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Abstract

Polygenic risk scores (PRS) estimate the genetic risk of an individual for a complex
disease based on many genetic variants across the whole genome. In this study, we
compared a series of computational models for estimation of breast cancer PRS. A deep
neural network (DNN) was found to outperform alternative machine learning techniques
and established statistical algorithms, including BLUP, BayesA and LDpred. In the test
cohort with 50% prevalence, the Area Under the receiver operating characteristic Curve
(AUC) were 67.4% for DNN, 64.2% for BLUP, 64.5% for BayesA, and 62.4% for LDpred.
BLUP, BayesA, and LPpred all generated PRS that followed a normal distribution in the
case population. However, the PRS generated by DNN in the case population followed a
bi-modal distribution composed of two normal distributions with distinctly different means.
This suggests that DNN was able to separate the case population into a high-genetic-risk
case sub-population with an average PRS significantly higher than the control population
and a normal-genetic-risk case sub-population with an average PRS similar to the control
population. This allowed DNN to achieve 18.8% recall at 90% precision in the test cohort
with 50% prevalence, which can be extrapolated to 65.4% recall at 20% precision in a
general population with 12% prevalence. Interpretation of the DNN model identified
salient variants that were assigned insignificant p-values by association studies, but were
important for DNN prediction. These variants may be associated with the phenotype

through non-linear relationships.
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Introduction

Breast cancer is the second deadliest cancer for U.S. women. Approximately
one in eight women in the U.S. will develop invasive breast cancer over the course of
their lifetime [1]. Early detection of breast cancer is an effective strategy to reduce the
death rate. If breast cancer is detected in the localized stage, the 5-year survival rate is
99% [1]. However, only ~62% of the breast cancer cases are detected in the localized
stage [1]. In ~30% of the cases, breast cancer is detected after it spreads to the regional
lymph nodes, reducing the 5-year survival rate to 85%. Furthermore, in 6% of cases, the
cancer is diagnosed after it has spread to a distant part of the body beyond the lymph
nodes and the 5-year survival rate is reduced to 27%. To detect breast cancer early, the
US Preventive Services Task Force (USPSTF) recommends a biennial screening
mammography for women over 50 years old. For women under 50 years old, the
decision for screening must be individualized to balance the benefit of potential early
detection against the risk of false positive diagnosis. False-positive mammography
results, which typically lead to unnecessary follow-up diagnostic testing, become
increasingly common for women 40 to 49 years old [2]. Nevertheless, for women with
high risk for breast cancer (i.e. a lifetime risk of breast cancer higher than 20%), the
American Cancer Society advises a yearly breast MRl and mammogram starting at 30
years of age [3].

Polygenic risk scores (PRS) assess the genetic risks of complex diseases based
on the aggregate statistical correlation of a disease outcome with many genetic
variations over the whole genome. Single-nucleotide polymorphisms (SNPs) are the
most commonly used genetic variations. While genome-wide association studies
(GWAS) report only SNPs with statistically significant associations to phenotypes [4],
PRS can be estimated using a greater number of SNPs with higher adjusted p-value
thresholds to improve prediction accuracy.

Previous research has developed a variety of PRS estimation models based on
Best Linear Unbiased Prediction (BLUP), including gBLUP [5] , rr-BLUP [6], [7], and
other derivatives [8], [9]. These linear mixed models consider genetic variations as fixed

effects and use random effects to account for environmental factors and individual
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variability. Furthermore, linkage disequilibrium was utilized as a basis for the LDpred
[10], [11] and PRS-CS [12] algorithms

PRS estimation can also be defined as a supervised classification problem. The
input features are genetic variations and the output response is the disease outcome.
Thus, machine learning techniques can be used to estimate PRS based on the
classification scores achieved [13]. A large-scale GWAS dataset may provide tens of
thousands of individuals as training examples for model development and
benchmarking. Wei et al (2019) [14] compared support vector machine and logistic
regression to estimate PRS of Type-1 diabetes. The best Area Under the receiver
operating characteristic Curve (AUC) was 84% in this study. More recently, neural
networks have been used to estimate human height from the GWAS data, and the best
R?2 scores were in the range of 0.4 to 0.5 [15]. Amyotrophic lateral sclerosis was also
investigated using Convolutional Neural Networks (CNN) with 4511 cases and 6127
controls [16] and the highest accuracy was 76.9%.

