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Outline

Motivation

Introduction to spectral imaging

- Hardware modalities
- Software algorithms

Current applications

- Hyperspectral confocal fluorescence microscopy for label-
free lipid quantification

- Hyperspectral confocal Raman microscopy to elucidate
carotenoid biogenesis

Parting thoughts
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Algal Derived Biofuel

..a critical piece in multi-faceted renewable energy puzzle

“The problem is not making oil from algae, it is making algae with
oil, actually it’s just making algae ... Need to improve current best
commercial practice by over a factor of ten” -- John Benneman co-
author of “A Look Back at the U.S. DOE’s Aquatic Species Program:

Biodiesel from Algae” (1978-1996)
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Why is it so hard to grow algae at scale?

* Open pond culture is most economical
- Environmental fluctuations (multiparametric)

- Escalated temporal response
- Underlying response of organism to a stressor is species specific

- Weak knowledge of effect of single stressors and interaction
effects are almost completely unknown

Sensitive, selective, automated methods for early
detection of fluctuations in algal communities.

But, major gaps in knowledge of fundamental
algal biology limit our ability to “engineer” a solution
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Light Microscopy

Each pixel in the image is a
combination of 3 (RGB) colors

Spectral Imaging:
Spatially and Temporally Resolved Biochemical
Response of an Organism to Its Environment

Pretty picture

>

(morphology, refractive properties)

Spectral Imaging

Each pixel in the image is a
spectrum relating to chemical
and/or molecular structure within
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Time, depth,
or condition

The Spectral Image Cube




The Many Faces of Spectral Imaging

« Spectral Imaging

- Variety of modalities (Fluorescence, IR, Raman,
XRF, MS, etc)

- Variety of implementations (Frequency
scanning, sample scanning, interferometer-

based, etc) g
- Nm to km An airr yerstll image,
] . with its spectrum shown as a
° Categ()nes Of Spectral Imag | ng colored stack beneath each pixel
(Source_ of data: NASA Jet
- Multispectral (2-10 spectral channels) Propulsion Laboratory)

- Hyperspectral (tens to thousands of spectral channels)

- Hyperspectral imaging coined in 1990’s in Remote Sensing. This
is still area of great importance at SNL and worldwide

* Focus - Hyperspectral Confocal Fluorescence & Raman
Microscopy (AKA - Chemical Imaging)
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Confocal Imaging: Primer

Confocal and Widefield Fluorescence Microscopy

(e)

Figure 1 @

* Increases accuracy and interpretation

* Enables optical sectioning on
transparent samples

» Reduces signal-to-noise (longer scan
times, higher laser powers)

Images courtesy of http://www.olympusfluoview.com/theory/confocalintro.html & Sandia

http://www.microscopyu.com
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Spectral Imaging

How do you get 512+ spectral data points
without being 512 x slower?
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« Spatial resolution

« Speed

« Signal-to-noise

« Signal-to-background
« Spectral resolution

Hardware Design Principles

-Sensitivity

} Specificity
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3D Hyperspectral Confocal
Microscope

488 nm laser
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high resolution

XYZ Positioning Sinclair, MB., et a. (2006). Applied () fnde,
system Optics 45(24): 3283-3291.
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A Hyperspectral Confocal

http://www.witec.de/en/products/raman/alpha300r/

Raman Microscope
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No Matter How You Collect It -
There’s a LOT of Datal!

Time, depth,
or condition
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Multivariate Spectral Image Analysis

How do you get from hundreds of thousands
of highly overlapped spectra to chemical
information?
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Required knowledge of system behavior

Mathematical Complexity, overall accuracy

Common Spectral Image Analysis Methods

Univariate methods
- Band integration, peak height, peak positions
- Isolated bands, no spectral interference

Multivariate methods

= Unmixing methods
- Least squares prediction based
—> A prioriknowledge
—> Spectral shapes or pure image pixels

= Factor Analysis methods

-> Principle components analysis, Factor analysis,
SIMPLISMA, self modeling curve resolution/multivariate
curve resolution

—>Data defines

—>No a priori knowledge of spectral shapes/pure pixels
—->Need number of components
- Constraints to narrow solution space
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Multivariate Curve Resolution
(Constrained Alternating Least Squares)

Advantages of MCR:

« “Discovers” & “Quantifies”
« Extracts underlying relationships from complex data sets
* No a priori knowledge required
« Signals below the noise level can be detected
* Physically meaningful (constraints)
- Non-negativity, equality
« Rigorous least squares for all constraints
« Weight for noise properties
« Use new efficient algorithms developed at Sandia

