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Specgral density plots
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There’s information inside the spectra

These figures show the normalized Laplacian. Banerjee and Jost (2009) also noted such shapes in the spectra.
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Words in dictionary definitions
111k vertices, 2.7M edges

Internet router network
192k vetices, 1.2M edges
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Overview
Graphs and their matrices

Data for our experiments

Issues with computing spectra

Many examples of graph spectra

Computing spectra for large networks

Conclusion Future work

Images taken from Stanford, flickr, and Purdue, respectively
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Why are we interested in the spectra?
Modeling

Properties

Moments of the adjacency

Anomalies

Regularities

Network Comparison

Fay et al. 2010 – Weighted Spectral Density

David Gleich (Sandia) UC Davis CS Seminar

The network is as19971108 from Jure’s snap collect (a few thousand nodes) and we insert random connections from 50 nodes
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Matrices from graphs
Adjacency matrix

 

  if  

 

Laplacian matrix

 

 

 

Normalized Laplacian matrix
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Everything is undirected.   Mostly connected components only too.

Not covered
Signless Laplacian matrix

Incidence matrix
(It is incidentally discussed)

Seidel matrix

Heat Kernel

Random walk matrix
 

Modularity matrix
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Erdős–Rényi Semi-circles
Based on Wigner’s 

semi-circle law.

The eigenvalues of the 
adjacency matrix for 
n=1000, averaged 
over 10 trials

Semi-circle with outlier 
if average degree is 
large enough.  
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Observed by Farkas and in the book “Network Alignment” edited by Brandes (Chapter 14)
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Previous results

Farkas et al. Significant deviation from the semi-
circle law for the adjacency matrix

Mihail and Papadimitriou Leading eigenvalues of the 
adjacency matrix obey a power-law based 
on the degree-sequence

Chung et al. Normalized Laplacian still 
obeys a semi-circle law if min-degree large

Banerjee and Jost Study of types of patterns that 
emerge in evolving graph models – explain 
many features of the spectra
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In comparison to other empiric studies
We use “exact” computation of spectra, 

instead of approximation.

We study “all” of the standard matrices 
over a range of large networks.

Our “large” is bigger.

We look at a few random graph models

preferential attachment
random powerlaw
copying model
forest fire model
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ISSUES WITH 

COMPUTING 

SPECTRA

Why

you 

should

be

very

careful

with

eigenvalues.
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Matlab!
Always a great starting point.  

My desktop has 24GB of RAM (less than $2500 now!)

24GB/8 bytes (per double) = 3 billion numbers 
~ 50,000-by-50,000 matrix

Possibilities

D = eig(A) – needs twice the memory for A,D
[V,D] = eig(A) – needs three times the memory for A,D,V

These limit us to ~38000 and ~31000 respectively.
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Bugs – Matlab

eig(A)

Returns incorrect eigenvectors

Seems to be the result of a bug in Intel’s MKL library.
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Bug – ScaLAPACK default

sudo apt-get install scalapack-openmpi

Allocate 36000x36000 local matrix

Run on 4 processors

Code crashes

David Gleich (Sandia) UC Davis CS Seminar 13/44
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Bug – LAPACK

Scalapack MRRR 

Compare standard lapack/blas to atlas performance

Result: correct output from atlas

Result: incorrect output from lapack

Hypothesis: lapack contains a known bug that’s apparently in 
the default ubuntu lapack
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Moral

Always test your software.

Extensively.
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EXAMPLES

David Gleich (Sandia) UC Davis CS Seminar 17
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Data sources
SNAP Various 100s-100,000s

SNAP-p2p Gnutella Network 5-60k, ~30 inst.

SNAP-as-733 Autonomous Sys. ~5,000, 733 inst.

SNAP-caida Router networks ~20,000, ~125 inst.

Pajek Various 100s-100,000s

Models Copying Model 1k-100k 9 inst. 324 gs

Pref. Attach 1k-100k 9 inst. 164 gs

Forest Fire 1k-100k 9 inst. 324 gs

Mine Various 2k-500k

Newman Various

Arenas Various

Porter Facebook 100 schools, 5k-60k

IsoRank, Natalie Protein-Protein <10k , 4 graphs

David Gleich (Sandia) UC Davis CS Seminar

Thanks to all who make data available
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Big graphs

Arxiv 86376 1035126 Co-author

Dblp 93156 356290 Co-author

Dictionary(*) 111982 2750576 Word defns.

