
GRANT: Ground-Roaming Autonomous
Neuromorphic Targeter

Jonathan D. Ambrose, Adam Z. Foshie,
Mark E. Dean, James S. Plank, Garrett S. Rose

Department of Electrical Engineering and Computer Science
The University of Tennessee

Knoxville, TN 37996
Email: [jambros2, afoshie]@vols.utk.edu

[markdean, jplank, garose]@utk.edu

J. Parker Mitchell, Catherine D. Schuman
Oak Ridge National Laboratory

Oak Ridge, TN 37830
Email: [mitchelljp1, schumancd]@ornl.gov

Grant Bruer
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332

Email: gbruer@gatech.edu

Abstract—In this work we describe the design, implementation,
and testing of the first neuromorphic robot capable of obstacle
avoidance, grid coverage, and targeting controlled by the second
generation Dynamic Adaptive Neural Network Array (DANNA2)
digital spiking neuromorphic processor. The simplicity of the
DANNA2 processor along with the TENNLab hardware/software
co-design framework allows for compact spiking networks that
can run efficiently on a small, resource-constrained, platform
such as a Xilinx Artix-7 field-programmable gate array. Addi-
tionally, we present the dynamic reconfigurability of DANNA2
arrays as a method of realizing complex, multi-objective tasks
on hardware that is restricted to relatively small networks.

Index Terms—Autonomous Robots, Field-programmable Gate
Array, Neural Network Hardware, Neuromorphic, Recurrent
Spiking Neural Networks, Robot Control

I. INTRODUCTION

In the last three decades, research into autonomous robotics
and vehicles controlled by neural networks has been primarily
rooted in traditional Artificial Neural Networks (ANNs), with
more recent works primarily utilizing Deep Neural Networks
(DNNs) [1], [2]. While relatively successful, these types
of neuromorphic models often require large networks with
thousands of neurons and synaptic connections numbering
in the millions to achieve favorable results in real-time

Notice: This material is based in-part on research sponsored by the Air
Force Research Laboratory under agreement number FA8750-19-1-0025 as
well as the U.S. Department of Energy, Office of Science, and Office of
Advanced Scientific Computing Research, under contract number DE-AC05-
00OR22725. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. This manuscript has been authored in
part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE). The US government retains and the publisher,
by accepting the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

applications [3], [4]. When working with small, resource-
constrained, embedded robotics platforms, it is difficult to
host these networks natively. To overcome this limitation,
many of these types of implementations utilize wireless
communication to support running the large networks on
a separate, computationally powerful host and merely use
the robot to provide inputs and execute outputs. In recent
times however, research focus has began to shift towards
recurrent spiking neural networks (RSNNs) due to efforts in
bringing artificial intelligence to small, low power devices [5].
Furthermore, RSNNs have gained popularity for their ability to
encode spatio-temporal information as well as their capabilities
of being Super-Turing [6], [7]. While many architectures have
been designed to support these RSNNs in both hardware and
software, little work has been done to see these architectures
outfitted onto a real-time, embedded platform.

We show that not only are RSNNs capable of running real-
time robotics applications on a resource-constrained platform,
but that it is also possible to dynamically reconfigure the
hardware to accomplish a larger task space using the same
number of neuromorphic elements with negligible delay caused
by this reconfiguration in operation. This paper covers the
design, implementation, and testing of our robot, GRANT
(Ground-Roaming Autonomous Neuromorphic Targeter), the
first neuromorphic robot capable of autonomous navigation
and targeting using only onboard processing. We briefly
describe the Dynamic Adaptive Neural Network Array Two
(DANNA2) neuromorphic processor behind the operation of
our robot and the TENNLab co-design framework used to
train a neural network with evolutionary optimization for it
[8]. Additionally, we discuss NeoN, GRANT’s neuromorphic
predecessor designed for autonomous navigation and grid
coverage, and how we expand upon NeoN’s capabilities with
GRANT. Our physical, digital, and software design choices are
explained and the results we observed are analyzed. Finally,
we suggest future work that could improve, expand, or build
upon the results gained by GRANT.



II. RELATED WORK

In this section, we explore work that performs robot
control, obstacle avoidance, and target acquisition using related
neuromorphic systems. These embedded platforms use a variety
of neuromorphic processors and network topologies to attempt
tasks such as obstacle avoidance, targeting, path following, and
grid coverage.