Significant progress has been made for estimating PRS for breast cancer from a
variety of populations. In a recent study [17], multiple large European women cohorts
were combined to compare a series of PRS models. The most predictive model in this
study used lasso regression with 3,820 SNPs and obtained an AUC of 65%. A PRS
algorithm based on the sum of log odds ratios of important SNPs for breast cancer was
used in the Singapore Chinese Health Study [18] with 46 SNPs and 56.6% AUC, the
Shanghai Genome-Wide Association Studies [19] with 44 SNPs and 60.6% AUC, and a
Taiwanese cohort [20] with 6 SNPs and 59.8% AUC. A pruning and thresholding
method using 5,218 SNPs reached an AUC of 69% for the UK Biobank dataset [11].

In this study, deep neural network (DNN) was tested for breast cancer PRS
estimation using a large cohort containing 26053 cases and 23058 controls. The
performance of DNN was shown to be higher than alternative machine learning
algorithms and other statistical methods in this large cohort. Furthermore, DeeplLift [21]
and LIME [22] were used to identify salient SNPs used by DNN for prediction.

Materials and Methods
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Breast cancer GWAS data
This study used a breast cancer GWAS dataset generated by the Discovery, Biology,

and Risk of Inherited Variants in Breast Cancer (DRIVE) project [23] and was obtained
from the NIH dbGaP database under the accession number of phs001265.v1.p1. The
DRIVE dataset was stored, processed and used on the Schooner supercomputer at the
University of Oklahoma in an isolated partition with restricted access. The partition
consisted of 5 computational nodes, each with 40 CPU cores (Intel Xeon Cascade
Lake) and 200 GB of RAM. The DRIVE dataset in the dbGap database was composed
of 49,111 subjects genotyped for 528,620 SNPs using OncoArray [23]. 55.4% of the
subjects were from North America, 43.3% from Europe, and 1.3% from Africa. The
disease outcome of the subjects was labeled as malignant tumor (48%), in situ tumor
(5%), and no tumor (47%). In this study, the subjects in the malignant tumor and in situ
tumor categories were labeled as cases and the subjects in the no tumor category were
labeled as controls, resulting in 26053 (53%) cases and 23058 (47%) controls. The
subjects in the case and control classes were randomly assigned to a training set
(80%), a validation set (10%), and a test set (10%) (Figure 1). The association analysis
was conducted on the training set using Plink 2.0 [24]. For a subject, each of the
528,620 SNPs may take the value of 0,1 or 2, representing the genotype value on a
SNP for this subject. The value of 0 meant homozygous with minor allele, 1 meant
heterozygous allele, and 2 meant homozygous with the dominant allele. Such encoding
of the SNP information was also used in the following machine learning and statistical
approaches. The p-value for each SNP was calculated using logistic regression in Plink
2.0.

Development of deep neural network models for PRS estimation

A variety of deep neural network (DNN) architectures [25] were trained using
Tensorflow 1.13. The Leaky Rectified Linear Unit (ReLU) activation function [26] was
used on all hidden-layers neurons with the negative slope co-efficient set to 0.2. The
output neuron used a sigmoid activation function. The training error was computed

using the cross-entropy function:

Yi_ .y xlog (p) + (1—y) *log (1 —p),
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where p € [0,1] is the prediction probability from the model and y € [0,1] is the
prediction target at 1 for case and 0 for control. The prediction probability was
considered as the PRS from DNN.

DNNs were evaluated using different SNP feature sets. SNPs were filtered using
their Plink association p-values at the thresholds of 10 72,10 3,10 ~* and 10 —° . DNN
was also tested using the full SNP feature set without any filtering. The DNN models
were trained using mini-batches with a batch size of 512. The Adam optimizer [27], an
adaptive learning rate optimization algorithm, was used to update the weights in each
mini-batch. The initial learning rate was set to 10 ~*, and the models were trained for up
to 200 epochs with early stopping based on the validation AUC score. Dropout [28] was
used to reduce overfitting. The dropout rates of 20%, 30%, 40%, 50%, 60%, 70%, 80%,
and 90% were tested for the first hidden layer and the final dropout rate was selected
based on the validation AUC score. The dropout rate was set to 50% on the other
hidden layers in all architectures. Batch normalization (BN) [29] was used to accelerate

the training process, and the momentum for the moving average was set to 0.9 in BN.