Internet(*) 124651 414428 Routers

Itdk0304 190914 1215220 Routers

p2p-gnu(*) 62561 295756 Peer-to-peer

Patents(*) 230686 1109898 Citations

Roads 126146 323900 Roads

Wordnet(*) 75606 240036 Word relation

web-nb.edu 325729 2994268 Web

David Gleich (Sandia) UC Davis CS Seminar

(*) denotes that this is a weakly connected component of a directed graph.  
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A $8,000 matrix computation

David Gleich (Sandia) UC Davis CS Seminar

325729 nodes and 2994268 edges

500 nodes and 4000 processors on Redsky for 5 hours x 2 for normalized Laplacian/adjacency matrix
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Stanford’s Facebook Network

David Gleich (Sandia) UC Davis CS Seminar

Data from Mason Porter.  Aka, the start of a $50,000,000,000 graph.
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These are cases where we have multiple instances of the same graph.  

Yes!
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Already known?

David Gleich (Sandia) UC Davis CS Seminar

Just the facebook spectra.
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Already known?

David Gleich (Sandia) UC Davis CS Seminar

I soon realized I was searching for “spectre” instead of spectrum, oops.

24/44



Tweet Along @dgleich

Spikes?
Unit eigenvalue

 

David Gleich (Sandia) UC Davis CS Seminar

Banerjee and Jost explained how evolving graphs should produce repeated eigenvalues

Repeated rows
Identical rows grow the null-space.

Banerjee and Jost
Motif doubling and joining small 
graphs will tend to cause repeated 
eigenvalues and null vectors.
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Combining Eigenvalues

If A has an eigenvector 
with a zero 
component, then

“A + B” (as in the figure) 
has the same 
eigenvalue with 
eigenvector extended 
with zeros on B.

David Gleich (Sandia) UC Davis CS Seminar

Bannerjee and Jost observed this for the normalized Laplacian.
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Spikes!

David Gleich (Sandia) UC Davis CS Seminar

1.5, 0.5

1.33 (two!)

1.5

1.5 (two)

1.833

0.565741
1.767592

0.725708
1.607625
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Bad figure.  Matlab was only producing nasty output this morning!  My apologies

Random power law
12500 vertices, 500 (2.*) /400 (1.8) min degree

2.6 21436.2
2.2 34349.8
2.0 49322.0
1.8 80361.6

Random power law

Generate a power law 
degree distribution.  

Produce a random 
graph with a 
prescribed degree 
distribution using the 
Bayati-Kim-Saberi
procedure.
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Preferential Attachment
Start graph with a k-node clique.  Add a new node and  
connect to k random nodes, chosen proportional to degree.

David Gleich (Sandia) UC Davis CS Seminar

Semi-circle in log-space!
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Copying model
Start graph with a k-node clique.  Add a new node and pick a 
parent uniformly at random.  Copy edges of parent and make 
an error with probability  

David Gleich (Sandia) UC Davis CS Seminar

Obvious follow up here: does a random sample with the same degree distribution show the same thing?
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Forest Fire models
Start graph with a k-node clique.  Add a new node and pick a 

parent uniformly at random.  Do a random “bfs’/”forest 
fire” and link to all nodes “burned”

David Gleich (Sandia) UC Davis CS Seminar 31/44
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Where is this going?
We can compute 
spectra for large 
networks if 
needed.

Study relationship 
with known power-
laws in spectra

Eigenvector 
localization

Directed Laplacians
David Gleich (Sandia) UC Davis CS Seminar 32/44
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Just the degree distribution?  No

David Gleich (Sandia) UC Davis CS Seminar 33/44
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Facebook is not a copying model

David Gleich (Sandia) UC Davis CS Seminar 34/44
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Same density

David Gleich (Sandia) UC Davis CS Seminar

Both have a mean degree of 3.8
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COMPUTING 

SPECTRA OF 

LARGE NETWORKS
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Redsky, Hopper I, Hopper II, and a Cielo testbed.  Details if time.  