A. Obstacle Avoidance and Target Acquisition with the ROLLS
Processor

In a collaborative effort, groups at the University of Zurich
and the Technical University of Munich created a robot
that is capable of utilizing wireless communication to a
ROLLS neuromorphic processor in order to perform obstacle
avoidance and object targeting. While the robot must wirelessly
communicate with the neuromorphic processor, the authors
theorized that this processor could, in fact, be affixed to a robot,
albeit a large one. This robot utilized a dynamic vision sensor
(DVS) camera in order to both detect obstacles and the target.
Neuronal architectures were manually created to accomplish
each of the desired tasks, where some neuron populations
were used to represent detected obstacles while others were
used to control the motors and their speed. These neuron
populations comprised a total neuron count of 96. Furthermore,
additional neuron populations were used to add in information
about perceived targets, and these populations required an
additional 128 neurons. These neuronal architectures were
designed independently, so to combine the two behaviors, more
weighting was given to obstacle avoidance. This configuration
decision meant that the resulting architecture would prioritize
avoiding obstacles over pursuing a target [9].

In testing, it was found that the resulting neuronal archi-
tecture could avoid obstacles at speeds as high as 0.5 meters
per second despite operating in a room with variable obstacles
and inconsistent behavior due to the analog components of the
ROLLS processor. Object targeting proved more difficult for the
robot however, as the neuronal architecture could not adequately
discern the difference between an obstacle and the target. In
80% of the test cases, the robot recognized the target as being
an obstacle when approaching. In the remaining 20% of test
cases, the target was not recognized as being an obstacle. This
was an expected result, however, as the vision preprocessing
that was performed was not expected to differentiate between
a target and an obstacle [9].

B. Trail following using the IBM NS1e

A research endeavor by groups at the University of Maryland
and the University of California, Irvine created a robot that
could follow a trail utilizing a deep convolutional neural
network running on IBM’s TrueNorth neuromorphic processor
[10]. The groups retrofitted the IBM NS1e, a board containing
4096 TrueNorth cores, to the CARLorado robot, an Android-
based robotic platform powered by a Samsung Galaxy S5
smart phone. They created datasets by manually driving the
robot along a mountainous trail in Telluride, Colorado, and
recording the decisions of the human driver. This was done

Fig. 1. DANNA2 connectivity pattern

in four independent runs, and the results were used as a
classification dataset for the deep convolutional neural network,
where the network classified the given scene as a decision
for the robot to turn right, turn left, or continue straight. The
neural network was trained to be an energy-efficient deep
neuromorphic network, as these networks have been shown
to run effectively on TrueNorth. To communicate between the
Android phone and the NS1e, a wireless hotspot was used to
transmit data. A remote host, however, was not required, as
both the Android phone and the NS1e were powered by the
robot, and the wireless hotspot was local to these two devices
[11].

The network that resulted from the training was able to
successfully navigate the trail with minimal intervention by
the researchers that accompanied it. When the robot veered
off of the trail, it had to be manually placed back at the center.
The robot successfully traversed the 0.5 kilometer stretch of
trail from the dataset, up and down, with this minimal human
intervention [11].

C. Previous Works

This work is the latest iteration of autonomous neuromorphic
robots created by TENNLab. As such, it directly draws influ-
ence from the Neuromorphic Control System for Autonomous
Robotic Navigation (NeoN) [12]. NeoN was the first robot
created by TENNLab to successfully demonstrate autonomous
operation controlled by spiking neuromorphic hardware. NeoN
was controlled with the first generation Dynamic Adaptive
Neural Network Array (DANNA) neuromorphic processor
programmed onto a Xilinx Kintex-7 FPGA. NeoN also used
a MicroBlaze core that was implemented on the FPGA to
facilitate easy programming and monitoring of the system’s
inputs and outputs. Obstacle avoidance and grid coverage were
both successfully accomplished by NeoN with the use of a
120 degree sweeping LIDAR [12]. As the natural successor
to NeoN, GRANT takes advantage of the lessons learned in
the development of NeoN and the newest iteration of DANNA
neuromorphic processors, DANNA2.

