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EXECUTIVE SUMMARY

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S.
Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology
(FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel
(SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are
design concept development and disposal system modeling. These priorities are directly addressed
in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged
with developing a geologic repository system modeling and analysis capability, and the associated
software, GDSA Framework, for evaluating disposal system performance for nuclear waste in
geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the
Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-20SN01030403) level 3 milestone — Advances in Uncertainty and Sensitivity Analysis
Methods and Applications in GDSA Framework (M3SF-20SN010304032). It presents high level
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY20,
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA
capability of GDSA Framework. This work was closely coordinated with the other Sandia National
Laboratory GDSA work packages: the GDSA Framework Development work package (SF-
2051\101030404), the GDSA Repository Systems Analysis work package (SF-2051\101030405),
and the GDSA PFLOTRAN Development work package (SF-20SN01030406). This report builds
on developments reported in previous GDSA Framework milestones, particularly M2SF-
19SNO1030403.
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1. INTRODUCTION

This report presents high level objectives and strategy for development of uncertainty and
sensitivity analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software
toolkit for probabilistic post-closure performance assessment (PA) of systems for deep geologic
disposal of nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science
and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear
Energy (NE) and its predecessor the Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-2051\101030403) level 3 milestone — Advances in Uncertainty and Sensitivity Analysis
Methods and Applications in GDSA Framework (M3SF-20SN010304032). It presents high level
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY20,
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA
capability of GDSA Framework.

This work was closely coordinated with the other Sandia National Laboratory GDSA work
packages: the GDSA Framework Development work package (SF-20SN01030404), the GDSA
Repository Systems Analysis work package (SF-20SN01030405), and the GDSA PFLOTRAN
Development work package (SF-20SN01030406). This report builds on developments reported in
previous GDSA Framework milestones, particularly M2 S F-19 SN01030403 [1] .

The repository community must maintain leadership in UQ/SA methods. Computational codes
are becoming increasingly complex and require high performance computers to run, resulting in
costly sample evaluations. Geologic repository performance assessment in the U.S. involves a code
base that includes coupled, multiphysics modeling at high resolution. Having relatively few
simulation samples highlights the need to consider surrogate models to sample and explore the
input parameter space more extensively. However, this must be done in a careful way so that
surrogate accuracy can be tracked and understood in the context of UQ/SA results. Variance-based
sensitivity indices are now a standard practice in the sensitivity analysis community but require a
large number of function evaluations of the predictive model. Much research has focused on
calculating variance-based sensitivity indices while keeping the computational cost reasonable.
We note that other sensitivity analysis methods [1] may be better than variance-based methods at
identifying patterns of behavior or trends. Another recent approach is to employ "multifidelity"
UQ in which many low-fidelity simulation runs (e.g., coarser mesh, simpler physics) augment a
small number of high-fidelity runs. Keeping abreast of improvements to existing UQ/SA methods
as well as employing new methods is critical to performing sensitivity and uncertainty analysis of
new repository systems which will involve large parameter spaces and computationally expensive
simulations.

1-1
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1.1 Overview of this Report

This report provides documentation of the UQ/SA work performed in 2020. The outline of this
report is as follows:

• Chapter 2 provides an overview of an exciting new uncertainty quantification method
involving models at multiple levels of fidelity, hence the name "Multifidelity Uncertainty
Quantification." The main idea in multifidelity UQ is to extract information from a limited
number of high-fidelity model evaluations and complement them with a much larger number
of a set of lower fidelity evaluations. The final result is an estimator of the mean response with
a lower variance: a more accurate and reliable estimator can be obtained at lower computational
cost. Chapter 2 demonstrates the use of multifidelity UQ on a PFLOTRAN test problem
involving a tank containing chemical and radioactive waste meant to be illustrative of a tank
at the Hanford site.

• Chapter 3 discusses the verification exercises performed on the discrete fracture networks
(DFN). In FY19, we demonstrated that the DFNs were a main source of uncertainty for the
crystalline reference case. This year, we examined the DFNs closely to ensure consistency of
the number of fractures and fracture area per unit volume with respect to estimates from the
SKB Forsmark site. We also upscaled the DFNs to obtain equivalent continuous porous
medium (ECPM) results in terms of the hydraulic conductivity tensor values K. We compared
the ECPM results for the different K tensor directions that were obtained from upscaling the
DFNs with those reported by SKB and found good agreement. These results are documented
in Chapter 3.

• In Chapter 4, we extend the sensitivity analysis of the crystalline reference case performed in
FY19. Last year, we identified the need for better indicators of fracture connectivity as well as
information about the flow between the repository and the aquifer. These metrics can then be
used in SA to help identify why higher peak concentrations happen for certain realizations. To
facilitate this, PFLOTRAN added several new quantities of interest, including peak
concentrations (of 129I and tracers) in the aquifer at each time step, along with the location of
the peaks, mean travel time from the repository to various locations, residence time within the
repository, and total water flux in various directions. The results of the sensitivity analysis of
the crystalline reference case based on a new set of 800 PFLOTRAN runs (20 realizations of
spatial uncertainty x 40 epistemic samples) are documented in Chapter 4.

• Chapter 5 documents the GDSA Workflow for a UQ study. Uncertainty quantification
workflows are not trivial to define and get running, even when using tools such as Dakota to
generate nested studies involving sampling loops over both aleatory and epistemic samples.
The analyst has to spend a significant amount of time writing scripts to interface the sample
values to PFLOTRAN, extract the results, and put the entire workflow on a high-performance
computing platform. Further, as the quantities of interest increase and many vectors of results
are generated for each simulation, plotting and aggregating the results in a variety of ways (e.g.
averaging over epistemic or aleatory slices as a function of time) becomes very involved. To
address this, the GDSA Workflow was developed this year. This workflow couples Dakota,
PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with a
unified interface where the actual workflow can be dictated in an easy-to-use graphical format.
This workflow also allows greater reproducibility and traceability of the actual files and scripts

1-2
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used for a particular study. This year, we demonstrated the UQ workflow for a GDSA study
involving spatial, aleatory, and epistemic uncertainty.

• Chapter 6 documents the sensitivity analysis results we performed on two international case
studies as part of an international working group focused on UQ/SA for repository analysis.

• Chapter 7 provides a summary.

1-3
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1 .2 GDSA Framework

GDSA Framework (Figure 1-1) capabilities include multi-physics simulation of coupled
processes affecting deep geologic repository performance, uncertainty and sensitivity analysis,
pre- and post-processing, and visualization. For a given performance assessment, these tools will
be linked to a version-controlled parameter database and an automated run-control system. The
overall objectives of GDSA Framework development are to:

• create a framework that is flexible enough to take advantage of future advances in
hardware, software, and simulation and analysis methods;

• leverage existing high-performance computing capabilities (e.g., meshing, simulation,
analysis, and visualization);

• enable increasingly coupled, mechanistic multi-physics modeling;

• provide analysis methods for prioritization of SFWST Disposal Research R&D activities;

• provide transparent implementation of simulation and analysis methods;

• develop and distribute in an open-source environment so that software is freely available
to stakeholders ([1-5]).

Objectives specific to the uncertainty and sensitivity analysis capability in GDSA Framework
are to make available standard sampling-based methods of uncertainty propagation, sensitivity
analysis, and uncertainty quantification typically used within U.S. nuclear waste disposal programs
(e.g., DOE 2008 [6], DOE 2014 [7], RESS2000[13], RESS2014[14]); and to enable future
adoption of new methods consistent with the current standard of practice in the UQ/SA community
and appropriate for high-dimensional, highly coupled, nonlinear problems resulting from the
implementation of mechanistic multi-physics simulations. Having a consistent, common
framework which enables a user to perform a range of sensitivity analysis and UQ approaches for
a particular problem or set of simulations allows for reproducibility, comparative analyses, use of
verified algorithms, and documentation of best practices. These are important goals for
performance assessments now and in the future.

1-4
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Figure 1-1. The GDSA Framework

The following sections highlight the key components of GDSA Framework. More information
about each can be found by following the links at https://pa.sandia.gov.

1.2.1 PFLOTRAN

PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and
reactive transport simulator ([8-10]). Written in object-oriented Fortran 2003, PFLOTRAN is a
porous medium continuum code for modeling multicomponent, multiphase flow and transport,
heat conduction and convection, biogeochemical reactions, geomechanics, and isotope decay and
ingrowth. The code is developed under a GNU LGPL license allowing for third parties to interface
proprietary software with the code. The availability and continuing development of PFLOTRAN
are due to an ongoing collaborative effort of several DOE laboratories led by Sandia. PFLOTRAN
development for GDSA Framework is described by Mariner et al. ([2-4]) and Sevougian et al. 2018
[11]. PFLOTRAN installation instructions are available at: https://www.pflotran.org.

1.2.2 Dakota

Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and
robust, usable software for optimization and uncertainty quantification (UQ). It is available at:
https://dakota.sandia.gov [12]. The algorithms allow a user to explore a computational simulation
to answer questions such as:
• what is the best design?

• how safe is this design?

• what are the most important parameters?

• what effects do uncertainties have on my system?
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The Dakota software has a rich set of parametric analysis methods that enable design
exploration, model calibration, risk analysis, and quantification of margins and uncertainty with
computational models. Dakota provides a flexible, extensible interface between simulation codes
and these iterative analysis methods, which include:

• optimization with gradient and nongradient-based methods;

• uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic

methods;

• parameter estimation using nonlinear least squares (deterministic) or Bayesian inference

(stochastic); and

• sensitivity/variance analysis with design of experiments and parameter study methods.

These capabilities may be used on their own or as components within advanced strategies such
as hybrid optimization, surrogate-based optimization, mixed-integer nonlinear programming, or
optimization under uncertainty. Dakota is a C++ code and has been under development at Sandia
since 1994 and has been primarily sponsored by DOE's Advanced Simulation and Computing
(ASC) program. As such, it has a focus on interfacing to and running simulations which are
computationally expensive, require high performance computing and parallel execution, and
exhibit nonlinearities, non-monotonic and/or discontinuous responses, and often involve noisy
responses and high-dimensional inputs. Thus, a focus of the algorithm development in Dakota has
been on methods that are as efficient as possible and minimize the number of runs required of a
high-fidelity simulation model. Such algorithms include surrogate or emulator models, adaptive
sampling approaches, and multifidelity UQ methods which augment a small number of high-
fidelity runs with many low-fidelity runs to obtain comparable accuracy in statistical estimators.

Dakota contains the uncertainty quantification and sensitivity analysis methods typically used
in the U.S. repository program. Dakota implements Latin Hypercube Sampling (LHS) with
correlation control on input parameters. It calculates moments on responses of interest as well as
correlation matrices (simple, partial, and rank correlations) between inputs and outputs. Dakota
also contains an algorithm for performing incremental LHS which allows one to double an initial
LHS study such that the second LHS study is a Latin design and the combined initial and second
LHS studies together form a Latin hypercube design. Dakota allows nested studies to perform an
"outer loop" epistemic sampling and an "inner loop" aleatory sampling to generate ensembles of
distributions. Dakota returns tables of input and output amenable to further processing and
visualization with additional tools developed within GDSA Framework or by an individual user.
Additional methods that have been implemented in Python for use in GDSA Framework include
calculation of standardized regression coefficients via stepwise linear regression and calculation
of partial correlation coefficients based on raw data or rank-transformed data.

A graphical depiction of Dakota interfacing with a computational model such as a repository
simulation in PFLOTRAN is shown in Figure 1-2. Based on the type of study being performed
(optimization, uncertainty quantification, etc.), Dakota chooses the next set of parameters at which
to evaluate the simulator and runs the simulator, which returns the performance metrics of interest
back to Dakota. Dakota then generates the next set of parameters according to the algorithm being
used for the study and keeps iterating until the specified number of samples is reached.
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• Optimization

• Sensitivity Analysis
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Computational Model

• Repository Simulator

• Black Box Code
(mechanics. circuits, high energy
physics. biology. chemistry)

• Semi-intrusive Code
(Matlab, Python, multiphysics codes)

Performance
Metrics

Figure 1-2. Dakota interfacing to a computational model such as a repository simulator

The UQ/SA methods in Dakota have evolved as the standard of practice evolves. Over the past
ten years, the Dakota team has invested in methods which calculate the Sobol' variance-based
sensitivity indices in an efficient manner. Currently, a Dakota user can calculate these by extensive
sampling of the simulation code, by using surrogate methods such as regression or Gaussian
process models, and by the use of polynomial chaos expansions. These advanced methods are
presented in more detail later as used in GDSA Framework. Dakota is an actively maintained and
developed code with formal releases issued twice per year. Dakota uses formal software quality
development processes including advanced version control, unit and regression testing, agile
programming practices, and software quality assessment.

1.2.3 Visualization Tools

GDSA Framework employs ParaView and/or VisIT for visualization of results. ParaView is
an open-source, multi-platform data analysis and visualization application developed by Sandia
National Laboratories. As stated on the ParaView website (https://www.paraview.org/):
"ParaView users can quickly build visualizations to analyze their data using qualitative and
quantitative techniques. The data exploration can be done interactively in 3D or or
programmatically using ParaView's batch processing capabilities. ParaView was developed to
analyze extremely large datasets using distributed memory computing resources. It can be run on
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supercomputers to analyze datasets of petascale size as well as on laptops for smaller data, has
become an integral tool in many national laboratories, universities and industry, and has won
several awards related to high perforrnance computation."

VisIT has been developed at Livermore National Laboratory. As stated on the VisIT website
(https://wci.11nl.gov/simulation/computer-codes/visit): "VisIT is an open source, interactive,
scalable, visualization, animation, and analysis tool. From Unix, Windows, or Mac workstations,
users can interactively visualize and analyze data ranging in scale from small (<101 cores) desktop-
sized projects to large (>105 cores) leadership-class computing facility simulation campaigns.
Users can quickly generate visualizations, animate them through time, manipulate them with a
variety of operators and mathematical expressions, and save the resulting images and animations
for presentations. Vislt contains a rich set of visualization features to enable users to view a wide
variety of data including scalar and vector fields defined on two- and three-dimensional (2D and
3D) structured, adaptive and unstructured meshes. Owing to its customizeable plugin design, Vislt
is capabable of visualizing data from over 120 different scientific data formats."