Development of alternative machine learning models for PRS estimation

Logistic regression, decision tree, random forest, AdaBoost, gradient boosting,
support vector machine (SVM), and Gaussian naive Bayes were implemented and
tested using the scikit-learn machine learning library in Python. These models were
trained using the same training set as the DNNs and their hyperparameters were tuned
using the same validation set based on the validation AUC (Figure 1). These models
are briefly described below.

e Decision Tree: The gini information gain with best split was used. The maximum
depth was not set to let the tree expanded until all leaves were pure or contained
less than a minimum number of two examples per split (sklearn default parameters).

e Random Forest: classification decision trees (as configured above) were used as
base learners. The optimum number of decision trees were found to be 3,000 based
on a parameter sweep between 500 and 5,000 with a step size of 500. Bootstrap

samples were used to build each base learner. When searching for each tree’s best
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split, the maximum number of considered features was set to be the square root of
the number of features.

AdaBoost: classification decision trees (as configured above) were used as base
learners. The optimum number of decision trees were found to be 2,000 based on a
parameter sweep between 500 and 5,000 with a step size of 500. The learning rate
was set to 1. The algorithm used was SAMME.R [30].

Gradient Boosting: regression decision trees (as configured above) were used as
the base learners. The optimum number of decision trees were found to be 400
based on a parameter sweep between 100 and 1,000 with a step size of 100. Log-
loss was used as the loss function. The learning rate was set to 0.1. The mean
squared error with improvement score [31] was used to measure the quality of a

split.

SVM: The kernel was a radial basis function with y = where n is the number

nx*Var’
of SNPs and Var is the variance of the SNPs across individuals. The regularization
parameter C was set to 1 based on a parameter sweep over 0.001, 0.01, 0.1, 1, 5,
10, 15 and 20.

Logistic Regression: L2 regularization with @ = 0.5 was used based on a
parameter sweep for a over 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and
0.8. L1 regularization was tested, but not used, because it did not improve the
performance.

Gaussian Naive Bayes: The likelihood of the features was assumed to be

Gaussian. The classes had uninformative priors.

Development of statistical models for PRS estimation

The same training and validation sets were used to develop statistical models

(Figure 1). The BLUP and BayesA models were constructed using the bWGR R
package. The LDpred model was constructed as described [10].

e BLUP: The linear mixed model was y = m +Xb + e , where y were the response

variables, 1 were the intercepts, X were the input features, b were the regression

coefficients, and e were the residual coefficients.
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e BayesA: The priors were assigned from a mixture of normal distributions.

o LDpred: The p-values were generated by our association analysis described above.
The validation set was provided as reference for LDpred data coordination. The
radius of the Gibbs sampler was set to be the number of SNPs divided by 3000 as
recommended by the LDpred user manual

(https://github.com/bvilhjal/ldpred/blob/master/Idpred/run.py).

The score distributions of DNN, BayesA, BLUP and LDpred were analyzed with
the Shapiro test for normality and the Bayesian Gaussian Mixture (BGM) expectation
maximization algorithm. The BGM algorithm decomposed a mixture of two Gaussian
distributions with weight priors at 50% over a maximum of 1000 iterations and 100

initializations.

DNN model interpretation.

LIME and DeepLift were used to interpret the DNN predictions for subjects in the
test set with DNN output scores higher than 0.67, which corresponded to a precision of
90%. For LIME, the submodular pick algorithm was used, the kernel size was set to 40,
and the number of explainable features was set to 41. For DeeplLift, the importance of
each SNPs was computed as the average across all individuals, and the reference
activation value for a neuron was determined by the average value of all activations

triggered across all subjects.

Results and Discussion

Development of a machine learning model for breast cancer PRS estimation

The breast cancer GWAS dataset containing 26053 cases and 23058 controls
was generated by the Discovery, Biology, and Risk of Inherited Variants in Breast
Cancer (DRIVE) project [23]. The DRIVE data is available from the NIH dbGaP
database under the accession number of phs001265.v1.p1. The cases and controls
were randomly split to a training set, a validation set, and a test set (Figure 1). The

training set was used to estimate p-values of SNPs using association analysis and train
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machine learning and statistical models. The hyperparameters of the machine learning
and statistical models were optimized using the validation set. The test set was used for
the final performance evaluation and model interpretation.

