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Abstract—The reconfigurable computing paradigm that uses
field programmable gate arrays (FPGAs) has received renewed
interest in the high-performance computing field due to FP-
GAs’ unique combination of performance and energy efficiency.
However, difficulties in programming and optimizing FPGAs
have prevented them from being widely accepted as general-
purpose computing devices. In accelerator-based heterogeneous
computing, portability across diverse heterogeneous devices is
also an important issue, but the unique architectural features
in FPGAs make this difficult to achieve. To address these
issues, a directive-based, high-level FPGA programming and
optimization framework was previously developed. In this work,
developed optimizations were combined holistically using the
directive-based approach to show that each individual benchmark
requires a unique set of optimizations to maximize performance.
The relationships between FPGA resource usages and runtime
performance were also explored.

Index Terms—FPGA, OpenACC, OpenARC, directive-based
programming, compiler optimization

I. INTRODUCTION

Accelerator-based heterogeneous computing, which typi-
cally employs devices such as GPUs and many-core proces-
sors, has become a mainstream approach in high-performance
computing (HPC) to solve performance, power efficiency,
reliability, and cost issues caused by increasing power den-
sities in conventional von-Neumann architectures. Similarly,
reconfigurable computing that uses FPGAs and coarse-grained
reconfigurable devices has received renewed interest due to
the unique combination of performance and energy efficiency
through flexible hardware customizations. FPGAs’ reconfig-
urable nature allows these architectures to be customized to
match the needs of a given application and achieve much
higher energy efficiency and/or performance gains compared
with conventional CPUs and GPUs. As a result, FPGAs
have been deployed in various application domains, such as
finance [1], database systems [2], machine learning [3], image
processing [4], graph analysis algorithms [5], and others.
Moreover, recent trends in FPGA technologies—such as sup-
porting hardened floating-point data signal processing blocks
and integrating CPUs, GPUs, and FPGAs as a new system-
on-chip devices—make FPGA-based high-performance recon-
figurable computing more attractive for serious exploration in
scientific simulation and data analytics.

However, FPGAs have not been widely adopted as general-
purpose computing devices primarily due to programming and
optimization difficulties. In accelerator-based heterogeneous

computing, functional and performance portability across di-
verse architectures are important and desirable. In contrast, tra-
ditional FPGA programming that uses low-level hardware de-
scription languages (HDLs) exposes too many details involv-
ing complex hardware and software designs to the program-
mers, inhibiting programmability and portability. To alleviate
the programmability concern in FPGA computing, several
high-level synthesis (HLS) programming models have been
proposed [6]–[11]. OpenCL (Open Computing Language) is
the first standard programming model that is functionally
portable across diverse heterogeneous architectures and has
been adopted by major FPGA vendors (e.g., Intel and Xil-
inx) [12]. Despite its potential to offer better programmability
and portability than HLS approaches, programming and op-
timizing FPGAs with OpenCL is still considered to be very
complex and difficult due to the semantic gap between the
OpenCL abstraction and the low-level hardware design. For
example, the current OpenCL abstraction does not provide a
straightforward method for programmers to express specific
hardware features, such as shift registers, hardware channels,
and pipeline delays. Instead, the underlying OpenCL compiler
implicitly derives and synthesizes all hardware logic from an
input program, and there are many practical limits in com-
pilation for finding optimal hardware designs. Consequently,
existing FPGA OpenCL compilers can be very sensitive to
specific code patterns. One way to solve this problem is to
lower the programming abstraction level offered by OpenCL
to expose the low-level hardware design to the programmers.
However, lowering the programming abstraction would sacri-
fice the portability benefits of OpenCL and negatively affect
its programmability.

To address the problems caused by the aforementioned
semantic gap, a directive-based, high-level programming and
optimization framework for efficient FPGA computing was
proposed in previous works [13], [14]. This framework takes
a standard, portable OpenACC program as input and generates
an output OpenCL code, which the underlying OpenCL com-
piler further compiles into an FPGA hardware configuration
file. The proposed framework solves the semantic-gap issue
using directive-based, high-level FPGA-specific optimizations
in which programmers provide important characteristics of
the input program via a set of directives. The framework
then generates specific OpenCL code patterns so the under-
lying back-end OpenCL compiler can infer known FPGA



programming paradigms, including shift registers, hardware
pipelines, and sliding windows. The proposed OpenACC-to-
FPGA translation framework offers enough abstraction over
low-level hardware designs and complex OpenCL program-
ming syntax and also provides high-level control over various
FPGA-specific optimizations. As a result, the programmer
can specify FPGA optimizations with user-friendly, high-level
OpenACC directives and keywords and will leave the lower
level error-prone OpenCL FPGA-specific syntax generation to
the compiler.

Previous works [13], [14] focused primarily on developing
and evaluating each individual optimization in isolation to
maximize performance gains when applying a specific opti-
mization. This work focuses on evaluating the optimization
framework holistically to maximize performance for each
application using the array of available optimizations.

Although there is a higher level of abstraction in the
OpenACC-to-FPGA framework, the reconfigurable nature of
the underlying FPGA architecture exposes multiple design
choices for users to decide. The different threading-model
approaches of multi-threaded parallelism and pipeline paral-
lelism present design choices with significantly different per-
formance for different applications. Furthermore, within each
threading approach are many other optimizations that may or
may not apply and may or may not improve performance
for that specific application. In OpenCL, restructuring and
reformatting source code to implement the multiple differ-
ent combinations of optimizations are very time consuming
and error prone. A thorough design exploration and holistic
application of optimization arrays are greatly simplified by
using a directive-based approach, which typically only requires
changing a few lines of code for each individual design.

The contributions in this work are as follows.
• A categorical organization and summary of optimizations

presented in [13], [14] are provided.
• Developed optimizations on an array of benchmarks are

holistically evaluated using an Arria 10 FPGA.
• The effects of FPGA resource usages and kernel frequen-

cies on runtime performance are explored.
• The necessity of high-level frameworks for efficient

FPGA optimization and design exploration and the need
to transition to a more automated process are demon-
strated.