1.2.4 GDSA Workflow

Uncertainty Quantification workflows are not trivial to define and get running, even when using
tools such as Dakota to generate nested studies involving sampling loops over both aleatory and
epistemic samples. The analyst has to spend a significant amount of time writing scripts to interface
the sample values to PFLOTRAN, extract the results, and put the entire workflow on a high-
performance computing platform. Further, as the quantities of interest increase and many vectors
of results are generated for each simulation, plotting and aggregating the results in a variety of
ways (e.g. averaging over epistemic or aleatory slices as a function of time) becomes very
involved. To address this, the GDSA workflow was developed this year. This workflow couples
Dakota, PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with
a unified GUI where the actual workflow can be dictated in an easy-to-use graphical format. This
workflow also allows greater reproducibility and traceability of the actual files and scripts used for
a particular study. This year, we demonstrated the UQ workflow for a GDSA study involving both
aleatory and epistemic sampling. This is further discussed in Chapter 5.

1.2.5 GDSA Software Strategy

The software strategy for GDSA is to leverage and use open source software that is actively
maintained and developed, whenever possible. That is why the GDSA Framework utilizes
PFLOTRAN, Dakota, Paraview, and VisIT. Another goal is to support HPC computing, which is
a primary focus for all of the software tools listed above. In addition, the GDSA Framework should
have the flexibility to develop and adopt new capabilities as state-of-the-art hardware, software,
and methodology evolves. Again, the codes chosen for GDSA exhibit this flexibility and are
constantly evolving and adopting to utilize new software and hardware capabilities. Much of the
interfacing between the codes is currently performed with Python scripts and other scripting tools,
and there will be tighter integration as GDSA Framework and the GDSA workflow progresses.

1-8



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework
September 2020

1.3 References: Chapter 1

1. Swiler, L.P., J.C. Helton, E. Basurto, D.M. Brooks, P. Mariner, L.M. Moore, S. Mohanty,
S.D. Sevougian, and E.R. Stein. "Status Report on Uncertainty Quantification and
Sensitivity Analysis Tools in the Geologic Disposal Safety Assessment (GDSA)
Framework." SAND2019-13835 R. Sandia National Laboratories, Albuquerque, NM.

2. Mariner, P. E., E. R. Stein, S. D. Sevougian, L. J. Cunningham, J. M. Frederick, G. E.
Hammond, T. S. Lowry, S. Jordan, and E. Basurto (2018). Advances in Geologic
Disposal Safety Assessment and an Unsaturated Alluvium Reference Case. SFWD-
SFWST-2018-000509; SAND2018-11858R. Sandia National Laboratories, Albuquerque,
NM.

3. Mariner, P. E., E. R. Stein, J. M. Frederick, S. D. Sevougian, and G. E. Hammond (2017).
Advances in Geologic Disposal System Modeling and Shale Reference Cases. SFWD-
SFWS T-2017-000044 / SAND2017-10304R. Sandia National Laboratories,
Albuquerque, NM.

4. Mariner, P. E., E. R. Stein, J. M. Frederick, S. D. Sevougian, G. E. Hammond, and D. G.
Fascitelli (2016). Advances in Geologic Disposal System Modeling and Application to
Crystalline Rock. FCRD-UFD-2016-000440 / SAND2016-9610R. Sandia National
Laboratories, Albuquerque, NM.

5. Mariner, P. E., W. P. Gardner, G. E. Hammond, S. D. Sevougian, and E. R. Stein (2015).
Application of Generic Disposal System Models. FCRD-UFD-2015-000126 /
SAND2015-10037R. Sandia National Laboratories, Albuquerque, NM.

6. DOE (2008). Yucca Mountain Repository License Application Safety Analysis Report.
DOE/RW-0573, Revision 1, http://www.nrc.gov/waste/hlw-disposal/yucca-lic-
app/yucca-lic-app-safety-report.html#1. US Department of Energy, Washington, DC.

7. DOE (2014). Title 40 CFR Part 191 Subparts B and C Compliance Recertification
Application 2014 for the Waste Isolation Pilot Plant. DOE/WIPP 15-3503. U.S.
Department of Energy, Carlsbad, New Mexico.

8. Lichtner, P. C. and G. E. Hammond (2012). Quick Reference Guide: PFLOTRAN 2.0
(LA-CC-09-047) Multiphase-Multicomponent-Multiscale Massively Parallel Reactive
Transport Code. LA-UR-06-7048. December 8, 2012. Los Alamos National Laboratory,
Los Alamos, New Mexico.

9. Hammond, G. E., P. C. Lichtner, R. T. Mills, and C. Lu. (2008). Toward petascale
computing in geosciences: application to the Hanford 300 Area. In R. L. Stevens (Ed.),
Scidac 2008: Scientific Discovery through Advanced Computing (Vol. 125).

10. Hammond, G. E., P. C. Lichtner, and R. T. Mills (2014). "Evaluating the performance of
parallel subsurface simulators: An illustrative example with PFLOTRAN". Water
Resources Research, 50(1), 208-228. doi: 10.1002/2012wr013483.

11. Sevougian, S. D., G. E. Hammond, P. E. Mariner, E. R. Stein, J. M. Frederick, and R. J.
MacKinnon (2018). "GDSA Framework: High-Performance Safety Assessment Software
to Support the Safety Case." in Proceedings of the IGSC Safety Case Symposium 2018,
Rotterdam, The Netherlands, October 10-11, 2018, SAND2018-9975C, Sandia National
Laboratories. Albuquerque, NM.

1-9



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework
September 2020

12. Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S.,
Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A.,
Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P.,
and Winokur, J.G., "Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
Analysis: Version 6.12 User's Manual," Sandia Technical Report SAND2020-5001, May
2020.

13. Helton J.C. and M.G. Marietta (Editors). 2000. Special Issue: The 1996 Performance
Assessment for the Waste Isolation Pilot Plant. Reliability Engineering and System Safety
69:1-451.

14. Helton J.C., C.W. Hansen and P.N. Swift (Editors). 2014. Special Issue: Performance
Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca
Mountain, Nevada. Reliability Engineering and System Safety 122:1-456.

1-10



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework
September 2020

2. NEW UQ METHODOLOGY: MULTILEVEL/MULTIFIDELITY
METHODS

Repository performance assessment requires the repeated evaluation of complex, high-fidelity
models that simulate million-year time horizons. The high computational cost of these models
limits the number of simulations that can be performed in an uncertainty analysis, which in turn
limits the accuracy of summary statistics and statistical analyses using such few samples. The
emerging UQ methodology of multifidelity/multilevel methods can help to mitigate the effects of
these limitations from computational cost by deploying lower-fidelity, less-resolved models which
are still well-correlated with the high-fidelity model used for performance assessment.

The remainder of this chapter proceeds as follows. In Section 2.1, multilevel methods are
briefly introduced. In Section 2.2, multifidelity polynomial chaos expansions are briefly
introduced. Finally, in Section 2.3 these two methods are demonstrated on a benchmark problem
in PFLOTRAN that mimics some of the properties of models for performance assessment to show
the potential utility.

2.1 Multilevel Methods

Key statistics of interest such as the mean concentration of a radionuclide or its .95 quantile
involve the numerical evaluation of an integral. The main cost is typically in calculating a
numerical solution to a system of ordinary or partial differential equations which is used to obtain
the quantities of interest. In the presence of uncertainty, this integration is typically performed
using Monte Carlo integration, which is unbiased and has a rate of convergence that is independent
of number of uncertain random variables. However, this rate of convergence is slow; the variance
of an MC estimator decays as the square root of the number of samples used in the estimation. The
aim of multilevel methods is to reduce the variance of the estimator without incurring additional
high-fidelity model evaluations. This variance reduction is achieved by exploiting coarser
discretizations of the model.

The key concept behind multilevel UQ methods is introduced here in the context of two model
discretizations, which are denotedf for fine and c for coarse. The quantity of interest (the integrand)
is denoted Q. Here the desired statistic is IE[Qt], which is the expectation of the quantity of interest
at the finest level. This expectation can be approximated using Monte Carlo integration and
evaluations of the finest model discretization as

f = . (2.1)

The expected value of Of is IE [Qt], and its variance is V(Qf)/N. Note that in practice V(Qf) is
unknown and must be additionally approximated using a sample variance. When N is small, this
variance can be quite large, meaning the estimated mean may be inaccurate. Instead, one can

rconsider the multilevel (ML) estimator, o, where the multilevel estimator is written as the mean
of the coarse estimator plus the mean of the difference between the coarse and fine estimators:

or .0c+ Qf n _ = Lyvc n(i) rN Au, n(i) _ n(1))
"cc Nc1-11=1. 0 NitiL L-J1=1 f j•
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Note that in the evaluation of Equation 2.2., we assume that the number of samples of the coarse
model used to estimate the first term is much higher than the number of multilevel samples used
to estimate the second term, which is governed by the cost to run the fine model: ivc » NAIL.

The expected value of Or is

E pri =E[od+E[Qf—Qc]=E[Q,]+E[Q,]-1E[Q,]=E[w], (2.3)

which is the target quantity to be estimated. However, the variance of this multilevel estimator is

urnitni 
= 

%INC] V[Qf—Qc] 
L'ef J Nc NML,

(2.4)

The benefit of the multilevel estimator is that the variance of V[Qf — Qc] can be much smaller

than V[Qf ] alone, if Qf and Qc vary similarly with respect to changes in the random inputs. This

means that the contribution of the term V[Qf — Qc] to the variance of the estimator can be much
smaller for the same number of simulations at the fine level. There is an additional contribution to
the multilevel estimator's variance from the coarse level evaluations. The contribution of the first
term in Equation 2.3 can be made small by driving the variance down with a large number of
samples Aic at the coarse level, which is presumably possible because the coarse model is cheaper
to run.

Only two discretization levels were considered to describe multilevel methods above, but
it is common to employ several discretization levels in a multilevel estimator. These discretization
levels are typically indexed by f, with = 0 being the coarsest level and = L being the finest
level. The same concept above applies, except now there is a telescoping difference between a
discretization level 1' and the next finer level -I' +1. The general multilevel estimator of the quantity
of interest Q at the finest level L can be thus written as

QML = jvN0 n(0 + jrNi ( n(i) n(0) ivA:2 ( n(i) rqi)) (2.5)
No 1—'1=1" N1 L-q=1 A'61 `<0 

+ 
N2 L-1 — 1 y'e 2 "eNo 

ALe
=

1 
\-1 ( 2 (().i) I( n (i) 0) 1)

No Y'e
i=1 =1 i=1

This approach can be especially powerful in the regime where mesh convergence is observed, as
the variance of the difference between respective discretizations decays rapidly. A demonstration
of multilevel Monte Carlo (MLMC) for the mean of a tracer concentration at an outflow boundary
is presented in Subsection 2.3.2. Further reading on the theory and application of multilevel Monte
Carlo methods includes [1,2,3].

2.2 Multifidelity Polynomial Chaos Expansion

Polynomial chaos expansions (PCEs) have gained popularity in uncertainty analyses in recent
years and have been documented in detail in [4]. PCE is a stochastic expansion method whereby
the output response is expanded in a series of polynomials that are orthogonal with respect to the
densities of the random inputs. One advantage of stochastic expansion methods such as PCE is
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that the moments of the expansion (means, variances, etc.), as well as Sobol' indices for global
sensitivity analysis, can be written analytically.

Coefficients for the PCE are deterrnined either by projecting model responses onto the basis,
or by solving a regression problem. In either case, many model evaluations are required. The
number of evaluations needed increases with the complexity of the model response, as more terms
are needed in the PCE to resolve it. In scenarios where multiple fidelities of model exist, for
instance models with multiple discretizations, or models with simplified or highly-resolved
physics, the number of evaluations of the highest-fidelity model required to construct a PCE
representation of its response can be reduced. This is achieved using a so-called "multifidelity
PCE," first introduced in a paper by Ng and Eldred in 2012 [5].

As in Section 2.1, consider two levels of model discretization, indexed by f for fine and c for
coarse. To simplify discussion, the coarse and fine models are assumed to depend on a single
uncertain parameter The goal is to derive a PCE, denoted xf , for the response of the high-fidelity

fine model, denoted Rf . In a single-fidelity framework, the high-fidelity model is sampled multiple
times and a PCE is constructed using those evaluations:

Rf X f = 160 Ef =1 Win (2.6)

On the other hand, in a multifidelity PCE using two model discretizations, a PCE is constructed
for the coarse model response Rc and another PCE is constructed for the discrepancy between the
coarse and fine model, Af,c . This discrepancy may be defined as the difference or the ratio between
the two discretizations, or a combination of the two.

In this work, only the difference between the two levels is considered. In this setting, a
multifidelity PCE is derived by constructing a PCE for the coarse model, then for the discrepancy
between coarse and fine, Af,c E Rf — Rc:

Rf XcV) + XA(0 = [ flo,c + fli,c1Pi(01+ [floA + Eli3,=°1fli,ATi(01. (2.7)

The hope in employing this method is that Rc is similar enough to Rf that the difference between

the two responses is simpler than Rf alone. In cases where this is true, fewer terms are required to
resolve the PCE of the discrepancy Af,c than to resolve the PCE of the high-fidelity model directly.
The reduction in the number of required terms may manifest in the form of a rapid decay of
coefficients for xL, or in the form of sparsity in the number of terms that are excited.

When this occurs, the coarse PCE Xc will likely have many more terms than the discrepancy
PCE x6„ requiring more evaluations at the coarse level. It is presumed that this is feasible because
the coarse model is cheap to run. The coefficients of the PCEs can be easily recombined into a
single PCE by combining like terms. The combined PCE is written

Rf (flo,c + )6104) + + + Eff„-F ii,c 'Pi (0, (2.8)

where it is assumed that pc > N. This combined PCE can be used in any of the ways a PCE
constructed in a single-fidelity fashion would be used, as a surrogate or to compute response
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statistics or Sobol' indices. Only two models were considered in the discussion above, but a
multifidelity PCE can be constructed using an arbitrary number of models. The multifidelity PCE
can be constructed using a series of discrepancies between discretization levels, indexed from -1' =
0 at the coarsest level to -I' = L at the finest level, as

RL Xo E1
L
=1 XAe,e-i • (2.9)

A demonstration of the construction and use of a multifidelity PCE for global sensitivity analysis
(GSA) is presented in Subsection 2.3.3.

2.3 SX-115 Hanford Tank Farm Example

In this section the multilevel and multifidelity techniques for uncertainty quantification
described in Sections 2.1 and 2.2 are applied to one of the benchmark problems in PFLOTRAN,
the SX-115 Hanford Tank Farm. The physical problem is described in Subsection 2.3.1, multilevel
Monte Carlo is used for forward uncertainty propagation in Subsection 2.3.2, and a multifidelity
PCE is constructed and used for global sensitivity analysis in Subsection 2.3.3.

