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Sandia Massively Parallel Systems

Paragon
• Tens of users
• First periods 

processing MPP
• World record 

performance
• Routine 3D 

simulations
• SUNMOS lightweight 

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black 

partitions
• Improved 

interconnect
• High-fidelity coupled 

3-D physics
• Puma/Cougar 

lightweight kernel

Cplant
• Commodity-based 

supercomputer
• Hundreds of users
• Enhanced simulation 

capacity
• Linux-based OS 

licensed for 
commercialization

• ~2000 nodes

Red Storm
• Prototype Cray XT
• Custom interconnect
• Purpose built RAS
• Highly balanced and 

scalable
• Catamount 

lightweight kernel
• Currently 38,400 

cores (quad & dual)

nCUBE2
• Sandia’s first large 

MPP
• Achieved Gflops 

performance on 
applications
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Potential Exascale System Targets

System 
attributes

2010 “2015” “2018”

System peak 2 Peta 200 Petaflop/sec 1 Exaflop/sec

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32-64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size 
(nodes)

18,700 50,000 5,000 1,000,000 100,000

Total Node 
Interconnect BW

1.5 GB/s 20 GB/sec 200 GB/sec

MTTI days O(1day) O(1 day)



Concurrency is one key ingredient in 
getting to exaflop/sec

and power, resiliency, programming models, memory bandwidth, I/O, …

CM-5

Red Storm

Increased parallelism 
allowed a 1000-fold 

increase in performance 
while the clock speed 

increased by a factor of 
40



Many-core chip architectures are the 
future

The shift toward increasing parallelism is not a triumphant stride forward based on 
breakthroughs in novel software and architectures for parallelism … instead it is 
actually a retreat from even greater challenges that thwart efficient silicon 
implementation of traditional uniprocessor architectures.
Kurt Keutzer



What are critical exascale technology 
investments?

• System power is a first class constraint on exascale system performance and 
effectiveness.

• Memory is an important component of meeting exascale power and 
applications goals.

• Programming model. Early investment in several efforts to decide in 2013 on 
exascale programming model, allowing exemplar applications effective access 
to 2015 system for both mission and science.

• Investment in exascale processor design to achieve an exascale-like system 
in 2015.

• Operating System strategy for exascale is critical for node performance at 
scale and for efficient support of new programming models and run time 
systems.

• Reliability and resiliency are critical at this scale and require applications 
neutral movement of the file system (for check pointing, in particular) closer to 
the running apps. 

• HPC co-design strategy and implementation requires a set of a hierarchical 
performance models and simulators as well as commitment from apps, 
software and architecture communities.



System
Storage

I/O
Network

Exascale
System

System
Interconnect

The high level system design may be 
similar to petascale systems

• New interconnect topologies
• Optical interconnect

• Mass storage far removed 
from application data

• 10x – 100x more nodes
• MPI scaling & fault tolerance
• Different types of nodes



Investments in architecture R&D and 
application locality are critical
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“The Energy and Power Challenge is the most pervasive … and has its roots in the inability of 
the [study] group to project any combination of currently mature technologies that will deliver 
sufficiently powerful systems in any class at the desired levels.”
DARPA IPTO exascale technology challenge report
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Memory bandwidth and memory sizes 
will be >> less effective without R&D

• Primary needs are
– Increase in bandwidth (concurrency can be used to mask latency, viz. 

Little’s Law) 
– Lower power consumption
– Lower cost (to enable affordable capacity)

• Stacking on die enable improved bandwidth and lower power 
consumption

• Modest improvements in latency
• Commodity memory interface

standards are not pushing 
bandwidth enough



Factors Driving up the Fault Rate
It’s more than just an increase in components

• Number of components both memory and processors will increase by an order 
of magnitude which will increase hard and soft errors.

• Smaller circuit sizes, running at lower voltages to reduce power consumption, 
increases the probability of switches flipping spontaneously due to thermal and 
voltage variations as well as radiation, increasing soft errors

• Power management cycling significantly decreases the components lifetimes 
due to thermal and mechanical stresses.

• Resistance to add additional HW detection and recovery logic right on the 
chips to detect silent errors. Because it will increase power consumption by 
15% and increase the chip costs.