David Gleich (Sandia) UC Davis CS Seminar 37/44
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Eigenvalues with ScaLAPACK
Mostly the same approach as in LAPACK

1. Reduce to tridiagonal form 
(most time consuming part)

2. Distribute tridiagonals to
all processors

3. Each processor finds 
all eigenvalues 

4. Each processor computes a 
subset of eigenvectors 

I’m actually using the MRRR algorithm, 

where steps 3 and 4 are better and faster

David Gleich (Sandia) UC Davis CS Seminar

MRRR due to Parlett and Dhillon; implemented in ScaLAPACK by ChristofVomel.

ScaLAPACK’s 2d block cyclic storage
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Estimating the density directly

David Gleich (Sandia) UC Davis CS Seminar

This is an old trick in linear algebra.  I know that Fay et al. used it in their weighted spectral density.  You could use this to check me!

  and   have the same 
eigenvalue inertia if   is non-
singular.

Eigenvalue inertia = (p,n,z)
Positive eigenvalues
Negative eigenvalues
Zero eigenvalues
If   is diagonal, inertia is 
easy to compute

  has inertia (n-1,0,1)
  has inertia 
(sum(  ), sum(  ),  
…)
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Alternatives
Use ARPACK to get extrema

Use ARPACK to get interior around   via the folded spectrum

 

David Gleich (Sandia) UC Davis CS Seminar

Farkas et al. used this approach.  Figure from somewhere on the web… sorry!

Large nearly 
repeated sets of 
eigenvalues will 
make this tricky.
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Adding MPI tasks vs. using threads
Most math libraries have threaded versions 

(Intel MKL, AMD ACML)

Is it better to use threads or MPI tasks?

It depends. 

Normalized Laplacian for 36k-by-36k co-author graph of CondMat

David Gleich (Sandia) UC Davis CS Seminar

Threads Ranks Time

1 64 1412.5

4 16 1881.4

16 4 Omitted.

Threads Ranks Time-T Time-E

1 36 1271.4 339.0

4 9 1058.1 456.6

Intel MKL
Cray libsci
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Weak Parallel Scaling

Time  

Good strong 
scaling up to 
325,000 vertices

Estimated time for 
500,000 nodes 
9 hours with 
925 nodes 
(7400 procs)

David Gleich (Sandia) UC Davis CS Seminar
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Nullspaces of the adjacency matrix

 

So unit eigenvalues of the normalized Laplacian are null-
vectors of the adjacency matrix. 
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Code will be available eventually.  Image from good financial cents.
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GRAPHS

AND THEIR

MATRICES

As well as things we

already know about

graph spectra.
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Spectral bounds from Gerschgorin

$$-d_{\max} \le \lambda(\mA) \le d_{\max}$$

$$0 \le \lambda(\mL) \le 2 d_{\max}$$

$$0 \le \lambda(\mat{\tilde{L}}) \le 2$$ 
(from a slightly different approach)
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ScaLAPACK
LAPACK with distributed memory dense matrices

Scalapack uses a 2d block-cyclic dense matrix distribution
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usroads

David Gleich (Sandia) UC Davis CS Seminar

Connected component from the us road network
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Movies of spectra…
As these models evolve, what do the spectra look like?
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Gnutella large vs. resampled
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Just the degree distribution?  No
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Facebook vs. Copying model
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Same density

David Gleich (Sandia) UC Davis CS Seminar

Both have a mean degree of 3.8
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Models
Preferential Attachment

Start graph with a k-node clique.  Add a new node and  
connect to k random nodes, chosen proportional to degree.

Copying model

Start graph with a k-node clique.  Add a new node and pick a 
parent uniformly at random.  Copy edges of parent and 
make an error with probability $$\alpha$$

Forest Fire

Start graph with a k-node clique.  Add a new node and pick a 
parent uniformly at random.  Do a random “bfs’/”forest fire” 
and link to all nodes “burned”
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