2.3.1 Physical problem description

The Hanford Tank Farm contains nuclear waste storage tanks and is located in south-central
Washington. A number of leaks have occurred at the site, prompting the study by Lichtner et al.
in 2004 [6] on which a benchmark problem for PFLOTRAN is based. The benchmark problem
simulates a leak from one of the tanks (the SX-115 tank) in a 1D vertical column of layered porous
medium with properties chosen to be representative of the earth at the Hanford site. The column
extends from ground level at 68 m to the water table at 0 m. A steady-state infiltration rate is
imposed at the top of the column. Fluid is injected for two weeks during the simulation at a depth
of 16m to represent a leak occurring at the bottom of the tank. The leak then travels downward
through the column to the water table at the bottom of the domain.

A detailed description of the benchmark problem and its parametrization is available in the
PFLOTRAN user manual [7] and in the online documentation at the time of writing:
https://documentation.pflotran.org/. The problem setup described in the user manual was used with
almost no modification for the uncertainty analyses in this chapter. Any changes made to the
problem setup are detailed here. For this work the leak is represented by a passive tracer. A typical
quantity of interest (QoI) for performance assessment is the concentration as a function of time of
a radionuclide at a point on the outflow boundary. To mimic this type of QoI, an observation point
was placed at the bottom of the domain, the water table, to track the time-varying concentration of
the tracer. The infiltration rate was modified to 5.0e-10 m/sec from 2.53678e-10 m/sec
(corresponding to 8mm/yr) to shorten the timescales of the problem, allowing each simulation to
run for less time.
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The original problem setup specified the leak as a point source from the REGION 'well.' This
was specified in the following input blocks from the original problem specification:

REGION well

COORDINATES

1.d0 1.d0 52.d0

1.d0 1.d0 52.d0

/

FLOW_CONDITION source

TYPE

RATE mass _rate

/

This specification is dependent on the discretization of the problem. This is because fluid is
injected into each cell in the region at the specified mass rate. As the grid is refined in the z
direction, more cells occupy the region compared to the initial discretization and cause more fluid
to be injected with each refinement. To account for the different discretizations that will be used
in the multilevel/multifidelity studies to come, the 'well' region was modified to be a small volume
and the source was modified to inject the fluid at a scaled rate so that the same volume of fluid
was injected into the volume regardless of how many cells were in the region. These modified
input blocks are below.

REGION well

COORDINATES

1.d0 1.d0 52.d0

1.d0 1.d0 52.5d0

/

FLOW_CONDITION source

TYPE

RATE scaled _mass rate volume

/

All other parameters in the problem are fixed at the values specified for the benchmark
problem, except for the permeabilities of each layer of the porous medium, which are assumed
uncertain for the purposes of this study. Their distributions will be defined later in the discussion.
Variations in permeability affect the steady-state pressure and saturation profiles before the leak
is introduced. To account for this, the steady-state and leak runs have been combined into one
simulation. The times in the problem have been modified so that the simulation runs for 300 years
without any leak to allow the pressure and saturation to come to steady state. At 300 years, the
leak occurs for two weeks, then the simulation runs to 600 years, until the tracer reaches a
significant concentration at the outflow boundary
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A convergence study was performed for the maximum timestep used in the solver for the
original discretization of 136 elements in the z-direction (Nz = 136) and the nominal values for
the permeability in each layer. The following timestep specification was required to see
convergence in the dynamics of the problem.

TIME

# 3 0 0 . 0 y to run to steady state,
# another 300 y for the leak.

FINAL TIME 600.d0 y

INITIAL TIMESTEP _SIZE 1.d-6 y

MAXIMUM_ TIMESTEP _SIZE 1.d-2 y

MAXIMUM TIMESTEP SIZE 1.d-1 y at 10 y

# Starting over for transience after the leak

MAXIMUM_ TIMESTEP _SIZE 1.d-6 y at 300 y

MAXIMUM TIMESTEP _SIZE 1.d-2 y at 300.000001 y

MAXIMUM_ TIMESTEP _SIZE 1.d-1 y at 310 y

END

A mesh convergence study was performed in terms of the discretization in the z direction,
parameterized in terms of the number of discretization points in z, denoted N. As the mesh
resolution increases, mesh convergence was observed for Alz = 1088 and Ar, = 2176, as shown in
Figure 2-1. The Newton solver used in these calculations for each implicit timestep terminates
when one of three convergence tolerances are met. These are in terms of the 2-norm of the residual;
the 2-norm of the residual at the current iteration divided by the initial residual; and the 2-norm of
the difference between the current solution minus the solution at the previous iteration, divided by
the solution at the previous iteration. A nonphysical discontinuous step occurred in the tracer
concentration for the finer meshes using the tolerances for the Newton solver specified in the
benchmark problem.

To mitigate this issue, the tolerances for the flow Newton solver were lowered to 1 e-50 and
were set to the default tolerances for the transport Newton solver. Only the concentrations after
550 years were used for the following studies; concentrations before 550 years include (nearly)
zero concentrations, which do not vary as a function of the model parameters and therefore are not
of interest for UQ. Furthermore, the following uncertainty analyses were performed in terms of
the natural logarithm of the concentration and of the uncertain permeabilities. This was motivated
by previous observed challenges in [4] with using untransformed concentrations for GSA with
PCEs.
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Figure 2-1. Time history of tracer concentration at the bottom of the domain for different
discretizations.

The permeability of each layer of the porous medium is considered uncertain for this work.
The permeabilities are assumed to be log-normally distributed. Their distributions were specified
in terms of the underlying normal distribution of their log values. The means of the normal
distribution are set to the natural logarithm of the nominal values for permeabilities specified in
the benchmark problem. The standard deviations are set to 1% of the absolute value of the means.

2.3.1.1 Computational cost by discretization

Multifidelity (MF) and multilevel (ML) methods balance the computational cost of running
the model at each discretization level with the relative contribution to estimator variance to
determine how many samples are needed (see, e.g., [8,9] for different methods of distributing cost
across discretizations/model fidelities). Because of this, it is necessary to estimate the relative cost
of the models at each level. The absolute cost (in terms of floating point operations or linear solves
in PFLOTRAN) is not necessary. The only thing needed is an estimate of how many times more
expensive it is to evaluate finer discretizations of the model, relative to the coarsest level. For
instance, in the case of a linear 1D problem that is solved directly, the relative cost of solving a
problem of size h/ 2 compared to h is 2.

For this problem, PFLOTRAN employs a fully-implicit adaptive timestepper. Inverse solves
at each timestep are performed using the iterative biconjugate gradient stabilized (BCGS) method,
which runs until a desired tolerance is reached. The timestep changes throughout the simulation,
but it is generally the largest timestep allowed by the user and for which the Newton solver can
converge. Compared to direct solvers with fixed timestep, it is more challenging to assess the cost
of running the model at different discretization levels. The cost metric used in this work is the
number of linear solves required for simulation at each discretization level. The number of linear
solves for the transport part of the solver was greatest, so it was the basis of comparison here. The
relative cost of the simulations in the mesh convergence study were used to approximate the cost
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of the model at each level, which are reported in Table 2-1. These relative costs are rounded up
when they are used to evaluate equivalent costs for various ML/MF methods.

Nz Linear transport solves Cost relative to Nz = 136

136 990466 1

272 5097567 5.15

544 16729384 16.9

1088 28276950 28.55

2176 48003520 48.47

Table 2-1. Linear solves and relative cost as a function of mesh size.

Note that for this simple, 1D problem the cost rises approximately linearly with respect to
discretization level, as shown in Figure 2-2. However, for practical applications it is more common
to see superlinear increase in cost across discretization levels, potentially leading to more dramatic
increase in computational efficiency through use of these methods.

500 1000 1500 2000
N,

Figure 2-2. Relative model costs as a function of N.

2.3.1.2 Equivalent number of high-fidelity evaluations

A common metric to compare the cost of a multilevel/multifidelity scheme to a single-fidelity
scheme using the high-fidelity model only is the equivalent number of high-fidelity evaluations a
method incurs. This equivalent number of evaluations is determined by considering the number of
samples taken at each discretization level and multiplying them by the fraction of their cost relative
to the high-fidelity model. For instance, revisiting the two-discretization multilevel scheme, recall
that the mean estimator is obtained as

Qf = Qc Qf nc = v!vc n(0 + 1 n(j) n(i))N
‘C NML 

L-q=1 k,se f C ) •
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In this case, the coarse model would be evaluated Nc + NML times for the two different terms, and
the fine model would be evaluated NML times. Another way to think about the cost is that Alc
samples are obtained at a cost of Cc, the cost of the coarse model evaluation, and NML samples
were obtained at the cost of Cc + Cf, the cost of a coarse and fine model solve. Then the equivalent
high-fidelity cost of the total samples required to calculate Equation 2.9 is equal to

, \ m (Cc+C

Nequiv = — (Nc iv 
m 
AIL) NML = + !viva.

Cf Cf Cf 

f) 
(2.11)

This can be expanded to an arbitrary number of levels I' = 0, , L, with L being the finest level,
as

Nequiv = 
vLe.co ceLi 1 

(vf + Nf+l) + NL = — [No Co + EfL= Ne(Cf +
cL cL

(2.12)

2.3.2 Multilevel Monte Carlo for Forward Propagation

As described in Section 2.1, multilevel Monte Carlo was used to obtain an estimate of the mean
(log) concentration as predicted by the high-fidelity = 2176) model. A convergence study
was performed using the UQ software Dakota [10] with increasing reduction in the sampling
variance relative to an initial sampling variance, generated from 20 pilot samples. These pilot
samples are used to estimate the variance at each level and optimally allocate samples by level to
minimize estimator variance with minimal cost. The algorithm for this allocation scheme is
described in [11]. The algorithm reports how many samples were evaluated at each level, as well
as the equivalent number of high-fidelity evaluations the method performed in terms of cost.

To compare performance of this estimator with respect to a standard, single-level Monte Carlo
mean estimator, the sample mean and variance using the equivalent number of evaluations of the
high-fidelity model were computed to correspond to each MLMC study. A plot of the sampling
variance in the multilevel mean estimator compared to the single-level mean estimator as a
function of equivalent high-fidelity evaluations is presented in Figure 2-3. Sample variance of the
mean estimator for multilevel Monte Carlo compared to single level Monte Carlo, for increasing
number of equivalent high-fidelity model evaluations. The values of the sampling variance are
reported in Table 2-2. Because the model output is time-varying between 550 and 600 years, the
sample mean and variance are time-varying as well. To report a scalar value for the convergence
study the statistics discussed here are averaged over time. Note that, as expected, the sample
variance using MLMC is less than the single-level MC for the same computational effort.
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Sample variance of mean estimator, averaged over t E [550,601]y
10-2

102 103
Equivalent HF model evaluations

Figure 2-3. Sample variance of the mean log-concentration estimator for multilevel Monte
Carlo compared to single level Monte Carlo, for increasing number of equivalent high-

fidelity model evaluations.

Equivalent HF evaluations MLMC sampling variance MC sampling variance

68 3.19 x 10-3 7.88 x 10-3
431 4.83 x 10-4 2.44 x 10-3
4341 4.98 x 10-5 1.82 x 10-4

Table 2-2. The variance on the mean log-concentration estimator computed using MLMC and
single-level MC for the same equivalent number of high-fidelity evaluations.

To compare the efficiency of the MLMC vs. standard MC estimator, the ratio of the time-
averaged sampling variance of the respective mean estirnators was cornputed and is reported in
Table 2-3. Additionally, a percent variance reduction, cornputed as 100% x (1 -
ratio of variances), is reported.

Equivalent HF
evaluations

(Estimator var,MLMOt

(Estimator var,SLMOt

% Variance
reduction

68 0.40 60%
431 0.20 80%
4341 0.27 73%

Table 2-3. The ratio of sample variance for the MLMC estimator compared to the single level
MC (SLMC) estimator. The percent variance reduction is computed as 100% (1 - ratio of

variances).
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For this problem the reduction in variance is significant, with at least a 60% reduction and
as much as 80% reduction over the range of equivalent high-fidelity evaluations that were used in
sampling. This means that the estimation of the mean is significantly more accurate than using
samples of the high-fidelity model alone, for the same amount of computational effort. The amount
of variance reduction that is possible for a given problem is dependent on a combination of factors,
namely the relative costs of the models at each level and the correlation between model levels.

Recall that

V[Qe — Qe-i] = V[Qe] + V[Q-e-i] — 2Cov[Qe, ge-d• (2.13)

The more correlated two levels are, the smaller the variance of their difference will be. On the
other hand, if the cost of obtaining a sample of their difference is not a significant reduction from
the high-fidelity model, the equivalent number of high-fidelity model evaluations per sample
increases, reducing the ability to drive the sampling variance down with more samples.

An alternative way of looking at these results is to consider the relative cost, in terms of
equivalent high-fidelity evaluations, to achieve the same accuracy in the estimator. This was done
by computing a linear fit to the number of high-fidelity evaluations as a function of the estimator
variance (averaged over 550 to 600 years) and computing the ratio of costs for the same estimator
variance. Using the results from the convergence study shown in Figure 2-3, it was found that the
MLMC estimator could achieve the same accuracy with half the cost of the standard, single-level
MC estimator.

Note that in this case the forward propagation studies were specified in terms of a convergence
tolerance based on a reduction in the initial sampling variance of the mean. The MLMC algorithm
kept adding samples across levels until the desired accuracy was achieved. However, in many
practical problems, the number of samples that can be afforded, especially at the highest level, is
limited. Recent works such as [1,8] discuss allocation strategies that assume a fixed number of
high-fidelity evaluations and derive the sampling scheme that achieves the best accuracy within a
given computational budget. This type of approach will be necessary for a practical application of
these methods to GDSA and will be employed in future work.

2.3.3 Multifidelity Polynomial Chaos Expansion for Global Sensitivity Analysis

As described in Section 2.2, a multifidelity polynomial chaos expansion (MF PCE) was
constructed to demonstrate its utility for global sensitivity analysis (GSA). While it is common to
employ quadrature-based approaches for constructing PCEs, regression approaches have typically
been employed in the context of GDSA because it allows for reuse of samples from forward
propagation studies, and because of the high computational cost of quadrature as number of
variables increases. With this in mind, all the results presented herein employ regression methods
to construct the MF PCE.

MF PCEs and single-fidelity PCEs using high-fidelity evaluations were constructed. For both
MF PCE and single-fidelity PCE, Dakota [10] was used for regression with an adaptive algorithm
that increased the order of the expansion uniformly across all uncertain parameters until the L2
norm of the change in the response covariance matrix fell below a specified convergence tolerance.
For MF PCE the initial order of the PCE was 0; for the standard PCE expansion the initial order
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was 2. The higher initial order for the standard PCE expansion was necessary because the
algorithm diverged without cross validation activated; cross validation requires at least a starting
order of 2. Both algorithms employed orthogonal matching pursuit with a collocation ratio of 0.9.
These methods and options are detailed in the Dakota User's Manual [10] and the Dakota Theory
Manual [11].

