Quantum Computing with Anyons,
Annals Phys. 303 (2003) 2-30

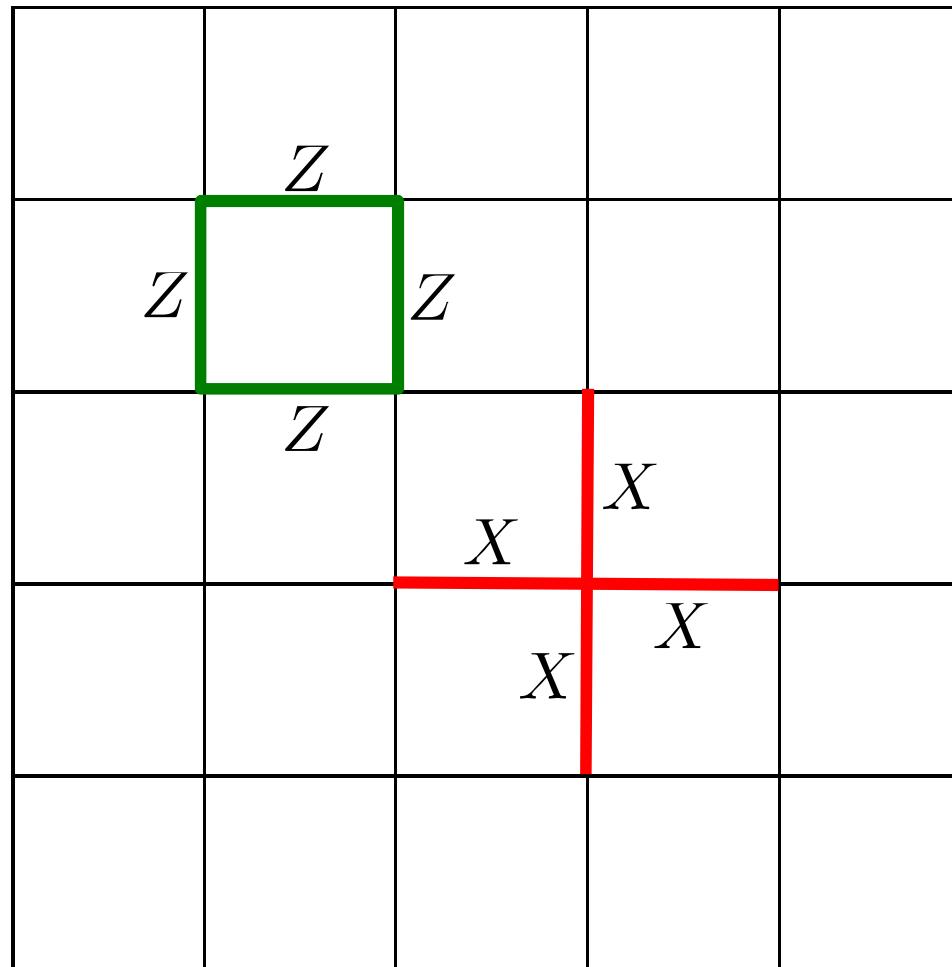
Bombin and Martin-Delgado, Quantum Measurements and Gates by Code Deformation,
J. Phys. A: Math. Theor. 42 (2009) 095302

The Toric Code

- The Toric Code was originally defined on a lattice on the (surprise!) torus
- However, we will employ the planar version, which is defined on a lattice in the plane



The Toric Code Stabilizer Generators



Edges: qubits

Faces: Z -type
stabilizer
generator

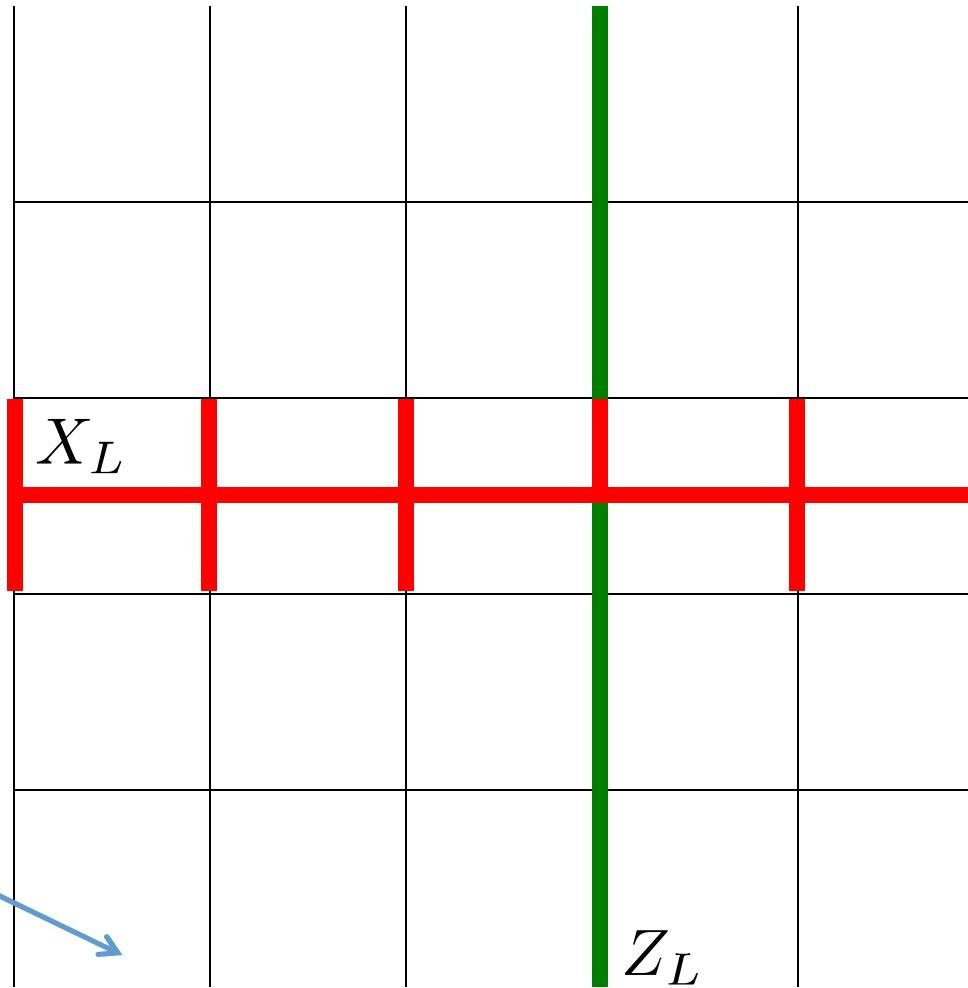
Vertices: X -type
stabilizer
generator

The Toric Code Logical Operators

Logical operators for the planar Toric Code. This is a qubit encoded *in the surface*.

“Smooth”

“Rough”



Face checks: 25

Vertex checks: 24

Qubits: 50

$$\frac{2^{50}}{2^{49}} = 2$$

This code has one logical qubit.

Topological Codes II: The Toric Code

- What happens if we change the boundary conditions?

Face checks: 25

Vertex checks: 35

Qubits: 50

$$\frac{2^{50}}{2^{50}} = 1$$

So with these boundaries, no qubits are stored in the surface. We will employ surfaces like these. Where will the qubits come from?

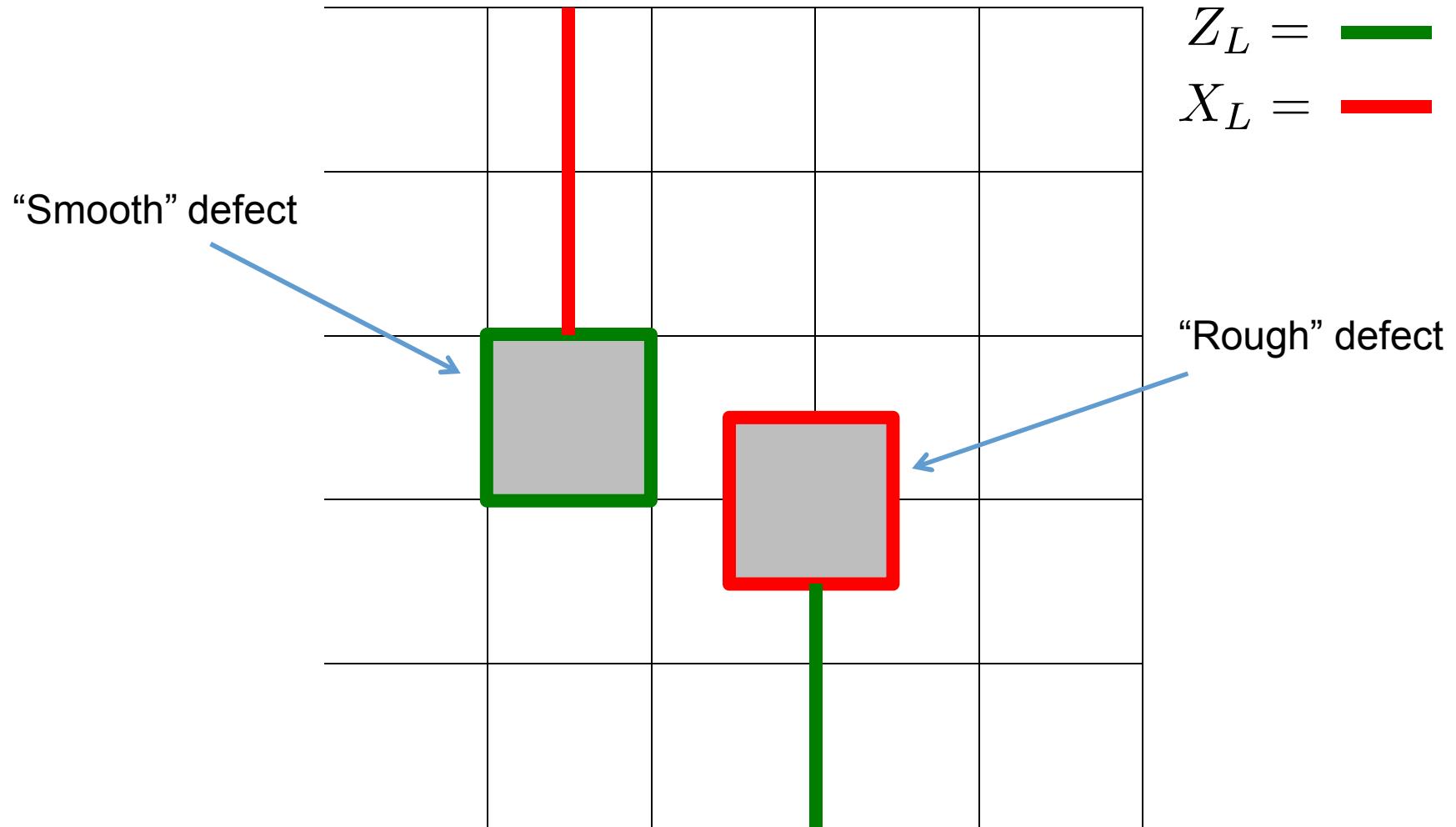
Topological Codes II: The Toric Code

- We will encode qubits in *defects* in the code.
- These defects will be introduced by removing some of the stabilizer generators.
- Removing generators has the opposite effect of introducing them: each generator removed doubles the dimension of the codespace.

Raussendorf et. al., A fault-tolerant one-way quantum computer,
Annals of Physics 321, 2242 (2006)

Fowler et. al., High threshold universal quantum computation on the surface code
Phys. Rev. A 80, 052312 (2009)

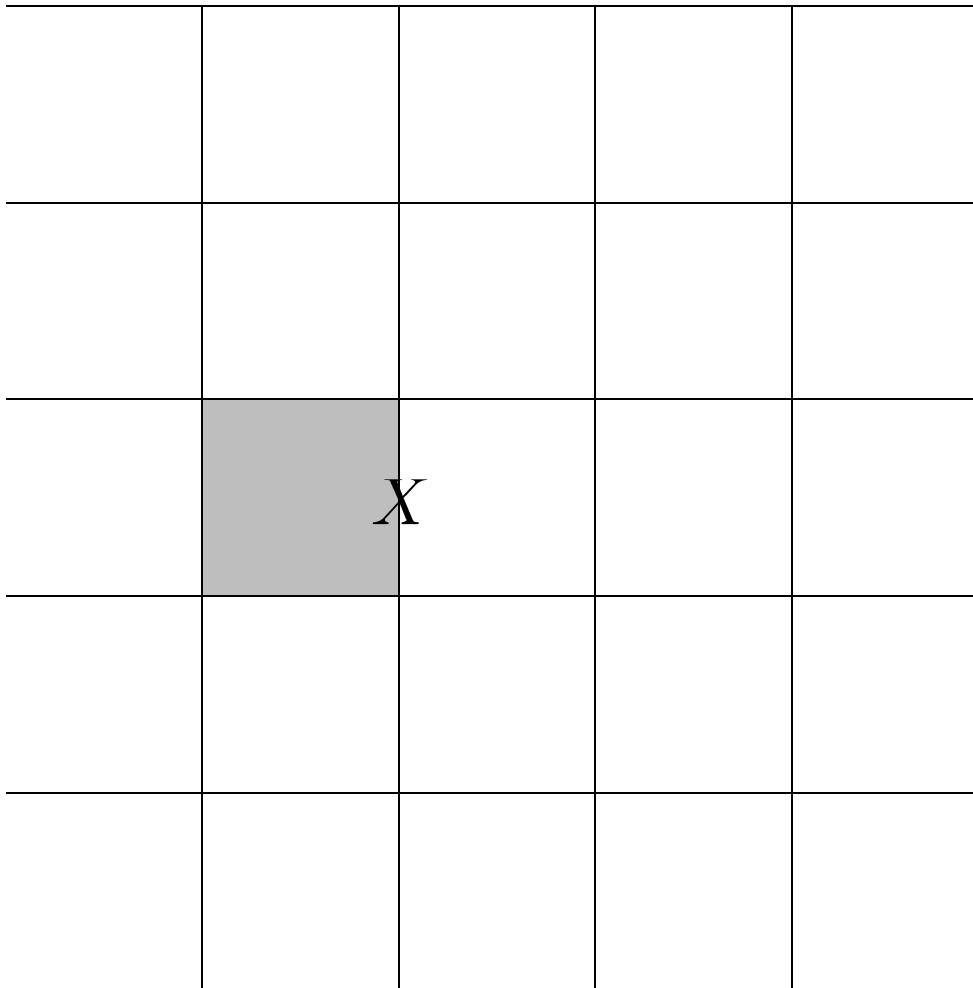
Toric Code Defects



Toric Code Defect Deformation

					<p>It is possible to move a defect by measurements.</p>
					<p>The surface begins with a smooth defect at a particular location.</p>

Toric Code Defect Deformation



We begin by measuring X on the edge in the direction we want to move the defect.