III. DANNA2 NEUROMORPHIC PROCESSOR & TENNLAB
CO-DESIGN FRAMEWORK

The second generation Dynamic Adaptive Neural Network
Array, DANNA2, digital spiking neuromorphic processor
developed by TENNLab is central to the operation of this



Framework

Applications

Processors

Learning

Fig. 2. TENNLab hardware/software co-design framework

robot [13]. The DANNA2 neuromorphic processor is written
as generically as possible in VHDL with implementations on
a Field-Programmable Gate Array (FPGA) or with Very Large
Scale Integration (VLSI) in mind. DANNA2 is made up of a
two-dimensional grid of core elements each acting as a leaky-
integrate-and-fire neuron with 24 possible synaptic connections.
Each synapse connects to one of that core element’s 24
nearest neighboring core elements. The connectivity pattern of
DANNA2 is shown in Figure 1. Each element outputs a single
binary spike from the neuron which propagates to elements with
connected synapses. Inputs are provided to the leftmost edge
elements of the array and outputs are read from the rightmost
edge elements of the array, where input spikes can have four bits
of resolution in their weights to represent the input’s synaptic
strength. The DANNA2 array is given a 100 MHz global clock
with element calculations completed every 10 global cycles.
This results in a network cycle frequency of 10 MHz which is
quite fast compared to other neuromorphic systems that have
network cycles that are measured in the kilohertz range [14]. A
particularly important property of DANNA2 elements are their
reconfigurability. This feature allows for different network
configurations to be loaded dynamically. More information
about the DANNA2 architecture and its implementation may
be found in [15].

DANNA2 networks are trained using a software simulator of
the hardware, an application created to model the physical envi-
ronment that the robot experiences, and evolutionary optimiza-
tion learning algorithm. The TENNLab hardware/software co-
design framework makes this transition from software-trained
networks to hardware-realized networks possible [16]. The
basic components of the co-design framework are illustrated
in Figure 2. The framework, or core, acts as a glue consisting
of interfaces and common functions that allow each of the
other components to work with one another. The processor
component consists of the different neuromorphic processor
models, such as DANNA2, that have been developed to run
RSNNs. Each processor shares similar functions, but how they
are implemented may differ. The applications act as software
simulations of the problems that need to be solved. The learning
component performs the training that results in neural networks
to be loaded onto the processor to implement the application.
The main learning methodology is a genetic algorithm called
Evolutionary Optimization of Neuromorphic Systems (EONS),
but other methodologies, such as backpropagation [17], [18]
and reservoir computing [19] are also being incorporated. More
detail on the framework may be found in [20].

Fig. 3. Front view of an assembled GRANT robot

IV. DESIGN

A fully assembled GRANT robot can be viewed in Figure 3.
The robot is built on a lightweight aluminum chassis with omni-
directional wheels to allow for effortless, in-place turning. This
design choice makes it possible for the network to make left
and right turning decisions without a more complex steering
geometry.

Four 12 V brushed DC motors with integrated quadrature
encoders are used to drive the robot. Each encoder has a
resolution of 1920 counts per revolution of the gearbox’s output
shaft.

A 360 degree rotating RPLIDAR A2 LIDAR is used to scan
for and detect obstacles at a maximum frequency of 15 Hz
[21]. This LIDAR sensor operates by pulsing a laser up to
8000 times per rotation measuring the time it takes for the laser
to reflect back to it after each pulse. Since the LIDAR rotates
a full 360 degrees, measurements can be taken at any discrete
angle around the robot. In our application, however, we are
only concerned with objects within the front 180 degrees of
the robot, and thus, we allow components of the robot to block
the back 180 degrees.

To perform object targeting, a Pixy2 robot vision sensor
is used [22]. The Pixy2 sensor operates at 60 frames per
second using a hue-based color filtering algorithm to detect
and differentiate between different objects. By using an object
with a drastically different color than any of the other objects
in the robot’s environment, a target object (or objects) can be
reliably detected.

To control the robot, a PYNQ-Z1 board with a Xilinx
ZYNQ-7000 System on Chip (SoC) is used [23]. This SoC
offers an embedded ARM Cortex-A9 processor, such that one
can develop standard software utilizing existing libraries for
the various sensors while still being able to operate with a



digitally designed neuromorphic processor within its FPGA
component. This particular SoC was chosen as it offered the
smallest FPGA capable of fitting the necessary network size and
allowed the demonstration of the performance of the DANNA2
neuromorphic processor on a resource-constrained platform.

