SAND2011- 2450P

Intrepid Functionality for Parvis

Kara Peterson !
Pavel Bochev!
Denis Ridzal?

INumerical Analysis & Applications
2Optimization & Uncertainty Quantification
Sandia National Labs

Parvis Meeting
April 11, 2011

ry of Lockheed Martin Company,
104-94AL85000.

Intrepid Functionality

Discrete Spaces and Operators

Cell Geometry @ Nodal, edge, and face basis

functions (¢;)

@ Discrete differential operators
(Voi, V X ¢35, V - i, D*b:)

@ Topology from Shards (line,
tri, quad? hex, tet, wedge)

@ Maps to and from reference

cells i
| =

Pl VZ R

(=) = Z fidi(z)

Integration

) @ Cubature points (z,) and
@ Jacobians (DF, J = det(DF)) weights (w,)
@ Surface normals, line

tangents, cell areas

s

Tests for point inclusion

NOSA

. ." Mapping Functionality to Software

Cell Topology

)7

Cell Geometry

)7

Discrete Operators)7

Discrete Functionals)7

Cell Integration

(
(
E Discrete Spaces)7
(
[

)7

(Utilities

[Basis]
[FunctionSpaceTools] sro/Discretization
[Integration]

PointTools

()
()
[Polylib j src/Shared
()
()

,,,,,,,,,,,,,,,,,,,,,,,,,,,

: ." Example: linint2

linint2: Interpolate from one grid to another grid using bilinear interpolation

ARANA " Iu,uiﬁ .
/ .. T
K_ ¢ 2 HHFTJ’:’L:’\]:\
1210
X 11T

f(x) =1+ sin(wx) sin(7y)

@ Read mesh with MOAB and store connectivity
@ Define cell topology
@ Locate quadrilateral grid nodes (x,) on triangle mesh

@ For each point in triangle grid cell

@ Evaluate basis at point in reference cell, ¢; (%)
@ Transform basis values to physical space, ¢; — ¢;
@ Evaluate function at point in physical space f"(x,) = Zﬁil fidi(xp)

Example: linint2

// Get cell topology for base triangle

ShardsCellTopology cellType(shards::getCellTopologyData<shards::Triangle<3> >());

// Loop over elements in triangle grid
for (moab::Range::iterator it = elems.begin();

it 1= elems.end(); ++it) {

// Loop over nodes in quadrilateral grid
for (int ipt=0; ipt<numNodesQuad; ++ipt) {

// Coordinates of point in physical space
FieldContainer<double> physPoints(1, spaceDim);
physPoints(0,0)= quadPoints(ipt, 0);
physPoints(0,1)= quadPoints(ipt, 1);

-

Define point in reference cell where basis is evaluated

FieldContainer<double> refPoints (1, spaceDim);

IntrepidCTools: :mapToReferenceFrame(refPoints, physPoints, cellWorkset,
cellType, 0);

check whether point is in cell
double points[2] = (physpcmtsw 0), physPoints(0,1)};
int inCell = T Inclusion(points, Dim, cellType);

nNoSA 0 @:

Laboratores

Example: linint2

if (inCell > 0) {

// Define basis
Intrepid::Basis_HGRAD_TRI_C1_F , Field iner<double> > i is;
int numFields i

interpBasis.getCardinality();
FieldContainer<double> refBasisvalues(numFields, 1);

// Evaluate basis values at points in reference space
interpBasis.getValues(refBasisValues, refPoints, OPERATOR VALUE);

// containers for basis values transformed to physical space
FieldContainer<double> physBasisvalues (1, numFields, 1);

// Containers for interpolated values of f
FieldContainer<double> fNodeQuad (1, 1);

// Transform basis values to physical frame:
b i it (physBasisvalues, refBasisvalues);

// Evaluate function at a point: \sum f_i(x_p) \phi_i(x_p)
T i al: fNodeTri, physBasisvalues);

// Put quad cell values into global array
£NodeQ[0][ipt] = fNodeQuad(0,0);

} // if point in cell

NS4 ® @

Laboratores

2 .}. Example: Vector Interpolation

Interpolate vector from node to cell centers, v(x) = [zy?, 2]

_ ,/'/;ll

i
RN

\ oy
AR
X b I 53 KN Y VA

\
WELLEWAN \

N\

Read mesh with MOAB and store connectivity

Define cell topology

Define interpolation points on reference cell (%X,)

Evaluate basis at points in reference cell, @;(%,)

Transform basis to physical space, ¢; — ¢;

Evaluate function at points in physical space v"(x,) = 3.~ vi¢i(xy,)

-~

- Example: Derivatives of a Field

Calculate divergence and vorticity from nodal vector field at cell centers

' 3 VavavavaaTa
AVAVAVAVAV
NAVAYY

TAVAVAVAVAY/

2 AVA%
for EEEy CRXK)
o 2 SAAY

tegp T EEELER

divergence vorticity divergence vorticity

Read mesh with MOAB and store connectivity

Define cell topology

Define interpolation points on reference cell (%X,)

Evaluate gradient of basis at points in reference cell, Vi(%,)
Calculate cell Jacobian, DF

Transform gradient of basis to physical space, V¢; = (DF)~ TV,
Evaluate gradient of vector components at points

v =(u,0) Va'(xp) = 2L uiVei(xy)

Calculate divergence and vorticity from components

div = du"/0z 4+ v /dy vort = dv" Jox — Hu /Dy

;" Example: Derivatives of a Field

// calculate Jacobian
Intrepid::CellTools: :setJacobian(worksetJacobian, evalPoints, cellWorkset, cellType);

Intrepid::CellTools: (wor bInv, tJacobian);

// Evaluate basis values at evaluation points
Intrepid::Basis_HGRAD_QUAD_Cl_FEM<double, Fi i > i is;

i interpBasis.getCardinality();

interpBasis.getValues(basisGrads, evalPoints, OPERATOR_GRAD);

&

nt numFields

// Transform basis gradients to physical frame

Intrepid:: iz le>(isGrads,
worksetJacobInv, basisGrads);
// Evaluate gradients at a point: \sum v_i(x_p) grad \phi_i(x_p)
Intrepid i eval 11_du, wor = x, isGrads)
Intrepid ::eval 11 av, v, i)

// calculate divergence and vorticity and store in global array

for(int cell = ; cell < cell++){

// Compute cell ordinal relative to the current workset
int cellOrdinal = cell - worksetBegin;

divcell[0][cell] = worksetCell du(cellOrdinal,0,0) + worksetCell dv(cellordinal,0,1);
vortCell[0][cell] = worksetCell dv(cellordinal,0,0)- worksetCell du(cellOrdinal,0,1);

}// *** workset cell loop **

nYsa © m=

Laboratores

: ." Summary and Future Plans

@ Current Capabilities
@ Interpolation from grid to points
@ Function approximations with node, edge,
or face basis functions
o Differential operators

@ Integration over cells -

@ Future Plans HH});J;J;J%@

@ Interpolation from points to grid ooy R T

@ Additional cell topologies (eg. polygons) gg;i;i;i;i};;
L

11 b 9

For more information see:
http:/trilinos.sandia.gov/packages/intrepid

	Intrepid Functionality
	Examples
	Summary and Future Plans