• Heterogeneous systems make error detection and recovery even harder, for 
example, detecting and recovering from an error in a GPU can involve 
hundreds of threads simultaneously on the GPU and hundreds of cycles in 
drain pipelines to begin recovery.

• Increasing system and algorithm complexity makes improper interaction of 
separately designed and implemented components more likely.

• Number of operations (1023 in a week) ensure that system will traverse the 
tails of the operational probability distributions.



System Software as Currently Implemented Is 
Not Suitable for Exascale

• Barriers 
– System management SW not parallel
– Current OS stack designed to manage 

only O(10) cores on node
– Unprepared for industry shift to NVRAM
– OS management of I/O has hit a wall
– Not prepared for massive concurrency

• Technical Focus Areas
– Design HPC OS to partition and manage 

node resources to support massively 
concurrency

– I/O system to support on-chip NVRAM
– Co-design messaging system with new 

hardware to achieve required message 
rates

• Technical gaps
– 10X: in affordable I/O rates
– 10X: in on-node message injection rates
– 100X: in concurrency of on-chip 

messaging hardware/software
– 10X: in OS resource management

Software challenges in extreme scale systems,
Sarkar, 2010



Programming Models and Environments 
Require Early Investment

– Extend inter-node models for scalability and resilience, e.g., MPI, PGAS (includes HPCS)
– Develop intra-node models for concurrency, hierarchy, and heterogeneity by adapting current 

scientific ones (e.g., OpenMP) or leveraging from other domains (e.g., CUDA, OpenCL)
– Develop common low level runtime for portability and to enable higher level models

• Technical Gap: 
– No portable model for variety of on-chip parallelism methods or new memory hierarchies 
– Goal: Hundreds of applications on the Exascale architecture; Tens running at scale

• Barriers: Delivering a large-scale scientific 
instrument that is productive and fast.

– O(1B) way parallelism in Exascale system
– O(1K) way parallelism in a processor chip

• Massive lightweight cores for low power
• Some “full-feature” cores lead to heterogeneity 

– Data movement costs power and time
• Software-managed memory (local store) 

– Programming for resilience
– Science goals require complex codes 

• Technology Investments
How much parallelism must be handled by the program?

From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the 
Exascale Frontier”, June 20, 2008



Programming Model Approaches

• Hierarchical approach (intra-node + inter-node)
– Part I: Inter-node model for communicating 

between nodes
• MPI scaling to millions of nodes: Importance high; risk 

low
• One-sided communication scaling: Importance 

medium; risk low
– Part II: Intra-node model for on-chip concurrency

• Overriding Risk: No single path for node architecture
• OpenMP, Pthreads: High risk (may not be feasible 

with node architectures); high payoff (already in some 
applications)

• New API, extended PGAS, or CUDA/OpenCL to 
handle hierarchies of memories and cores: Medium 
risk (reflects architecture directions); Medium payoff 
(reprogramming of node code)

• Unified approach: single high level model for 
entire system

– High risk; high payoff for new codes, new 
application domains



Exascale Networking Challenges



Challenge Areas for HPC Networks

• The traditional “big three”
– Bandwidth
– Latency
– Message Rate (Throughput)

• Other important areas for “real applications” versus benchmarks
– Allowable Outstanding Messages
– Host memory bandwidth usage
– Noise (threading, cache effects)
– Synchronization
– Progress
– Topology
– Reliability



MPI Will Likely Persist Into Exascale Era

• Number of network endpoints will increase significantly (5-50x)
• Memory and power will be dominant resources to manage

– Networks must be power and energy efficient
– Data movement must be carefully managed
– Memory copies will be very expensive

• Impact of unexpected messages must be minimized
– Eager protocol for short messages leads to receive-side buffering
– Need strategies for managing host buffer resources
– Flow control will be critical
– N-to-1 communication patterns will (continue to be) disastrous

• Must preserve key network performance characteristics
– Latency
– Bandwidth
– Message rate (throughput)



High Message Throughput is Vital

Message rate determines the minimum message size 
needed to saturate the available network bandwidth



Current Flow Control Strategies
Not Sufficient

• Credit-based
– Limit number of outstanding send operations
– Used credits are replenished implicitly or explicitly
– Effectiveness limited to N-to-1 scenario
– Potential performance penalty for well-behaved applications