Statistical significance of the disease association with the 528,620 SNPs was
assessed with Plink using only the training set. To obtain unbiased benchmarking
results on the test set, it was critical not to use the test set in the association analysis
(Figure 1) and not to use association p-values from previous GWAS studies that
included subjects in the test set, as well-described in the Section 7.10.2 of Hastie et al
[32]. The obtained p-values for all SNPs are shown in Figure 2A as a Manhattan plot.
There were 1,061 SNPs with a p-value less than the critical value of 9.5 - 10 ~8, which
was set using the Bonferroni correction (9.5 - 10 =8 = 0.05/528,620). Filtering with a
Bonferroni-corrected critical value may remove many informative SNPs that have small
effects on the phenotype, epistatic interactions with other SNPs, or non-linear
association with the phenotype [33]. Relaxed filtering with higher p-value cutoffs was
tested to find the optimal feature set for DNN (Figure 2B and Supplementary Table 1).
The DNN models in Figure 2B had a deep feedforward architecture consisting of an
input layer of variable sizes, followed by 3 successive hidden layers containing 1000,
250, and 50 neurons, and finally an output layer with a single neuron. As the p-value
cutoff increased, a greater number of SNPs were incorporated as input features, and
training consumed a larger amount of computational resources in terms of computing
time and peak memory usage. A feature set containing 5,273 SNPs above the p-value
cutoff of 10 =3 provided the best prediction performance measured by the AUC and
accuracy on the validation set. In comparison with smaller feature sets from more
stringent p-value filtering, the 5,273-SNP feature set may have included many
informative SNPs providing additional signals to be captured by DNN for prediction. On
the other hand, more relaxed filtering with p-value cutoffs greater than 10 ~3 led to
significant overfitting as indicated by an increasing prediction performance in the
training set and a decreasing performance in the validation set (Figure 2B).

Previous studies [11], [34] have used a large number of SNPs for PRS estimation
on different datasets. In our study, the largest DNN model, consisting of all 528,620

SNPs, decreased the validation AUC score by 1.2% and the validation accuracy by



O 00 N o uu b W N R

w W N N N N N N DN DN NN R R R, R, R, R, R R
= O W 00 N o Uu b W N P O O 0 N o U B W N +—» O©O

1.9% from the highest achieved values. This large DNN model relied an 80% dropout
rate to obtain strong regularization, while all the other DNN models utilized a 50%
dropout rate. This suggested that DNN was able to perform feature selection without
using association p-values, although the limited training data and the large neural
network size resulted in complete overfitting with a 100% training accuracy and the
lowest validation accuracy (Figure 2B).

The effects of dropout and batch normalization were tested using the 5,273-SNP
DNN model (Supplementary Figure 1). Without dropout, the DNN model using only
batch normalization had a 3.0% drop in AUC and a 4.0% drop in accuracy and its
training converged in only two epochs. Without batch normalization, the DNN model had
0.1% higher AUC and 0.3% lower accuracy but its training required a 73% increase in
the number of epochs to reach convergence.

As an alternative to filtering, autoencoding was tested to reduce SNPs to a
smaller set of encodings as described previously [35], [36]. An autoencoder was trained
to encode 5273 SNPs into 2000 features with a mean square error (MSE) of 0.053 and
a root mean square error (RMSE) of 0.23. The encodings from the autoencoder were
used as the input features to train a DNN model with the same architecture as the ones
shown in Figure 2B except for the number of input neurons. The autoencoder-DNN
model had a similar number of input neurons for DNN as the 2099-SNP DNN model, but
had a 1.3% higher validation AUC and a 0.2% higher validation accuracy than the 2099-
SNP DNN model (Figure 2B). This increased validation AUC and accuracy suggested
that the dimensionality reduction by the autoencoding from 5273 SNPs to 2000
encodings was better than the SNP filtering by the association p-values from 5273
SNPs to 2099 SNPs. However, the DNN models with 5,273 SNPs still had a 0.3%
higher validation AUC score and a 1.6% higher validation accuracy than the
autoencoder-DNN model.