Prior to running the regression problems, the amenability of the problem to an MF PCE
approach was studied using 64 pilot samples taken across all model levels. An MF PCE is built
with a baseline PCE fit of the coarsest model level, then with additional PCE fits to the discrepancy
between model levels, up to the finest level. The problem is fit for an MF PCE approach if
relatively few coefficients can be used to represent the discrepancies between each of the model
levels. This was tested by computing the difference between each of the model levels over the pilot
samples and passing them as build points in a regression PCE study. It was found that few
coefficients were needed to resolve each of the discrepancies, so the problem was deemed a good
candidate for an MF PCE approach.

A table of the model evaluations required at each discretization level and the equivalent high-
fidelity evaluations are reported in Table 2-4. Additionally, in Table 2-5, the convergence
tolerances and model evaluations required for the single-fidelity PCE built on high-fidelity
evaluations are reported. Again, note that the convergence tolerance is based on the L2 norm of the
change in the response covariance matrix, so there is no assumed equivalent accuracy between the
MF PCE and the single-fidelity PCE constructed using the same convergence tolerance. Note that
the actual number of model evaluations needed for the adaptive MF PCE algorithm ended up being
much less than the 64 pilot samples taken at each level for the initial study. Instead, it could have
been possible to use the pilot samples from the forward UQ propagation study in 2.3.2, rather than
incurring additional model evaluations for a PCE-specific pilot study. This will be the approach
taken in future.

Convergence
tolerance

Number of evaluations
Equiva

F
lent

N, = 136 Nz = 272 N, = 544 N, = 1088 Nz = 2176
H 

10-1 18.73 69 24 10 10 5
10-2 38.45 69 38 38 24 5
10-3 79.71 100 100 69 38 19

Table 2-4. The number of model evaluations at each level and equivalent number of high-
fidelity evaluations to construct the MF PCE.

Convergence tolerance Number high-fidelity evaluations
10-1 50
10-2 50
10 -3 713

Table 2-5. The number of high-fidelity model evaluations required for each convergence
tolerance for the single-fidelity PCE.
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Across all convergence tolerances and between MF PCE and single-fidelity PCE (SF PCE) the
predicted mean and variances were strikingly similar, as shown in Figure 2-4. Note that the
responses are so similar that they overlap completely. The Sobol' indices are also essentially
identical, as shown in Figure 2-5—the indices are so similar that they are indistinguishable.
Sensitivity of the response was dominated by HF ksat, which is the water saturated permeability
for Hanford Fine Sand, the layer of earth just below the location of the leak in the column. This
holds across MF/SF PCE and different convergence tolerances, as shown in Figure 2-5. Even the
coarsest MF PCE, which incurred only —19 equivalent high-fidelity evaluations, was consistent
with the most-resolved SF PCE's Sobol' indices. The Sobol' indices for the permeabilities of the
other layers in the simulation domain were also identical across type and convergence tolerance of
PCE.

a

11 —10

c' —15 -
ti

ti
—20 -

PCE predicted mean ±2-Er

— MF PCE71e-1 tol

— MF PCE, le-2 tol

— MF PCE, le-3 tol
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t lyr]

2 .
7.1 —10 -

8 —15
Fa

ti
—20 -
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Figure 2-4. Mean log concentration ± 2a for different convergence tolerances and MF/SF
PCEs. Note that the responses are so similar that they overlap completely.
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Figure 2-5. The main and total effect Sobol index for HF ksat as a function of time for
different convergence tolerances of MF PCE, SF PCE, and comparing MF and SF PCE
from the tightest tolerance runs. The indices are so similar that they overlap completely.

The relative invariance of these results to the convergence tolerance of the PCE algorithms is
likely due to the simplicity in behavior of the model responses. As illustrated in Figure 2-6, only
coefficients up to first order are significantly nonzero in all the cases considered, indicating that
the variability of the model responses can be captured with only a first-order PCE. Any additional
refinement of the PCE by adding more orders does not add any further accuracy.

Figure 2-6 only shows the coefficients for the PCE fit to model outputs at 550 years, but the
coefficients over all times exhibited this behavior. Given the simplicity, very few model
evaluations are required to adequately capture the model's variation, so even the lowest-order
PCEs were sufficient in this case.

Even so, the potential benefits of employing an MF PCE approach are shown in the low number
of equivalent high-fidelity evaluations required across all tolerances, and the low number of
evaluations of the most refined model, maxing out at 19 evaluations total. Additionally, the
computational gains compared to a Saltelli-based sampling method [12] for estimating the indices
can't be overstated. Even a rough estimate of the Sobol' indices for the five permeability
parameters using 100 samples would require (100 samples) x (5 parameters + 2) = 700
model evaluations. In a practical performance assessment study, even a rough estimate using such
methods could be computationally infeasible using the high-fidelity model only.
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A focus of future work will be to employ MF PCE for a problem with a more complex
dependence of model outputs on uncertain inputs. This will result in a more challenging fitting
problem and enable a more detailed study of the relative benefits and downsides of a MF PCE vs
SF PCE approach for problems of interest in NW performance assessment. Additionally, methods
by which existing HF samples can be augmented to create a regression problem for an MF PCE
will be explored. This is motivated by the typical situation where only a limited number of high-
fidelity model simulations can be run due to computational cost, thus precluding adaptive
algorithms that terminate based on a convergence tolerance.
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Figure 2-6. Modulus of PCE coefficients /3k (indexed by k) up to third order, compared
across convergence tolerance for MF/SF PCEs, and comparing the tightest-tolerance MF
and SF PCE coefficients. The vertical lines delineate changes in the order of the term with
which each coefficient is associated, with the first vertical line separating the Oth and 1st
order coefficients. Note that the coefficients overlap almost completely for the different

cases.

2.4 Conclusions and Future Work

In this chapter multilevel Monte Carlo (MLMC) and multifidelity PCEs were introduced and
demonstrated on a benchmark tracer transport problem in PFLOTRAN. The MLMC methods
exhibited a significant decrease in estimator variance for the mean of model outputs, exhibiting
60-80% decrease in estimator variance compared to a standard MC using an equivalent number of
high-fidelity model evaluations. The MF PCE produced Sobol' indices and predicted mean and
variance of model outputs that were consistent with those of similarly-constructed single-fidelity
PCEs built off of high-fidelity model evaluations alone. The MF PCEs overall required very few
equivalent high-fidelity model evaluations, but the simplicity of the behavior of model outputs
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with respect to uncertain inputs was very simple for this problem, so the method wasn't challenged
very much. Care will be taken to ensure the next application problem has a more complex
dependence on uncertain inputs, thereby providing more of a challenge to the MF PCE algorithms.

Future work will focus on identifying and applying these methods to a more challenging
problem that exhibits more of the properties and challenges that arise in practical NW performance
assessment studies. Properties that will be targeted are: a mixture of aleatory and epistemic
uncertainties, no explicit discretization hierarchy to rely on, and additional computational cost.
Additionally, best practices for employing multifidelity methods within a fixed computational
budget will be determined, as this will typically be the scenario for GDSA studies. Focusing on
these aspects will ensure that the methods and infrastructure that are developed can be successfully
extended to a large-scale production study without too much modification.
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3. DISCRETE FRACTURE NETWORKS

Discrete fracture network (DFN) modeling is an alternative to continuum approaches for
simulating flow and transport through sparsely fractured rocks in the subsurface [1]. Continuum
approaches use effective parameters to include the influence of fractures on the flow. In contrast,
a DFN approach involves a network of fractures where the geometry and properties of individual
fractures are explicitly represented as lines in two dimensions or planar polygons in three
dimensions. These generated networks are then meshed for computation. dfnWorks [1] is a
parallelized computational suite developed at Los Alamos National Laboratory to generate three-
dimensional discrete fracture networks and simulate flow and transport. The work presented in
this report uses the "dfnGen" capability of dfnWorks to generate the networks, with the flow and
transport calculations run in PFLOTRAN. This capability was used to generate 20 discrete fracture
networks for a crystalline reference case, which is based off properties at the Forsmark site in
Sweden [9], but it not a direct replica of Forsmark. They were then converted to equivalent porous
media (ECPMs) for flow and transport simulation with PFLOTRAN. These 20 DFNs are used in
the uncertainty analysis presented in Chapter 4.

In dfnWorks, one defines various layers in a 3-D domain and one can define various fracture
families to be placed in each layer. The fractures in each family may be specified as rectangles or
ellipses. This work uses circular plates, defined by radii which vary according to a truncated
power-law distribution. The user can define characteristics such as aspect ratio of the ellipses per
fracture family, and various angles describing the ellipse fracture orientation such as the angle the
normal vector makes with the z-axis. The orientation of the ellipses is characterized by a 3-
dimensional Fisher distribution describing the orientation of the fracture poles. The fractures may
be placed at specified coordinates but typically are placed randomly throughout the layer. There
are many user controls governing the generation of fractures in dfnWorks: the keywords are
described in the user documentation: https://dfnworks.lanl.gov/dfngen.html. Finally, we note that
dfnWorks uses an underlying graph to represent the fractures. For example, a fracture graph
assigns fractures to nodes and intersections to edges. This is a computationally efficient way to
represent and store the network.

There are several fracture domains at Forsmark, each containing fracture sets with different
statistical properties. For our implementation of fractures for the crystalline reference case, we
define three fracture families and three depth intervals, which are a subset of the fractures sets and
domains defined at the Forsmark site. The selection of the applicable fracture domains and sets to
include and other simplifying assumptions are detailed in [6]. Fracture domains FF01/06 were used
because they constituted the majority of the Forsmark site and contained the repository. The
fracture sets NS, NE, HZ were selected because they had the largest number of open and flowing
fractures for depths [-200 m, -400 m], according to analysis reported in [5]. A random fracture
network is generated within these defined zones such that the fracture density decreases with
increasing depth (see Table 3-1). Each fracture set has been characterized using a 3-dimensional
Fisher distribution describing the orientation of fracture poles and a truncated power-law
distribution for the fracture radii. Each set is further characterized by the fracture density, P32,
which is defined as the area of fractures per volume of rock (m2/m3).

The columns of Table 3-1 are as follows: the layers are defined by depth (meters below sea
level) and fracture set type (NS=North/South, NE=North/East, HZ=horizontal). The fracture
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orientation is defined by a Fisher distribution which describes the orientation in space (in a sphere)
of the poles normal to the fracture planes. Trend and plunge are geospatial terms used to describe
the orientation of a pole or lineament. The trend is the degrees from North, meaning the compass
direction. The plunge is the degrees from horizontal. Note that trend and plunge define the
orientation of normal vector to the plane of the fracture. This means, for example, that the 0.0°
plunge for the NS and NE fracture sets means that they are located in a vertical orientation on
average and the 90.0° plunge for the HZ fracture set means that it is located horizontally on average.
Kappa (Ic) is "concentration" (a shape parameter) which describes how tightly the distribution is
clustered about the mean: larger values means the normal vectors of the ellipses are more similar.

The parameters governing the truncated power law distribution which generates the radii of
the elliptical fractures are as follows: k is a rate parameter, rb is the minimum fracture radius, and
rupper is the maximum fracture radius used in the truncated power law in Equation 3.4. The
fracture density can be described by the number of target fractures per cubic kilometer or by the
target P32 value (area of fractures per volume of rock in units of m2/m3) which is defined by
Equation 3.2 and discussed in Section 3.1 below.

After the 20 DFNs for the crystalline reference case were generated with dfnWorks, they were
mapped to the equivalent continuous porous medium domain using mapDFN.py [11], a code that
approximates hydraulic fracture properties by calculating and assigning permeability and porosity
on a cell-by-cell basis. Conversion to equivalent continuous porous media (ECPMs) is described
in [6] and further depends on a fracture radius-transmissivity relationship. An example of a
particular DFN used for uncertainty analysis is shown in Figure 4-2 in Chapter 4.

Depth
(meters
below sea
level) /
Fracture
Set Name

Orientation:
Fisher Distribution for
Poles

Size:
Truncated Power Law for
Radii

Fracture
Density
(Requested)

P32 value
defined in
Ref. [2]

Mean
Trend

Mean
Plunge

K
Power
Law
k

Min
Radius
ro (m)

Max
Radius
rupper(m)

Number of
fractures in
1 km3

P32, r E
[0.038,564]
[In2 /m3]

0-200 / NS 90° 0.0° 22 2.5 30 500 184 0.073

0-200 / NE 180° 0.0° 22 2.7 30 500 274 0.319

0-200 / HZ 360° 90.0° 10 2.4 30 500 2217 0.543

200-400/ NS 90° 0.0° 22 2.5 30 500 357 0.142

200-400/NE 180° 0.0° 22 2.7 30 500 296 0.345

200-400 / HZ 360° 90.0° 10 2.4 30 500 1290 0.316

>400 / NS 90° 0.0° 22 2.5 30 500 236 0.094

>400 / NE 180° 0.0° 22 2.7 30 500 140 0.163

>400 / HZ 360° 90.0° 10 2.4 30 500 576 0.141

Table 3-1. Fracture distribution parameters for Forsmark, FFM01/FFM06 domains. The
Fisher distribution parameters are pulled from Table 2-14 in [10], and the power-law k

parameters and P32 values are pulled from Table 2 in [2].
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This chapter focuses on verifying the implementation of DFNs and conversion of the discrete
fracture networks to ECPMs for comparison, specifically in terms of the properties that are
expected to mimic those of the Forsmark site. The DFNs are analyzed in terms of the fracture
density and fracture distributions for the different fracture sets, as well as in terms of the bulk
properties of the equivalent continuous porous media (ECPMs) generated from the DFNs. In
Section 3.1, a verification of the DFNs generated by dfnWorks is performed to ensure the expected
number of fractures and P32 values are obtained using the specification in Table 3-1. In Section
3.1.2, bulk properties of the ECPMs that are expected to coincide between the Forsmark site and
the crystalline reference case are compared for consistency. Note that these DFNs are used in the
spatial uncertainty loop as part of the uncertainty analysis of the crystalline reference case
described in Chapter 4.

