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Water Security

Key Aspect: Robust water quality assurance
(terrorist attacks, natural disasters, etc)

Potential Strateqy:
Supplement centralized water treatment facilities with

Desired Attributes:
- broadly effective (biological, chemical)

- high reliability, low maintenance
- low cost, low energy consumption

- low environmental impact ( manufacture, use, disposal)

Attributes for New Functionality:
- N0 power requirements or solar-powered

- “smart” integration of sensing and purification functions
- communication between networked POE/POU systems

*|. Silverstein, EPA Feb. 2006 Figures fromEPA water.epa.gov/infrastructure/water security

distributed point-of-entry (POE) and point-of-use (POU) systems*
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' ' Next-Generation UV Sources for
> Water Purification
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Materials challenges for realizing high
performance AlGaN deep UV LEDs

AlGaN Multi-
Quantum Wells

f

SiC or Sapphire
substrate

Bottom emission

AlGaN Deep UV LED
(p-n junction device)

p-type AlGaN is very difficult

- Large acceptor ionization energies

- Compensating defects

- P-GaN is better, but absorbs deep-UV!

AlGaN Quantum Wells have
low optical efficiency

- Non-radiative crystalline defects
(e.g., impurities, vacancies)

Lack of AlGaN Substrates

- high densities of extended defects
(threading dislocations) > 10° cm-

- Reduced device efficiency and
operational lifetime
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Epitaxial Growth of Nitride Semiconductors by
Metal-organic Vapor Phase Epitaxy at Sandia

Veeco D-125 Rotating Disk AlGaN Growth Dobants:
MOVPE System Sources: TMGa, TMAI, NH, n-type: SiH,
. . Temp: 1035-1100°C p-type: Cp,Mg

Pressure: 75-300 torr
Growth rates: 0.3-1 um/hour

3 two-inch wafers

| Andrew Allerman,

— -' Org. 01126 |
Rotation ~ 1500 rpm T Sandia
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Proposed P-type Doping Solution:
Mg-doped Short-Period Superlattice

\

Wurzite GaN crystal structure Polarization effect on GaN quantum well

/[0001] Ga Face Sallium \ / Non-polar Polar \

GaN
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Vector

\[0001] N Face Nitrogen / \Ev Reduce((i) \\ilv:r\;:;unctiy

Mg-doped Polarization Superlattice

e Manipulation of polarization fields alters electronic
AlGaN AlGaN  AlGaN states and enables hole accumulation

AIN AIN
E. /\/\/\/ e Use of “ultrathin” layers (5-15A) in the SL enables:

* high effective bandgap of random alloy (Al~0.60)

e possibility of tunneling-assisted vertical transport

‘ Deep-UV-Transparent
lonized Mg Hole accumulation Hole Injector
Nikishin et al

Growth direction =—————p JAP (2005) 'I'l Sandia
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Proposed p-SPSL LED

QWs

Progress to Date on Mg-doped SPSLs
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Electroluminescence from p-SPSL LED
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Improvement of
vertical conductivity
still needed

A. A. Allerman et al,
J Crystal Growth,
(2010)
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‘ Application of Novel Tools to Study Point Defects

Motivation

- Point defects (vacancies, impurities, etc.) may cause non-radiative recombination,
dopant compensation, defect-assisted carrier tunneling from active region

Challenge
- Most common experimental techniques (e.g., DLTS) can’t probe entire bandgap

Deep Level Transient Spectroscopy Deep Level Optical Spectroscopy

Thermal Ec
emission of
carriers from mn (RILR T LN LRI N L IR AR TN AR LA N NL)) ~1 ev

defect states

~1.4 -3.5eV Mid-gap hv <E
region A/

E, VAN

- limited to ~ 1 eV of Ec, Ev
—> cannot probe mid-gap non-radiative
centers

—> photo-capacitance technique
—> application of tunable light excitation
to access entire bandgap

Andrew Armstrong, Org. 01123 mh Sandia
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Combination of photoluminescence and DLOS
to study impact of QW growth temperature

Materials Growth
Conditions

Defect

Properties

Materials

Performance

Impact of growth temperature on AlGaN quantum well luminescence

Photoluminescence of 340 nm AlGaN QWs
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Model used to fit DLOS data:
Paessler JAP 96, 715 (2004)
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- Change in growth temp does not introduce new defect levels

DLOS data of related AlGaN Epilayers
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Combination of photoluminescence and DLOS

to study impact of QW growth temperature

Lighted CV measurements to determine densities of deep levels (cm-3)

Trap Tg Tg
Energy 1065°C 1010°C Change
Ec-2.22 eV 2.5e15 1.1e16 4.4X
Ec-2.90 eV 2.7e16 9.0e16 3.3X
Ec-3.30 eV 7.7e15 3.0e16 3.8X

«~3-4X increase in deep level density
across the spectrum with lower Tg

* Increased defect density correlated with ~

3X decrease in PL deep level intensity

AlGaN QW

j
1 Tg=1010C

Relative densities
shown by bar

length
r

BN

>
DOS (cm?3)

Energy (eV)

First quantitative correlation of AlGaN growth conditions,

increased deep level densities, and lower luminescence intensity

A. Armstrong, et al., submitted to Appl. Phys. Lett.
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Wentification of physical origin of defect levels:

Experiment and Theory

Experiment: DLOS Theory: Density Functional Theory
8.0
Formation energy of
hv<E, 6.0 carbon impurity in GaN
VA C
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(o rigin? - A S T S . F. Wright, ,
’a‘:r g 0.0 1.0 2.0 3.0 2575 (2002)
Lﬁ Fermi level {eV)
- Formation energies of defects
m - Energies of defect levels
g
DOS (cm'3; - Capture cross-sections

Alan Wright (01112)
Andy Armstrong (01123) Normand Modine (01132)
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Materials Engineering for
Mitigation of Extended Defects

AlGaN Growth on Corrugated Templates
AlGaN with reduced

TEM of AlGaN Epilayer

. . Cross
dislocations Section
Along
AlGaN or Trench
AIN Starting template Dislocation
annihilation
Small scale
Patterning Sapphire substrate
(~1um) ERPEEI

CL of 340 nm AlGaN QWs  CL of 280 nm AlGaN QWs
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*10-30X TD reduction in Al 30Gag 70N
(340 nm), to 2-4 €8 cm-2in trenches

e 5 O

* Dislocations largely annihilated in
~1.5 microns of growth!

Demonstration of viability in
germicidal region (< 300 nm)

A. Allerman

lida et al., J. Crystal Growth (2007)
Kueller et al., J. Crystal Growth (2010)
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Impact of Dislocation Reduction
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Electroluminescence of p-n Junction structure
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> 10x increase in LED emission with patterned AlGaN template!

» Improved CL (reduced dislocations) leads to improved EL

» Presently working toward implementationin deeper UV LEDs
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Summary

Goal: develop novel UV sources based on LEDs to enable point-of-
use water purification systems with enhanced capabilities

® Requires overcoming major materials challenges of AlGaN alloys,
Including fundamental limitations to p-type doping, and the effects
of point and extended defects

® Developed Mg-doped polarization superlattices as a means to
circumvent thermal activation of p-type dopants and achieve
hole Injection with a deep UV transparent structure; 15t
generation LEDs with emission in the germicidal region

® Applied DLOS to achieve new insights into the correlation of AlGaN
growth conditions, defect properties, and materials performance;
potential to understand and control defect populations

® Advancing patterned-growth defect-reduction approaches to higher Al-content
AlGaN devices, relevant to germicidal region of the spectrum
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