The deep feedforward architecture benchmarked in Figure 2B was compared
with a number of alternative neural network architectures using the 5,273-SNP feature
set (Supplementary Table 2). A shallow neural network with only one hidden layer
resulted in a 0.9% lower AUC and 1.1% lower accuracy in the validation set compared

to the DNN. This suggested that additional hidden layers in DNN may allow additional

10
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feature selection and transformation in the model. One-dimensional convolutional neural
network (1D CNN) was previously used to estimate the PRS for bone heel mineral
density, body mass index, systolic blood pressure and waist-hip ratio [15] and was also
tested here for breast cancer prediction with the DRIVE dataset. The validation AUC
and accuracy of 1D CNN was lower than DNN by 3.2% and 2.0%, respectively. CNN
was commonly used for image analysis, because the receptive field of the convolutional
layer can capture space-invariant information with shared parameters. However, the
SNPs distributed across a genome may not have significant space-invariant patterns to
be captured by the convolutional layer, which may explain the poor performance of
CNN.

The 5,273-SNP feature set was used to test alternative machine learning
approaches, including logistic regression, decision tree, naive Bayes, random forest,
ADAboost, gradient boosting, and SVM, for PRS estimation (Figure 3). These models
were trained, turned, and benchmarked using the same training, validation, and test
sets, respectively, as the DNN models (Figure 1). Although the decision tree had a test
AUC of only 50.9%, ensemble algorithms that used decision trees as the base learner,
including random forest, ADABoost, and gradient boosting, reached test AUCs of
63.6%, 64.4%, and 65.1%, respectively. This showed the advantage of ensemble
learning. SVM reached a test AUC of 65.6%. Naive Bayes and logistic regression were
both linear models with the assumption of independent features. Logistic regression had
higher AUC, but lower accuracy, than SVM and gradient boosting. The test AUC and
test accuracy of DNN were higher than those of logistic regression by 0.9% and 2.7%,
respectively. Out of all the machine learning models, the DNN model achieved the
highest test AUC at 67.4% and the highest test accuracy at 62.8% (Figure 3).

Comparison of the DNN model with statistical models for breast cancer PRS estimation

The performance of DNN was compared with three representative statistical
models, including BLUP, BayesA, and LDpred (Table 1). Because the relative
performance of these methods may be dependent on the number of training examples
available, the original training set containing 39,289 subjects was down-sampled to

create three smaller training sets containing 10000, 20000, 30000 subjects. As the

11
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5,273-SNP feature set generated with a p-value cutoff of 10-3 may not be the most
appropriate for the statistical methods, a 13,890-SNP feature set (p-value cutoff = 10-2)
and a 2,099-SNP feature set (p-value cutoff = 10-°) were tested for all methods.

Although LDpred also required training data, its prediction relied primarily on the
provided p-values, which were generated for all methods using all 39,289 subjects in
the training set. Thus, the down-sampling of the training set did not reduce the
performance of LDpred. LDpred reached its highest AUC score at 62.4% using the p-
value cutoff of 103. A previous study [12] that applied LDpred to breast cancer
prediction using the UK Biobank dataset similarly obtained an AUC score of 62.4% at
the p-value cutoff of 10-3. This showed consistent performance of LDpred in the two
studies. When DNN, BLUP, and BayesA used the full training set, they obtained higher
AUCs than LDpred at their optimum p-value cutoffs.

DNN, BLUP, and BayesA all gained performance with the increase in the training
set sizes (Table 1). The performance gain was more substantial for DNN than BLUP
and BayesA. The increase from 10,000 subjects to 39,258 subjects in the training set
resulted in a 1.9% boost to DNN’s best AUC, a 0.7% boost to BLUP, and a 0.8% boost
to BayesA. This indicated the different variance-bias trade-offs made by DNN, BLUP,
and BayesA. The high variance of DNN required more training data, but could capture
non-linear relationships between the SNPs and the phenotype. The high bias of BLUP
and BayesA had lower risk for overfitting using smaller training sets, but their models
only considered linear relationships. The higher AUCs of DNN across all training set
sizes indicated that DNN had a better variance-bias balance for breast cancer PRS
estimation.