II. BACKGROUND

A. FPGAs

FPGAs are composed of digital signal processing (DSP)
blocks, registers, adaptive look-up tables (ALUTs), and other
typical hardware components. At runtime, the FPGA is con-
figured to use a subset of these hardware components using
programmable interconnects. This runtime-configuration prop-
erty provides several advantages for FPGAs compared with
other accelerators. First, specific resources can be allocated to
meet the needs of specific applications, leading to performance
improvements. Additionally, because only crucial components

are configured, FPGAs can maintain a low-power state. How-
ever, configuring the FPGA for specific applications has tradi-
tionally required programming in HDLs at the register-transfer
level (RTL).

RTL FPGA programming in VHDL or Verilog is inacces-
sible to most application programmers because it requires
in-depth knowledge of the FPGA, such as cycle-by-cycle
descriptions of hardware, and hardware-clock timing consid-
erations. To address these programmability issues, two leading
FPGA manufacturers, Intel/Altera and Xilinx, have provided
an OpenCL SDK for their FPGA devices.

B. Intel FPGA SDK for OpenCL

The OpenACC-to-FPGA project relies heavily on the Intel
(formerly Altera) FPGA SDK for OpenCL [15]. Although
this SDK is the first major vendor-supported project to bridge
the gap between HPC and FPGAs, the abstraction level is
inadequate for most HPC programmers. Although the SDK
technically allows shift registers, sliding windows, and other
hardware-level FPGA constructs to be implemented, express-
ing these constructs in OpenCL clashes against traditional
HPC programming intuition because they require program-
ming patterns and loop constructs antithetical to conventional
programming principles. This is a primary motivation for the
OpenACC-to-FPGA project.

Compilation times using the Intel SDK are significantly
longer than traditional CPU or GPU compilation times, often
taking several hours. This is generally true of all HLS tools.
However, the Intel SDK does provide a significant amount of
information about the application and how it will be mapped to
hardware before attempting a full compilation. The estimated
resource usages and design layout, which are neatly presented
in HTML format, were very useful for guiding optimizations,
even when working at the OpenACC level.

C. OpenACC

The source-level portability of OpenCL allows programmers
to write applications once and run them on any OpenCL-
compliant hardware accelerators, such as CPUs, GPUs, Xeon
Phis, DSPs, and FPGAs. However, OpenCL does not provide
performance portability across different types of accelerators
because the abstraction level typically requires device-specific
code to optimize performance. Additionally, OpenCL is still
considered a low-level programming model for scientific ap-
plication developers due to the required knowledge of different
hardware architectures and machine models.

OpenACC addresses these challenges. OpenACC is a
directive-based, performance-portable parallel programming
model for a wide variety of hardware accelerators. The
model outsources device-specific implementation details to
the compiler to reduce the required programming effort and
increase performance portability. The OpenACC API—which
consists of compiler directives, library routines, and environ-
ment variables—allows programmers to augment applications
with information, exposing available parallelism within an
application. A core OpenACC facility is to offload the burden



of mapping parallelism directly to devices from the user to
the underlying compiler. Because of its simplistic API, main-
tainability, usability, and portability, OpenACC is increasingly
being considered as an alternative to lower level accelerator
programming models.

D. OpenARC

The OpenACC-to-FPGA translation framework discussed
in this work is built inside the OpenARC compiler frame-
work [16]. OpenARC is a research-oriented OpenACC com-
piler that specializes in rapidly prototyping new optimizations,
API features, and device-support for emerging technologies.
This makes OpenARC an ideal platform for the initial imple-
mentation of OpenACC-to-FPGA translation, which was first
introduced by Lee et al. [13].

OpenARC takes an input C program that is annotated
with OpenACC directives, performs several optimization and
translation passes, and generates an optimized output host and
kernel code in CUDA or OpenCL. The CUDA or OpenCL
output is then further compiled using a low-level device
compiler, such as NVCC or Intel’s OpenCL compiler. In this
work, OpenARC was used to generate OpenCL specific to
Intel FPGAs and to apply FPGA-specific optimizations that
were developed previously [13], [14].

III. OPTIMIZATION BACKGROUND

This section provides a high-level overview and categor-
ical classification of the different optimizations developed
in previous works [13], [14]. The optimizations are segre-
gated into three primary categories: (1) automatically applied
optimizations requiring no user intervention, (2) repurposed
directives in which existing OpenACC directives are imple-
mented in an FPGA-specific way, and (3) directive extensions
in which FPGA-specific directives are developed outside the
established OpenACC standard. This classification is presented
as a summary of previous work compulsory to the presented
evaluations and as a structured template for adding new
optimizations as the OpenACC-to-FPGA framework continues
to improve. The cited works provide more detailed descriptions
on individual optimizations, their implementations inside the
OpenARC framework, and evaluations of their efficacy.

A. Automatically Applied

The first class of optimizations in the OpenACC-to-FPGA
framework represents optimizations for which no user inter-
vention is required. These optimizations can be safely applied
any time the compiler encounters specific constructs and are
applied independently from any user-supplied directives.

1) Dynamic Memory Transfer Alignment: In a typical
FPGA-based heterogeneous system, an FPGA is attached to
the host CPU via PCIe bus as a discrete device with a separate
memory. Therefore, for a device kernel to access the host
data and vice versa, data should be explicitly transferred
between the host and device memory. Existing FPGA OpenCL
runtimes, such as Intel OpenCL runtime, use direct memory
access (DMA) for higher throughput and lower latency. To

exploit DMA, the host-side buffer and device-side buffer
should be aligned. Although device buffers are automatically
allocated in an aligned way, host buffers should be allocated
with special memory allocators (e.g., posix_memalign() in
Linux). Even if both host and device buffers are allocated in
an aligned way, the transfer of partial arrays might not exploit
DMA if at least one of the start addresses is not aligned. The
OpenACC-to-FPGA framework runtime dynamically analyzes
memory alignment and employs temporary buffers to satisfy
alignments without user interference, as described in Lee et
al. [13].