A small LCD screen is also included as a debugging and
diagnostic tool but is not required for any of the essential
operations of the robot.

A. Digital Design

When designing the robot, it was decided that in order to
utilize existing USB libraries for each of the sensors, Petalinux
would be run on the FPGA [24]. Petalinux is a Linux release
built for embedded platforms designed to be run on SoCs
such as the PYNQ-Z1 that offer a CPU alongside an FPGA.
To begin with this endeavor, a base design was used for
both the Petalinux configuration and the corresponding FPGA
configuration that was capable of connecting the ARM core to
all of the board’s offered peripherals properly [25], [26]. The
FPGA design was then modified to add the additional inputs
and outputs necessary for the robot. PWM IP blocks were added
to the project to allow the robot’s motors to be controlled by
speed controllers. These IP blocks were connected across GPIO
blocks to the main AXI-4 interconnect that communicated with
the processor. Furthermore, the necessary direction pin for
these speed controllers was added to another GPIO block. A
hardware quadrature decoding block was also used for each
motor’s encoder. VHDL code for quadrature decoding provided
by Digi-Key was modified to output a 32-bit signed integer
and a bit to represent the last direction of turning [27]. These
decoding blocks were then attached to GPIO blocks such that
the number of counted pulses could be directly accessed by
the processor.

The last component of the digital design involved adding in
a DANNA2 grid array as the neuromorphic processor. Since
grid arrays are reprogrammable, this allows various networks
to be used for different desired behaviors without having to
reconfigure the hardware project itself. To communicate with
this component, an AXI-DMA engine was used. Since the
maximum supported bus width of the DMA is 32 bits and the
packet width for DANNA2 is 512 bits, AXI width converters
were used on the input and output of the array. A FIFO was
also used on the output of the array to ensure that the network
would not stall while waiting for the consumption of output
packets. Due to the way the DMA sends large packets and the
way the width converters function, intermediate components
also had to be added to reorient the bits into the intended
order. A high-level block diagram describing the structure of
the robot’s digital design can be seen in Figure 4.

B. Software Design

Since the use of the Petalinux operating system allows for
typical C/C++ applications to be compiled and ran, existing
libraries were used to control many of the sensors and interfaces
required to operate the robot. Libraries for interfacing with the
GPIO IP blocks and the PWM IP blocks come included in the

Memory 
Interconnect

DMA Engine

15x10
DANNA2 Grid

AXI4
Interconnect

HDMI

PWM Controllers

Quadature 
Decoding

USB

ARM Cortex-A9Ethernet

Fig. 4. GRANT digital design block diagram

Petalinux distribution, and these were used for managing the
speed controllers for the motors and reading the counts of the
encoder. A software development kit was also provided for use
with the RPLIDAR A2, and this was used for accessing scan
results [28]. Similarly, a software library for the Pixy2 vision
sensor also exists, and this was used to receive information
about recognized targets [29]. A library for using a JSON
object for configuration was also integrated, as this simplified
adding adjustable parameters to the configuration of the robot’s
software [30]. The last external library used was a library
that allowed direct communication with the Xilinx AXI-DMA
IP block from userspace, which allowed us to communicate
directly with the DANNA2 array from our program [31].

In the physical system’s implementation, the robot begins in a
state of roaming. It can only switch out of this state when it sees
a target. The robot updates its sensors every 150 milliseconds,
but it makes a decision every 10 milliseconds. This means that
the network utilizes old LIDAR information for approximately
14 cycles. During these cycles, the position of the target relative
to the robot is maintained by using the displacement measured
by the encoders. This method is continually used for tracking
the object until the object is either seen again, in which it is
reset based on the information gathered from the camera, or, if
the target goes without being seen for long enough, the robot
reverts to roaming until it sees the target again. If the robot
gets close enough to the target (within 24 inches), it will be
considered to have "won" by reaching the target, and thus, will
stop.