Assumptions of MCR:
« Linear additive model applies: D = CST+ E

« # of components is known/can be estimated
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Mathematical Details of MCR

° Solve D = CS' in least squares sense
- C DS(SST) (CLS prediction)

- gr- (CTC) 1TTD (CLS calibration)

* Apply constraints to obtain realistic solutions
— Non-negative spectra & concentrations
— Equality constraints
— Rigorous least squares implementation
— Use new efficient algorithms developed at Sandia

» Iterate prediction and calibration steps until converged

D represents intensities of all spectra in image
C is concentration matrix for all spectral components
S is pure-component spectra from image
A - -
Is least squares estimate =\ Sandi
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Preprocessing:
Critical for Maximum Performance

* Weight the data for noise characteristics of
our instrument
- Poisson noise
- Read noise

* Apply MCR to select pixel to maximize

orthogonality

- Spatial masks
- Concatenate images with varying properties
- Spectral selection, genetic algorithms

« Signals <1 ct/pix reliably detected
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+ Calibrate wavelength
axis
+ Remove cosmic spikes

+ Weight data for Poisson noise
+» Estimate # of components
» Initial guess spectral signatures

+ Constrained alternating least squares
analysis
« Linear additive model, D = CST

Figure 2. Mathematical isolation of independently varying chemical species is accomplished using a fast
multivariate curve resolution algorithm with robust constraints. Example shown: hyperspectral imaging of

endogenous pigments in the cyanobacterium Cyanothece sp. PCC 7822.
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Spectral Imaging in Algal Bioscience

What are we learning that we didn’t know two
yrs ago?
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Label-free in-situ Monitoring of
Algal Lipid Production

* Problem

- Nile red stain is the current state of the art for measuring lipid using fluorescence
spectroscopy

- Not ideal for in-situ monitoring of algal cells at the microscopic level
+ Compromises the health of the cell > Toxic
* Non-uniform staining
* Low specificity

« Solution

- Carotenoid is soluble in lipid
»  We see a spectroscopic signature for Carotenoid?
« Can we use this signature to monitor lipid production?

- Develop a methodology to use native spectroscopic signatures to monitor lipid
production with spatial and temporal resolution

el magng

**Resonance enhancement effect
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Normalized Intensity

Carotenoids are Visible with Hyperspectral
Confocal Fluorescence Microscopy
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Carotenoid pigments are in the thylakoids
of the chloroplast and are solvated by the
produced lipid.




o
-.q

o
o

o
~

Normalized Intensity
o o o o
- ) w (8
]

o

MCR Spectral Components

Carotenoid

— Chlorophyll (Chl-a)
— Nile Red (Triglyceride)
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What a filter-based fluoresence measurement
might see...
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Assume the best
case scenario with a
narrow band filter for
the Nile Red
(Triglyceride).
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Hyperspectral
Imaging Results

Label-Free Lipid
Determination




Label-free Detection of Lipid in 2 or
3Dimensions

Fig 1. Compares and contrasts
two biofuels production strains:
Nannochloropsis salina and
Dunaliella salina and the model
organism: Chlamydomonas
reinhardtii. Spectral images of
these shown clockwise from
lower right. Chloroplast is
marked by Chl a (green) while
the lipid bodies are identified by
lipid-soluble

carotenoid (red).
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Hyperspectral Confocal Raman
Microscopy of Carotenoids

« TAG production is not *fully* understood
 Intimately tied to carotenoid biosynthesis

« (Carotenoid composition varies
- In response to environmental conditions
- Throughout lifecycle of cell
- Between species/strains

« Full picture absolutely requires chemical, spatial, and

temporal resolution

lipid droplet
chloroplast
nucleus

Wpect magmg

**Raman spectral imaging of carotenoids is enabled by resonance
enhancement effect
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Subcellular Localization of
Carotenoids in Living Cells
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Not Just Pretty Pictures ...
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Parting thoughts

Spectral imaging provides chemical, spatial, and
temporal resolution at the single cell level

Raman, fluorescence, and other modalities are critical to
understanding fundamental processes that govern algae
growth and productivity

Gaps in algal bioscience needs to be understood before
we can realize production of algal biofuels at large scale

Challenges - Biology: species diversity, culture variation,
algae have a cell wall, cells move

Challenges - Technology: endogenous fluorophores can'’t
be controlled, discrete vs. continuous microenvironments
are hard to model, plethora of data
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