2) Code Motion: Loop-invariant code motion is a common
optimization generally applicable to all hardware devices,
which can reduce redundant computations in a loop. Branch-
invariant code motion is less commonly applied because it
does not reduce the computation amount. However, in FPGA-
based reconfigurable computing, the branch-invariant code
motion can reduce the overall hardware resource requirements
by removing redundant hardware logic generation for the
invariant codes in both branches. Therefore, the underlying
Intel OpenCL compiler supports the branch-invariant code
motion optimization.

To further reduce the resource usage, the OpenACC-to-
FPGA framework also includes branch-variant code motion
optimization, which factors out branch-variant codes if both
branches have the same computation patterns. This optimiza-
tion does not reduce the amount of computations; instead,
it reduces the resource usage by sharing hardware logic for
the common computation patterns in both branches, which
can improve performance by increasing the kernel operating
frequency. It also allows for more aggressive unrolling and
increased parallelization.

3) Boundary Check Elimination: When an OpenACC com-
pute region is translated into a device kernel, each iteration in
a work-sharing loop will be mapped to each device thread
(work-item in OpenCL) according to the OpenACC execution
model. If the total number of device threads is not the
same as the number of corresponding loop iterations, then
the device kernel should be executed so that only device
threads with valid mapping execute the loop body, which
is usually implemented using control statements. Generally,
control flow divergence by control statements is less of an
issue in FPGA computing than in GPU computing because
the reconfigurability in FPGA can completely eliminate the
diverging control paths of thread executions by using hardware
predicates if conditional structure is simple enough. However,
if the device kernel has complex control structures such as
thread-dependent backward branching, then the underlying
OpenCL compiler cannot flatten the control structures, which
could cause significant performance penalty by disallowing
various advanced compiler optimizations, such as kernel vec-
torization. To alleviate the burden for the underlying OpenCL
compiler to flatten the control structure, a compiler pass
was developed that uses built-in symbolic analysis tools to
check and eliminate unnecessary loop-boundary check code
at compile time.



B. Repurposed OpenACC Directives

The second class of optimizations in the OpenACC-to-
FPGA framework represents optimizations that users can op-
tionally apply using existing OpenACC directives and clauses.
Many clauses are typically implemented by compilers in a
specific way to optimize GPU performance. In the OpenACC-
to-FPGA framework, these clauses were re-implemented to
optimize FPGA performance without changing their syntax or
context from a programming perspective.

1) Single Work-Item Clauses: Because FPGAs can leverage
deeply pipelined execution, single-threaded pipeline-parallel
implementations can outperform their multi-threaded counter-
parts in many situations. This contrasts with GPU execution,
which explicitly relies on multi-threaded execution. Because
OpenACC was primarily developed with a focus on GPU
execution, the default execution model assumes multi-threaded
parallelism using multiple gangs, workers, and/or vectors.

In the proposed OpenACC-to-FPGA framework, existing
OpenACC directives were repurposed to allow programmers
to indicate that a kernel should be executed as a single
work item. By setting the num_gangs, num_workers, and
vector_length clauses of an OpenACC parallel directive to
1, OpenARC can generate the appropriate OpenCL code for
the underlying back-end compiler to correctly infer a pipeline
parallel execution.

2) Collapse Clause: Loop collapsing is a common opti-
mization used across several directive-based languages, in-
cluding OpenMP and OpenACC. This optimization requires
a compiler to combine two tightly nested loops into a single
loop, which typically requires the original iteration variables to
be recalculated at each iteration. In a multi-threaded context,
this recalculation can be done using division and modulus
operations, deriving the old iteration index values from the
collapsed iteration index value.

In an FPGA context, these division and modulus oper-
ations are relatively expensive in terms of execution time
and resource usage. However, in a single work-item context,
recalculating at each iteration is unnecessary. Instead, row and
column counters can be used, which require only addition
and comparison operations. If the given kernel is executed in
the single work-item context, OpenARC generates a row and
column counter approach when encountering collapse clauses
in the OpenACC-to-FPGA framework instead of using the
costly division and modulus approach.

3) Reduction Clause: Scalar reductions represent an opera-
tion commonly optimized by compilers. For implementations
that target multi-threaded CPUs or GPUs, this optimization
is typically a tree-based approach. The leaves represent the
array of values, and the roots represent the combination of
those values by some scalar operation.

This tree-based implementation can also be used in an
FPGA context and could outperform a straightforward se-
rialized approach. However, a more efficient approach can
be realized using FPGA-specific shift registers [15]. In this
approach, partial sums are accumulated in a shift register,

and then the final value is computed by doing a traditional
reduction over the partial sums.

In the OpenACC-to-FPGA framework, OpenARC imple-
ments this shift–register-based approach when encountering
reduction clauses. This FPGA-specific alternative to the GPU-
specific approach can lead to significant performance improve-
ments at the cost of a small increase in resource usage [14].

C. Directive Extensions

For some FPGA-specific optimizations, automatic applica-
tion by the compiler is difficult. Also, there might not be a
straightforward mapping to existing directives that program-
mers could use to optionally apply the optimizations since
these optimizations might not be relevant in GPU or multi-
threaded CPU contexts.

In these cases, novel directive extensions are developed that
can be recognized by the OpenARC compiler framework. The
goal of these extensions is to allow programmers with limited
FPGA knowledge to leverage FPGA-specific optimizations
that could largely affect performance.