Toric Code Defect Deformation

	$\pm X$			

The measurement result is ± 1 .

However, this single X measurement anti-commutes with the neighboring face check. Thus the face check is removed from the set of stabilizer generators and replaced with $\pm X$

Toric Code Defect Deformation

		$\pm X$		
	Z	Z	Z	
	Z	Z		

Next, we want to reintroduce the face check that was missing originally. This requires measuring $Z \otimes Z \otimes Z \otimes Z$ around the face.

Toric Code Defect Deformation

Z $Z \pm Z$ Z		$\pm X$		

The measurement result is ± 1 .

However, this measurement anti-commutes with the previously introduced stabilizer generator. Thus, that generator is removed and replaced with $\pm Z \otimes Z \otimes Z \otimes Z$

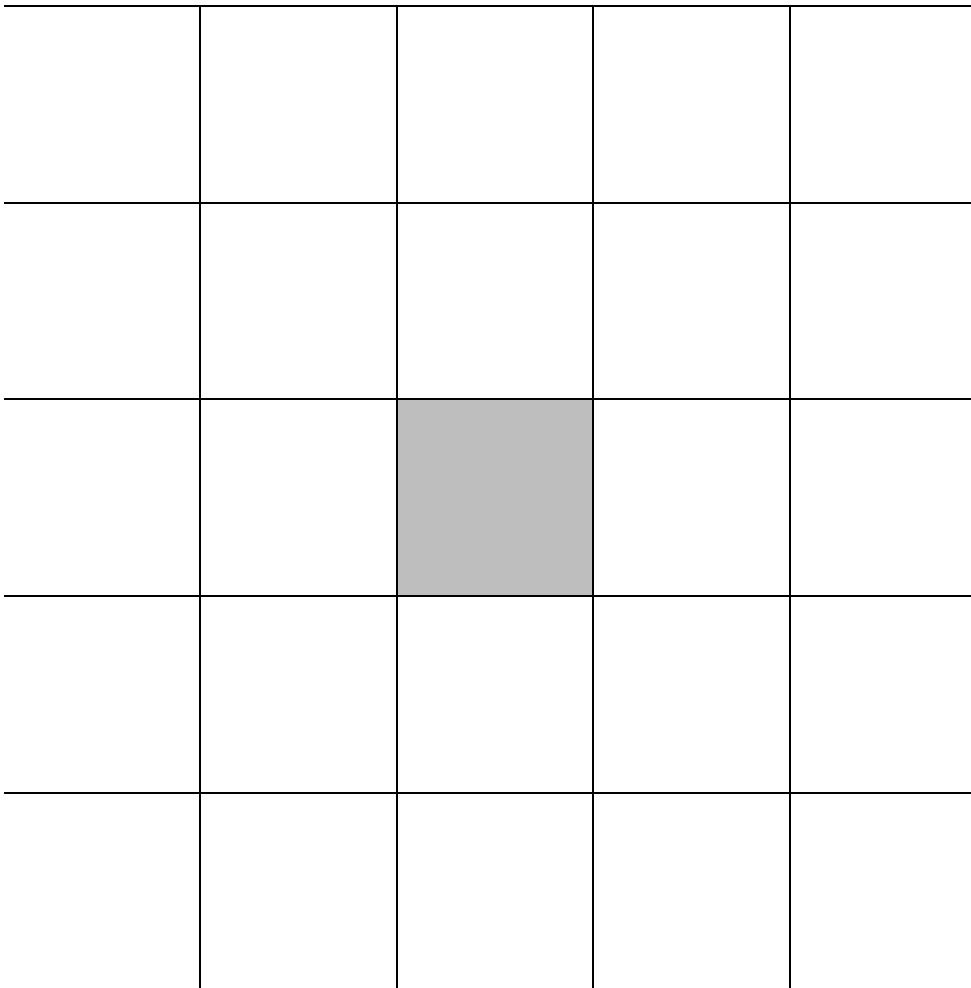
Toric Code Defect Deformation

Z $Z \pm Z$ Z				

The measurement result is ± 1 .

However, this measurement anti-commutes with the previously introduced stabilizer generator. Thus, that generator is removed and replaced with $\pm Z \otimes Z \otimes Z \otimes Z$

Toric Code Defect Deformation



The defect has been moved!

Toric Code Defect Dynamics

We can use part of the preceding sequence to create larger defects which will be better protected from logical errors.

Toric Code Defect Dynamics

We can use part of the preceding sequence to create larger defects which will be better protected from logical errors.

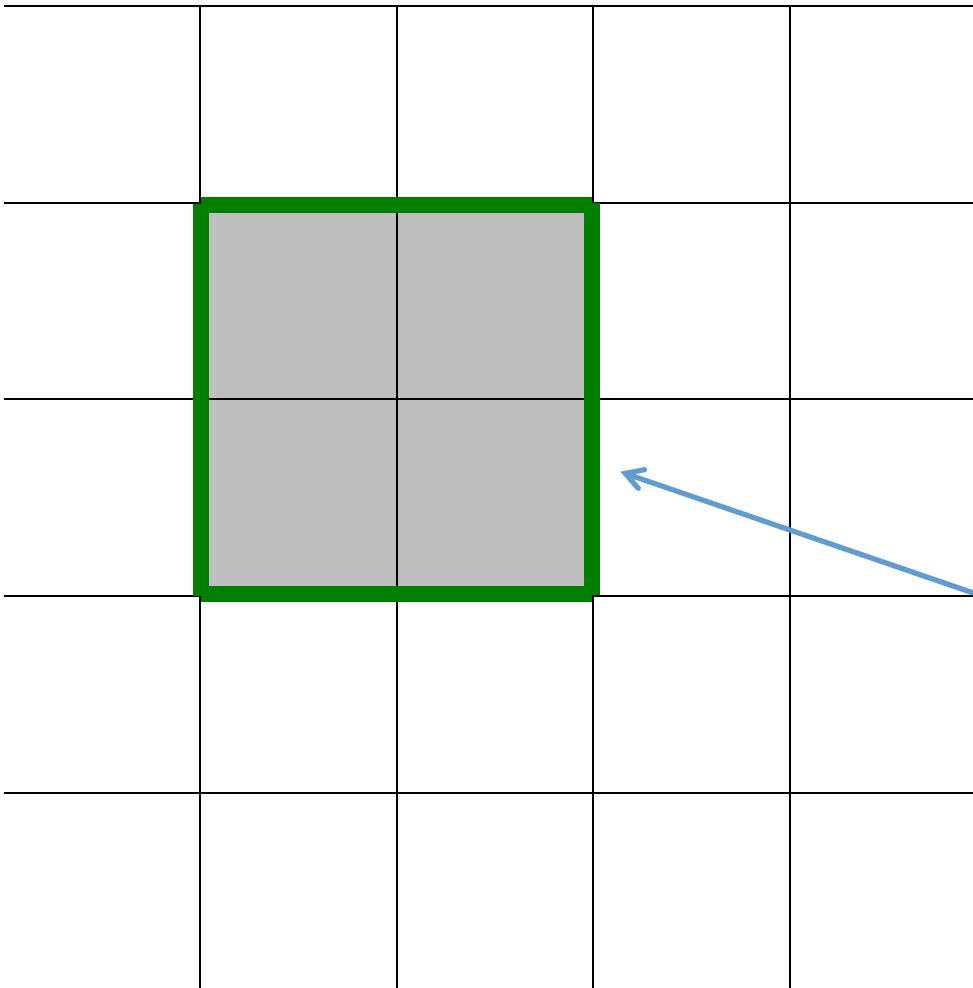
Toric Code Defect Dynamics

We can use part of the preceding sequence to create larger defects which will be better protected from logical errors.

Toric Code Defect Dynamics

We can use part of the preceding sequence to create larger defects which will be better protected from logical errors.

Toric Code Defect Dynamics



We can use part of the preceding sequence to create larger defects which will be better protected from logical errors.

Higher weight Z_L

Toric Code Defect Dynamics

We can also move defects wholesale to another location.

Toric Code Defect Dynamics

We can also move defects wholesale to another location.

Toric Code Defect Dynamics

We can also move defects wholesale to another location.

Toric Code Defect Dynamics

We can also move defects wholesale to another location.

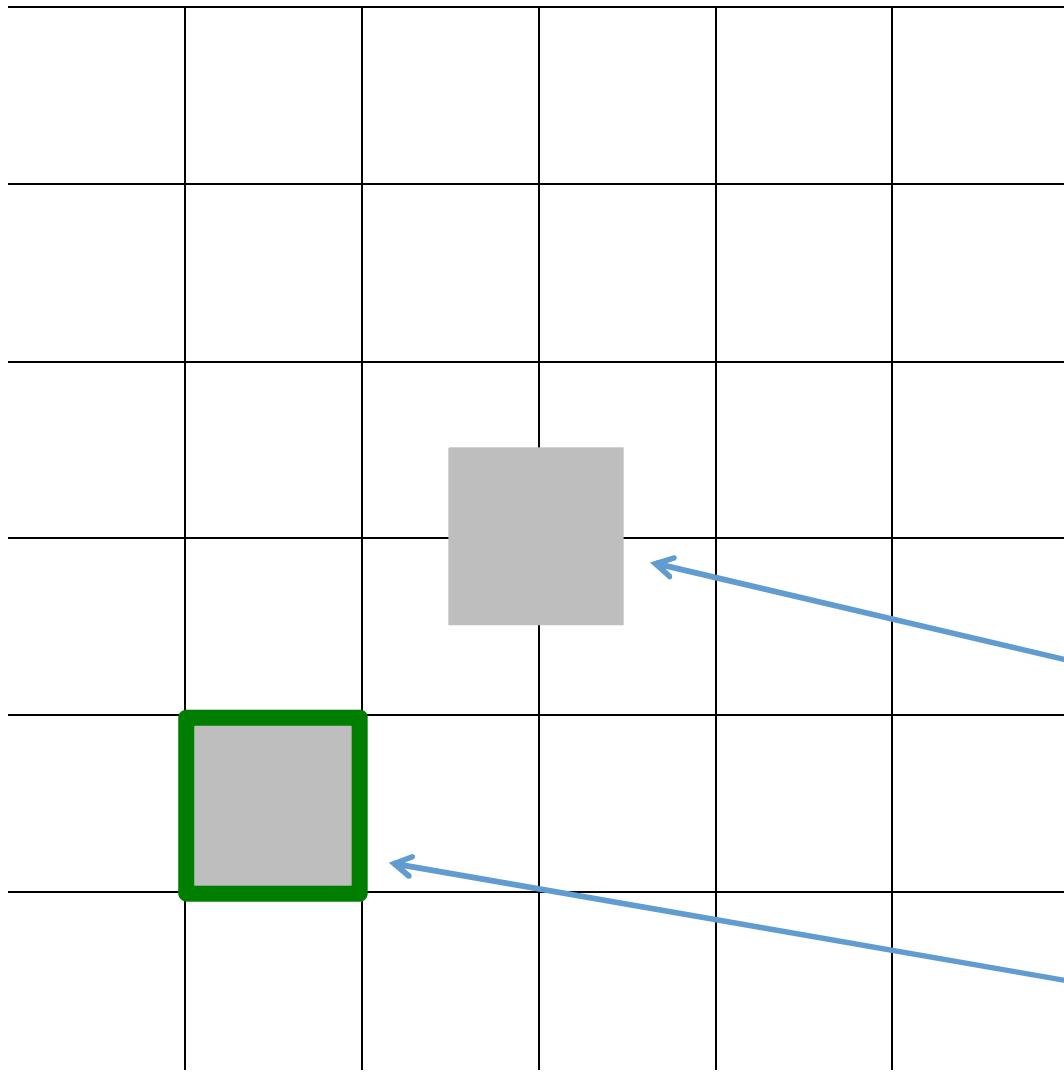
Toric Code Defect Dynamics

Moved!

All of these procedures work
equally well for rough defects
with some slight modifications.