To provide a basis of comparison against the performance
of the robot when controlled by neuromorphic hardware,
traditional algorithms were implemented that used a basic
decision tree to determine whether to move forwards, turn
right, or turn left. These algorithms simply utilize the LIDAR
and the position of the target to make these decisions, turning
to avoid obstacles and trying to maintain sight of the target
to increase the accuracy of the assumed position of the target.



Fig. 5. Simulator explanation and network input information

For the neuromorphic counterparts of these algorithms, the
information was simply encoded into input spikes for the
network and they were sent through the DMA to the network.
All of the corresponding output spikes were accounted for, and
after the last output spike was received, motor speeds were set
according to the network’s decision.

In order to allow the robot to search the room for the target,
grid coverage was performed until the target was acquired. At
this point, the robot reprograms the DANNA2 array to use a
targeting network and begins pursuing the target. Should it
lose sight of the target for long enough, it again reverts to the
grid coverage network. In this way, networks are able to be
trained for independent tasks (exploration and targeting), and
the robot can adapt to situationally determine which network
should be used. By doing this, a seemingly complex set of
tasks can be reduced to less complex subtasks that networks
can be trained to perform.

C. DANNA2 Inputs and Outputs

In consideration of how to best give information to a neural
network for control and how to best allow it to execute control
over the robot, many configurations were tried. With the sensors
used on the robot, Figure 5 shows the information available
for use as potential input.

For the purpose of grid coverage, it was found that informa-
tion could be gleaned from the previous work in NeoN to find
a good input and output structure [12]. Just like NeoN, five
lines of the LIDAR were used, evenly spaced from -60 degrees
to 60 degrees with a maximum sight distance of one meter
and a minimum distance of 0.333 meters. At the maximum
distance, the input neuron associated with a given LIDAR
fires with minimum weight and at the minimum distance (or
anything less than the minimum distance), the input neuron
fires with maximum weight with values scaled linearly within
this range. Additionally, a bias input is added that will always
provide fires of maximum weight such that the network has
input even when the LIDAR is not active. The final input
is a random input in which a random value is passed to the
network with a new random value being generated every 100

Fig. 6. Best-performing grid coverage network

cycles. This input is in place to try to encourage diversity in
turning direction. For outputs, the left and right side motor
pairs each get a forward and backward neuron. The robot is
biased to go forward at 50% speed on each side. For each
vote to a forward or backward neuron for a given side, the
motor speed is increased or decreased, respectively, by 10%
[12]. This allows the neural network to directly control not
only how it moves, but the speed at which in moves in that
manner. We refer to this output scheme as the speed output
scheme. The best-performing grid coverage network, trained
with EONS, can be seen in Figure 6.

For targeting, many other input and output methodologies
were experimented with. It was found that the trained networks
performed best with an additional two LIDAR lines used at
-90 degrees and 90 degrees encoded in the same manner as
those for grid coverage. Furthermore, targeting information
was provided to the network using neurons to represent the
left, right, forwards, and backwards components of the target’s
location relative to the front of the robot with a maximum
distance of one meter and a minimum distance of zero meters.
The input neuron for each direction is fired with a weight on
a linear scale with any distance greater than or equal to the
maximum distance being represented by a maximum weight
fire and the minimum distance being represented by no fire. It
was found that with the targeting application’s higher degree of
complexity, trained networks performed better with a simplified
output scheme that had the network vote to turn left, turn
right, or move forwards. If votes were tied, the action with
higher precedence was performed with precedence ordered as
turning left, turning right, and moving forwards. We call this the
decision output scheme. The best-performing targeting network,
trained with EONS, can be seen in Figure 7. All other network
topologies that were tried either had worse performance in
training or the behavior between simulation and the physical
system did not match.



Fig. 7. Best-performing targeting network

As can be seen in both Figures 6 and 7, networks capable
of performing the desired functions are incredibly small in
comparison to their typical counterparts used in similar robotics
applications.

V. RESULTS & DISCUSSION

A. Simulation

In training networks using EONS, it was found that the
same input and output structure used by NeoN provided good
results in grid coverage, with average room coverage being
around 60% for the best-performing network. This number is
representative of total room coverage and does not account
for areas of the room that are unreachable because of either
being occupied by an obstacle or access to it being blocked
by obstacles. This particular network attempts to turn left to
sweep around obstacles and turns right to avoid anything it sees
straight ahead of it. The network is also incredibly small in size
compared to those typically used for this type of application,
with the network only containing 81 neurons and 110 synapses.
An example of the simulated network’s performance can be
seen in Figure 8.