1) Kernel Vectorization Directive: In the Intel FPGA
OpenCL programming, kernel vectorization allows multiple
work items (device threads) in an OpenCL work group to
execute in a single instruction multiple data (SIMD) fashion,
which is implemented by replicating the kernel data paths
while sharing control logic across each SIMD vector lane.
Kernel vectorization is usually beneficial, but its additional
resource requirement could contend with other optimizations.
Although the OpenACC vector clause has similar effects, the
vectorization behavior in the OpenACC execution model is not
the same as that of the Intel OpenCL kernel vectorization. In
OpenACC, vector lanes execute only in a SIMD manner if a
kernel is in vector-partitioned mode and might not execute in
a lockstep manner. In contrast, OpenCL kernel vectorization
exercises a strict lockstep vectorization.

2) Compute Unit Replication Directive: The reconfigurable
nature of FPGAs allows multiple compute units to be gen-
erated for each kernel so that the hardware controller in
FPGA can distribute work groups to available compute units
in addition to running multiple work groups in a pipeline of a
compute unit. Increasing the number of compute units can
achieve higher throughput, but it also increases bandwidth
pressure to the global memory and requires more hardware
resources, whose optimal number should be carefully tuned.

3) Channels Directive: In the current OpenACC execution
model, there is no mechanism to allow fine-grained synchro-
nization between actively running device kernels, and the de-
vice kernels can communicate with each other only through the
device global memory. Therefore, both kernels require reading
and writing to and from global memory to communicate, and
the communication is serialized due to kernel communication.
Moreover, the limited bandwidth and long latency of the global
memory could become another performance-limiting factor. To
address these issues, the underlying Intel OpenCL provides a
hardware mechanism called channel, which two concurrently
running kernels can use to communicate with each other in



a fine-grained manner without using the expensive global
memory. If two or more OpenACC kernels execute in a
sequential order and communicate with each other using tem-
porary device buffers, then these kernels might be able use the
channel mechanism when running on an FPGA. However, for
the kernels to use this mechanism without breaking the original
execution semantics, these kernels should communicate in
specific patterns, which are not easy for the compiler to detect
automatically. To enable the channel mechanism in OpenACC,
a set of new backward-compatible OpenACC data clauses
were proposed with the existing OpenACC data clauses that
will preserve functional portability across FPGAs and non-
FPGA devices.

4) Window Directive: Applications relying on stencil com-
putations are common in scientific computing. Many algo-
rithms operating on a grid or matrix apply a stencil pattern at
each input location, relying on neighboring locations. These
patterns and operations can result in redundant, expensive
memory operations on devices such as FPGAs.

However, with a pipeline-parallel single work-item kernel,
sliding window optimizations can be used to greatly improve
the performance of these stencil computations [14] [15]. The
sliding window is constructed using a shift–register-based
buffer and used to store input data values relevant to the stencil
computation at every iteration. The benefit of the sliding
window approach is that in each iteration, only one value is
loaded from memory. The other values needed for the stencil
pattern are loaded from the shift-register buffer, which is a
relatively inexpensive operation on FPGAs.

The window directive extension (Listing 2) allows Ope-
nACC programmers to use this shift–register-based approach
without actually implementing the shift-register logic, which
can be difficult for programmers without experience with the
Intel OpenCL SDK.

D. Code Example

Listing 1 provides an example OpenCL kernel implement-
ing an FPGA-specific sum reduction and an FPGA-specific
stencil operation using a sliding window. For brevity, variable
initialization was omitted, as well as the host code involved
with setting up the OpenCL command queue, data buffering
and transfers, and other standard OpenCL API calls. In the
OpenCL implementation, programmers manually manage shift
register initialization, population, and shifting via loops. Mis-
managing the shift register logic could cause the underlying
compiler to not infer a shift register in hardware and result in
catastrophic performance results.

Listing 2 provides an example of the same algorithm using
OpenACC instead of OpenCL. In the OpenACC implementa-
tion, shift-register management and other low-level, OpenCL-
specific error-prone features are abstracted away. Also, al-
though not provided, the OpenACC host code is much simpler
than the verbose OpenCL host code and requires only simple
data movement directives.

Listing 1. OpenCL version of FPGA reduction and sliding window.
// OpenCL FPGA Reduction
#define REGISTER DEPTH (8 * N) // unroll factor N
float shift reg[REGISTER DEPTH + 1] = {0}; // create and initialize shift registers.
#pragma unroll N
for (int i = 0; i < SIZE; ++i) {

shift reg[REGISTER DEPTH] = shift reg[0] + input[i]; // perform partial reduction.

for (int j = 0; j < REGISTER DEPTH; ++j)
{ shift reg[j] = shift reg[j + 1]; } // shift values in shift registers.
}

#pragma unroll
for (int i = 0; i < REGISTER DEPTH; ++i)
{ sum += shift reg[i]; } // perform final reduction on shift registers.

// OpenCL FPGA Sliding Window
#define ROWS ...
#define COLS ...

#define NBD SIZE (2*COLS + 1) // neighborhood size
#define SW OFFSET (COLS) // window offset
#define READ OFFSET (COLS) // read offset
#define SW SIZE (NBD SIZE + UNROLL FACTOR − 1)

float sw[SW SIZE]; // create a sliding window array.