CNOT with Defects

$$Z \otimes I \rightarrow Z \otimes I$$

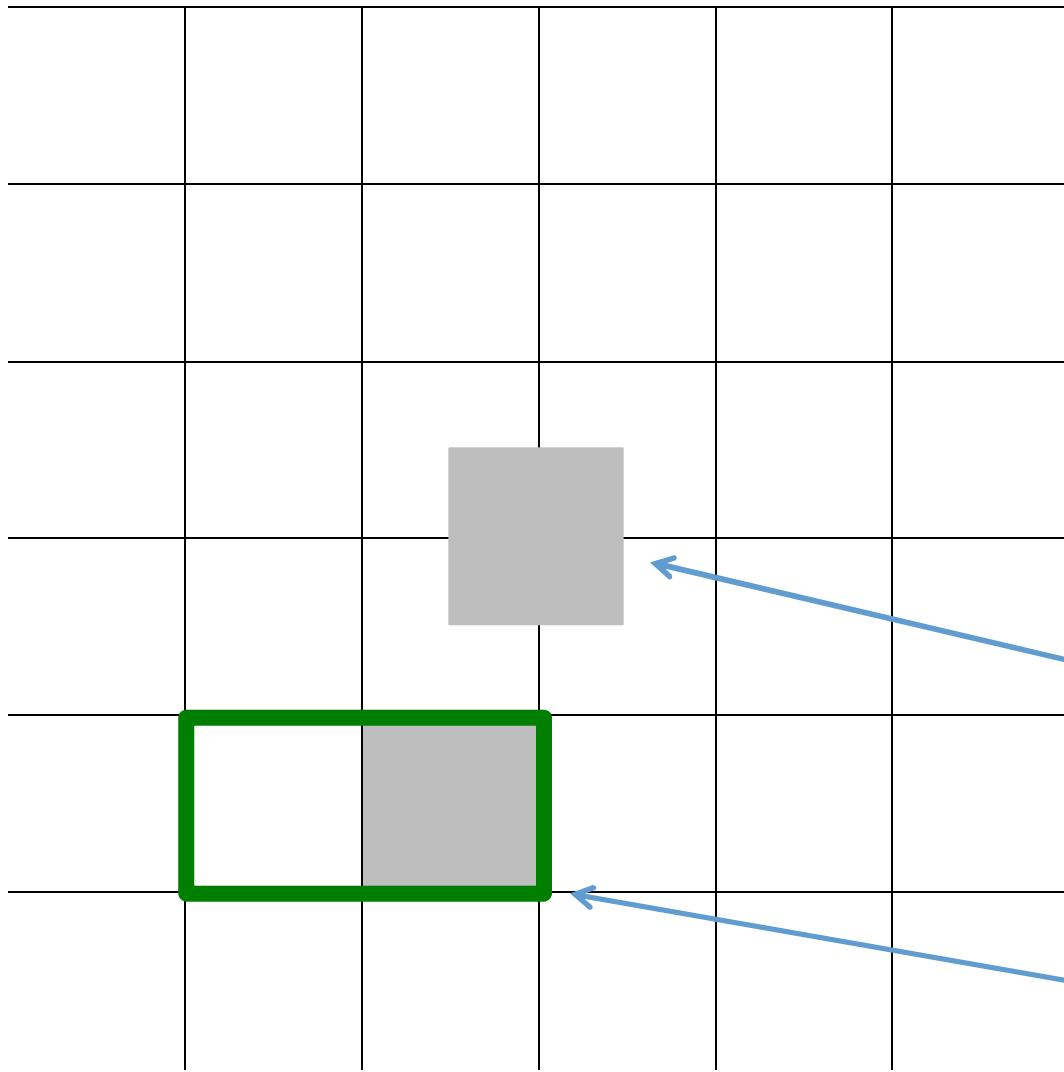


Target rough qubit

Control smooth qubit

CNOT with Defects

$$Z \otimes I \rightarrow Z \otimes I$$

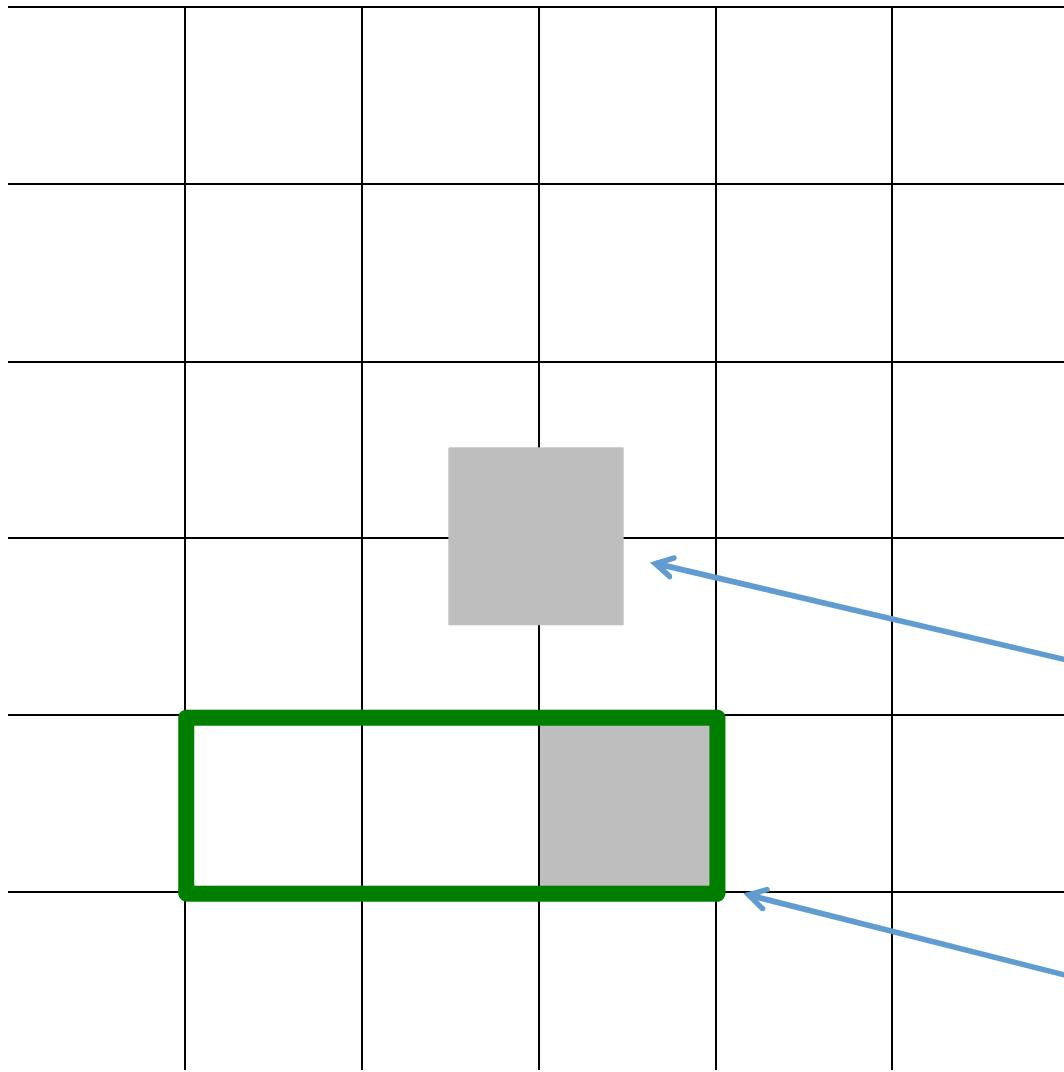


Target rough qubit

Control smooth qubit

CNOT with Defects

$$Z \otimes I \rightarrow Z \otimes I$$

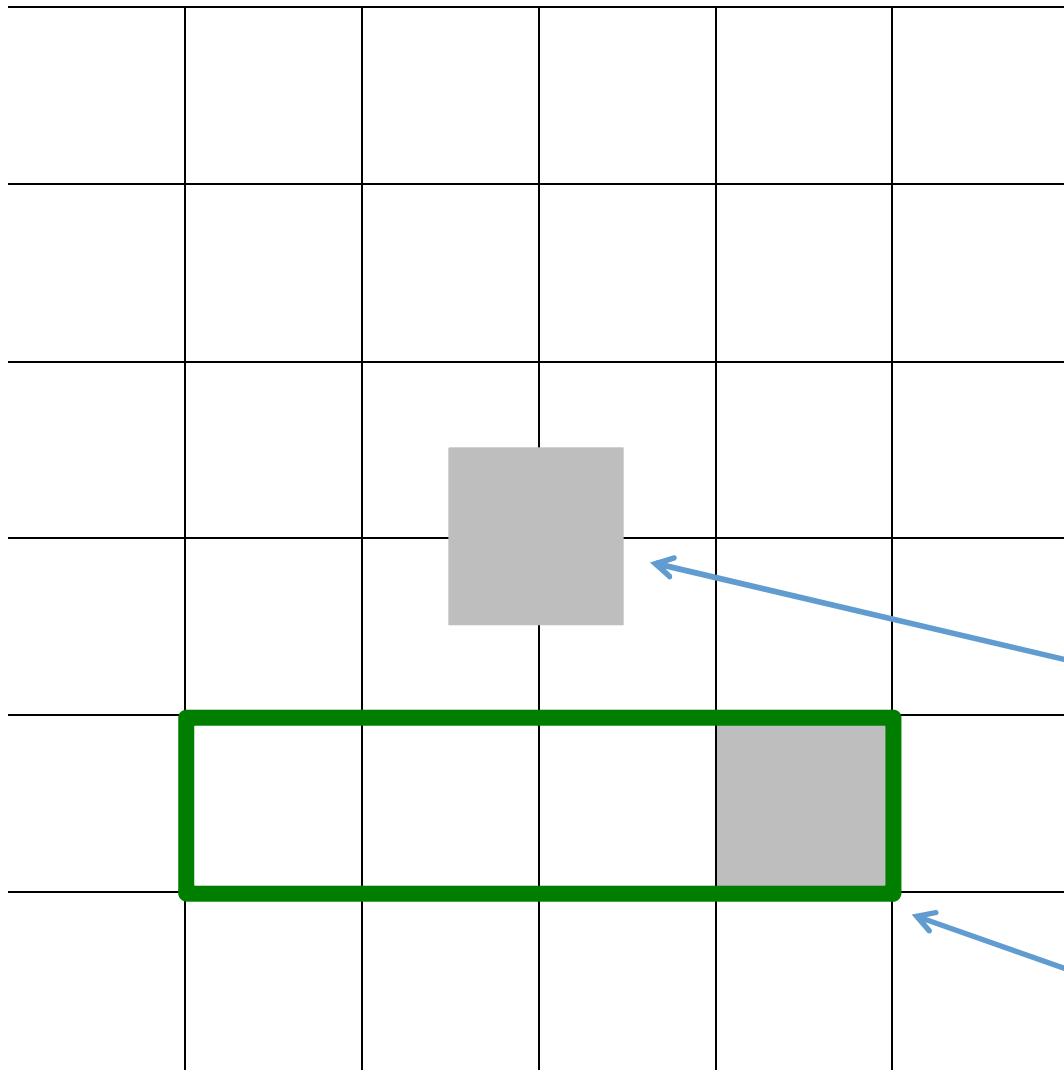


Target rough qubit

Control smooth qubit

CNOT with Defects

$$Z \otimes I \rightarrow Z \otimes I$$

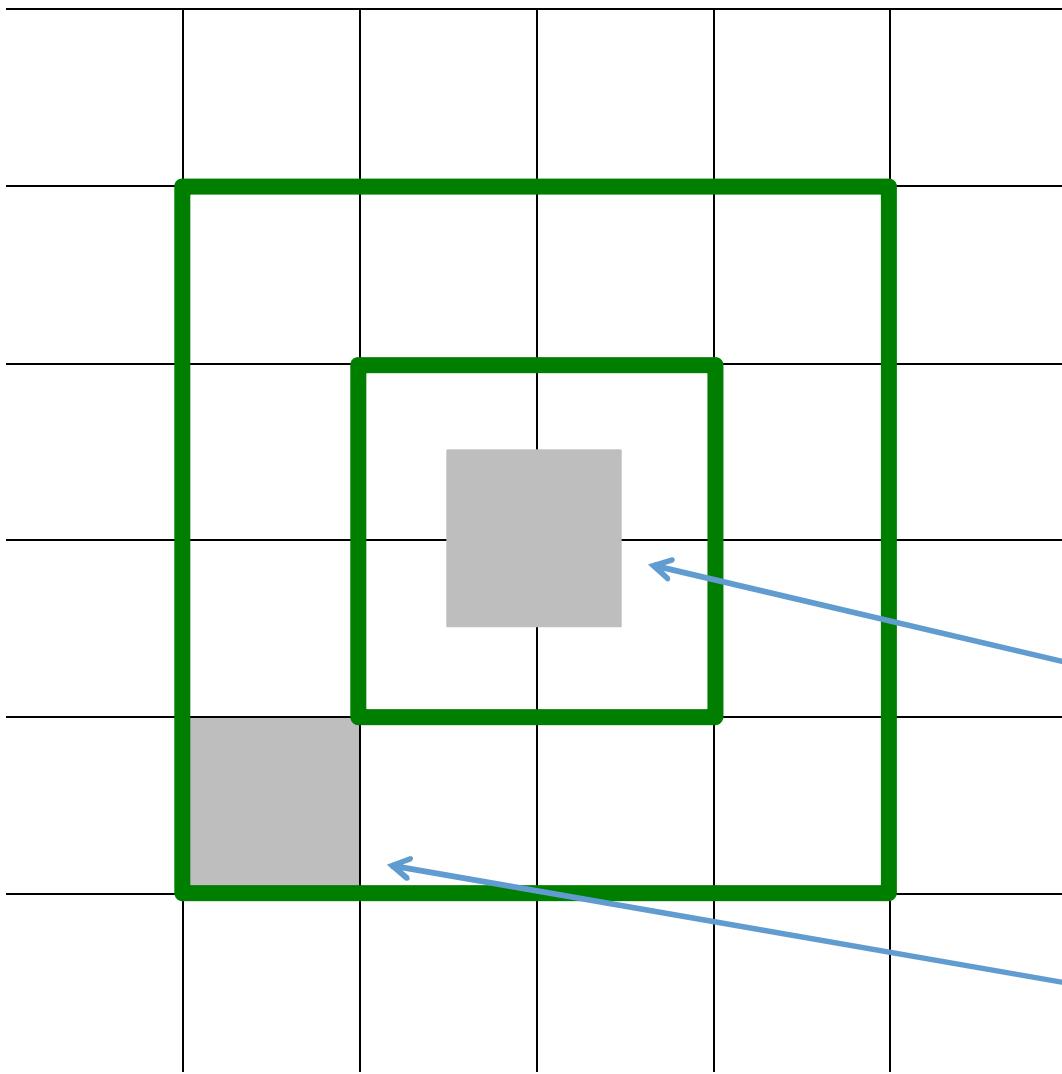


Target rough qubit

Control smooth qubit

