
The Power of Spectral 
Imaging for Algal Bioscience

Dr. Jerilyn A. Timlin
Principle Member of Technical Staff

Bioenergy & Defense Technologies 

Sandia National Laboratories, Albuquerque, New Mexico

jatimli@sandia.gov

http://bio.sandia.gov/people/timlin.html

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000.

SAND2011-2467P

http://bio.sandia.gov/people/timlin.html
mailto:jatimli@sandia.gov


Outline

• Motivation

• Introduction to spectral imaging
– Hardware modalities

– Software algorithms

• Current applications
– Hyperspectral confocal fluorescence microscopy for label-

free lipid quantification

– Hyperspectral confocal Raman microscopy to elucidate 
carotenoid biogenesis

• Parting thoughts



Algal Derived Biofuel

…a critical piece in multi-faceted renewable energy puzzle

“The problem is not making oil from algae, it is making algae with 
oil, actually it’s just making algae … Need to improve current best 
commercial practice by over a factor of ten” -- John Benneman co-
author of “A Look Back at the U.S. DOE’s Aquatic Species Program: 
Biodiesel from Algae” (1978-1996)



Why is it so hard to grow algae?

• Open pond culture is most economical
– Environmental fluctuations (multiparametric)

– Escalated temporal response 

– Underlying response of organism to a stressor is species specific

– Weak knowledge of effect of single stressors and interaction 
effects are almost completely unknown

Why is it so hard to grow algae at scale?

Sensitive, selective, automated methods for early 
detection of fluctuations in algal communities.

But, major gaps in knowledge of fundamental
algal biology limit our ability to “engineer” a solution



Spectral Imaging:

Spatially and Temporally Resolved Biochemical 
Response of an Organism to Its Environment

5 m

Pretty pictureEach pixel in the image is a 
combination of 3 (RGB) colors 
(morphology, refractive properties)

Light Microscopy

Dunaliella salina

Chemical 
Information

Each pixel in the image is a 
spectrum relating to chemical 
and/or molecular structure within

Spectral Imaging
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The Many Faces of Spectral Imaging

• Spectral Imaging

– Variety of modalities (Fluorescence, IR, Raman, 
XRF, MS, etc)

– Variety of implementations (Frequency 
scanning, sample scanning, interferometer-
based, etc)

– Nm to km

• Categories of Spectral Imaging

– Multispectral (2-10 spectral channels)

– Hyperspectral (tens to thousands of spectral channels)

– Hyperspectral imaging coined in 1990’s in Remote Sensing.  This 
is still area of great importance at SNL and worldwide

• Focus - Hyperspectral Confocal Fluorescence & Raman 
Microscopy  (AKA – Chemical Imaging)

An airborne hyperspectral image, 
with its spectrum shown as a 
colored stack beneath each pixel 
(Source of data: NASA Jet 
Propulsion Laboratory)



Confocal Imaging: Primer

Images courtesy of http://www.olympusfluoview.com/theory/confocalintro.html & 
http://www.microscopyu.com

• Increases accuracy and interpretation
• Enables optical sectioning on 
transparent samples

• Reduces signal-to-noise (longer scan 
times, higher laser powers)



Spectral Imaging

How do you get 512+ spectral data points 
without being 512 x slower? 



Hardware Design Principles

• Spatial resolution

• Speed

• Signal-to-noise

• Signal-to-background

• Spectral resolution

Sensitivity

Specificity



3D Hyperspectral Confocal 
Microscope

prism
spectrometer

488 nm laser

galvo
driven
mirror

spatial
filter

video
camera

prism
spectrometer

EMCCD array
high resolution

XYZ Positioning 
system

confocal
pinhole

488 nm laser

galvo
driven
mirror

spatial
filter

video
camera

Sinclair, MB., et al. (2006). Applied 
Optics 45(24): 3283-3291.



Hyperspectral Confocal 
Raman Microscope

http://www.witec.de/en/products/raman/alpha300r/
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Multivariate Spectral Image Analysis

How do you get from hundreds of thousands 
of highly overlapped spectra to chemical 

information?