For all four training set sizes, BLUP and BayesA achieved higher AUCs using
more stringent p-value filtering. When using the full training set, reducing the p-value
cutoffs from 10-2 to 10-° increased the AUCs of BLUP from 61.0% to 64.2% and the
AUCs of BayesA from 61.1% to 64.5%. This suggested that BLUP and BayesA
preferred a reduced number of SNPs that were significantly associated with the
phenotype. On the other hand, DNN produced lower AUCs using the p-value cutoff of
105 than the other two higher cutoffs. This suggested that DNN can perform better

feature selection in comparison to SNP filtering based on association p-values.

12
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The four algorithms were compared using the PRS histograms of the case
population and the control population from the test set in Figure 4. The score
distributions of BLUP, BayesA and LDpred all followed normal distributions. The p-
values from the Shapiro normality test of the case and control distributions were 0.46
and 0.43 for BayesA, 0.50 and 0.95 for BLUP, and 0.17 and 0,24 for LDpred,
respectively. The case and control distributions were N y;.(u = 0.577,0 = 0.20) and
Ncontroi(t = 0.479,0 = 0.19) from BayesA, N gses(u =0.572,0 = 0.19) and N pnerol
(u=0.483,0 = 0.18) from BLUP, and N_4.(u = —33.52,0 = 5.4) and N ontro!

(u = —35.86,0 = 4.75) from LDpred. The means of the case distributions were all
significantly higher than the control distributions for BayesA (p-value < 10-'6), BLUP (p-
value < 10-16), and LDpred (p-value < 10-'6) and their case and control distributions had
similar standard deviations.

The score histograms of DNN did not follow normal distributions based on the
Shapiro normality test with a p-value of 4.1 = 10 ~3* for the case distribution and a p-
value of 2.5 * 10 ~? for the control distribution. The case distribution had the appearance
of a bi-modal distribution. The Bayesian Gaussian mixture expectation maximization
algorithm decomposed the case distribution to two normal distributions: N 41
(u=0.519,0 = 0.096) with an 86.5% weight and N_,s.>(u = 0.876,0 = 0.065) with a
13.5% weight. The control distribution was resolved into two normal distributions with
similar means and distinct standard deviations: N ontro11(t = 0.471,0 = 0.1) with an
85.0% weight and N y,¢012(1t = 0.507,0 = 0.03) with a 15.0% weight. The N 451
distribution had a similar mean as the N yntro11 @Nd Nconerorz distributions. This
suggested that the N1 distribution may represent a normal-genetic-risk case sub-
population, in which the subjects may have a normal level of genetic risk for breast
cancer and the oncogenesis likely involved a significant environmental component. The
mean of the N .., distribution was higher than the means of both the N1 and
N contror1 distributions by more than 4 standard deviations (p-value < 10-16). We
hypothesized that the N 4., distribution represented a high-genetic-risk case sub-
population for breast cancer, in which the subjects may have inherited many genetic

variations associated with breast cancer.
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Three GWAS were performed between the high-genetic-risk case sub-population
with DNN PRS > 0.67, the normal-genetic-risk case sub-population with DNN PRS <
0.67, and the control population (Supplementary Table 3). The GWAS analysis of the
high-genetic-risk case sub-population versus the control population identified 182
significant SNPs at the Bonferroni level of statistical significance. The GWAS analysis of
the high-genetic-risk case sub-population versus the normal-genetic-risk case sub-
population identified 216 significant SNPs. The two sets of significant SNPs found by
these two GWAS analyses were very similar, sharing 149 significant SNPs in their
intersection. Genes associated with these 149 SNPs were investigated with pathway
enrichment analysis (Fisher's Exact Test; P < 0.05) using SNPnexus [37]
(Supplementary Table 4). Many of the significant pathways were involved in DNA repair
[38] signal transduction [39], and suppression of apoptosis [40]. Interestingly, the GWAS
analysis of the normal-genetic-risk case sub-population and the control population
identified no significant SNP. This supported our classification of the cases into the
normal-genetic-risk subjects and the high-genetic-risk subjects based on their PRS
scores from the DNN model.