CNOT with Defects

$$Z \otimes I \rightarrow Z \otimes I$$

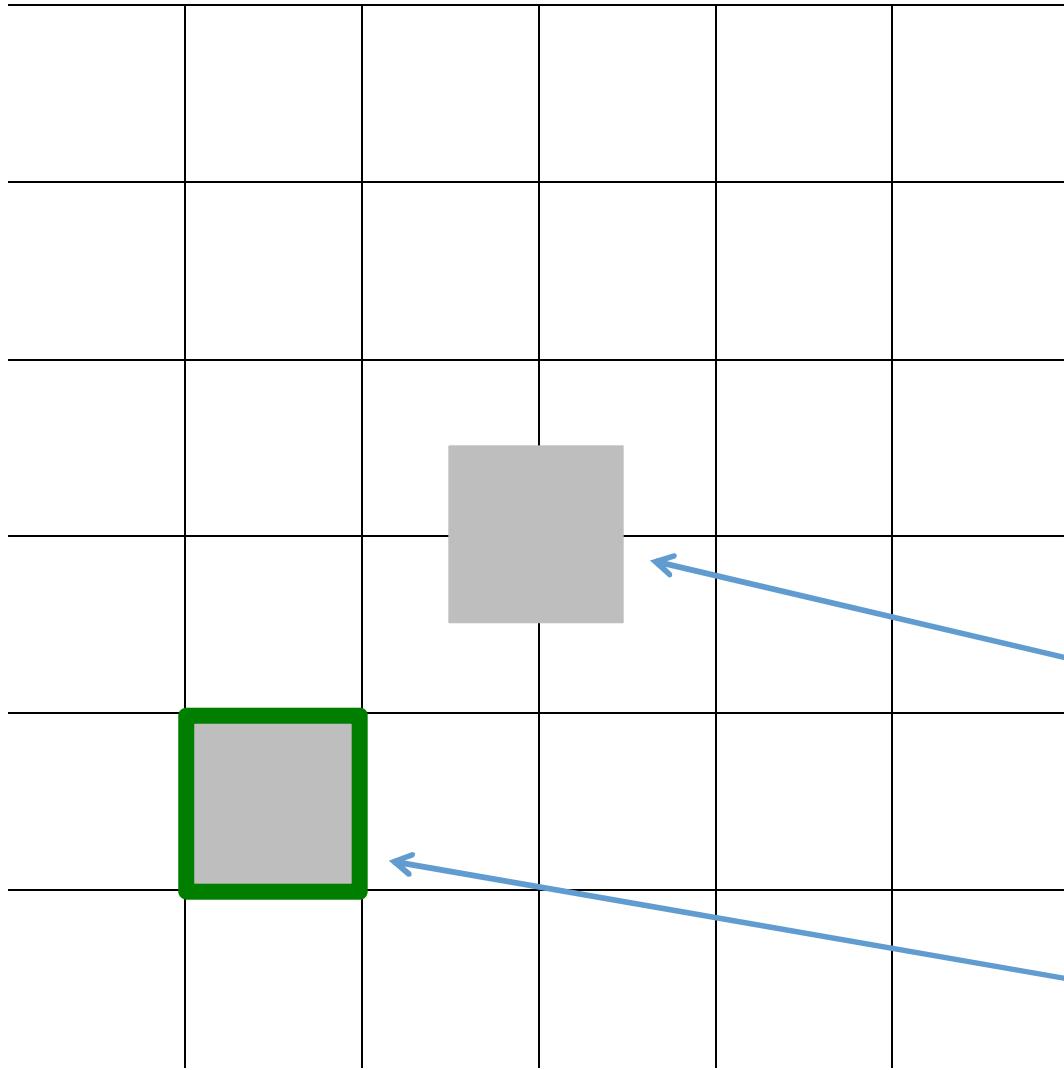


Target rough qubit

Control smooth qubit

CNOT with Defects

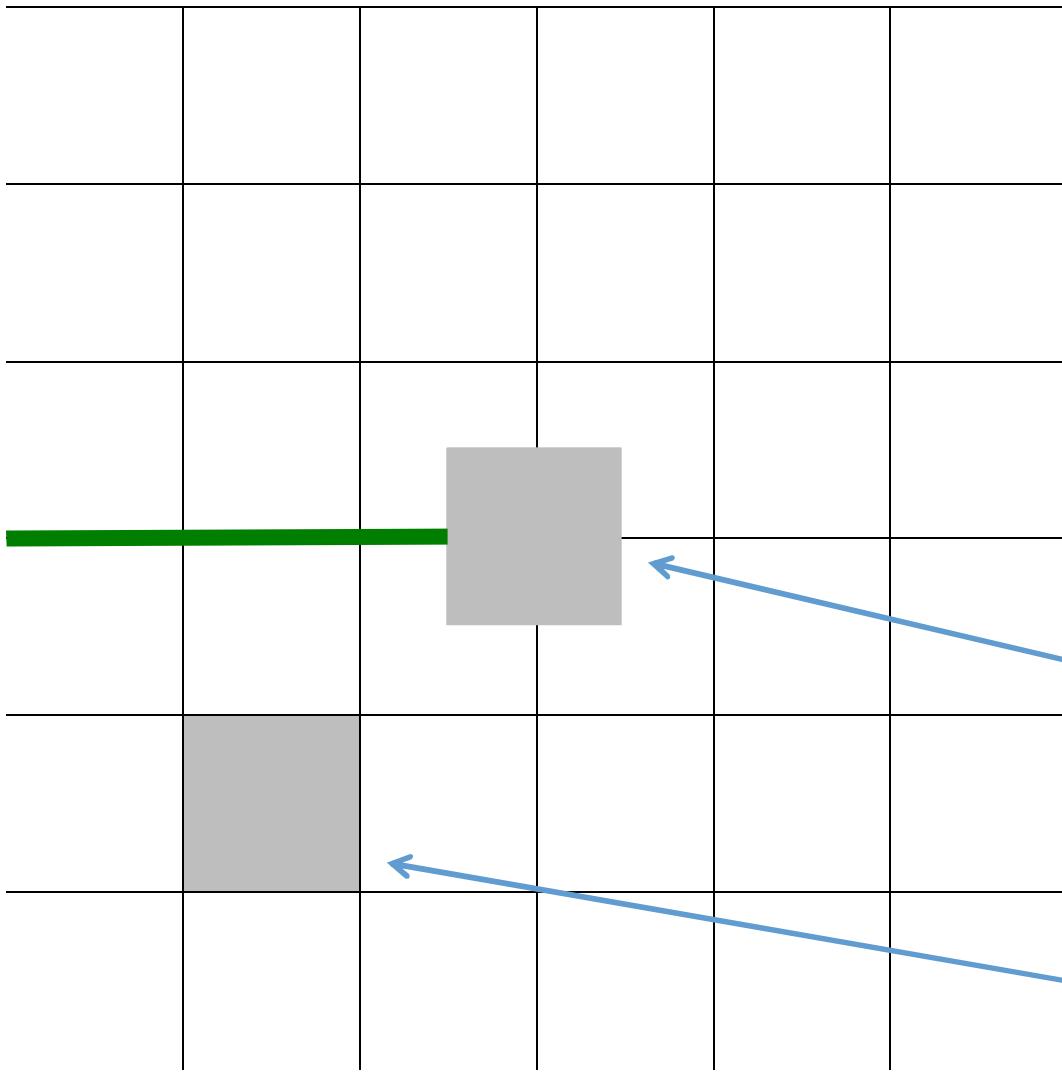
$$Z \otimes I \rightarrow Z \otimes I$$



Target rough qubit

Control smooth qubit

CNOT with Defects

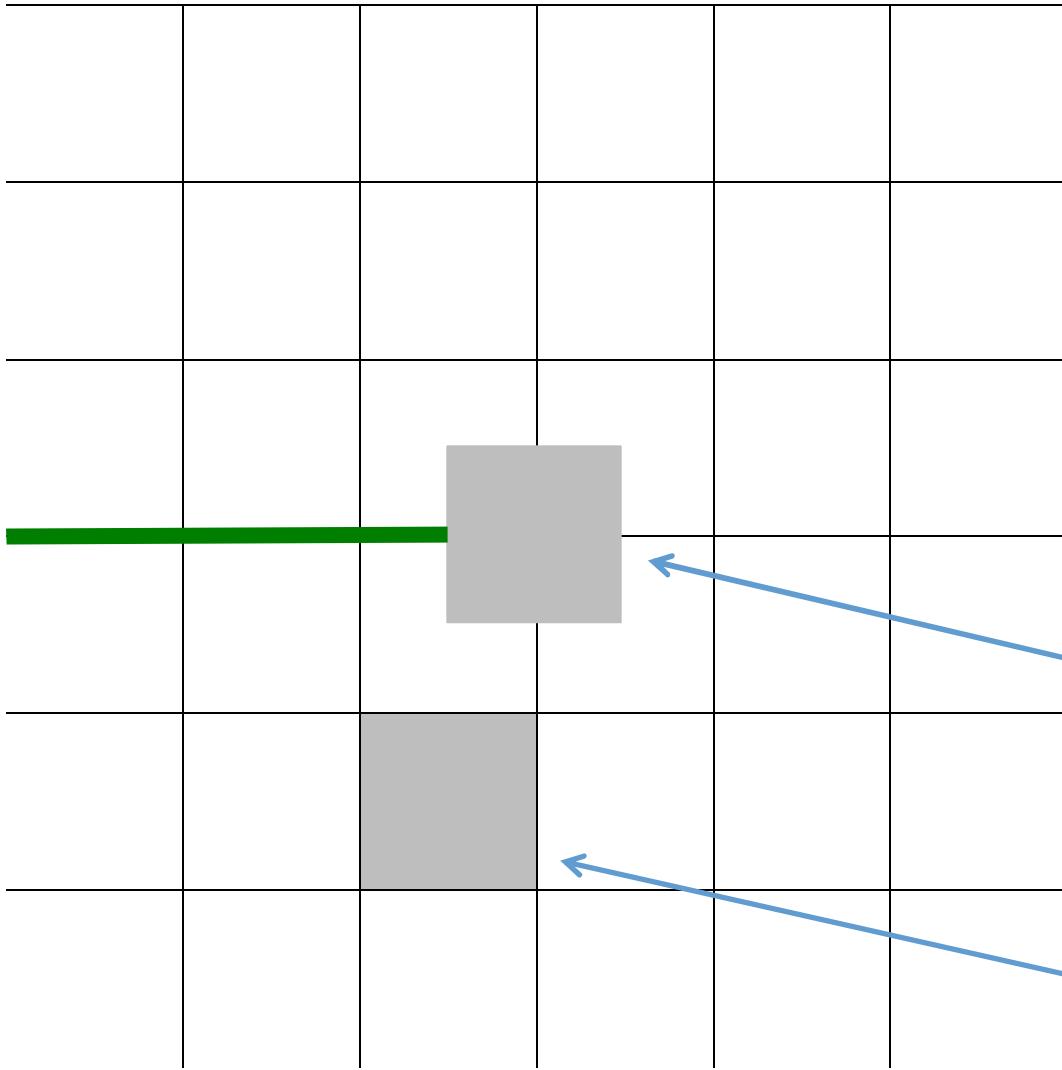


$$I \otimes Z \rightarrow Z \otimes Z$$

Target rough qubit

Control smooth qubit

CNOT with Defects

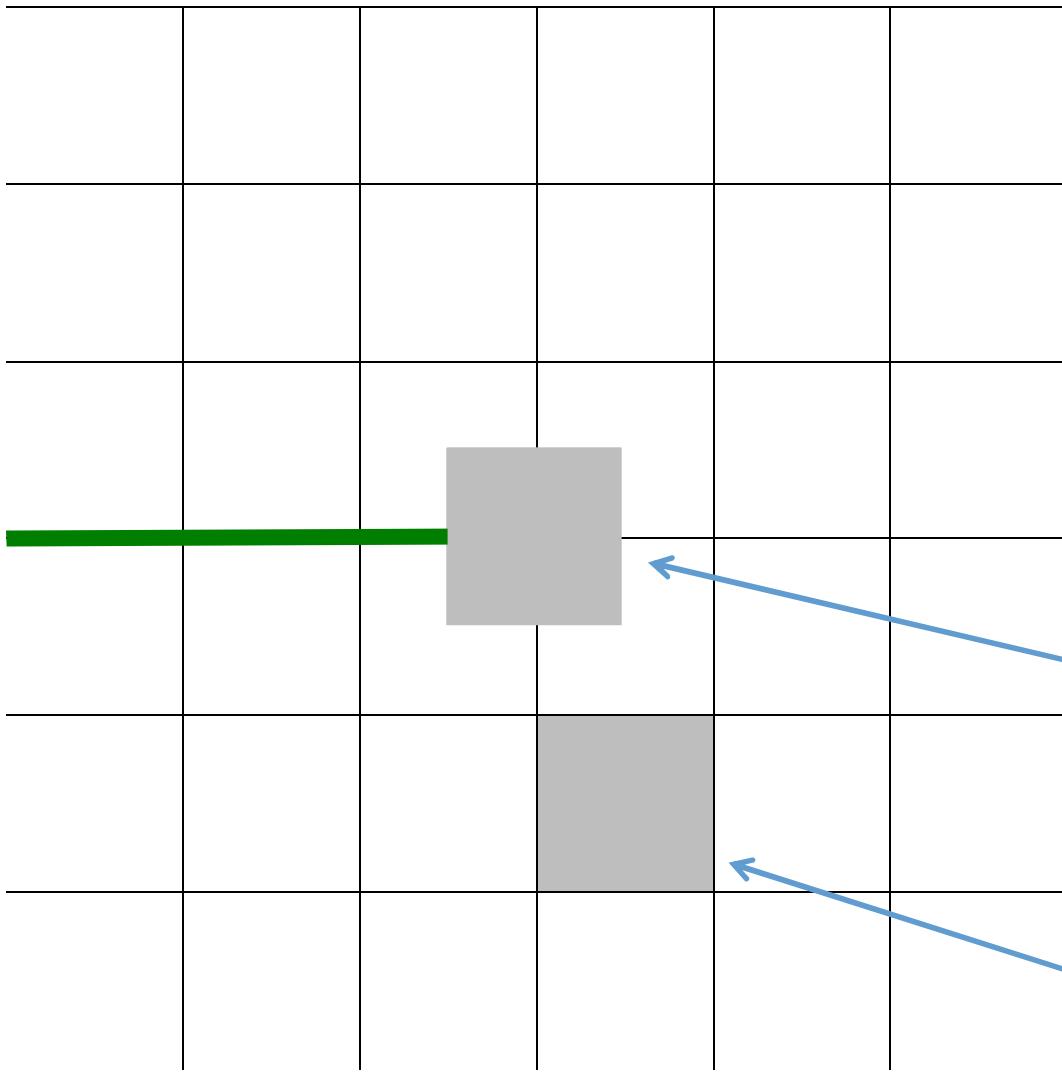


$$I \otimes Z \rightarrow Z \otimes Z$$

Target rough qubit

Control smooth qubit