for (int index = −(READ OFFSET); index < ROWS*COLS; index += UNROLL FACTOR) {
for (int i = 0; i < NBD SIZE − 1; ++i)
{ sw[i] = sw[i + UNROLL FACTOR]; } //Shift UNROLL FACTOR positions.
// load UNROLL FACTOR values to the sliding window.
for (int ss = 0; ss < UNROLL FACTOR; ++ss) {

if (index + READ OFFSET + ss < ROWS*COLS)
{ sw[NBD SIZE − 1 + ss] = input[index + READ OFFSET + ss]; }
}

float value[UNROLL FACTOR]; // temporary array storing outputs.
#pragma unroll
for (int ss = 0; ss < UNROLL FACTOR; ++ss) {

if (index + ss >= 0) {
float N = sw[SW OFFSET+ss − COLS];
float S = sw[SW OFFSET+ss + COLS];
float E = sw[SW OFFSET+ss + 1];
float W = sw[SW OFFSET+ss − 1];
output[index] = sw[SW OFFSET+ss] + N + S + E + W;
value[ss] = sw[SW OFFSET+ss] + N + S + E + W;
}
}
// store temporary outputs to the output array.
for (int ss = 0; ss < UNROLL FACTOR; ++ss) {

if (index + ss >= 0)
{ output[index + ss] = value[ss]; }
}
}

Listing 2. OpenACC version of FPGA reduction and sliding window.
// OpenACC FPGA Reduction
#pragma acc parallel loop num gangs(1) num workers(1) reduction(+:sum)
#pragma unroll N
for (int i = 0; i < SIZE; ++i)
{ sum += input[i]; }

// OpenACC FPGA Sliding Window
#define ROWS ...
#define COLS ...

#pragma acc parallel loop num gangs(1) num workers(1)
#pragma openarc transform window (input, output)
for (int index = 0; index < ROWS*COLS; ++index) {

float N = input[index − COLS];
float S = input[index + COLS];
float E = input[index + 1];
float W = input[index − 1];
output[index] = input[index] + N + S + E + W;
}

IV. EXPERIMENTAL SETUP

A. Software
The front-end OpenACC code was compiled using Ope-

nARC v0.11 (openarc). OpenARC is hosted on the internal



Oak Ridge National Laboratory (ORNL) repository site, and
access can be granted upon author request. The back-end
OpenCL code is compiled using the Intel FPGA SDK for
OpenCL v17.1.0 (aocl). The software stack is built on Cen-
tOS Linux 7 (Core), and runtime measurements are recorded
using C API calls, specifically clock_gettime().

Several Python scripts were also built to automate batch
build, compilation, and execution processes for the FPGA.
These scripts also extract resource usage and other compilation
information reported by the aocl compiler and notify users
via text message/email upon compilation completion.

B. Hardware

For the following evaluations, an Intel Arria 10 FPGA,
model p510t sch ax115 (427K ALMS, 2713 RAM Blocks,
1518 DSPs) was used. For the host CPU, a multicore Intel
Xeon E5-2683 v4 was used, although all the executed host
codes are single threaded.

C. Benchmarks

Several representative benchmarks were employed to holis-
tically evaluate the OpenACC-to-FPGA optimizations. Two
benchmarks—SRAD (speckle reducing anisotropic diffusion)
and HotSpot—originate from the Rodinia benchmark suite.
SRAD is used in medical imaging, and HotSpot is used
to model heat diffusion. Although these benchmarks were
originally programmed using OpenMP, OpenACC adapta-
tions available in the OpenARC repository were used. These
benchmarks were specifically chosen because they posses
characteristics amenable to FPGA optimization, and other
works considered them to be interesting applications in FPGA
contexts [17].

Evaluations were also performed using the Sobel bench-
mark, which is an edge-detect4 ion image processing algorithm
from the Intel FPGA OpenCL SDK. Sobel required a relatively
straightforward adaptation from OpenCL to OpenACC, as
performed in previous works [14].

Finally, for the sake of generality, evaluations were per-
formed using two core algorithms: (1) Jacobi, which is com-
monly used for solving systems of linear equations in many
scientific domains, and (2) MatMul (matrix multiplication),
which is used in applications in nearly every domain.

V. EVALUATION

The holistic evaluation of the numerous optimizations in
the OpenACC-to-FPGA framework required many executions
with different combinations of threading models, optimiza-
tions, kernel vectorization and compute unit replication fac-
tors, unrolling factors, and more. This process was manually
guided, but it was also restricted by the applicability of
optimizations to each algorithm and device resource limi-
tations. The optimization process for each benchmark was
greatly simplified by the directive-based approach because
code changes between versions were very minimal. However,
the large optimization search space also exposed the dire need
for a more automated optimization process.
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Fig. 1. Runtime performance (in seconds) of Sobel with different FPGA-
specific optimizations applied. Gray bars indicate the nd-range approach, and
white bars indicate the single work-item approach (smaller is better).

This section presents individual evaluations of each bench-
mark with accompanying discussions on the effects of various
optimizations. An evaluation of resource usages for the Jacobi
and SRAD benchmarks is also presented.

A. Individual Benchmark Optimizations

To evaluate each individual benchmark, first only the multi-
threaded and single work-item implementations of each kernel
were evaluated. Then, optimization directives and clauses were
incrementally applied to each version where possible. Finally,
different replication factors were tested when possible by
varying the number of compute units and SIMD parallelism
in the multi-threaded kernels and by varying the reduction
and sliding window unrolling factors in the single work-item
kernels. In Figs. 1–5, the version name is a concatenation
of the applied optimizations. The following key explains the
abbreviations:
• nd: multi-threaded kernel
• numcX: number of compute units (X: replication factor)
• simdX: vectorization (X: replication factor)
• elim: kernel boundary elimination optimization
• coll collapse optimization
• swi: single work-item kernel
• redX: reduction optimization (X: unroll factor)
• swX: sliding window optimization (X: unroll factor)
• hoist: code motion optimization
1) Sobel: The Sobel benchmark iterates over a 1D image

array and performs a stencil operation. Sobel is unique among
the evaluated benchmarks because it relies on integer oper-
ations, which can be implemented very efficiently in FPGA
logic. In Fig. 1, the baseline nd implementation outperforms
the baseline swi implementation. However, if the replication
factors are scaled for simd and numc in the multi-threaded
version, then the performance degrades significantly. This is
mostly likely due to the high cost of the memory operations
for the 9-point stencil, which is relative to the cheap cost of
integer and bit arithmetic.
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Fig. 2. Runtime performance (in seconds) of HotSpot with different FPGA-
specific optimizations applied. Gray bars indicate the nd-range approach, and
white bars indicate the single work-item approach (smaller is better).