• Acknowledgment-based
– Receiver explicitly confirms receipt of every message
– Significant per-message performance penalty

• Round trip acknowledgment doubles latency
– Performance penalty for well-behaved applications

• Local copying (bounce buffer) mitigates latency penalty
• Both strategies limit message rate and effective bandwidth
• Flow control implemented at user-level inside MPI library
• Network transport usually has its own flow control mechanism

– No mechanism for back pressure from host resources to network



Applications Must Become
More Asynchronous

• Applications cannot continue to be bulk synchronous
– Overhead of global synchronization will limit scaling
– Global synchronization increases susceptibility to noise

• One-sided communication requires explicit synchronization
• Network API must provide asynchronous operations and progress

– Data movement must be independent of host activity
• Active Messages

– Polling is fundamental to all AM 
– Progress only when nothing else to do
– Polling memory for message reception is inefficient
– Needs hardware support to integrate message arrival with thread 

invocation
• Run-time systems will also need to communicate

– Need to communicate evolving state of the system
– Need a common portable API
– Using TCP OOB connection will be infeasible



Resiliency Will Impact Network API

• Network will need to expose errors to enable recovery
• Applications and system components will have different resiliency 

requirements
– Reachability errors must be handled by run-time services
– Graceful degradation may be appropriate for some applications

• May need OOB mechanism for recognizing network failures
– AM or event-driven API would be ideal
– Hardware support for network-level protection

• RAS system invoking OS via network messages



Topology
• No single network topology is best for all applications

• Meshes
– Advantages: high local bandwidth, low wiring complexity, ability 

to easily add nodes (no distinct steps in expandability curve)
– Disadvantages: high maximum latency, low global bandwidth
– Works well for physical simulations which tend to talk nearest 

neighbor
• Trees

– Advantages: high global bandwidth, low global latency
– Disadvantages: high wiring complexity, lower local bandwidth, 

discrete steps in network topology (limiting expandability)
– Works well for random accesses patterns and apps with lots of 

global communication

• Hierarchical/Hybrid networks
– Tend to inherent the strengths and weaknesses of the building blocks

Red Storm
Red/Black Switching

• Network routers must be designed to allow different topologies with the 
same silicon



Comparison of Theoretical Modern Networks
Dragonfly* 3D Torus Fat Tree

Router Radix 64 7 32

Notes 2 links per node, 
group size of 
256, 128 groups

32x32x32 Full bisection, 
based on 512 
port switches

Number of 
Switches

4096 32768 7168

Bisection BW
(Bi-directional)

80 TB/s 91 TB/s 160 TB/s

Node BW
(Bi-directional)

9.8 GB/s 44.6 GB/s 9.8 GB/s

Max Hops 5 48 7

Assumptions: 2.5Tbit/s total switch bandwidth, 32k nodes
*John Kim, William J. Dally, Steve Scott, Dennis Abts, “Technology-Driven, 
Highly-Scalable Dragonfly Topology.”  In Proceedings of the 35th International 
Symposium on Computer Architecture (ISCA ’08).



High Radix: The Wave of the Future?

• High radix routers are definitely in our future
– Available bandwidth on a chip continues to increase
– Core clock speeds are not increasing
– But, we have a few more years where low radix networks are feasible, and 

for certain workloads possibly favorable
• Still need to study the energy/performance trade-offs of newer networks

• New work into hybrid network topologies is a good start in how to best 
use high radix routers
– However, networks seem to be optimized for global random traffic
– Need a better feel for how these types of topologies will impact 

performance of traditional scientific applications
– What is the right radix??



System View is Vital for Energy

• Interconnect is not an isolated system and only accounts for a portion 
of the total system power

• Higher interconnect power can actually lead to lower energy
• Understanding the true impact of the interconnect trade-offs can lead 

to more energy efficient systems

• Areas were wrong assumptions can lead to less energy efficient 
solutions
– Microbenchmarks
– High Radix Routers
– Tight Integration



Microbenchmarks

• Fallacy:  Optimizing interconnects and MPI implementations to 
microbenchmarks will necessarily improve application performance (or 
at least won’t hurt it).