3.1 Verifying consistency of DFN statistics with Forsmark

Fracture distribution parameters from Table 2 of [2] were used to define the distribution of
radii of circular fractures across the range of fracture zones at Forsmark. Only a subset of the
fracture families was used in the generated DFNs for the reference crystalline case. These
distribution parameters are presented in Table 3-1. The interdependence of the fracture-size power-
law distribution with the fracture density (P32) is described in [4] and is repeated here. As discussed
in [5], the probability density function for a fracture of radius r corresponds to a power-law
distribution:

krc;c
= r < r < oo,

k+1 0 —r
(3.1)

where ro is the smallest possible radius. In practice, as is done in [5], this is set to the radius of the
smallest observable fracture, which is limited by the radius of the boreholes used for observation
at a particular site. In [5], ro = 0.038 m. Define no as the average number of fractures per unit
volume. Then the P32 value (area of fractures per volume of rock in units of m2/m3) can be
approximated as the average number of fractures per unit volume, multiplied by the average area
of a fracture, to obtain an area per unit volume:

rupper
-- -0 0 2 —kir=uPPer

crupper rrn krk
P32 = no j p(r)rrr2dr = no 

nok4c 
mr

2
dr =  

r k+1 k — 2 [r jr=r0
ro ro

(3.2)

where rupper is the upper limit of fracture radii included in the empirical determination of the P32
value. A value of rupper = 564 m was used to determine the P32 values reported in Table 3-1.

If P32, 1-0 and rupper are known, one can approximate the average number of fractures per unit
volume by dividing the P32 by the right-hand side of (3.2) to solve for no. In this case, for a power
law defined by k = 2.5, ro = 0.038 m, nipper= 564 m, and a P32 of 0.073 m2 /m3, we find that

mkrok 2—k
—1 

fractures
= 3.245 x 10

9 fractures(
no = P32 E— rupper )] = 3.245 m3 km3 

(3.3)
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This operation was used to determine the number of fractures per unit volume for the difference
fracture families in Table 3-1; the average number of fractures per unit volume could then be
multiplied by the volume of each subdomain to obtain the expected number of fractures in each
one.

Given the site extends several kilometers in each direction, it is not feasible to generate a DFN
that contains every fracture. The power-law distributions defined as in Table 3-1 are heavily
weighted toward small fractures, as shown in Figure 3-1. Note, for k = 2.5, 99% of the probability
mass of the distribution falls between radii of 0.038 and 0.24 m. The corresponding P32 value of
0.073 in the specified subdomain would be equivalent to having the order of 109 fractures with
radii ranging from 0.038 m to 564 m, most of them lying in the subgrid scale. However, the largest
fractures tend to dominate the flow, so it was decided to only store fractures with radii > 30 m.
Since the vast majority of fractures are much smaller than this threshold, a far more reasonable
number of fractures, having the order of 103, are stored.

p(r) = k r
rk+1 7 k = 2.5, 7.0 = 0.038

10-1 10° 101

r [in]

Figure 3-1. The fracture radius distribution. 99% of the probability mass lies in the range
of radii between 0.038 and 0.24 m.

The software package dfnWorks has two ways of specifying a DFN. In both cases fracture
are generated using a truncated power-law distribution defined over the range of radii that should
be stored. The truncated power-law distribution defined over the range [ro, ru] is

k4c (ro)k1 1
p[ro,,, ]O-) = r +1 1 — . (3.4)

This is the same as (3.1) except with a modified normalization constant to account for the truncated
upper bound. For this work the range of radii used was [30, 500] m. To determine when a sufficient
number of fractures has been generated, the user can then either specify the number of fractures to
be produced and the relative frequency of fractures in each family, or the P32 values for each of the
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fracture families. The P32 values from [2] are for the entire range of measured radii [0.038, 564].
To determine the corresponding P32 for a smaller range of radii, denoted P32 [rmin, rmax], one need
only compute the integral (3.2) over that range, using the untruncated power law:

irmax
P32 [rmin, rmax] = (r)rcr2 dr

rmin
n-nok4c 

2-k 2 - k

k — 2 UmI
n 'max J. (3.5)

In this case the rescaled P32 values are listed in Table 3-2.

Fracture elevation
[meters above sea level]

Fracture set
name

P32, r E [30,500]
[m2/m3]

NS 1.98 x 10-3
> —200 NE 2.58 x 10-3

HZ 2.60 x 10-2

NS 3.85 x 10-3
[-200, —400] NE 2.79 x 10-3

HZ 1.69 x 10-2

NS 2.55 x 10-3
< —400 NE 1.32 x 10-3

HZ 7.53 x 10-3

Table 3-2. P32[30, 500] computed from P32 in Table 3-1 using (3.5).

Alternatively, if one were to specify the number of fractures that dfnWorks should generate
to produce these P32 values, one would need to specify the total number of fractures to produce,
as well as the relative probability of fractures in each family being produced. First, to compute the
number of fractures in the range [30, 500] that would need to be generated, one would need to
compute

frmax nop(r)dr = —no4c[r-kjr=rmin
r=rmax 

= nolt(rn:iikn — rm-akx)
rmin

(3.6)

for each of the fracture families. The relative probability of a fracture occurring in each fracture
family is then defined as the number of fractures in the family, divided by the total number of
fractures across all families These numbers and probabilities are presented in Table 3-3.
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Fracture elevation
[meters above sea

level]

Fracture
set name

Subdomain # fractures, r E
[30,500]

Relative probability of
fractures

NS 227 0.020
> —200 NE 335 0.030

HZ 2767 0.245
NS 440 0.039

[-200, —400] NE 363 0.032
HZ 1771 0.157
NS 1252 0.111

< —400 NE 737 0.065
HZ 3398 0.301

Table 3-3. The nutnber of fractures in each fracture family.

3.1.1 Consistency of DFN specifications

Initially, the properties of the DFNs generated by specifying target P32 values to dfnWorks
were inconsistent with the properties of the DFNs generated by specifying the target number of
fractures. It was determined that dfnWorks computes P32 using both faces of the fracture.
Compared to the definition as specified in [4] and repeated in (3.2), this means the P32 that
dfnWorks computes will be approximately twice the value computed using (3.2) and as reported
in [2]. To account for this, care must be taken when specifying target P32 values to dfnWorks to
instead pass twice the target value. Additionally, it should be noted that the values dfnWorks
reports for P32 need to be halved to compare to P32 values computed as in [2] [4]. Taking this change
into account, the number of fractures in each family and the P32 values for the DFNs generated
using either method are reported in Table 3-4.

The agreement is not perfect between the two methods, but the results are in relatively good
agreement with each other. It should be noted that the families with the highest P32 values
exhibited the greatest discrepancy between the resulting number of fractures and P32 values. This
discrepancy can be explained by the differences in how the algorithms terminate. In the case of
specifying the number of fractures, fractures are added according to the underlying of distribution
of fractures by family and by radius until the total number of fractures is reached, at which point
it terminates. In the case of specifying P32 , on the other hand, the algorithm will keep adding
fractures until the P32 is within a small tolerance of the target. In general, fractures of smaller
radius will allow for more refined values of P32 , so this method results in more fractures with
smaller radius.

A comparison of the distributions of fractures over all families between the two methods of
specification indicate the P32 specification has almost 2000 more fractures with radius near the
lower bound of 30 m, compared to the number of fractures specification. For the DFNs used in the
crystalline reference case elsewhere in this work, the method of specifying the number of fractures
was used to generate the DFNs. In future work, specifying a target P32 value may be favorable
because it enables as close a replication to the parametrization in [2] as possible. However, as will
be discussed in Section 3.1.2, the difference between the P32 values from [2] and those of the
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DFNs generated by specifying the number of fractures per family did not significantly impact the
bulk properties of the resulting ECPMs.

Fracture
elevation
[m.a.s.1.]

Fracture
set name

Converge on P32 Converge on n fractures

T f 0
. argeL i 32 Final P,2

'
n

fractures
Final P32

Target n
fractures

Final n
fractures

NS 1.98 x 10-3 1.98 x 10-3 271 1.47 x 10-3 227 209

> -200 NE 2.57 x 10-3 2.58 x 10-3 326 2.30 x 10-3 335 329

HZ 2.60 x 10-2 2.60 x 10-2 3298 2.24 x 10-2 2767 2697

NS 3.85 x 10-3 3.85 x 10-3 414 3.22 x 10-3 440 440

[-200, -400] NE 2.79 x 10-3 2.81 x 10-3 386 2.00 x 10-3 363 342

HZ 1.69 x 10-2 1.69 x 10-2 1835 1.41 x 10-2 1771 1559

NS 2.55 x 10-3 2.55 x 10-3 1475 2.27 x 10-3 1252 1211

< -400 NE 1.32 x 10-3 1.32 x 10-3 822 1.21 x 10-3 737 745

HZ 7.53 x 10-2 7.53 x 10-3 3663 6.43 x 10-3 3398 3100

Table 3-4. P32 values and number of fractures per family for DFNs generated by either
specifying P32 or number of fractures per family. The number of fractures reported are in

range r E [30, 500] m.

3.1.2 Comparing crystalline reference case bulk ECPM properties to Forsmark

Having verified the DFN statistics are consistent with the desired values in Table 3-1, attention
turns to whether the bulk properties of the derived ECPMs for the current GDSA crystalline
reference case are consistent with similarly-derived ECPMs for the Forsmark site in Sweden.
Because only a subset of the fracture domains and sets were used to define the crystalline case,
only a subset of properties will be expected to agree within a reasonable degree. The comparison
will be made in terms of the bulk hydraulic conductivity computed using mapDFN.py [11]. The
process by which this is derived from the DFNs is described in [6].

is
The standard assumption for the relationship between permeability and hydraulic conductivity

kpg
K =

itt
(3.8)

where K is hydraulic conductivity, k is permeability, p is the density of the transported fluid, g is
the gravitational constant, and µ is the fluid's viscosity. For the GDSA work the fluid is water.
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When dfnWorks computes permeability from fracture transmissibility, it uses p = 997.7 kg m-3,
= 8.9 x 10-4 kg m-i -1s (from dfnWorks insertShape.cpp source code). These values will be

used to convert k to K. Let y = = 1.1 x 107m-1s-1 so that

K = yk. (3.9)

The computational domain for the GDSA crystalline reference case is one continuous block;
it is not subdivided by the depth zones. The ranges of the computational domain for dfnWorks and
PFLOTRAN are summarized in Table 3-5 so that the appropriate subdomains can be mapped
between dfnWorks, PFLOTRAN, and the Forsmark information. Note that the 15 m grid cells do
not evenly subdivide [0,1260], so the bounds for each subdomain were taken to fall on the interior
of each. The derived permeability tensor is only nonzero in the axial directions, so the
corresponding hydraulic conductivity is also only nonzero in the axial directions.

Fracture elevation
[m.a.s.1.]

dfnWorks
subdomains

PFLOTRAN
subdomains

15 m grid
subdomains

> —200 [430, 630] [1060,1260] [71,83]

[-200, —400] [230,430] [860,1060] [58,70]

< —400 [-630,230] [0,860] [0,57]

Table 3-5. The corresponding subdomains for dfnWorks and PFLOTRAN.

Statistics for the hydraulic conductivity for three depth zones were provided by the SKB team
through private correspondence [7] and refer to runs described in [3]. These properties were
reported in terms of the axial directions of the hydraulic conductivity tensor, K„, Kyy, and Kzz, as
well the geometric mean of the three directions: Ke f f = (K„KyyK,z)113 . The goal here is to compute
the same statistics for the crystalline reference case and check for agreement between them. As
described in [3], when converting to an ECPM from a DFN, SKB set the hydraulic conductivity
of any cell without a fully-connected network of fractures to 10-11 m/s. The appropriate minimum
was derived by calculating the minimum values seen when the DFN was truncated only at very
small fractures relative to cell size, so that they were free of effects from truncating the radii used
in computing the ECPM. A minimum hydraulic conductivity of 10-11 m/s is equivalent to a
minimum permeability of 10-18 m2. The minimum permeability for the ECPMs derived from
dfnWorks for the GDSA crystalline reference case is 10-20 m2. To enable a comparison with the
SKB statistics, the background hydraulic conductivity was replaced with 10-11 to compute the
means reported here.

The SKB team reported the log base 10 of the arithmetic mean of the hydraulic conductivity
denoted log10(Kx„), as well as the log base 10 of the geometric mean, denoted 1og10(kx). Any cells
containing a deformation zone were not included in the computation of the mean. These values are
reported in Table 3-6.
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Depth [m] log10()loglri(Kxx) loglo(Kyy) 10g10(Kyy) loglo(Kzz) loglo(Kzz) loglo(Keff)
> —200 -7.1 -8.0 -6.3 -8.1 -6.3 -9.4 -8.5

[-400, —200] -8.1 -9.7 -8.1 -9.6 -9.4 -10.5 -9.9
< —400 -9.8 -10.8 -9.7 -10.8 -9.7 -10.8 -10.8

Table 3-6. The statistics for the hydraulic conductivity of the ECPM representing FFM01/06,
provided by SKB in [6].

The SKB ECPMs were computed using a finite element discretization with 20 m grid size,
compared to the 15 m grid size used for the GDSA crystalline reference case. Smaller grid sizes
tend to result in lower mean hydraulic conductivity and higher variance, so this will be considered
when comparing results. The range of fracture radii used in the upscaling was from 5.6 m to 564
m, compared to the range of 30 m to 500 m used in in the reference case.

As described in [2], equation 2, SKB assumed the following relationship between fracture size
and hydraulic aperture/transmissivity for their hydrogeological base case in [3]:

1og10 T = 1og10(arb) + 6N(0,1) , (3.10)

where T [m2/s] is transmissivity, r [m] is fracture radius, a and b are coefficients in a power-law
relationship between r and 1og10 T, cris the standard deviation of log10 T, and N(0,1) denotes the
normal distribution of a random deviate of zero mean and unit variance. This relation was specified
for each depth zone individually and affects the hydraulic conductivity of the ECPM. As of
dfnWorks version 2.1, it is only possible to specify a single relationship between transmissivity
and fracture size that will apply to the entire domain, and the relationship is of the form

T = arb. (3.11)

Because only one relationship could be defined, the parameters for the fully-correlated
relationship of FFM01/06 and depth zone 200-400 meters below sea level (mbsl) from Table 2 in
[2] were used in the DFN specification for this work. This means that only the statistics for depth
zone 200-400 mbsl can be expected to agree to some degree to those reported by SKB.

SKB did not include the properties of any element cut by a deformation zone in the
computation of their statistics. Correspondingly, the deformation zones, specified as user-defined
faults to dfnWorks, were filtered out for computing the statistics reported here. To reiterate, the
background hydraulic conductivity for the ECPMs was increased to 10-11, compared to the 1.1 x
10-13, to make it consistent with the background value for SKB. SKB only computed the statistics
for the single reference hydrogeological base case, while 30 identically distributed ECPMs were
computed for this work. To compare to the SKB statistics, the log-base-10 algebraic and geometric
mean for each hydraulic conductivity field was computed, then a sample mean was computed over
the 30 algebraic/geometric means from each ECPM. To compute the means over the three depth
subdomains >-200 m, [-400 m, -200 m], and <-400 m, the computational domain was partitioned
according to the z indices specified in Table 3-5. The arithmetic and geometric means were
computed on each of these subdomains. The resulting (overall) means are reported in Table 3-7.
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Depth [m] log10() logio(Kx.x) loglo(Kyy) loglo(Kyy) log10(/) loglo(Kzz) loglo(Keff)
> —200 -8.7 -10.0 -8.7 -10.0 -9.2 -10.3 -10.1

[-400, —200] -8.8 -10.2 -8.8 -10.2 -9.2 -10.4 -10.3
< —400 -9.2 -10.7 -9.2 -10.7 -9.5 -10.7 -10.7

Table 3-7. The log base 10 of the mean values for the ECPMs computed for the GDSA
crystalline reference case with the background hydraulic conductivity set to 10-11 m/s for

consistency with SKB.