Conversely, applying additional optimizations and repli-
cation to the single work item significantly improves per-
formance. Applying the sliding window pattern effectively
reduces the ratio of memory operations to computation, and
applying loop unrolling significantly increases the parallelism.

Sobel represents a unique but critical example in which the
multi-threaded kernel initially outperforms the single work-
item kernel until applying sufficient optimization results in
a performance reversal. This example exposes a pitfall of
manual intuition-guided optimization and further motivates an
automated analytical optimization solution.

2) HotSpot: Like Sobel, HotSpot also consists of a stencil
operation, although HotSpot relies on a 5-point stencil instead
of a 9-point stencil and uses floating-point values instead of
integer values.

As shown in Fig. 2, HotSpot experiences a significant
performance difference if the collapse optimization is applied.
This result contradicts previous results on the Stratix V [14]
in which the collapse optimization achieved only modest
performance. This could be attributed to the difference in
FPGAs, but it is more likely an artifact of the different
compiler version and how v17.1 of the SDK interprets the
nested loops.

In the multi-threaded kernels, HotSpot does not respond
well to kernel vectorization, likely due to the high degree of
branching and numerous conditionals. However, HotSpot does
experience modest performance improvement from compute
unit replication (41.49 s vs. 29.97 s).

If only the collapse optimization is applied, the single work-
item kernels perform very similarly to the multi-threaded ker-
nels. Only with significantly more optimization (collapse, code
motion, sliding window, and unrolling) does the single work-
item approach achieve a lower runtime (18.87 s vs. 29.97 s).
As with the Stratix V device evaluations in Lambert et al. [14],
no performance improvements were seen from the window
optimization with replication unless the common operation

SRAD Arria X Runtimes

0 5 10 15 20 25 30 35 40

Runtime (s)

swi r4 sw16x16
swi r4 sw8x8
swi r4 sw8x4
swi r4 sw4x8
swi r4 sw4x4

swi r4 sw
swi sw8x8
swi sw8x4
swi sw4x8
swi sw4x4

swi sw

nd host simd8
nd host simd4

nd host numc8
nd host numc4

nd host
nd device simd4

nd device numc4
nd device 61.1s

Fig. 3. Runtime performance (in seconds) of SRAD with different FPGA-
specific optimizations applied. Gray bars indicate the nd-range approach, and
white bars indicate the single work-item approach (smaller is better).

hoisting optimization (code motion) was also applied.
3) SRAD: The SRAD algorithm consists of three separate

kernels, one large reduction, and two 5-point stencil loops.
In Fig. 3, the device and host keywords for the multi-
threaded kernels indicate whether the reduction is performed
on the FPGA device or on the host (and are updated via an
acc update directive). For the single work-item kernels, the
reduction is always performed on the device. The distinct
sliding window unrolling factors for the first and second
stencil loops are separated by the x. For example, in the
nd_host_simd8 version, the reduction is performed on the
host CPU and the results that are copied to the device, and
the two stencil loops are vectorized with an SIMD factor of 8.
In the swi_r4_sw_8x4, the first kernel is optimized using
the reduction optimization with an unroll factor of 4, and
the second and third kernels are optimized using the sliding
window approach with unroll factors of 8 and 4, respectively.

Unlike HotSpot and Sobel, SRAD multi-threaded kernels
respond well to compute unit replication and kernel vectoriza-
tion; the 4-way kernel vectorization performs the best overall.

The vectorized multi-threaded kernels outperform many
single-threaded kernels, even after applying the sliding win-
dow and unrolling optimizations to the second two loops.
However, after applying a combination of sliding window
and reduction optimizations, the single-threaded kernel sig-
nificantly surpassed the multi-threaded counterpart. Again, the
trend is seen only where sufficiently optimized single-threaded
kernels outperform nd-range kernels.

4) MatMul: Compared with the other evaluated bench-
marks, MatMul is the most simplistic and has no conditionals,
limited arithmetic, and few memory operations.

As shown in Fig. 4, there is little opportunity for optimiza-
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Fig. 4. Runtime performance (in seconds) of MatMul with different FPGA-
specific optimizations applied. Gray bars indicate the nd-range approach, and
white bars indicate the single work-item approach (smaller is better).
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Fig. 5. Runtime performance (in seconds) of Jacobi with different FPGA-
specific optimizations applied. Gray bars indicate the nd-range approach,
white bars indicate the single work-item approach, and hatched bars indicate
a hybrid nd-range+single work-item approach (smaller is better).

tion in the single-threaded approach because only the collapse
optimization can be applied with no significant difference in
performance.

However, as a result of the simplicity, MatMul responds
very well to kernel vectorization and compute unit replication.
MatMul is the only example in which the nd-range kernels
significantly outperform the single work-item counterparts.

However, this could be an example in which the OpenACC-
to-FPGA contains insufficient optimizations for this appli-
cation. Including more advanced optimizations that are not
yet supported by the framework (e.g., blocking, tiling, local
memory buffering) could improve performance.

5) Jacobi: Jacobi, which was the final application evalu-
ated, was the most interesting. Jacobi consists of two kernels,
one 5-point stencil operation with very little arithmetic (float-
ing point), and an array-copy kernel.

In Fig. 5, there are three different groupings of performance
measurements. The top grouping represents versions in which
a multi-threaded approach was used for both kernels by
applying the same optimizations to each kernel.

The second grouping conversely represents versions in
which the single-threaded or single work-item approach was
used for both kernels. The x separates the optimizations
applied to the first and second kernels. This distinction was
made because the window optimization applies only to the first
stencil-based loop. The flat keyword represents versions in
which the original 2D array is replaced with a 1D array, and
the indices are adjusted accordingly. Currently, the window
optimization supports only 1D arrays, so this manual code
modification was needed even though manually modifying
code is generally avoided and only directives are applied.