• Any optimization that reduces performance without reducing power will 
lead to less energy efficient system
– Conversely, any optimization that increases performance without 

increasing power will lead to more energy efficient systems

• Removing useful advanced features to improve NetPipe latency and 
bandwidth will not generally translate to improved application 
performance (and may actually make it worse)

• Coalescing identical zero-byte messages will not help any application 
of which I am aware

• Measuring message rate under ideal conditions does not provide 
useful information about message rate achievable by an application



• Measures message rate using communication patterns mimicking 
those of scientific applications
– Simulation of computation/communication phase with variable working set 

sizes (compute stage modeled by touching data to invalidate some portion 
of cache)

Sandia Message Throughput Benchmark

– Each MPI rank both 
sends and receives

– Variable number of 
peers



Tight Integration

• Fallacy:  Integrating router, NIC and processor onto same package 
magically provides access to more usable interconnect bandwidth.

• The problem is not with tight 
integration, it’s understanding 
how that integration affects 
the balance of the system

Million dollar question:  
How much of this bandwidth 
is genuinely available to the 
processors?



Tight Integration and Injection Bandwidth

CPU

Router

NIC

CPU

Router

NIC

CPU

Router

NIC

Injection BW generally 
smaller than link BW.
2:1 ratio for Red Storm



CTH Example:  Network Contention

Contention in network



Realizations

• Most of the bandwidth into the stack is not typically usable by the cores 
in the stack
– Most of the bits flowing in are not destined for that node
– Most of the bandwidth going out is already being used by other traffic

• Expect to get the same utilization as when the router is off-chip

• Two approaches in the end:
– Marketing approach:  Count all the bandwidth

• Detrimental impact on application performance/energy due to poor balance
– Technical approach:  Properly balance the system based on usable 

bandwidth



Thoughts

• It’s not necessarily about power, it’s about energy to solution
– Higher power systems can actually lead to lower energy to solution
– When peak power is a limiter, likely better off with a “smaller”, more 

balanced system, than a larger, unbalanced system
• It’s not about peak FLOPS/Watt, it’s about the percent of peak that can 

be sustained
– We pay an energy penalty for unused operations
– With rising awareness of energy-efficient computing, FLOPS/Watt 

threatens to become the new HPL
• This talk is on interconnects, but other areas are equally important

– What’s the application impact of slower, less complex cores
• Can in-order cores use wide floating-point units?
• Can applications scale to the dramatically increased number of cores?

• Components should be designed with a system view and 
understanding of the application needs



NIC Architecture Co-Design



NIC Architecture Co-design

• Prevailing architectural constraints have 
driven many applications to highly bursty
communication patterns

• In a power constrained world this trend will 
be unsustainable due to inefficient use of 
the system interconnect

• Design Goal: Produce a NIC architecture 
that enables overlap through high message 
rates and independent progress

• Using simulation, NIC hardware & software and host driver software were 
simultaneously profiled for various architecture choices

• Trade-offs:
– Which architectural features provide performance advantages
– What software bottlenecks need to be moved to hardware
– Which functions can be left to run on NIC CPU or in the host driver
• Next step: rework applications (or portions) to take advantage of the new 

features and provide feedback for more architectural improvements



Network Interface Controller

• Power will be number one constraint for exascale systems
• Current systems waste energy

– Using host cores to process messages is inefficient
– Only move data when necessary
– Move data to final destination

• No intermediate copying due to network

• Specialized network hardware
– Atomic operations
– Match processing

• Addressing and address translation
– Virtual address translation

• Avoid registration cache
– Logical node translation

• Rank translation on a million nodes

• Hardware support for thread activation on message arrival



Match Unit Architecture

Microcode

ALU Register FileTernary Register File

Data Copy
Unit

Permute Input Fifo Unit

Input FIFO

ALUTernary Unit

Predicate Unit

Branch
Unit

Output FIFO

Predicate Register File

Architecture Drivers
• High throughput

– 3 stage pipeline
• Irregular data alignment

– SIMD operation
– Permute units

• Program Consistency
– Forwarding in datapath
– Read before write in 

register file



High Message Throughput Challenges

• Off-load approach
– Roadblocks

• Storage requirements on NIC
• NIC embedded processor is worse at list 

management (than the host processor)
– Benefits

• Opportunity to create dedicated hardware
• Macroscale pipelining

• 20M messages per second implies a new message every 50ns
• Significant constraints created by MPI semantics
• On-load approach 