In the training of targeting networks using EONS, many
parameters were found to have considerable implications to the
performance of the system; however, many of these implications
were entirely manifested in the physical implementation of
the robot and not in the simulator itself. Of the parameters
that actually affect the performance of the network within the
simulator, it was found that the parameters that mattered the
most were a penalty for not facing towards the target, a penalty
to greatly discourage crashing into an obstacle, the maximum
and minimum values for targeting information provided to the
network, and the priority for actions when using the decision
output scheme. The penalty for not facing toward the target
allowed the training to develop desirable behavior at early
stages, as facing towards the target when moving yielded a

Fig. 8. Grid coverage performance

greater fitness score. The penalty that discouraged crashing into
obstacles aided in developing networks that would go towards
the target while still prioritizing avoiding things that got in its
way. It also forced the network to recognize the correlation
between information about the target position and LIDAR
information, such that the network could ignore the LIDAR if
it thought the detected object was the target and, as a result,
could get close enough to the object to "win." By modifying the
maximum and minimum values for the targeting information,
the resolution of the network’s "vision" was effectively changed.
This means that by decreasing the range between the maximum
and minimum values, the margin of error for the robot to be
facing the target was decreased, ultimately resulting in better
performance. This is greatly impactful, as the four-bit resolution
in DANNA2 input spikes only allows for sixteen distinct values
to be encoded within the range. The priority of the decisions
in the decision output scheme was found to need to emphasize
turning first, as doing otherwise would result in networks that
were more prone to crashing into obstacles. All parameters
that only altered behavior on the robot and their implications
will be discussed in the next section.

In a large room, the best-performing network is able to
reach the target, regardless of the number of obstacles, 87%
of the time. These losses are usually attributed to the network
being unable to reach the target with the path it has chosen,
but on rare occasion, the network will hit an obstacle because
it believes that it could be the target due to proximity. This
network does exhibit the behavior of turning both directions
and generally trying to keep a straight path towards the target.
The network’s size, like the grid coverage network, was also
small, as the network only utilized 72 neurons and 89 synapses.
Examples of this network’s behavior can be seen in Figures 9
and 10.

Traditional algorithms were also ported to the simulator,
such that these algorithms could be compared to the solutions
provided by the neural networks. These traditional algorithms
succeed in reaching the target 99.2% of the time; however, the
traditional algorithms receive more LIDAR information (33
distinct lines) and perform tasks to filter out the target hitting



Fig. 9. Targeting performance example 1

Fig. 10. Targeting performance example 2

the LIDAR. In this way, the traditional algorithms have an
advantage over the neural networks. To combat this, the number
of LIDAR used by the traditional algorithms was reduced for
fair comparison to seven distinct lines, and with this reduced
information, the traditional algorithms only reach the target
41% of the time. While these traditional algorithms are not the
most optimal solution one could achieve, these results show the
advantage that the RSNNs can provide with limited information
in a resource-constrained environment.

B. Physical Implementation

When training networks to be evaluated on the physical robot,
it was found that discrepancies existed between the simulator
and the robot. Namely, motor speed was not adequately
modeled, and thus, the speed output scheme would not work
correctly. Even trying to mitigate low speed motions that were
not possible on the physical system proved insufficient in
creating a set of actions that matched between the simulator
and the physical system. This led to the development of the
decision output scheme. It was also found that the addition of a

moving target to the simulator aided the ability of the network
to accurately move toward the target on the physical system.
This improved behavior can be attributed to the fact that the
camera used to discern the location of the target often produced
slightly inconsistent results. The addition of a moving target
also yielded the ability for the physical system to not only
find a target, but follow it around a room even as it moves. To
further avoid the issues of crashing into obstacles, LIDAR lines
were "binned," such that at a given degree measurement, the
distance used was actually that of the closest object within an
angular range. Optimal performance was found to be achieved
when these angular ranges were nine degrees wide.