As expected, because of the constant transmissivity-radius relationship as a function of depth,
the statistics in Table 3-7 do not vary as significantly as those for SKB. This makes sense, since
the only change as a function of depth in Table 3-7 is induced by the decrease in fracture frequency
and radius as a function of depth. Given the difference in correlation model, minimum fracture
radius, and cell size, the values for the depth zone 200-400 mbsl agree reasonably well. The SKB
and GDSA values for this depth zone are compared in Figure 3-2. As mentioned previously,
because the SKB team used a larger grid size and a larger ranges of fracture sizes, it is expected
that their hydraulic conductivities would be slightly higher than for the crystalline reference case.
This holds for all directions except the z (depthwise) direction, and these values still agree well
with those of SKB. These results verify the specification and implementation of the DFN and
conversion to ECPM in this work, insofar as the ECPM is consistent with that of SKB to the extent
it is expected to be.

Depth zone [-390, -210] [m], min K le-11
-s -

—9 -

—10 -

—11

e,0

GDSA

SKB

Figure 3-2. A bar chart comparing the mean hydraulic conductivities for the second depth
zone between [-400, -200] m. The vertical black lines are one standard deviation on the

averages, taken over the 30 DFNs.
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4. CRYSTALLINE REFERENCE CASE: UPDATES

For a nuclear waste repository located in crystalline rock, a major source of uncertainty in
performance assessment is the spatial heterogeneity of potential fracture flow paths through the
host rock. Conceptually, a long-lived radionuclide released from a waste package will initially
migrate through the buffer material and into the surrounding damaged rock zone (DRZ). From
there it will migrate along the DRZ until it enters a fracture that takes it farther into the host rock,
where connected fractures can provide a path to a nearby fracture zone. It might then migrate along
this fracture zone and through connected fracture zones to the biosphere. Along the flow path, the
radionuclide will undergo radioactive decay and ingrowth and diffuse into and out of dead-end
pores and fractures. Additionally, depending on its properties and the environmental conditions
along the flow path, it will adsorb and desorb from colloids and immobile mineral surfaces,
chemically react with aqueous species, possibly change oxidation state, and, if solubility-limited,
precipitate and dissolve.

This chapter presents a new uncertainty analysis of a reference case repository for commercial
spent nuclear fuel in fractured crystalline rock. The reference case is identical to that in Stein et al.
[1], Mariner et al. [4], and Sevougian et al. [9] except for improvements to the fracture network
implementation (discussed in Chapter 3) and the design of the uncertainty analyses. Note that this
analysis builds extensively on the crystalline reference case uncertainty analysis performed in 2019
and documented in Chapter 8 of [14].

4.1 Uncertainty Analysis (UA)

The uncertainty analysis includes multiple types of uncertainty: spatial uncertainty, parameter
epistemic uncertainty, and aleatory uncertainty. Uncertainties described as spatial uncertainty
relate to the unknown structure of the repository and surrounding rock. The spatial uncertainty is
not strictly categorized as epistemic or aleatory, in part because it incorporates some of both types
of uncertainties. Uncertainties described as parameter epistemic uncertainty relate to inputs with
fixed but unknown scalar values.

Section 4.1.1 discusses different perspectives on the categorization of spatial uncertainty and
Section 4.1.2 summarizes the structure and implementation of the UA.

4.1.1 Uncertainty Categorization

The categorization of spatial uncertainty in this analysis was an issue of debate. Last year, the
discrete fracture networks were treated as aleatory [14], and that study motivated further separation
of the spatial uncertainty from epistemic parameter uncertainty for the current study. In this report,
spatial heterogeneity in the discrete fracture networks was separated from most of the parameter
uncertainty because one of the goals of the analysis was to understand the relative contributions of
the spatial heterogeneity and parameter uncertainties to total uncertainty. Though this separation
was illustrative, there was not agreement on whether it represents a classical separation between
aleatory and epistemic uncertainty.

The categorization of the spatial uncertainty depends on the definitions of aleatory and
epistemic uncertainty, the intent of the crystalline reference case, the difference between
theoretically and practically reducible uncertainty, and historical usage. With respect to
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definitions, episternic uncertainty is lack-of-knowledge uncertainty, also called reducible
uncertainty, and aleatory uncertainty is stochastic or irreducible uncertainty. Aleatory uncertainty
can also be described with respect to time; it is uncertainty about future occurrences, not the present
state [20]. However, outside of PA, this connection to time is not always included in the definition
[21].

One perspective on spatial uncertainty is to treat it as an epistemic uncertainty. This assumes
that the underlying fracture network at the crystalline reference case site is fixed, but we do not
know what it is. Our knowledge of the fracture network is imperfect: we cannot perfectly
characterize the fractures due to limitations of geophysical imaging capabilities. As discussed in
Chapter 3, we have used the dfnWorks software [3] to generate twenty realizations that are
consistent with field data and with what we understand about crystalline formations and their
properties. We cannot say that any one of the twenty DFNs we have generated is the exact real
fracture network, but they are possible realizations each intended to represent a realistic possibility.
This follows from earlier work at WIPP and Yucca Mountain where geologic field data was treated
as epistemic. For example, the WIPP analysis involved the generation of realizations of the
transmissivity field in the Culebra dolomite formation (LaVenue and RamaRao, 1992) and the
Yucca Mountain analysis involved realizations of flow fields for both the unsaturated and saturated
zones for flow and transport modeling (Rechard et al. 2014).

An alternative perspective on spatial uncertainty is to treat it as an aleatory uncertainty. This
argument is based on two concepts: 1) predicting the distribution of random fractures through
space is analogous to predicting the occurrence of random events through time, and 2) uncertainties
that may be reducible philosophically are not necessarily practically reducible. The dfnWorks
software produces random fracture networks that are consistent with a set of fixed characteristics
specified for the site (this is done by generating random fractures from user specified distributions
on fracture size, orientation, etc. and placing them in the fracture network, see Chapter 3 for
details). Analogous to future random events, there are infinitely many fracture networks that can
occur in space which are consistent with these fixed characteristics. This can be perceived either
as inherent randomness or model uncertainty: the characteristics are insufficient to define a fixed
fracture network.

The perspective that spatial uncertainty should be treated as aleatory also relates to the practical
motivation for separating uncertainty. Epistemic uncertainty can be reduced, so separating
epistemic uncertainty from aleatory uncertainty identifies where uncertainty could be reduced, as
well as how much uncertainty cannot be eliminated. Even with the most advanced measurement
technologies, it is not feasible to measure and model the true fracture network at a potential
repository site. Though the fracture network is fixed, and so the uncertainty is hypothetically
reducible, it cannot be reduced practically. If the goal behind separating out epistemic uncertainty
is to identify uncertainty that can actually be reduced, it makes more sense to include uncertainty
in the fracture network as an aleatory uncertainty.

Finally, the categorization of spatial uncertainty is further complicated by the introduction of
another type spatial heterogeneity that clearly mixes epistemic and aleatory components:
uncertainty in the order in which waste packages breach in the repository (e.g., this is a spatial
variability in the sense that waste package 37 may breach first, followed by waste package 483,
etc. These waste packages are at different locations in the repository). Uncertainty in waste
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package corrosion rate is introduced by sampling from a truncated log normal distribution for the
base corrosion rate in a temperature-dependent rate expression for general corrosion [4]; this log
normal distribution for the (spatially distributed) waste package corrosion rate is sampled within
PFLOTRAN [6, 7] and is considered an aleatory uncertainty (random, stochastic, or irreducible
uncertainty). Both the mean (meanWPrate) and standard deviation (stdWPrate) of this log normal
distribution, however, are treated as epistemically uncertain inputs.

This analysis also contains epistemic uncertainty in parameter values, which were categorized
without debate. Epistemic uncertainties include porosity and permeability of the bentonite buffer
(pBuffer and pBuffer, respectively), permeability of the DRZ (kDRZ) and of the overlying
sedimentary unit (kGlacial), and rate of spent (used) nuclear fuel dissolution (rateUNF). Note that
the epistemic parameter uncertainty is simpler to treat than the fracture network uncertainty. For
epistemic parameter uncertainty, we assume that the parameters have a fixed but unknown value
for this particular case study. That is, there is one value for porosity of the bentonite buffer but we
do not know what it is, thus we generate possible realizations of a number for this porosity.

Because the debate on how to categorize the spatial uncertainty is ongoing, we refrain from
making an explicit statement about the categorization in this report. The implementation of spatial
heterogeneity includes epistemic and aleatory uncertainties, and there are philosophical arguments
for either categorization. Regardless of how it is characterized, the spatial uncertainty was
separated from the parameter uncertainty in a two-loop structure for this UA. To avoid implying a
categorization, the sampling loop with spatial heterogeneity is referred to simply as the spatial
loop.

4.1.2 Uncertainty Implementation

The UA comprises a spatial loop of sample size 20 fracture network realizations, and a
parameter loop of sample size 40 for a total of 800 simulations. Note that both of these loops
involve epistemic uncertainties, but the spatial uncertainty loop involves the spatial heterogeneity
exhibited by the 3-D variability in the fracture networks and the epistemic parameter loop involves
the parametric uncertainty associated with the epistemic parameters. Because the aleatory
uncertainty is also spatial, it is included in the spatial loop. For each DFN realization in the spatial
loop, a different random seed is used when sampling the waste package corrosion rate distribution,
so that the order of waste package breach associated with each DFN is different. The sampling
loops are shown in Figure 4-1.
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For i E {1,2, ..., 40}

Parameter Uncertainty Loop

(Epistemic)

rateUNFi
kGlaciali
pBuf f eri
permDRZi

permBuf feri

meanWPratei
stdWPratei

For j E {1,2, ..., 20} DFNs

Spatial Uncertainty Loop

DFNJ
WPrateij—LN(meanWPratebstdWPratei) (Aleatory)

PFLOTRAN

Figure 4-1. Sampling Loops used in the Uncertainty Analysis of the Crystalline Reference
Case presented in this Chapter.

Latin hypercube sampling of epistemically uncertain parameters is performed using Dakota
[8]. The uncertainty analysis includes pBuffer, kBuffer, kDRZ, kGlacial, and rateUNF as
epistemically uncertain inputs, and both meanWPrate and stdWPrate are also included as
epistemically uncertain inputs in the parameter loop. The uncertain parameters are listed in Table
4-1. The outputs include maximum 1291 concentration over time and location in the aquifer as well
as quantities such as mean travel time, mean residence time, and flow rates as defined in Table
4-2. These new Quantities of Interest (QoIs) that have been implemented and are the subject of
this study (see Table 4-2 and the discussion in Section 4.2.7 below).

When structuring the UA, the same set of epistemic samples (e.g., same 40 sample vectors for
the epistemic variables) were run for each of the 20 spatial realizations. Repeating the epistemic
samples allows explicit separation of effects from the epistemic uncertainty and effects from the
spatial uncertainty (the DFN and the spatial distribution of base normalized general corrosion rate)
but comes at the cost of covering less of the epistemic sample space. The epistemically uncertain
parameters and their distributions are listed in Table 4-1.
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Table 4-1. Uncertainty distributions propagated in crystalline reference case UA.

input Description Range Units Distribution Sampling Loop

DFN
Particular realization of a
discrete fracture network

1-20
Spatial loop

Aleatoryj

Aleatory sampling to
generate a fixed ordering
of waste package
degradation for each DFN

0-1 Uniform
Spatial loop

rateUNF
Fractional dissolution rate
of spent (used) nuclear
fuel

10-8 — 10-6 yr 1 log uniform Parameter loop

kGlacial Glacial till permeability 10-16 — 1 0-13 m2 log uniform Parameter loop

pBuffer Buffer porosity 0.3 — 0.5 uniform Parameter loop

permDRZ DRZ permeability 10-19 — 10-16 m2 log uniform Parameter loop

permBuffer Buffer permeability 10-20 — 10-17 m2 log uniform Parameter loop

meanWPrate

Mean of the truncated log
normal distribution on
base normalized general
corrosion rate (R)

-5.5 — (-4.5) log(yr1) Uniform
Parameter loop

stdWPrate
Standard deviation of the
truncated log normal
distribution

0.15 — 0.4 log(yr1) Uniform
Parameter loop

4.2 Model Set-up

4.2.1 Model Domain

The model domain [1] is 3015-m in length, 2025-m in width, and 1260-m in height, partially
depicted in Figure 4-2. Overlying the host rock is a 15-m thick overburden of glacial sediments
(not shown). The repository is located at a depth of 585 m. Forty-two disposal drifts contain 80
12-PWR waste packages each (3360 12-PWR waste packages in total). Drifts are backfilled with
bentonite buffer and are surrounded by a 1.67-m thick DRZ. Within the repository, grid cells are
as small as 1.67-m on a side; elsewhere grid cells are 15-m on a side. The model domain contains
4,848,260 cells; of these, approximately 2.5 million are the smaller cells in and around the
repository that allow representation of individual waste packages with surrounding buffer
materials. Additional information on the grid and dimensions may be found [1] available for
download at https://pa.sandia.gov.
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Figure 4-2. Cut-away of DFN 1 realization mapped to porous medium grid, showing the
full repository and the far half of the model domain.

4.2.2 Discrete Fracture Networks

As described by Mariner et al. [4], the representation of fractured crystalline rock in the GDSA
reference case is based on the well-characterized, sparsely fractured metagranite at Forsmark,
Sweden [2]. At Forsmark, volumes of relatively undeformed rock (termed a "fracture domain')
are bounded by large-scale mappable features of concentrated brittle and/or ductile deformation
(termed "deformation zones"). The fracture domains are sparsely fractured, and the fractures
within each domain can be described in terms of a number of "fracture sets", which are
distinguished from each other on the basis of fracture orientation. Six fracture domains are defined
at Forsmark, each containing five fracture sets. As appropriate, three depth zones are defined (<200
m below sea level (mbsl), 200-400 mbsl, and >400 mbsl) to account for the decrease in fracture
density and fracture transmissivity with depth. The parameters describing the DFNs for this case
study are described in Chapter 3 of this report.