– Roadblocks
• Host general purpose processors are inefficient for list management
• Caching (a cache miss is 70-120ns latency)

– Microbenchmarks are cache friendly, real life is not
– Benefits

• Easier & cheaper
Unexp MsgPosted Receives

ALPU

Processor Bus

H
ea

de
r

Posted R
eceive

SRAM SRAM

List
Manager

Match

List
Manager

MatchALPU

Queue Processor



Posted Queue Results – 128 Entry ALPU



Match Time Results (30 items)



Match Time Results (300 items)

1x
4.6x
3.8x
7.7x
61.5x

Relative
Size



Minimizing Memory Bandwidth Usage in Network Stack

• Bounce buffers (or any other copying) incur a 2x memory bandwidth penalty

• A fast off-load approach can minimize host memory bandwidth utilization
– Allows the NIC to determine where received messages need to be put in host 

memory and DMA the data directly there, eliminating the need for bounce buffers
– High message rate can reduce the need for buffering of non-contiguous data

• Memory bandwidth is most 
often the limiting factor for on 
node performance

• We must minimize the use of 
host memory bandwidth in the 
network stack

Instruction 
Mix

Integer 
Instruction 

Usage

Memory Usage in Sandia Applications



Portals



Portals Network Programming Interface

• Network API developed by Sandia, U. New Mexico, Intel
• Previous generations of Portals deployed on several production 

massively parallel systems
– 1993: 1800-node Intel Paragon (SUNMOS)
– 1997: 10,000-node Intel ASCI Red (Puma/Cougar)
– 1999: 1800-node Cplant cluster (Linux)
– 2005: 10,000-node Cray Sandia Red Storm (Catamount)
– 2009: 18,688-node Cray XT5 – ORNL Jaguar (Linux)

• Focused on providing
– Lightweight “connectionless” model for MPP systems
– Low latency
– High bandwidth
– Independent progress
– Overlap of computation and communication
– Scalable buffering semantics

• Supports MPI, Cray SHMEM, ARMCI, GASNet, Lustre, etc.



Portals 4.0:
Applying Lessons Learned from Cray SeaStar

• High message rate
– Atomic search and post for MPI receives required round-trip across PCI
– Eliminate round-trip by having Portals manage unexpected messages

• Flow control
– Encourages well-behaved applications

• Fail fast
• Identify application scalability issues early

– Resource exhaustion caused unrecoverable failure
– Recovery doesn’t have to be fast
– Resource exhaustion will disable Portal
– Subsequent messages will fail with event notification at initiator
– Applies back pressure from network

• Performance for scalable applications
• Correctness for non-scalable applications



Portals 4.0 (cont’d)

• Hardware implementation
– Designed for intelligent or programmable NICs
– Arbitrary list insertion
– Unneeded symmetry on initiator and target objects

• New functionality for one-sided operations
– Eliminate matching information

• Smaller network header
• Minimize processing at target

– Scalable event delivery
• Lightweight counting events

– Triggered operations
• Chain sequence of data movement operations
• Build asynchronous collective operations

– Mitigate OS noise effects



Triggered Operations



Injection Bandwidth Detuning



HyperTransport Detuning

• HyperTransport link between
Opteron and SeaStar setup at 
boot by Coldstart on Cray XT,
BIOS on standard PCs

• Anyone may query HT widths 
and frequencies supported 
by SeaStar via the PCI config space:
– 8 or 16 bits wide
– 200, 400, or 800 MHz

• HT link config currently hard-coded in Coldstart



OSU Latency



OSU Bandwidth



OSU Message Rate



HPCC - HPL



HPCC - FFT



HPCC - PTRANS



HPCC - RandomAccess



Charon



CTH



SAGE



xNOBEL



Gemini
Memory Affinity



Cray XE6 Node



SeaStar vs Gemini



Gemini
Default Configuration



Gemini 
Balanced NUMA Distribution



Gemini
MBOX=NIC, Balanced NUMA Distribution



Gemini
MBOX=NIC 
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