In practice, the simulator and the traditional algorithms on
the physical system appear to produce similar results. The robot
is able to move towards the target while avoiding obstacles,
rarely having any issue discerning the difference between an
obstacle and the target. For grid coverage using the neural
network, behavior also seems to match between the simulator
and physical system. It appears as though any inconsistency
caused by using the speed output scheme is not evident, as
seemingly random turn amounts actually helps to increase the
grid coverage. For targeting, the physical system’s behavior
again seems to mostly match that of the simulator.

VI. FUTURE WORK

It is theorized that one could potentially resolve conflicts
between the physical system and the simulator through a couple
methods. One such method would be to use a PID loop to
ensure that the response of the motors corresponds to a physical
speed that can then be matched identically in the simulator.
Additionally, adding the drift caused by the omni-directional
wheels to the simulation would allow the simulation to better
match the physical system. Further work would need to be done
to model the transition between consecutive decisions made by
the network as the current implementation simply treats each
time interval as discrete, such that the current motion of the
robot is not taken into account for the next timestep.

To allow the neuromorphic implementation of object tar-
geting to better compete with the traditional implementation,
work could be done to allow larger networks to be run on
the robot itself. Such work could involve the use of a single
board computer to run the DANNA2 network simulator with
larger networks. Using the simulator would also allow the
removal of connectivity restrictions enforced by the digitally-
implemented design. One could also utilize a larger FPGA
on the robot or wireless communication to a host with a
larger DANNA2 array to accomplish this goal of removing
the network size restrictions enforced by the robot’s resource
constraints. The implementation of a DANNA2 array in an
application specific integrated circuit (ASIC) would also allow
for greater density while simultaneously increasing the network
speed and decreasing the power consumption.

Furthermore, while the robot is constrained to a two-
dimensional plane, this work could be built upon to allow
a drone to navigate a three-dimensional environment with a
similar input and output structure.



VII. CONCLUSIONS

GRANT is the first self-contained, embedded, neuromorphic
system to utilize the hardware implementation of the DANNA2
neuromorphic processor for a control application. The robot
also shows the ability of the trained networks to maintain
obstacle avoidance while pursuing a target given only estimated
positional data. The trained targeting network also shows
capability of performing with significantly less information
than that given to the traditional algorithms, as well as proving
its ability to grossly outperform these algorithms when they
were given this reduced information. Lastly, the robot shows the
ability of DANNA2 grid arrays to support real-time switching
of neural networks to facilitate situational transitions between
subtasks of a multi-objective function. This greatly expands the
achievable functionality of a resource-constrained, embedded
platform as multiple small networks can be used to achieve a
larger, more complex objective.

REFERENCES

[1] G. A. Bekey et al., Neural networks in robotics. Springer
Science & Business Media, 2012, vol. 202.

[2] W. Liu et al., “A survey of deep neural network architectures
and their applications,” Neurocomputing, vol. 234, pp. 11–26,
2017.

[3] K. D. Fischl et al., “Neuromorphic self-driving robot with
retinomorphic vision and spike-based processing/closed-loop
control,” in 2017 51st Annual Conference on Information
Sciences and Systems (CISS), Mar. 2017, pp. 1–6. DOI: 10.
1109/CISS.2017.7926179.

[4] M. Bojarski et al., “End to end learning for self-driving cars,”
CoRR, vol. abs/1604.07316, 2016. arXiv: 1604.07316. [Online].
Available: http://arxiv.org/abs/1604.07316.

[5] C. D. Schuman et al., “A survey of neuromorphic computing
and neural networks in hardware,” CoRR, vol. abs/1705.06963,
2017. arXiv: 1705.06963. [Online]. Available: http://arxiv.org/
abs/1705.06963.

[6] J. Vreeken, Spiking neural networks, an introduction, 2003.

[7] J. Cabessa et al., “The super-turing computational power of
plastic recurrent neural networks,” International journal of
neural systems, vol. 24, no. 08, p. 1 450 029, 2014.

[8] C. D. Schuman et al., “An evolutionary optimization frame-
work for neural networks and neuromorphic architectures,” in
International Joint Conference on Neural Networks, Vancouver,
Jul. 2016.

[9] M. B. Milde et al., “Obstacle avoidance and target acquisition
for robot navigation using a mixed signal analog/digital
neuromorphic processing system,” Frontiers in neurorobotics,
vol. 11, p. 28, 2017.