The crystalline host-rock reference case analyzed here [4], based on the Forsmark data set, is
modeled using some fixed features and an uncertain fracture network. The case contains 5 fixed
fracture zones and three depth intervals. Twenty random networks were generated with dfnWorks,
one for each realization of the spatial uncertainty loop. The deterministic, user-defined fracture
zones represent large, mappable features, such as faults, and are common to all realizations. There
are three subvertical fracture zones (Figure 4-1, in gray) and two fracture zones with a dip of
approximately 30 degrees (in red). The discrete fracture networks, two-dimensional planes
distributed in the three-dimensional model domain, are generated using dfnWorks [3], and mapped
to the equivalent continuous porous medium domain using mapDFN.py, a code that approximates
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hydraulic fracture properties by calculating and assigning permeability and porosity on a cell-by-
cell basis [1].

The fracture set properties and deterministic fracture zones employed in this study provided
sufficient fracture connectedness such that each DFN realization resulted in direct fracture
pathways from the repository to the top boundary of the fractured crystalline host-rock. The
existence of connected fracture pathways was determined by dfnWorks.

4.2.3 Waste Package Corrosion Model

The waste package corrosion model implemented in PFLOTRAN (Mariner et al. [4], Section
3.2.1) calculates normalized thickness of the waste package wall at each time step as a function of
a base waste package corrosion rate, a canister material constant, and temperature. Waste package
breach occurs when the normalized thickness reaches zero. The normalized thickness is initialized
to 1, and is reduced at each time step as a function of the effective waste package corrosion rate
Reff defined by

Reff = R • e
c
(333.15 T(LI')) (4-1)

where R is the base corrosion rate at 60°C in units of yr-1, T is the local temperature (in Kelvin),
and C is the canister material constant. This equation assumes that reaction rates are a function of
temperature as described by the Arrhenius equation. It is also assumed that waste package
corrosion occurs via general corrosion. R represents the normalized general corrosion rate at 60°C
in units of 1/T (time) (i.e., units of L/T normalized by the thickness (in units of length L) of the
waste package wall). In PFLOTRAN, R is in units of yr-1 and is entered as a lognormal distribution
across waste packages.

PFLOTRAN assigns a base normalized general corrosion rate (R) for each waste package by
sampling on a truncated log normal distribution whose mean, standard deviation, and upper
truncation limit may be treated as epistemic uncertain inputs sampled by Dakota [8]. In UA the
mean of the distribution is sampled over the range 10-5.5 to 10-4.5 (in units of yr-1). The standard
deviation is sampled over the range 100.15 to 10" (also in units of yr-1). The uncertainty analysis
uses a constant upper truncation limit of 10-3.5 yfl. A mean of 10-5 for R results in a mean waste
package breach time of 100,000 years if waste packages are held at a constant temperature of 60
°C.

Sampling on both the mean and standard deviation implements uncertainty in the location and
spread of the normalized general corrosion rate distribution. This high level of uncertainty is
appropriate because the state of knowledge is low and, since the distribution is sampled for each
waste package, it makes sense to have a different corrosion rate distribution for each realization.
Unlike the other uncertainty distributions included in the UA, the normalized general corrosion
rate distribution is sampled many times within each realization. First, the mean and standard
deviation are sampled once per realization to establish the corrosion rate distribution for that
realization. Then this distribution is sampled independently for each waste package within that
realization. Sampling of the distribution parameters implements the epistemic uncertainty in the
corrosion rate and sampling each waste package independently from that distribution implements
spatial aleatory uncertainty.
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4.2.4 Initial and Boundary Conditions

Initial conditions specified are pressure and temperature. Nominal nonzero radionuclide
concentrations are also specified as initial conditions but this is for numerical necessity, not to
represent reality. Initial pressures and temperatures throughout the model domain are calculated
by applying a liquid flux of 0 m/s and an energy flux of 60 mW/m2 to the base of the domain and
holding temperature (10°C) and pressure (approximately atmospheric) constant at the top of the
domain and allowing the simulation to run to 106 years. Pressure at the top of the domain decreases
from west (left) to east (right) with a head gradient of —0.0013 (m/m). This technique results in
initial conditions that represent a geothermal temperature gradient and hydrostatic pressure
gradient in the vertical direction, and a horizontal pressure gradient that drives flow from west to
east.

The initial concentration of 1291 in all cells is 10-22 mol/L. A non-zero value is necessary,
because PFLOTRAN transport equations are formulated in terms of the log of concentration. A
concentration of 10-22 mol/L is approximately 60 atoms of 1291 per liter of water.

At all six faces of the model domain, pressures and temperatures are held constant at initial
values. Concentration of 1291 is held at the initial concentration at inflow boundaries. At outflow
boundaries, the concentration gradient is set to zero.

4.2.5 Observation Points

Previous analysis of the crystalline reference case analyzed uncertainty in 1291 concentrations
at specific observation points [14]. Rather than focusing on each spatial location individually as in
that analysis, this UA uses the maximum 1291 concentration calculated over all observation points.
Because the peak 1291 concentration varies spatially over time, the maximum over all of the tracked
observation points is a better measure of overall repository performance; this measure will indicate
poor performance if the 1291 concentration at any observation point exceeds requirements.

4.2.6 Timestep Size

During previous analysis of the crystalline reference case [14], oscillations in 1291
concentrations which could impact estimates of 1291 breakthrough times were found at observation
points. An analysis was conducted to identify the cause of the oscillations and determine how the
effect could be minimized in future studies. In [14], we document a study showing the tradeoff
between maximum timestep size and computational time: Oscillations in the 1291 concentrations
become less frequent with smaller timesteps but this results in an increased computational time.
From the study, we determined that a maximum timestep of 5,000 years was acceptable for our
quantities of interest.

For the PFLOTRAN runs presented in this report, a maximum timestep size of 5,000 years
was also used. We examined the peak 1291 concentration over all time as well as the maximum 1291
as a function of time. These quantities did not exhibit significant discontinuities or oscillations,
therefore we continued to use the 5,000 year maximum timestep.
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4.2.7 New Quantities of Interest (Qols)

The new QoIs implemented in the UA are listed in Table 4-2. They include a new performance
metric capability and several new DFN-related bulk characteristic calculations potentially relevant
to performance.

The new performance metric capability allows for monitoring the entire aquifer at each time
step for 1291 concentration, recording the highest 1291 concentration in the aquifer at that time, and
recording its location. The peak 1291 concentration in the aquifer in the simulation can then be
determined, which is important because it is the ultimate measure of repository performance in
this current model.

The DFN-related bulk characteristics that are potentially relevant to performance include the
mean travel time (MTT) of a conservative tracer from the repository to the aquifer, the mean
residence time (MRT) of an initial conservative tracer within the repository, net mass flux (NMF)
of a conservative tracer out of the repository, and rock boundary water mass flow rates.

A more detailed description of these new QoIs may be found in Mariner et al. (2020) [15]. The
mean residence time of a conservative tracer initially present in the repository (MRT) at each time
step in the simulation is determined by tracking the total mass of a tracer remaining in the
repository over time. Because the initial tracer slowly flushes from the repository and never
completely flushes from the repository, the MRT has an associated time series of residence times.
The MRT is given by Equations 4.1 and 4.2 below; these are equations 29-30 in [15] and discussed
in more detail in that report. The cumulative MRT of an initial tracer of a model region is calculated
by tracking the total mass of the tracer in the region over the time interval (t) using the following
equation

MRT(T) = ftr_0F(t)dt (4.1)

where (i) F (t) is the &action of initial pulse remaining, calculated from

N(t)-NbF (t) =
NO—Nb

(4.2)

(ii) N(t) is the total mass of the tracer in the region at a given time, (iii) No is the initial total mass
of the tracer in the region, and (iv) Nb is the total background mass of the tracer in the region.

The MTT measures the mean travel time of a conservative (non-decaying) tracer from the
repository to an observation point beyond the repository. For the equations defining MTT, see
equations 32-35 in [15]. These are reproduced here as Equations 4.3-4.6. Mean travel time, like
mean residence time, can be directly measured using tracers. Identical concentrations of two
conservative tracers are artificially and continuously injected at a constant rate at the starting point.
The only difference between the two tracers is that one of them decays or ingrows exponentially
over time since injection. Because the movement of these tracers within the domain is identical,
the difference in concentration at a distant location is solely due to the mean time since tracer
injection. This measure of time is considered the mean travel time (MTT) of a conservative tracer.
We note a difference between MRT and MTT: for MRT, there is one initial concentration of the
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conservative tracer at the beginning of the simulation and no more of it is injected into the region,
then MRT is obtained by tracking the tracer mass remaining in the repository over time. In
contrast, for MTT, two tracers are continuously injected and the differences in their concentrations
at locations beyond the injection region can be used to calculate the MTT of injected tracer as
defined below.

Exponential decay (or ingrowth) is described by the equation:

C(t) = Coe-rt
(4.3)

where C is the concentration at time t, Co is the initial concentration, and r is the rate of the
reaction. The rate can be calculated from the half-life t112 using the equation:

Solving for t gives:

ln(2)
r =

t1/2 (4.4)

—ln (C(t)/ C0)
t =

r
(4.5)

In terrns of MTT, Co is analogous to the concentration of stable tracer Cs, and C(t) is analogous
to the concentration of unstable (decaying or ingrowing) tracer Cu. Thus, MTT is estimated from
the equation:

MTT =
—ln (Cu/c3

r
(4.6)

This formulation assumes that initial background concentrations of these tracers, the ingrowing
concentrations of an unstable background tracer, and trace concentrations of these tracers flowing
into the domain from flux boundaries are negligible compared to the concentrations observed at
the monitor location. In the analysis below, the MTT is calculated at the location of the maximum
1291 concentrations in the aquifer at each time step of interest. It is considered a characteristic of
the system and is not the mean travel time of the 1291 concentration observed at that location at that
time.

The MRT and MTT evaluated at 106 years (1 Ma) were of interest because these represent the
total flow for the simulation; values at 1 02, 103, 104, and 1 05 years were also analyzed. The
repository MRT and MTT as calculated from the tracers were also recorded at times corresponding
to peak 1291. These values are also of interest because they reflect the flow associated with the
highest 1291 concentrations.
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Table 4-2. New QoIs for crystalline reference case sensitivity analysis

# Quantities of Interest (Qols) Scalar or Vector

1
Maximum 1291 concentration in aquifer in
mol/L (M)

Max concentration vector that is a function of
time; vector includes (X,Y,Z) location of
concentration

2
Peak 1291 concentration in aquifer in mol/L

( M)
Scalar with (X,Y,Z) location of peak

3
Repository MRT (mean residence time in
repository) in years

Vector that is a function of time T. Each value in
the vector is the MRT evaluated over the interval
[0,1.

4 Repository MRT (1 Ma) in years Scalar, MRT evaluated over the interval [0, 1 Ma]

5
MTT (mean travel time from repository to
aquifer location of maximum 1291

concentration) in years

Vector that is a function of time. Each value of
MTT is calculated from the tracer concentration
ratio, evaluated at time T.

6 MTT (1 Ma) in years
Scalar, MTT as calculated from the tracer
concentration ratio, evaluated at 1 Ma

7 MTT for Peak in years
Scalar, MTT as calculated from the tracer
concentration ratio, evaluated at the time of Peak
1291 concentration

8 Water flow rate rock to aquifer (kg/y) Vector that is a function of time

9 Water flow rate east boundary (kg/y) Vector that is a function of time

As an example of the spatial and temporal resolution of these QoIs, the first QoI listed in Table
4-2 is plotted in Figure 4-3 for two of the 800 PFLOTRAN simulations. These plots show
maximum 1291 concentration in the aquifer plotted as a function of (x,y) location and also as a
function of time (z-axis). The left column of Figure 4-3 shows a 3-D view and the right column
shows a front view in the x-direction. The top row is DFN1, epistemic realization 1 and the bottom
row is DFN1, epistemic realization 5. The plots in Figure 4-3 are colored by the magnitude of the
maximum 1291 concentration so that one can see (for example) that early in the simulation, the
maximum values tend to be in one corner of the domain and are low: in later years, the maximum
1291 concentration is more centrally located and is on the order of 1.E-8M.
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Figure 4-3. Example 3-D plots of maximum 1291 concentration in the aquifer shown for two
of the 800 PFLOTRAN simulations. The upper row shows the results from DFN1,

epistemic sample 1; the bottom row shows DFN1, epistemic sample 5. There are two views
on each row: a 3-D view looking down (left column) and a frontal view (right column). The
spread and location of the maximum 1291 concentration varies for each of the 800 runs.

4.3 Results

The uncertainty analysis described above was extensive, with spatial and epistemic parameter
sampling loops generating 800 PFLOTRAN runs on a high-performance cornputing systern. The
average run tirne was 1.54 hours on 32 nodes or 512 processors. The total nurnber of processor
hours for the full set of 800 PFLOTRAN runs was approximately 631,000 processor hours.

The uncertainty and sensitivity analyses involved a nurnber of tirne-dependent quantities of
interest, and responses for which the quantity of interest was deterrnined as the maximum (e.g.,
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maximum 1291 concentration) over a spatial domain (i.e., the aquifer) at a particular time or for
which the quantity was the peak concentration both spatially and temporally: the maximum over
all time points. Below, we provide a variety of summary plots and statistical analysis of results,
including cumulative distribution functions of results, scatterplots and interaction plots, and
sensitivity analysis.

4.3.1 Distribution of output quantities

In this section, we first show the overall distribution of several output quantities of interest
using cumulative distribution function (CDF) plots. At each time step, we calculate the maximum
value of 1291 concentration over all locations in the aquifer for each of the 800 sampling-based
calculations. The CDFs of these maximum values for selected time steps are shown in Figure 4-4.
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Figure 4-4. CDF of Maximum 1291 concentration in Aquifer at various times with step size
1/800.

Figure 4-4 shows the CDFs for maximum 1291 values at particular time points. Figure 4-5 shows
the CDF of the peak 1291 concentration in the aquifer, where the peak for each sample is simply the
maximum concentration for that sample over all time points, regardless of location. Note that this
peak 1291 concentration varies by over three orders of magnitude.
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Figure 4-5. CDF of Peak 1291 concentration in aquifer with step size 1/800.

Because this Peak 1291 concentration is a significant quantity of interest, we also show two
ways of slicing the data: CDFs for each spatial realization showing the variation in parameter
uncertainty per CDF and CDFs per each parameter realization showing the variation in spatial
uncertainty. These are shown below in Figure 4-6 and Figure 4-7.

Each curve in Figure 4-6 shows the CDF of the Peak 1291 concentration for a spatial realization
across all parameter realizations; hence, 40 points on each (spatial) curve. The same data are
plotted in Figure 4-7 but instead each curve plots the CDF of a parameter realization across all
spatial realizations; hence, 20 points on each (parameter) curve in Figure 4-7.