In comparison with AUCs, it may be more relevant for practical applications of
PRS to compare the recalls of different algorithms at a given precision that warrants
clinical recommendations. At 90% precision, the recalls were 18.8% for DNN, 0.2% for
BLUP, 1.3% for BayesA, and 1.3% for LDpred in the test set of the DRIVE cohort with a
~50% prevalence. This indicated that DNN can make a positive prediction for 18.8% of
the subjects in the DRIVE cohort and these positive subjects would have an average
chance of 90% to eventually develop breast cancer. American Cancer Society advises
yearly breast MRI and mammogram starting at the age of 30 years for women with a
lifetime risk of breast cancer greater than 20%, which meant a 20% precision for PRS.
By extrapolating the performance in the DRIVE cohort, the DNN model should be able
to achieve a recall of 65.4% at a precision of 20% in the general population with a 12%

prevalence rate of breast cancer.

Interpretation of the DNN model

14
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While the DNN model used 5,273 SNPs as input, we hypothesized that only a
small set of these SNPs were particularly informative for identifying the subjects with high
genetic risks for breast cancer. LIME and DeepLift were used to find the top-100 salient
SNPs used by the DNN model to identify the subjects with PRS higher than the 0.67 cutoff
at 90% precision in the test set (Figure 1). Twenty three SNPs were ranked by both
algorithms to be among their top-100 salient SNPs (Supplementary Figure 2). The small
overlap between their results can be attributed to their different interpretation approaches.
LIME considered the DNN model as a black box and perturbed the input to estimate the
importance of each variable; whereas, DeepLift analyzed the gradient information of the
DNN model. 30% of LIME’s salient SNPs and 49% of DeeplLift's salient SNPs had p-
values less than the Bonferroni significance threshold of 9.5-10 8. This could be
attributed to the non-linear relationships between the salient SNP genotype and the
disease outcome, which cannot be captured by the association analysis using logistic
regression. To illustrate this, four salient SNPs with significant p-values were shown in
Supplementary Figure 3A, which exhibited linear relationships between their genotype
values and log odds ratios as expected. Four salient SNPs with insignificant p-values
were shown in Supplementary Figure 3B, which showed clear biases towards cases or
controls by one of the genotype values in a non-linear fashion.

Michailidiou et al. [41] summarized a total of 172 SNPs associated with breast
cancer. Out of these SNPs, 59 were not included on OncoArray, 63 had an association
p-value less than 10-3 and were not included in the 5,273-SNP feature set for DNN, 34
were not ranked among the top-1000 SNPs by either DeepLIFT or LIME, and 16 were
ranked among the top-1000 SNPs by DeepLIFT, LIME or both (Supplementary Table 5).
This indicates that many SNPs with significant association may be missed by the
interpretation of DNN models.

The 23 salient SNPs identified by both DeepLift and LIME in their top-100 list are
shown in Table 2. Eight of the 23 SNPs had p-values higher than the Bonferroni level of
significance and were missed by the association analysis using Plink. The potential
oncogenesis mechanisms for some of the 8 SNPs have been investigated in previous
studies. The SNP, rs139337779 at 12924.22, is located within the gene, Nitric oxide
synthase 1 (NOS1). Li et al. [42] showed that the overexpression of NOS1 can up-regulate
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the expression of ATP-binding cassette, subfamily G, member 2 (ABCG2), which is a
breast cancer resistant protein [43], and NOS1-indeuced chemo-resistance was partly
mediated by the up-regulation of ABCG2 expression. Lee et al. [44] reported that NOS1
is associated with the breast cancer risk in a Korean cohort. The SNP,
chr13_113796587_A_G at 13q34, is located in the F10 gene, which is the coagulation
factor X. Tinholt et al [45] showed that the increased coagulation activity and genetic
polymorphisms in the F10 gene are associated with breast cancer. The BNC2 gene
containing the SNP, chr9_16917672_G_T at 9p22.2, is a putative tumor suppressor gene
in high-grade serious ovarian carcinoma [46]. The SNP, chr2_171708059_C_T at2q31.1,
is within the GAD1 gene and the expression level of GAD1 is a significant prognostic
factor in lung adenocarcinoma [47]. Thus, the interpretation of DNN models may identify

novel SNPs with non-linear association with the breast cancer.
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