CNOT with Defects



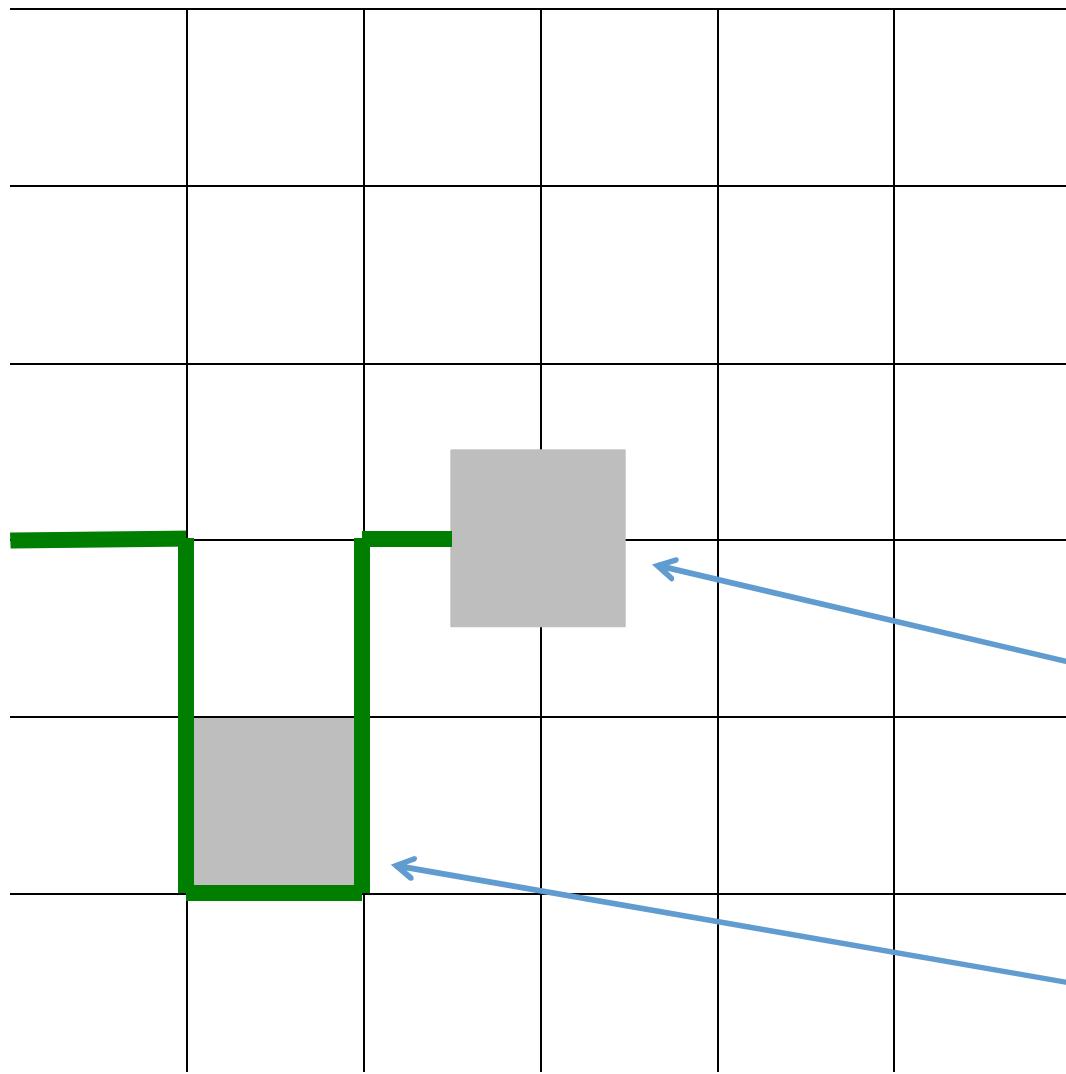
$$I \otimes Z \rightarrow Z \otimes Z$$

Target rough qubit

Control smooth qubit

CNOT with Defects

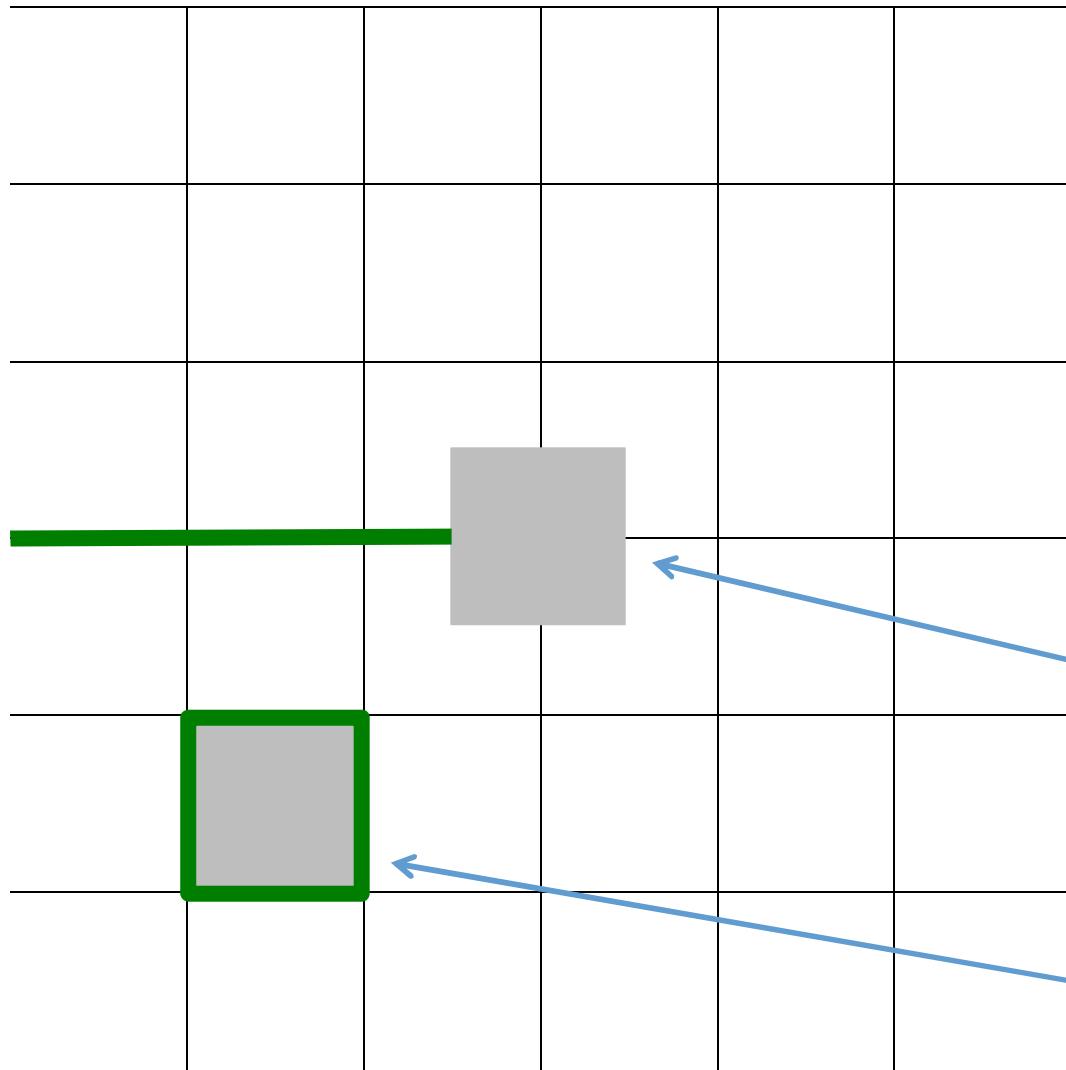
$$I \otimes Z \rightarrow Z \otimes Z$$



Target rough qubit

Control smooth qubit

CNOT with Defects

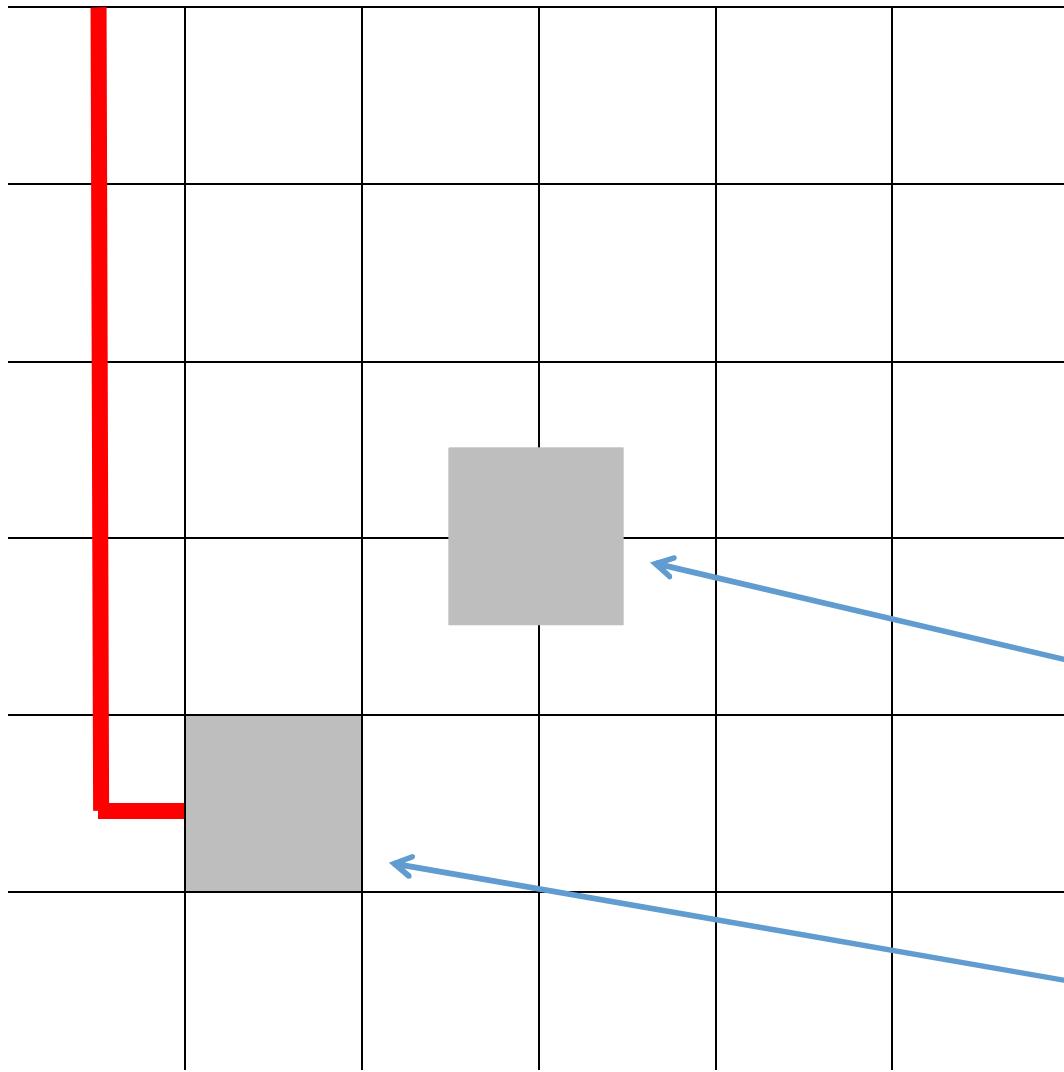


$$I \otimes Z \rightarrow Z \otimes Z$$

Target rough qubit

Control smooth qubit

CNOT with Defects

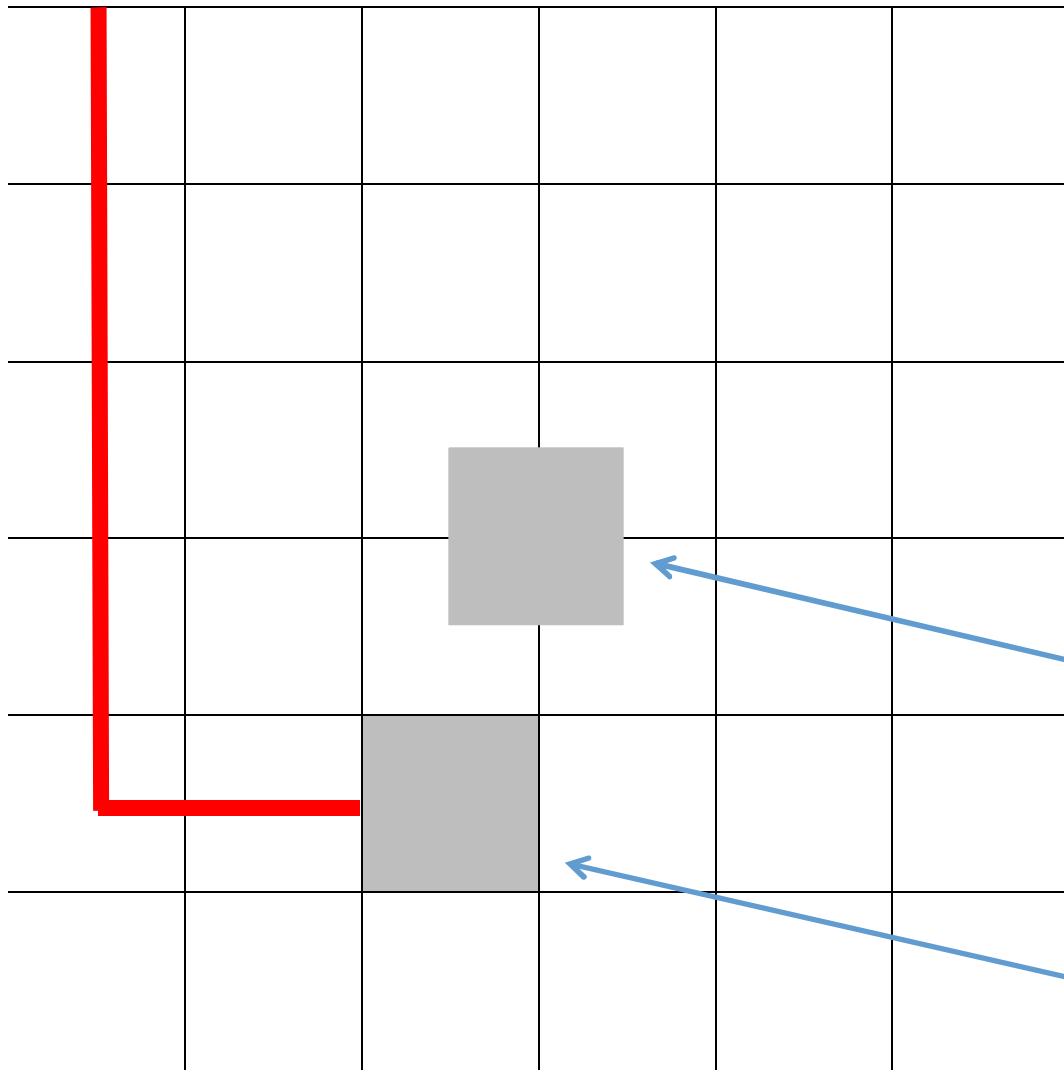


$$X \otimes I \rightarrow X \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