The third grouping represents a novel hybrid approach in
which a single work-item approach is used for the first kernel
and a multi-threaded approach is used for the second kernel.
Although the flat keyword is omitted, these versions also
revert to a 1D array to apply the window optimization.

As shown in Fig. 5, the best-performing hybrid approach
(0.72 s) outperforms the best-performing nd-range kernel
approach (2.8 s) and the best-performing single work-item
kernel approach (3.55 s). These results further complicate
the manual optimization process because different threading
models can lead to optimal performance, even within a single
application. Fortunately, using the high-level directives in the
OpenACC-to-FPGA framework to switch between threading
models requires modifying only two clauses in the enclosing
OpenACC directive compared with OpenCL, which requires
modifying the host and device code.

B. Performance Discussion

Unsurprisingly, there is not one set of optimizations that
can be universally applied to guarantee the best performance.
Threading models, replication approaches, and even optimal
replication and unrolling factors vary between benchmarks.
This variety in best-performing optimizations demonstrates
the crucial need for a simple, straightforward, and error-
free method of applying, removing, and modifying optimiza-
tions, which this project’s directive-based OpenACC-to-FPGA
framework provides.

However, despite the variability in optimizations, several
general trends apply across most benchmarks. The collapse
optimization is universally beneficial in the context of multi-
threaded and single work-item kernels if it can be applied.
Similarly, when applicable, the sliding window optimization
typically results in significant improvement, and single work-
item kernels with these optimizations normally outperform
their multi-threaded counterparts.

Furthermore, the straightforward multi-threaded version
(nd) and straightforward single work-item version (swi) typ-
ically perform very similarly. The deciding factor between
threading models is decided by the performance gains when
applying various optimizations and opportunities for replica-
tion. Replication in multi-threaded kernels is always possible



by increasing the number of compute units, and it is usually
possible using SIMD parallelization unless the compiler can-
not vectorize the kernel. Conversely, in the single work-item
context, replication in the form of loop unrolling is possible
only if the reduction or sliding window optimizations can be
applied. As a result of this distinction, applications in which
the reduction and sliding window optimizations can be applied
often perform best with the single-threaded model (Sobel,
SRAD, HotSpot, Jacobi kernel 1), whereas other applications
perform best with the multi-threaded model (MatMul, Jacobi
kernel 2).

C. Resource Usage Evaluation

This section evaluates the relationship between the reported
resource usages and kernel frequency (fmax) and runtime
performance. It also evaluates the two benchmarks with the
highest variety of code versions, SRAD and Jacobi.

1) SRAD Resources: In the SRAD multi-threaded kernels,
increasing the replication factors scaled the resources used.
Conventional logic suggests that using more of the FPGA
resources would result in higher performance, and this is often
the case. However, scaling the replication factors—and thus
the degree of parallelism—also lowers the operating fmax,
which typically degrades performance. Therefore, there is of-
ten a trade-off between resource use and operating frequencies,
and the goal is often to achieve a balance between increasing
parallelism and maintaining a high fmax. The effects of this
relationship are shown in Table I. The lowest runtime multi-
threaded version employed a sufficient degree of 4-way SIMD
parallelism while still maintaining a high fmax relative to the
other versions at 226.8 MHz.

In the single work-item kernels, a similar behavior was ob-
served. Although replication generally increases performance,
higher degrees of unrolling the trade-offs between parallelism
and fmax are relevant. The best-performing kernel achieved
a balance between a high degree of parallelism (replication
factors of 4, 8, and 4) and a high fmax (286.69 MHz).

2) Jacobi Resources: By using the multi-threaded kernel
approach in the Jacobi kernel (Table II), applying the collapse
and kernel boundary elimination optimizations significantly
improved performance without significantly changing resource
use. However, because the replication factors are increased
using the compute unit and kernel vectorization optimizations,
significant increases in resources usages occurred. This paral-
lelism increase scarified the fmax, which increased the overall
runtime. Although the numc16 replication was still well under
the resource usage restrictions, the OpenCL implementation
limited the quantity of compute units.

In the single work-item approach, window optimization sig-
nificantly decreased the fmax, especially when unrolling was
applied aggressively. However, as with the multi-threaded case,
the large increase in parallelism more than offsets the decrease
in fmax, which resulted in a lower overall runtime. Also,
applying the window and unrolling optimizations significantly
increased the DSP usage, which is a powerful resource in the

Arria 10 FPGA that generally improves performance when
used fully [18].

In the hybrid-threading approach, the window optimization
still uses a significant portion of DSPs. However, the multi-
threaded nature of the array copy kernel also consumes a
significant portion of RAM blocks. Using these resources
resulted in the lowest overall runtime, even with a lower fmax.

VI. RELATED WORK

Watanabe et al. [19] presented preliminary results on a
very closely related project and targeted OpenACC using the
OmpSs compiler, which, like OpenARC, can generate output
OpenCL. However, instead of developing optimizations inside
the OpenACC to OpenCL translation, they generate SPD code
for SPGen (Stream Processing Generator) alongside OpenCL.
The separation program designator (SPD) code bypasses the
OpenCL abstraction layer, translating directly into HDL. This
seems to be a promising project to complement the OpenACC-
to-FPGA framework.

Sommer et al. [20] presented a fully functional imple-
mentation of the OpenMP device offloading for the Xilinx
FPGAs. The work integrated a custom compiler toolflow into
the LLVM/Clang OpenMP offloading infrastructure. The input
program contains one or more OpenMP target directives. The
compiler generates a complete FPGA design, including a
ThreadPoolComposer device software executable, Vivado HLS
input file, and kernel description. In the prototype, the FPGA
offloaded versions show slower performance than one 4-core
CPU.