[10] F. Akopyan et al., “Truenorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 10, pp. 1537–1557, Oct. 2015, ISSN:
0278-0070. DOI: 10.1109/TCAD.2015.2474396.

[11] T. Hwu et al., “A self-driving robot using deep convolutional
neural networks on neuromorphic hardware,” in 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN), IEEE,
2017, pp. 635–641.

[12] J. P. Mitchell et al., “NeoN: Neuromorphic control for au-
tonomous robotic navigation,” in IEEE 5th International Sym-
posium on Robotics and Intelligent Sensors, Ottawa, Canada,
Oct. 2017, pp. 136–142.

[13] J. P. Mitchell et al., “DANNA 2: Dynamic adaptive neural
network arrays,” in International Conference on Neuromorphic
Computing Systems, Knoxville, TN: ACM, Jul. 2018. DOI:
10.1145/3229884.3229894.

[14] P. Merolla et al., “A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm,” in 2011 IEEE
Custom Integrated Circuits Conference (CICC), Sep. 2011,
pp. 1–4. DOI: 10.1109/CICC.2011.6055294.

[15] J. P. Mitchell, “Danna2: Dynamic adaptive neural network
arrays,” Master’s thesis, The University of Tennessee, Aug.
2018.

[16] J. S. Plank et al., “The TENNLab exploratory neuromorphic
computing framework,” IEEE Letters of the Computer Society,
vol. 1, no. 2, pp. 17–20, Jul. 2018. DOI: 10.1109/LOCS.2018.
2885976. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/LOCS.2018.2885976.

[17] S. B. Shrestha et al., “SLAYER: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems
31, S. Bengio et al., Eds., Curran Associates, Inc., 2018,
pp. 1412–1421. [Online]. Available: http://papers.nips.cc/paper/
7415-slayer-spike-layer-error-reassignment-in-time.pdf.

[18] W. Severa et al., “Training deep neural networks for binary
communication with the Whetstone method,” Nature Machine
Intelligence, vol. 1, pp. 86–94, Jan. 2019. [Online]. Available:
https://doi.org/10.1038/s42256-018-0015-y.

[19] J. J. M. Reynolds et al., “Intelligent reservoir generation for
liquid state machines using evolutionary optimization,” in
IJCNN: The International Joint Conference on Neural Networks,
Budapest, 2019, pp. 1–8. DOI: 10.1109/IJCNN.2019.8852472.

[20] J. S. Plank et al., “A unified hardware/software co-design frame-
work for neuromorphic computing devices and applications,”
in IEEE International Conference on Rebooting Computing
(ICRC 2017), Washington, DC, Nov. 2017.

[21] Rplidar-a2 laser range scanner_ solid laser range scan-
ner|slamtec. [Online]. Available: https://www.slamtec.com/en/
Lidar/A2.

[22] Pixy2 – pixycam. [Online]. Available: https://pixycam.com/
pixy2/.

[23] Pynq-z1 [reference.digilentinc]. [Online]. Available: https://
reference.digilentinc.com/reference/programmable-logic/pynq-
z1/start.

[24] Petalinux tools. [Online]. Available: https://www.xilinx.com/
products/design-tools/embedded-software/petalinux-sdk.html.

[25] M. Orsucci et al., Petalinux-arty-z7-20, 2018. [Online]. Avail-
able: https://github.com/Digilent/Petalinux-Arty-Z7-20.

[26] S. Bobrowicz et al., Arty-z7-20-base-linux, 2018. [Online].
Available: https://github.com/Digilent/Arty-Z7-20-base-linux.

[27] S. Larson, Quadrature decoder (vhdl), 2017. [Online]. Avail-
able: https://www.digikey.com/eewiki/pages/viewpage.action?
pageId=62259228.

[28] T. Huang et al., Rplidar_sdk, 2019. [Online]. Available: https:
//github.com/slamtec/rplidar_sdk.

[29] R. LeGrand, Pixy2, 2019. [Online]. Available: https://github.
com/charmedlabs/pixy2.

[30] N. Lohmann, Json for modern c++, 2019. [Online]. Available:
https://github.com/nlohmann/json.

[31] B. Perez et al., Xilinx_axidma, 2018. [Online]. Available: https:
//github.com/bperez77/xilinx_axidma.