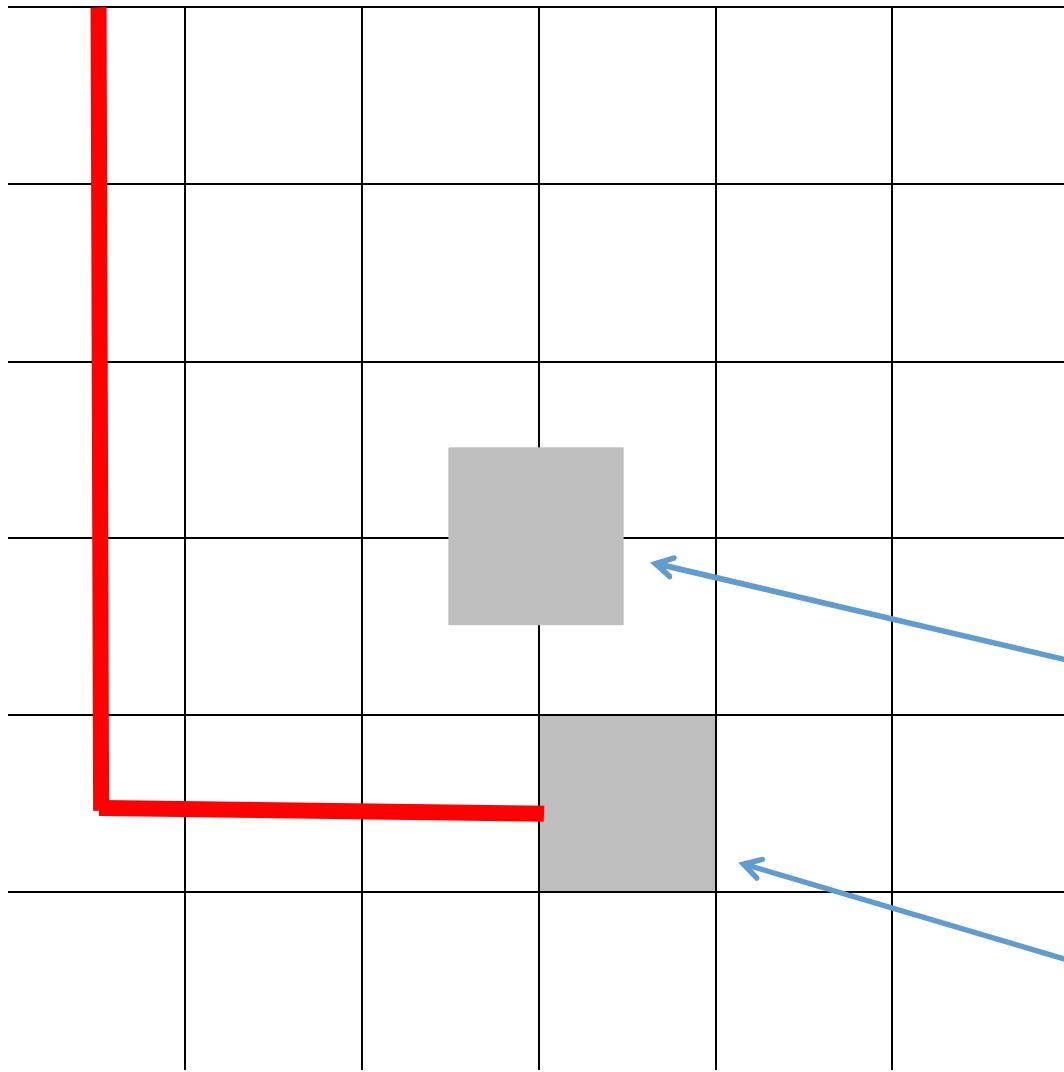


$$X \otimes I \rightarrow X \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

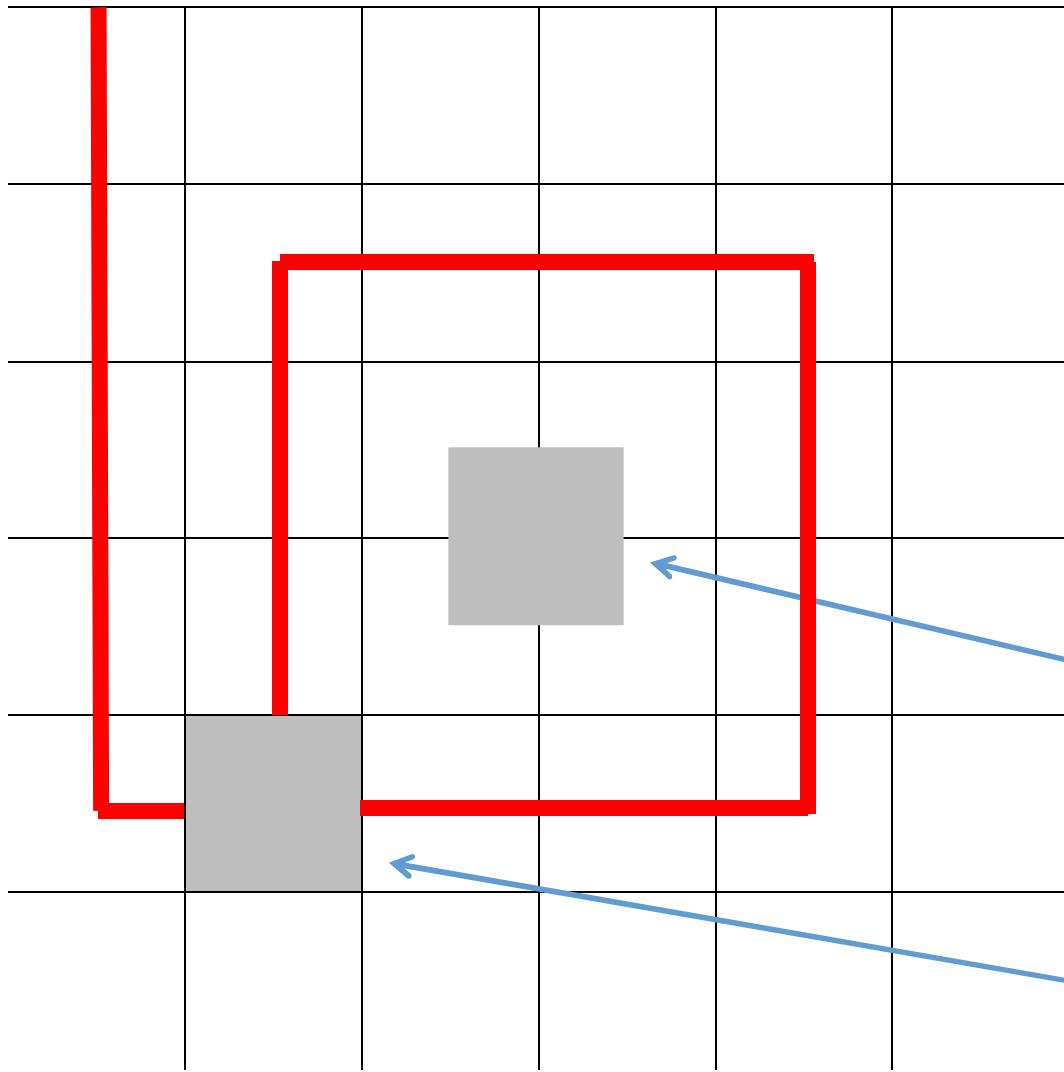


$$X \otimes I \rightarrow X \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

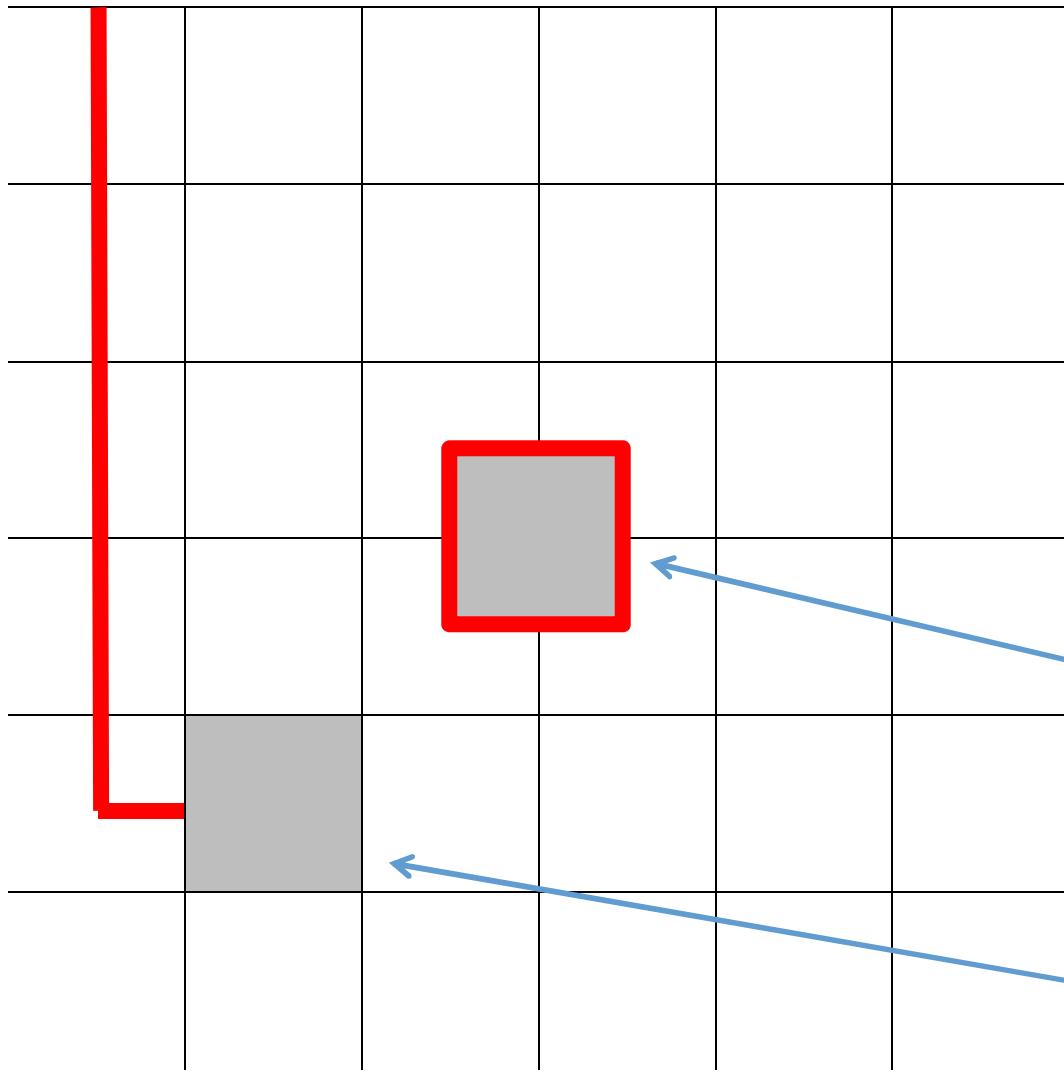


$$X \otimes I \rightarrow X \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

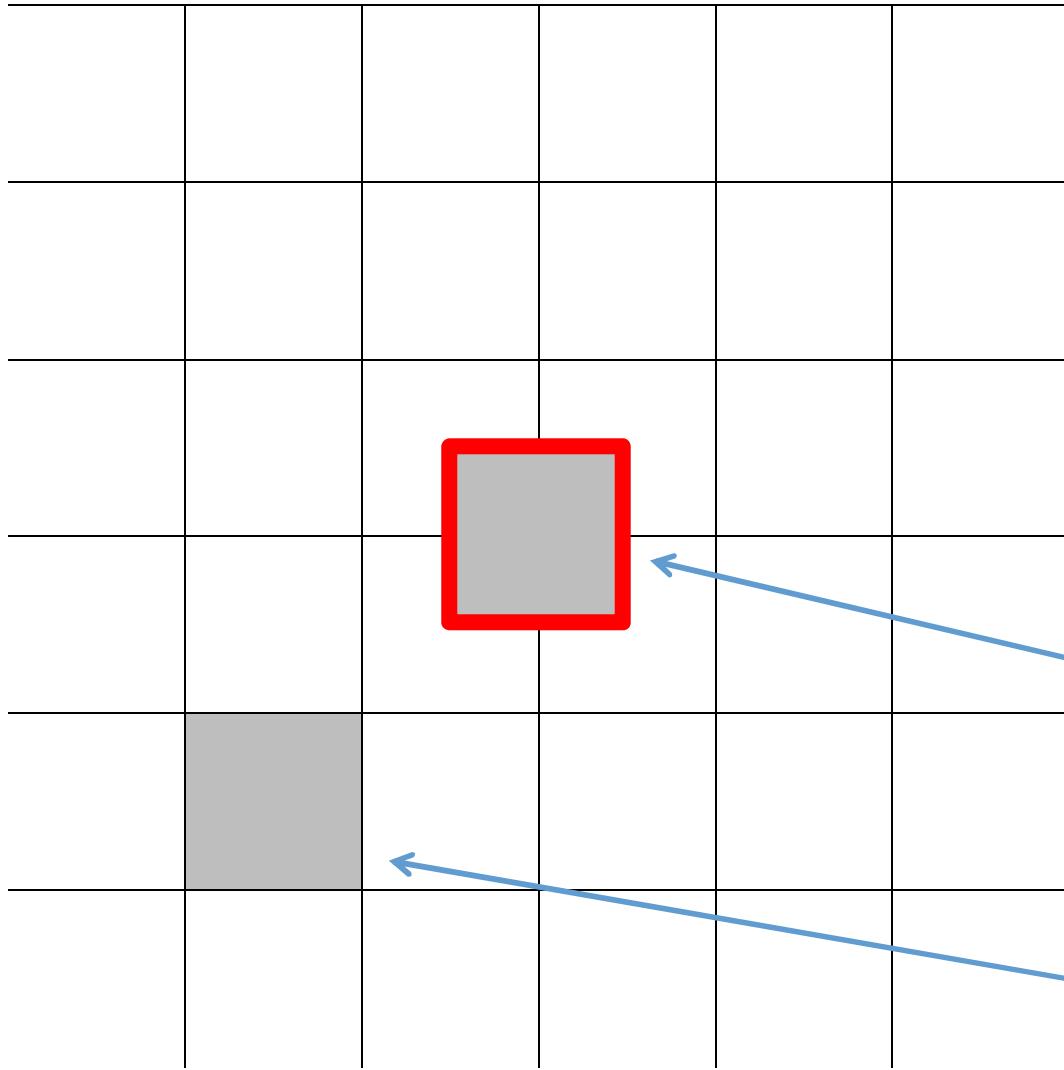


$$X \otimes I \rightarrow X \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