Common Spectral Image Analysis Methods

 Univariate methods
Band integration, peak height, peak positions
 Isolated bands, no spectral interference

 Multivariate methods
 Unmixing methods

Least squares prediction based
A priori knowledge

Spectral shapes or pure image pixels

 Factor Analysis methods
Principle components analysis, Factor analysis, 

SIMPLISMA, self modeling curve resolution/multivariate 
curve resolution

Data defines
No a priori knowledge of spectral shapes/pure pixels

Need number of components
Constraints to narrow solution space
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Multivariate Curve Resolution
(Constrained Alternating Least Squares)

• “Discovers” & “Quantifies”

• Extracts underlying relationships from  complex data sets

• No a priori knowledge required

• Signals below the noise level can be detected

• Physically meaningful (constraints)
– Non-negativity, equality

• Rigorous least squares for all constraints

• Weight for noise properties

• Use new efficient algorithms developed at Sandia

• Linear additive model applies: D = CST+ E
• # of components is known/can be estimated

Advantages of MCR:

Assumptions of MCR:



Mathematical Details of MCR

• Solve D = CST in least squares sense
–
–

• Apply constraints to obtain realistic solutions
– Non-negative spectra & concentrations
– Equality constraints
– Rigorous least squares implementation
– Use new efficient algorithms developed at Sandia

• Iterate prediction and calibration steps until converged

^

^ ^^ ^
C = DS(SST)-1 (CLS prediction)

ST = (CTC)-1CTD (CLS calibration)

D represents intensities of all spectra in image

C is concentration matrix for all spectral components

S is pure-component spectra from image

^ is least squares estimate



Preprocessing:
Critical for Maximum Performance

• Weight the data for noise characteristics of 
our instrument
– Poisson noise

– Read noise

• Apply MCR to select pixel to maximize 
orthogonality
– Spatial masks

– Concatenate images with varying properties

– Spectral selection, genetic algorithms

• Signals <1 ct/pix reliably detected



MCR Example



Spectral Imaging in Algal Bioscience

What are we learning that we didn’t know two 
yrs ago?



Label-free in-situ Monitoring of 
Algal Lipid Production

• Problem
– Nile red stain is the current state of the art for measuring lipid using fluorescence 

spectroscopy
– Not ideal for in-situ monitoring of algal cells at the microscopic level

• Compromises the health of the cell  Toxic
• Non-uniform staining
• Low specificity

• Solution
– Carotenoid is soluble in lipid

• We see a spectroscopic signature for Carotenoid?
• Can we use this signature to monitor lipid production?

– Develop a methodology to use native spectroscopic signatures to monitor lipid 
production with spatial and temporal resolution

**Resonance enhancement effect



Carotenoids are Visible with Hyperspectral 
Confocal Fluorescence Microscopy

Carotenoid pigments are in the thylakoids
of the chloroplast and are solvated by the 
produced lipid.

Beta-carotene in Zeiss Immersol 518F
(low fluorescence immersion oil) 

514

519

529

563

Resonance 
Enhanced 
Raman
Peaks

Beta-carotene Pure Spectrum

574

+cyan filter



MCR Spectral Components



Spatial Correlation of Lipid Carotenoid 
with Nile Red

Chlorophyll and Carotenoid Nile Red (Triglyceride)
5 m



What a filter-based fluoresence measurement 
might see…

Assume the best 
case scenario with a 
narrow band filter for 
the Nile Red 
(Triglyceride).

Hyperspectral 
Imaging Results

Label-Free Lipid
Determination

5 m



Label-free Detection of Lipid in 2 or 
3Dimensions

2
 µ

m
5

 µ
m

Fig 1. Compares and contrasts 
two biofuels production strains: 
Nannochloropsis salina and 
Dunaliella salina and the model 
organism: Chlamydomonas
reinhardtii. Spectral images of 
these shown clockwise from 
lower right.  Chloroplast is 
marked by Chl a  (green) while 
the lipid bodies are identified by 
lipid-soluble 
carotenoid (red). 



Hyperspectral Confocal Raman 
Microscopy of Carotenoids

• TAG production is not *fully* understood

• Intimately tied to carotenoid biosynthesis

• Carotenoid composition varies
– In response to environmental conditions

– Throughout lifecycle of cell

– Between species/strains

• Full picture absolutely requires chemical, spatial, and 
temporal resolution 

**Raman spectral imaging of carotenoids is enabled by resonance 
enhancement effect



Subcellular Localization of 
Carotenoids in Living Cells



Subcellular Localization of 
Carotenoids in Living Cells
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Not Just Pretty Pictures …

D. salina H. pluvialis

Palmella Cyst

n = 20
104



Parting thoughts

• Spectral imaging provides chemical, spatial, and 
temporal resolution at the single cell level

• Raman, fluorescence, and other modalities are critical to 
understanding fundamental processes that govern algae 
growth and productivity

• Gaps in algal bioscience needs to be understood before 
we can realize production of algal biofuels at large scale

• Challenges - Biology: species diversity, culture variation, 
algae have a cell wall, cells move

• Challenges – Technology: endogenous fluorophores can’t 
be controlled, discrete vs. continuous microenvironments 
are hard to model, plethora of data
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