Zohouri et al. [17] ported and optimized a subset of the
GPU-friendly Rodinia OpenCL benchmark suite [21] to the
Altera FPGA OpenCL platform. The work optimized the
original OpenCL kernels with FPGA-specific techniques, such
as sliding windows. The results show that FPGAs can achieve
better power efficiency compared with GPUs, even though they
could not show competitive performance with GPUs.

Brahm et al. [18] compared a highly optimized GPU ver-
sion and a highly optimized FPGA version of an astronomy
code using the Arria 10 FPGA and Intel OpenCL interface.
The work found that the FPGA can achieve competitive
performance with the GPU by maximizing DSP usage and
liberally using the channels extension, which warrants further
investigation.

The r DataCentric (DaCe) project [22] recently integrated
FPGA support. DaCe relied on Python and a graphical user
interface-based dataflow diagram to map computations to
hardware. DaCe might be an interesting option for new
FPGA-centric applications, but it would require significant
code restructuring and algorithm modifications to existing
applications.

VII. CONCLUSION

This work examined the directive-based high-level FPGA
programming approach implemented in the OpenARC com-
piler. The presented project takes an OpenACC program with
optional user directives as input and generates an output



TABLE I
SRAD RESOURCE USAGE.

Thread model Version ALUTs DSP blocks RAM blocks fmax Runtime (s)
multi nd reduce 82303 88 594 247.155 61.13
multi nd reduce simd4 152466 271 1025 228.51 24.7
multi nd update 62013 58 537 257.99 27.09
multi nd update simd4 102068 193 898 226.8 20.76
multi nd update simd8 148427 373 1441 214.4 30.73
swi swi sw 65028 59 545 256.6 39.44
swi swi r4 sw 68033 129 516 252.14 15.2
swi swi r4 sw4x4 82398 264 601 284.57 6.94
swi swi r4 sw4x8 89032 284 643 257.46 7.83
swi swi r4 sw8x4 96493 424 695 286.69 6.668
swi swi r4 sw8x8 102911 444 737 270.48 7.51
swi swi r4 sw16x16 133672 804 1064 245.33 7.98

TABLE II
JACOBI RESOURCE USAGE.

Thread model Version ALUTs DSP blocks RAM blocks fmax Runtime (s)
multi nd 42884 3 416 290.95 16.32
multi nd collapse 42682 3 409 279.64 16.07
multi nd collapse elim 42403 3 403 285.06 4.85
multi nd collapse elim numc4 64210 12 634 262.74 1.58
multi nd collapse elim numc16 152581 48 1558 210.03 1.44
swi swi x swi 44646 3 544 267.8 5.17
swi swi collapse x swi coll 42903 3 407 311.52 4.48
swi swi window x swi flat coll 41709 3 421 287.93 5.02
swi swi window16 x swi flat coll 124581 768 852 208.63 3.55

hybrid window16 x nd permute numc4 133044 768 914 217.39 1.49
hybrid window16 x nd permute numc16 170596 768 1154 212.94 0.77
hybrid window16 x nd permute numc32 220912 768 1474 196.11 0.72
hybrid window16 x nd permute simd16 123687 768 854 220.26 4.07

OpenCL program, which is further synthesized into hardware
logic to be executed on FPGAs. The main goal of this
directive-based high-level FPGA programming is to strike a
balance among programmability, performance, and portability.
The directive-based approach allows programmers to provide
important characteristics of an input program and control the
overall translation and optimization while achieving enough
abstraction over FPGA-specific hardware features and com-
plex low-level programming models.

The optimizations developed in previous works were classi-
fied into three categories: automatically applied optimizations
independent of user input, existing OpenACC directives re-
purposed for FPGA-specific implementation, and directive
extensions supporting other FPGA-specific features. Then,
these optimizations were holistically evaluated against a set
of representative benchmarks using an Arria 10 FPGA.

The experimental results show that multi-threaded and
single-threaded kernels can perform well on FPGAs, depend-
ing on which optimizations can be applied to a specific appli-
cation. For example, most applications that allow for advanced
single-threaded optimizations outperform their multi-threaded
counterparts. In contrast, applications in which these single-
threaded optimizations do not apply might perform best using
multi-threaded compute unit or SIMD replication.

The relationship between resource usage and runtime per-
formance was also explored. In general, higher resource usage

indicates better utilization that typically results from replica-
tion, which leads to better performance. However, there are
also several exceptions to this trend. In some cases, if two
benchmark versions employ the same degree of parallelism,
then higher resource usage can indicate less-efficient routing
and could hurt performance. In other cases, if additional logic
is implemented that results in higher resource usage and sac-
rifices the kernel fmax, then performance can suffer. Finally,
even if more logic were implemented without sacrificing the
fmax, lower performance is still observed if the initiation
interval is increased [14].

The team plans to aggressively extend this project in the
future. An immediate target is to integrate the Aspen perfor-
mance modeling tool [23], [24] into the OpenACC-to-FPGA
translation to automate the optimization process, including
threading-model selection and lower level tuning of replication
and unrolling factors.

The team also aims to support Xilinx devices in the near
future. Developing hlslib [25] and other cross-platform tools
at the OpenCL level can greatly simplify multidevice support
in the OpenACC-to-FPGA framework.

Although the presented directive-based framework has ex-
clusively relied on OpenACC as the front-end programming
model, the team envisions supporting OpenACC and OpenMP
within this project due to the introduction and increased pop-
ularity of the OpenMP offloading model. By employing tools



such as CCAMP [26] for OpenMP to OpenACC translation
and developing an analogous FPGA-specific API for OpenMP,
the project can be extrended to support OpenMP offloading
models.

Finally, because the OneAPI approach was introduced,
Intel’s FPGA support is projected to shift from OpenCL
to OneAPI’s SYCL/DPC++ implementation. Likewise, the
team’s long-term goal is to migrate the OpenACC-to-FPGA
framework to use these newer intermediate representations.
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