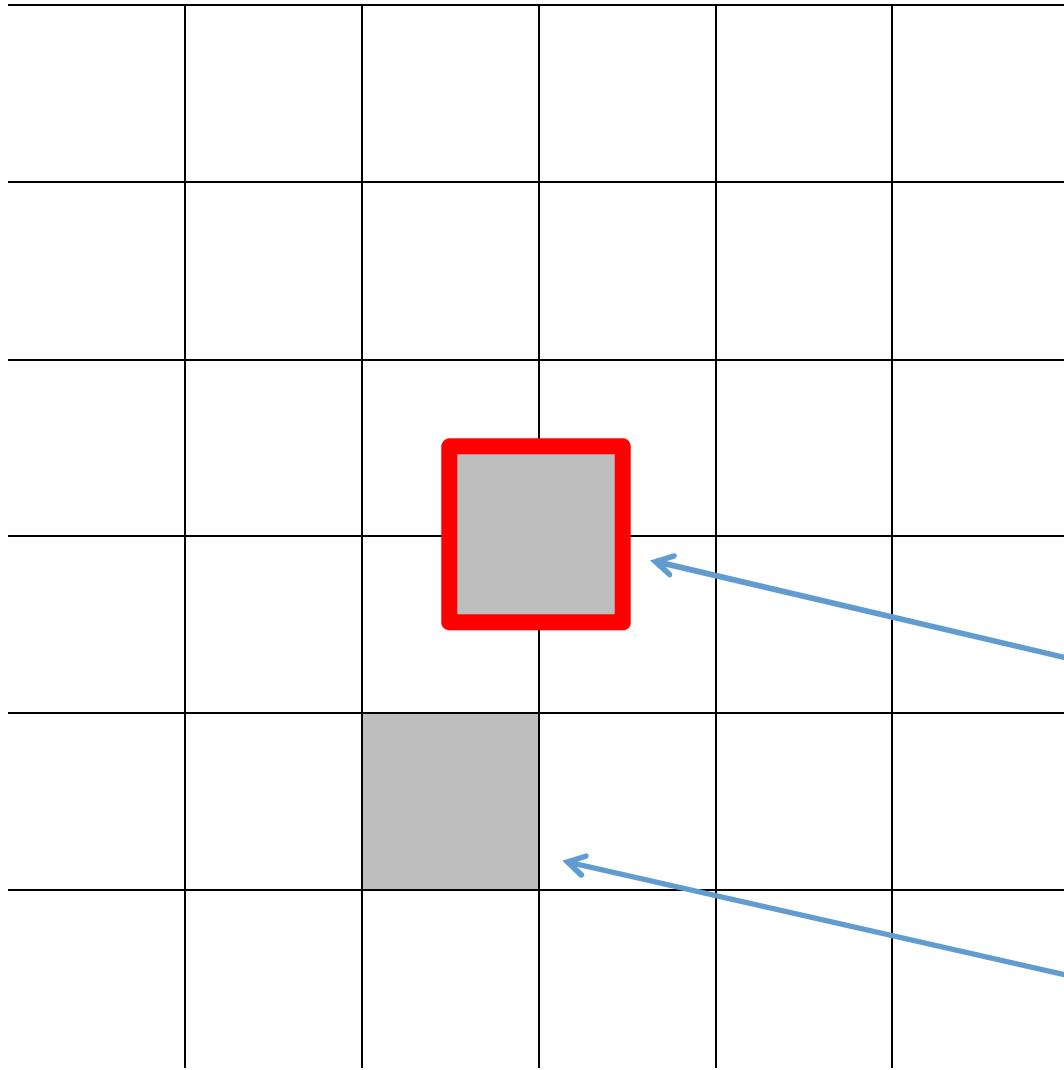


$$I \otimes X \rightarrow I \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

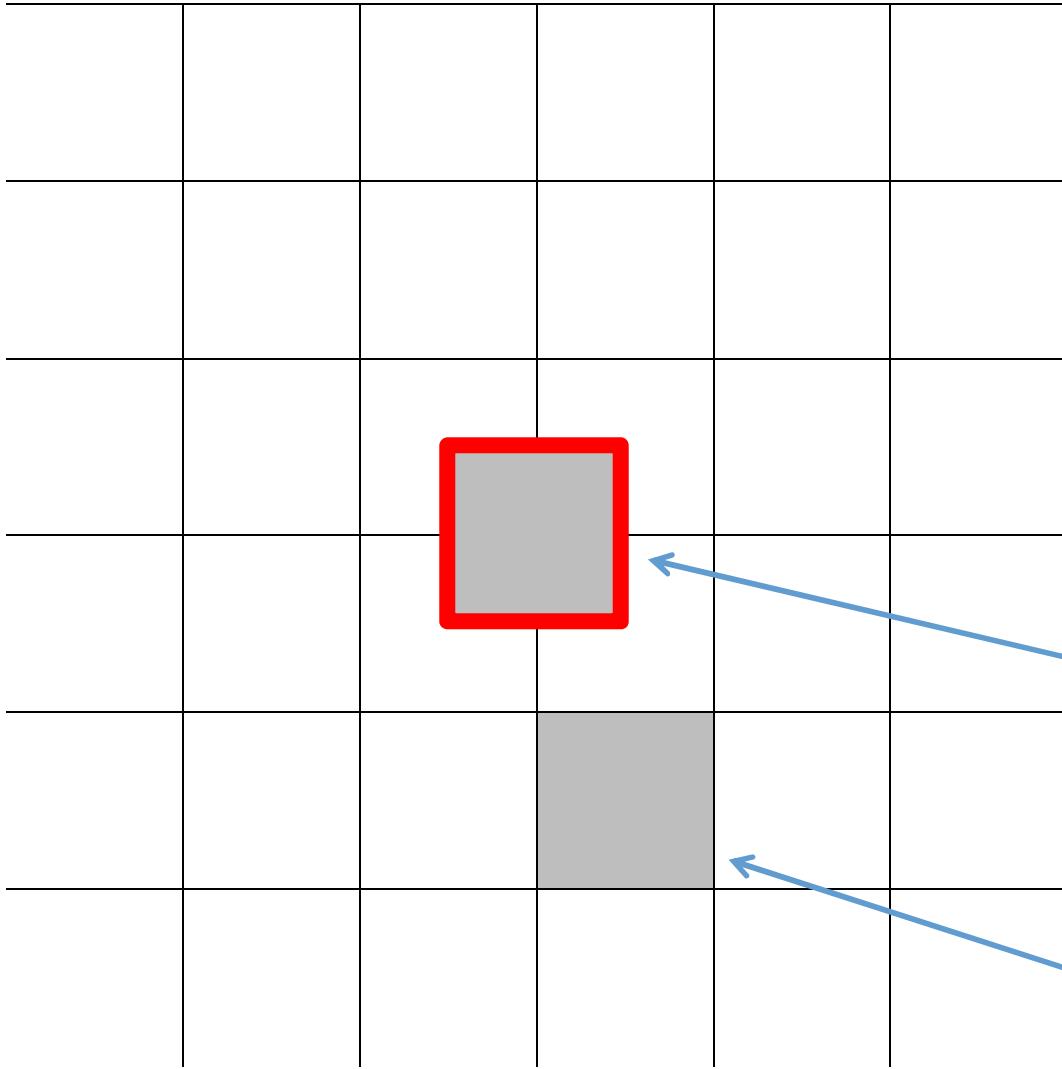


$$I \otimes X \rightarrow I \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

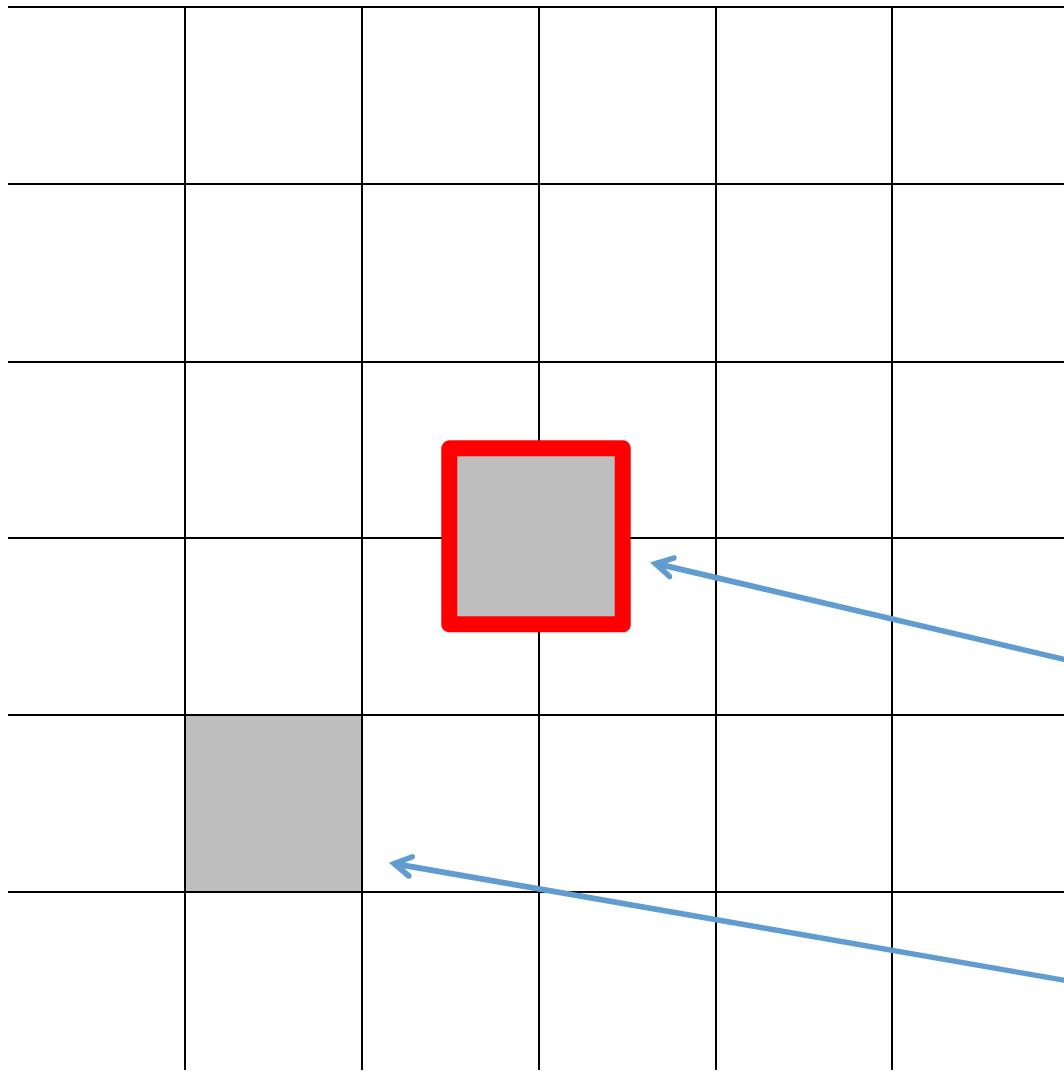


$$I \otimes X \rightarrow I \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects



$$I \otimes X \rightarrow I \otimes X$$

Target rough qubit

Control smooth qubit

CNOT with Defects

$$I \otimes Z \rightarrow Z \otimes Z$$

$$X \otimes I \rightarrow X \otimes X$$

$$I \otimes X \rightarrow I \otimes X$$

$$Z \otimes I \rightarrow Z \otimes I$$

These relations are precisely how the CNOT gate acts. Is it possible to do this defect braiding adiabatically?

Stabilizer Quantum Codes

Topological Quantum Codes

Adiabatic Topological Quantum Computing

Codespace as Ground Space

- Consider the following Hamiltonian

$$H = - \sum S_i, \quad S_i \in \langle \mathcal{S} \rangle$$

- The ground space of this Hamiltonian is exactly the codespace of the stabilizer code with generators S_i
- Errors in the code appear as excitations out of the ground space → errors are suppressed energetically

Adiabatic TQC

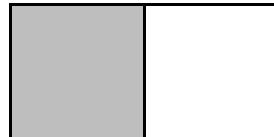
- In TQC, braiding is always assumed to be adiabatic
- This work introduces explicit adiabatic braiding and uses an explicit lattice model
- The tools can be extended more generally to “Adiabatic Code Deformation”

Bacon and Flammia, Adiabatic Gate Teleportation,
Phys. Rev. Lett. 103, 120504 (2009)

Bacon and Flammia, Adiabatic Cluster State Quantum Computing,
Phys. Rev. A 82, 030303(R) (2010)

Adiabatic TQC Defect Movement

- The adiabatic movement of defects simulates the preceding measurement-based approach



$$H = \dots - Z \otimes Z \otimes Z \otimes Z - \dots$$

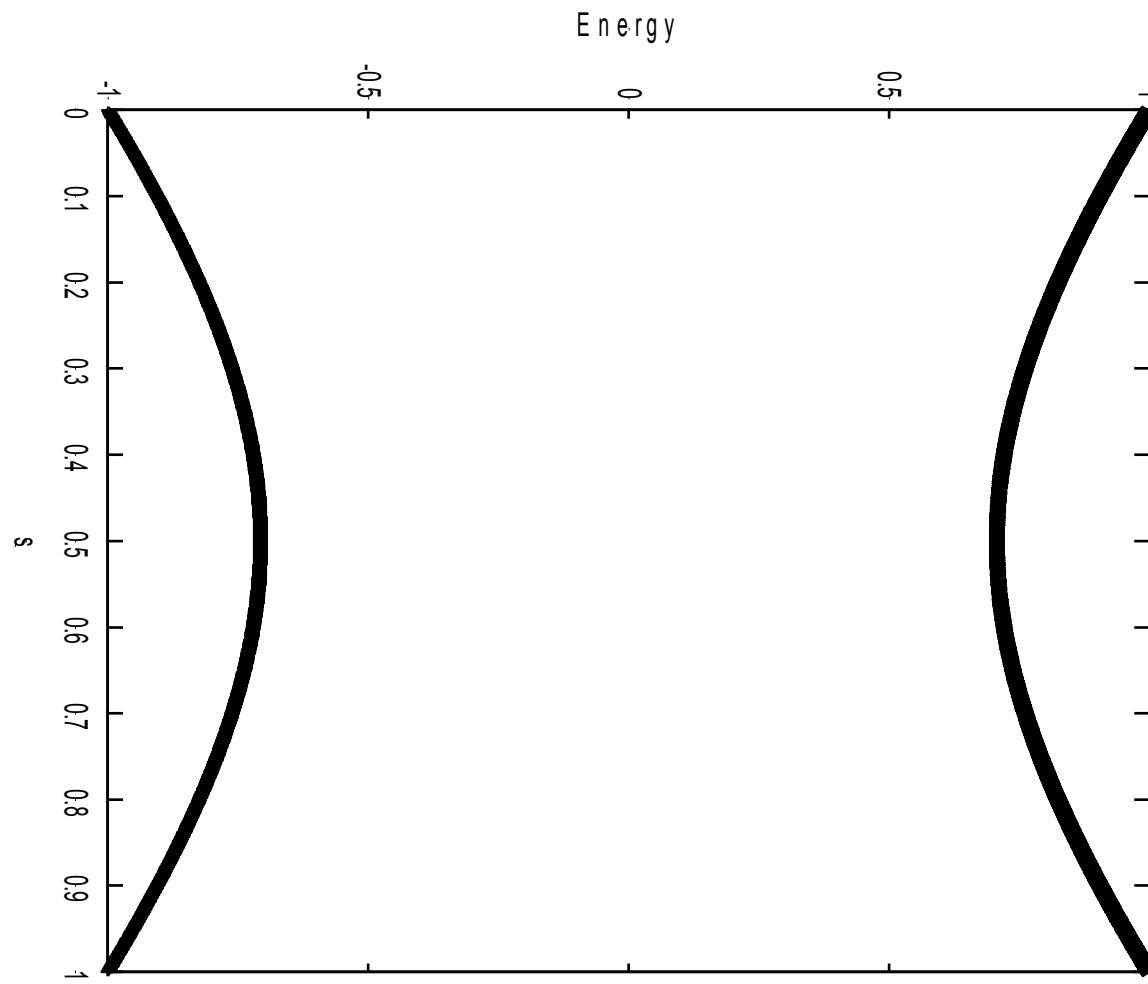
$$H = \dots - X_{\text{middle}} - \dots$$

- The following evolution succeeds in growing the defect

$$H(s) = (1 - s) (-Z \otimes Z \otimes Z \otimes Z) + s (-X_{\text{middle}})$$

Adiabatic TQC Defect Movement

$$H(s) = (1 - s) (-Z \otimes Z \otimes Z \otimes Z) + s (-X_{\text{middle}})$$



Adiabatic TQC Defect Creation

- A defect can be created adiabatically

- Proposed evolution

$$H(s) = (1 - s) (-Z \otimes Z \otimes Z \otimes Z - Z \otimes Z \otimes Z \otimes Z) + s (-X)$$

Adjacet face checks

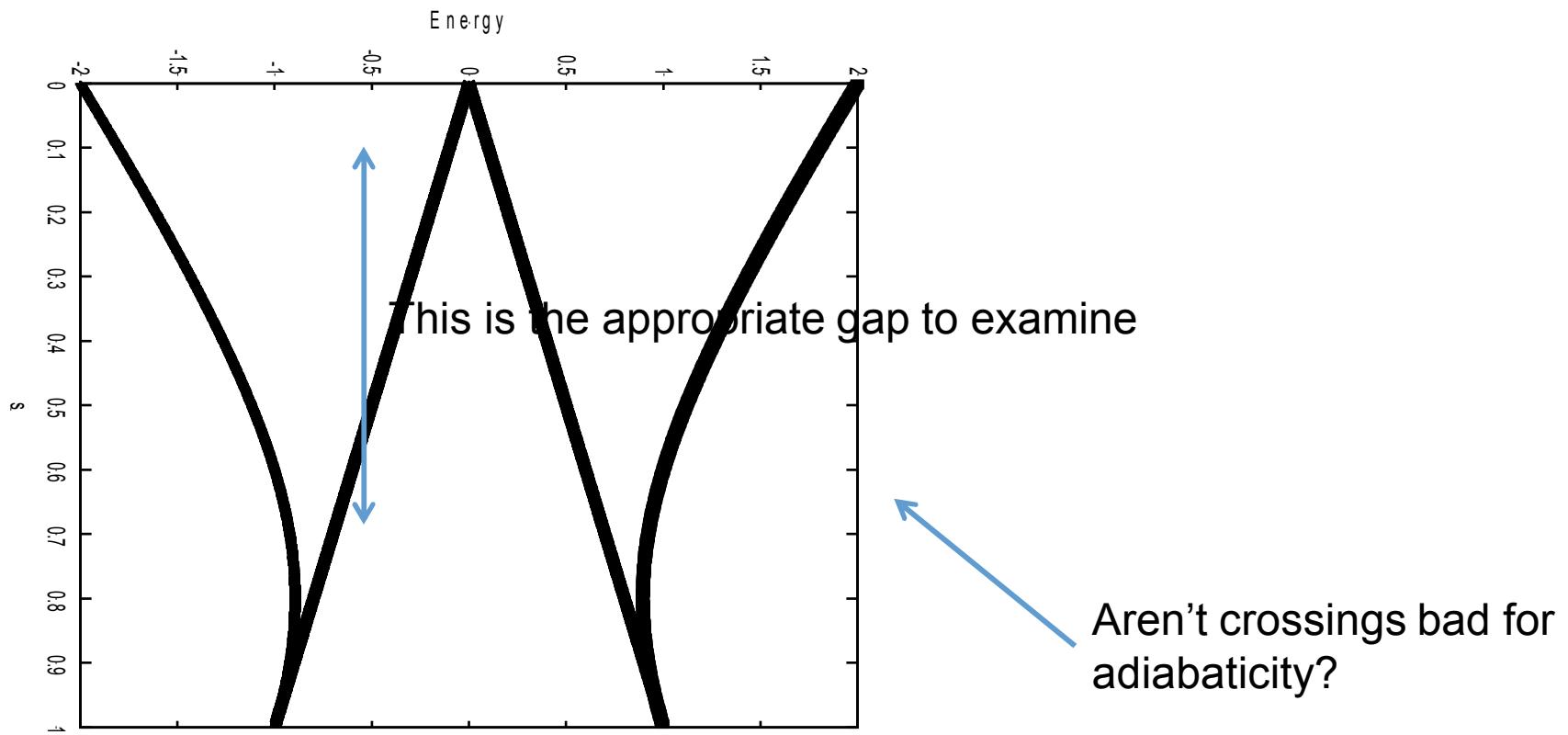
Single new check in the middle

The diagram shows the components of the Hamiltonian $H(s)$. It consists of two terms: $(1 - s) (-Z \otimes Z \otimes Z \otimes Z - Z \otimes Z \otimes Z \otimes Z)$ and $s (-X)$. The first term is labeled 'Adjacet face checks' with two blue arrows pointing to the two Z operators in the middle of the row. The second term is labeled 'Single new check in the middle' with a single blue arrow pointing to the $-X$ operator.

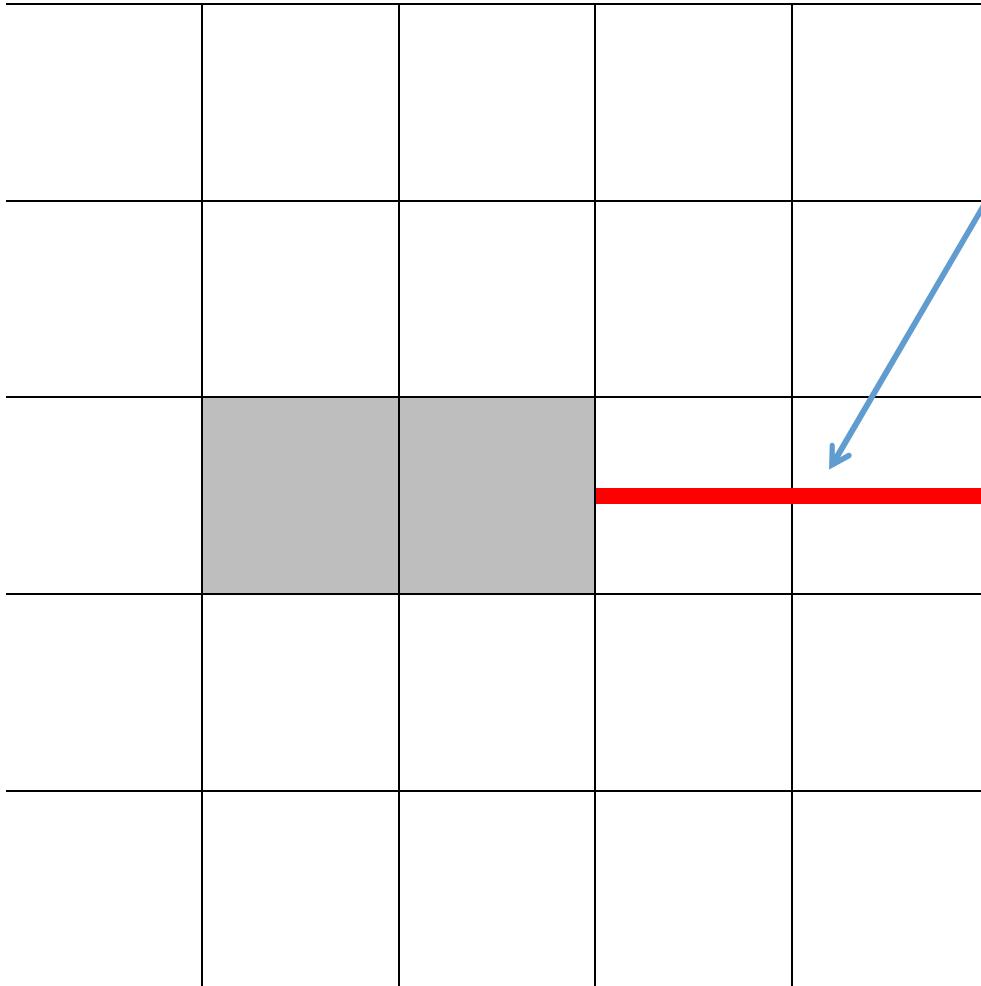
- How do we get to a degenerate ground space from a non-degenerate one in an adiabatic fashion?

Adiabatic TQC Defect Creation

- Only a topologically nontrivial operator couples the lowest eigenstates that cross

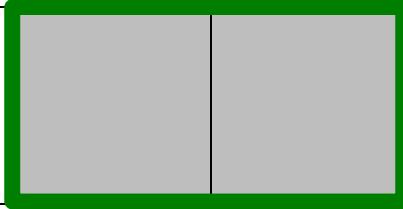


Adiabatic TQC Defect Creation



This has to happen to couple those two states, and during a real computation this would be a high weight operator. The environment is unlikely to have access to this degree of freedom. This is why we use topological codes in the first place!

Adiabatic TQC Measurement

To measure Z_L shrink the defect to its original size and measure the weight six operator around the perimeter.

The qubit becomes exposed to this lower weight operator, but since we are measuring in this basis, the measurement outcome is unaffected.

Adiabatic TQC Measurement

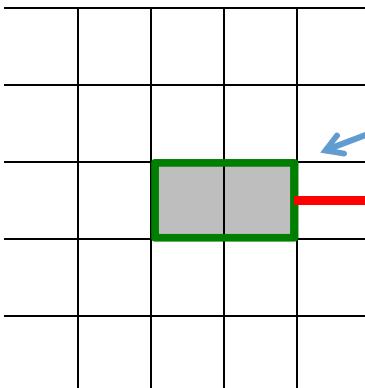
To measure X_L keep the perimeter large and move the defect near the appropriate boundary to measure the weight two operator.

The qubit becomes exposed to this lower weight operator, but since we are measuring in this basis, the measurement outcome is unaffected.

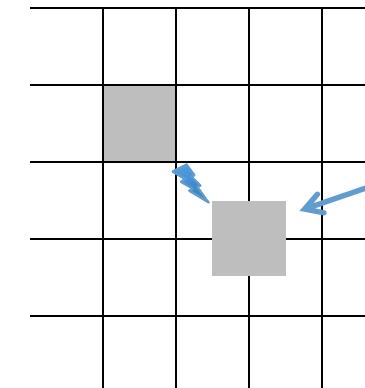
Adiabatic TQC Universality

- Smooth defects can be created in the $+1$ eigenstate of Z_L
- Rough defects can be created in the $+1$ eigenstate of X_L
- Measurements allow us to prepare the other eigenstates of logical operators
- Braiding allows us to perform the CNOT gate
- We utilize magic states to achieve the other necessary encoded gates

Adiabatic TQC Magic States

- Two ideas
 - First, make the defect small and bring it near the appropriate boundary, and simply measure the operator whose eigenstate is the desired magic state, e.g. $|+i\rangle$ 

Measure Y_L , quickly grow larger



Measure Y_L destructively.
 - Or, entangle the defect you want the magic state in with an ancilla defect and measure the ancilla destructively
- Still a work in progress!

Other Projects

- GSQC
- Adiabatic code for gaps and spectra
- Hadamard via ACD
- Explicitly adiabatic quantum double computations
- Holonomic vs. Topological QC
- Lattice gauge theories

Quantum Doubles

- If time permits