The CDFs in black in Figure 4-6 and Figure 4-7 are the CDFs of the means of the peak 1291
concentrations in each spatial realization across all parameter realizations (Figure 4-6) and of each
parameter realization across all spatial realizations (Figure 4-7). The CDFs of the means provide
the best measure of repository performance of all the parameters calculated in these simulations.
They provide the calculated spatial and parameter uncertainty distributions about the mean Peak
1291 concentration in the aquifer. A comparison of these figures clearly shows that the overall
parameter uncertainty in the mean Peak 1291 concentration in the aquifer exceeds the overall spatial
uncertainty. This observation is best illustrated by the ranges of the CDFs of the mean peak 1291
concentrations (black curves). In Figure 4-6 the range across all parameter realizations (40 points)
is approximately 2 orders of magnitude, while in Figure 4-7 the range across all spatial realizations
(20 points) is slightly greater than 1 order of magnitude. This relationship is opposite of what is
observed at a fixed monitor location (Mariner et al. 2019 [1 6]).
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Figure 4-6. CDFs of Peak 1291 concentration for each spatial loop realization with step size
1/40 (20 CDFs).
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The next set of figures shows the CDFs for the MTT of a conservative tracer from the
repository to the aquifer location of the maximum 1291 concentration (Figure 4-8) and the MRT of
an initial conservative tracer in the repository (Figure 4-9). Figure 4-8 shows the CDF of the MTT
evaluated at one million years, also referred to as Mega-annum (Ma). Figure 4-9 shows the CDF
for the MRT in the repository region on [0, 1 Ma]. Note that the CDF of MTT is less smooth than
that for the MRT. Residence time depends only on a tracer concentration in the repository region
while travel time calculations depend on tracer transport through the rock and aquifer domains.
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Figure 4-8. CDF of MTT of a conservative tracer from the repository to the location of the
maximum 1291 concentration at 1Ma with step size 1/800.
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Figure 4-9. CDF of MRT of an initial conservative tracer within the repository on [0, 1 Ma]
with step size 1/800.

Figure 4-10 and Figure 4-11 show the CDFs of the rnaxirnurn value of the rock to aquifer flow
rate and the flow rate at the east boundary of the dornain.
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Figure 4-10. CDF of the maximum water mass flow rate from the rock to the aquifer
(kg/year) with step size 1/800.
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Figure 4-11. CDF of the maximum water mass flow rate at the east boundary of the domain
(kg/year) with step size 1/800.
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4.3.2 Scatterplots: Inputs to Outputs

The following set of plots show scatterplots of input quantities (on x-axis) to various output
quantities (on y-axis). The first output quantity plotted is peak 1291 concentration. Figure 4-12
shows the peak 1291 values with respect to the samples of the epistemic parameters. Note that the
many values for a particular input parameter setting (long vertical lines) is due to the spatial sample
realization: a given epistemic parameter is paired with 20 spatial realizations. There are 40
parameter realizations and the variability in peak 1291 concentration at each sample value is due to
the 20 spatial realizations run with that parameter sample. Figure 4-12 shows the importance of
kGlacial and meanWPrate on the peak 1291 values.
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Figure 4-12. Scatterplots of Peak 1291 concentration vs. epistemic input parameters defined
in Table 4-1.
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Figure 4-1 3 through Figure 4-1 5 show the output quantity vs. the same set of input parameters,
but the responses are also color coded with respect to the peak 1291 concentration so that one can
see the interaction of 1291 with respect to some of these outputs.

Figure 4-1 3 shows the scatterplots of MTT (at 1Ma) with respect to the input parameters. We
note that meanWPrate, stdWPrate, and rateUNF cannot have any effect on travel time due to the
model construction. When pBuffer increases, the effective diffusion coefficient in the buffer
increases, which would tend to decrease travel time (diffusive behavior). Also, when pBuffer
increases, the average linear porewater velocity decreases which would increase travel time
(advective behavior). There are some interesting observations from these plots: it is clear that there
are two groupings of results: the one on the top with high mean travel times appears to be from 7
spatial realizations and the bottom from the remaining 1 3 spatial realizations. It is likely that there
are certain characteristics of the 7 DFNs that lead to larger travel times: we are still investigating
these properties, but analysis of additional DFNs (beyond the 20 generated for this analysis)
suggests that this relationship is due to random chance and the pattern between the arbitrary spatial
realization number and QoIs would not persist with a higher DFN sample size. Also, one can see
input parameter effects. For example, high values of kGlacial tend to be correlated with low values
of 1291 and low values of kGlacial with high values of 1291.
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Figure 4-13. Scatterplots of MTT of a conservative tracer from the repository to the
aquifer evaluated at 1Ma vs. epistemic input parameters defined in Table 4-1, colored by

Peak 1291.

Figure 4-14 shows the same type of scatterplot for the repository MRT evaluated from zero to

one million years. Again, there is a clear effect of DFNs. There is a strong correlation between

mean residence time and pBuffer, for example. This is likely due to the average linear porewater

velocity behavior, where the porewater velocity decreases as pBuffer increases which results in an

increase in residence time. That is, it takes longer to flush a region of higher volume given the

same flow rate. However, we also note that higher values of pBuffer do not correlate with peak

1291 concentrations, as lower peak 1291 concentrations are observed across the pBuffer spectrum.

This implies that while pBuffer increases the repository MRT for a given DFN, the major

differences in MRT between DFNs are not due to buffer porosity but instead due to the DFNs

themselves. Clearly, the cooler colors of lower peak 1291 concentration are observed in the pBuffer

plot for DFNs that result in greater repository MRT. Again, we see that the high values of kGlacial

are associated with low values of 1291.
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Figure 4-14. Scatterplots of MRT of an initial conservative tracer evaluated on [0, 1Ma] vs.
epistemic input parameters defined in Table 4-1, colored by Peak 1291.

Figure 4-15 shows the scatterplots with respect to the maximum flow rate from the rock to the
aquifer. The maximum rock to aquifer flow rates observed during the simulations occur at the
beginning of the simulations around 1 year when the newly emplaced waste packages heat up the
water in the repository and cause it to expand. Thus, this causes a somewhat artificial pulse of
water into the aquifer from the underlying rock that can be used to help characterize the bulk
connection between the repository and aquifer. This response quantity does not correlate as
strongly with the peak 1291 concentration. pBuffer is the most important variable affecting
maximum water mass flow rate from rock to aquifer because with increased porosity there is more
water to expand.
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Figure 4-15. Scatterplots of maximum water mass flow rate from rock to aquifer vs.
epistemic input parameters defined in Table 4-1, colored by Peak 1291.
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4.3.3 Scatterplots: Outputs to Outputs

The analysis of the crystalline reference case presented here has many new output quantities
that we have added to the PFLOTRAN code base specifically to gain a better understanding of
host rock characteristics, the influence of discrete fracture networks, and an understanding of the
fluxes throughout the system. Our ultimate goal is to understand which DFNs are "leakieC and
how this affects travel time, residence time, and peak concentrations over time. Thus, it is helpful
to plot the peak 1291 concentration against various outputs and also to plot output quantities as a
function of time against each other.

First, we plot peak 1291 vs. the other integral quantities at the final time, as shown in Figure
4-1 6 below. Note that Peak 1291 is negatively correlated with MTT and MRT, as well as with the
peak flow rate at the east boundary. The Mean Travel Time for the Peak 1291 concentration has two
distinct groupings of results.
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Figure 4-16. Scatterplots of peak 1291 concentration vs. other output quantities defined in
Table 4-2 for all 800 simulations.
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We have a rich set of time-dependent data. Figure 4-1 7 shows the max 1291 concentration as a
function of the other responses at 5 time points, from 1 00 years to 1M years. Note that max 1291
concentration values on the y-axes are the maximum 1291 value over the spatial domain at that time
point, whereas peak 1291 (x-axis, first column) represents the peak 1291 value over all times. This
plot shows some trends especially at later times but not as much correlation as we expected.
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Figure 4-17. Scatterplots of maximum 1291 concentration at various time points vs. other
output quantities for all 800 simulations.
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Figure 4-1 8 shows a similar plot with MTT at different time points on the y-axes vs. the other
quantities on the x-axes. Again, we can see some time dependence, especially at 1M years where
mean travel time is negatively correlated with peak 1291 concentration and peak flow rate from the
rock to aquifer, and positively correlated with mean residence time. However, the distinctive
striations or clusters of points in the plots are the result of the spatial uncertainty. Within each
spatial realization, the relationships can be different. For example, there does not seem to be a
strong relationship between mean travel time and peak 1291 within a spatial "striation" at 1 million
years as shown by nearly horizontal lines on the top row of Figure 4-1 8. For the relationship
between MTT and rock to aquifer flow rate, there appears to be a small positive correlation within
each spatial striation.
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Figure 4-18. Scatterplots of MTT at various time points vs. other output quantities.
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Figure 4-19 shows a plot with MRT at different time points on the y-axes vs. the other
responses on the x-axes. Here, we see strong correlation patterns of MRT with respect to peak
MTT and flow rate from rock to aquifer. This correlation is consistent across DFNs, which is why
the scatter plots for these quantities against MRT have distinct clusters of points. The rock to
aquifer flow rate is positively correlated with the MRT for a fixed spatial realization, as was the
case for MTT.
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Figure 4-19. Scatterplots of MRT at various time points vs. other output quantities.
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The scatterplots of the flow rate from the rock to the aquifer is shown vs. other response
quantities in Figure 4-20 below. Unlike the MTT and MRT, the correlation between on the Rock
to Aquifer Flow Rate and other output quantities is more pronounced earlier in the simulation.
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Figure 4-20. Scatterplots Rock to Aquifer flow rate vs. other output quantities.
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4.3.4 Graph Analysis

This year, a number of graph-based analyses on the DFNs were performed to obtain more
information about the nature of the DFNs, with the goal of correlating various graph attributes
with the output quantities of interest. Graphs are a powerful tool for representing DFNs because
they are able to capture the inherent network topology of the DFN without the high computational
cost of meshing thousands of fractures ranging in size from millimeter to kilometer. The difference
in computational cost is striking—derived quantities from a graph representation of a DFN can be
computed in a matter of seconds or minutes, while a fully-resolved, 3D DFN flow and transport
simulation would require several hours to run. Graphs have been used with some success as
reduced-order models (with corrections) for predicting flow and transport through the DFN, and
as surrogates in UQ propagation studies in this context [11,12].

These promising applications of graphs as surrogates of DFN connectivity motivated this work.
The goal was to identify correlations between graph QoIs and metrics of repository performance
derived from the PFLOTRAN simulations defined in Table 4-2. The metrics of repository
performance we sought to correlate with graph QoIs were the Peak 1291 concentration, the mean
travel time, the mean residence time of a tracer in the repository, and the mass flow rate from the
rock to the aquifer. These QoIs are defined and detailed in Table 4-2. Graph QoIs for which such
correlations are identified can prove invaluable by providing a quantitative metric to characterize
the DFN for use in a sensitivity analysis, thereby providing a more accurate attribution of
uncertainty.

The graphs were constructed using dfnWork's dfnGraph utility [11, 12], and postprocessing to
obtain QoIs from the graphs were obtained using dfnWorks and NetworkX, a python network
analysis package [13]. There are two types of graphs that can be constructed from a DFN: a fracture
graph, wherein fractures are assigned to nodes and intersections to edges, and an intersection
graph, wherein intersections are assigned to nodes and fractures to edges. Unless otherwise stated,
the graph QoIs discussed herein are in terms of the fracture graph.

The graph attributes examined included number of nodes (fractures), number of edges
(intersections), average degree (average number of intersections a fracture is part of), relative
shortest travel time (as calculated by the dfnFlow algorithm in dfnWorks), and number of
intersections with the repository. Note that the graph attributes are defined per DFN. However,
within the UA, there are 40 parameter realizations run for each DFN. These means that there are
40 output QoIs associated with each single value of a graph attribute. Thus, the output QoIs (e.g.,
Peak 1291 concentration) were averaged over the parameter realizations. These averaged QoIs were
correlated with the graph attributes and examined using scatterplots. Several correlations were
identified, but they were relatively weak, with the strongest correlations still only explaining about
20-40% of the variance in the output QoIs. This may be in part because one DFN involves
significant stochastic variability of the particular fracture network instantiated. Additionally, the
variability of the epistemic samples of the performance metrics for each DFN is significant. It can
be expected that the variability across epistemic variabilities is not fully reflected when using a
mean value to summarize the performance metric then correlate it with DFN attributes. There are
some correlations, however, and we can use the graph metrics both to verify the behavior of the
DFNs and to perform sensitivities.
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As one would expect, the graph attributes themselves (average degree, number of nodes, and
number of edges) are highly correlated—see, for example, Figure 4-21a. Each of these QoIs was
positively correlated with the water mass flow rate between rock and aquifer, denoted "Rock to
Aquifer Flow Rate in the scatterplot Figure 4-2 lb. The fact that these quantities are correlated
makes intuitive sense because the graph metrics are measures of the number of pathways in the
DFN—the more pathways between rock and aquifer, the greater the mass flow rate will be.
However, there is significant variation, especially for larger average degree. This may be because
an increased average degree corresponds to more pathways, possibly introducing greater
variability in the flow rate. A more targeted analysis would be necessary to confirm or deny this
postulation, however.
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Figure 4-21b A scatterplot of the average
degree vs. mass flow rate from rock to
aquifer at 1 My, along with the Pearson

correlation coefficient.

As is shown in Figure 4-22, the number of intersections with the repository exhibited a negative
correlation with the mean residence times in the repository (as defined in 4.2.7) starting at
observation times of 1,000 y and later. It makes intuitive sense that the mean residence time in the
repository is negatively correlated with with the number of fractures intersecting it, since these
intersections increase the pathways out of the repository, making it easier for fluid to flow out.
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coefficient.

The graph QoI that yielded the most correlations to repository performance metrics was the
relative shortest travel time (RSTT). The relative shortest travel time is defined by normalizing the
graph-based shortest travel time by the minimum graph-based shortest travel time taken over all
DFNs:

RSTTi =
(graph shortest travel time)i

min(graph shortest travel time)i
i,j = 1,2, ... ,20. (4.7)

The procedure for computing the graph-based shortest travel time for each DFN is described
herein. For each DFN, a shortest travel time was computed using dfnGraph's flow functionality in
dfnWorks, which uses an intersection graph representation of the DFN, with intersections as nodes
and fractures as edges, and assigns weights to the edges of the graph based on the area and
permeability of each fracture. These are used to estimate a flow time between input and output
nodes in the graph, instantiated with inflow and outflow pressures and fluid viscosity specified by
the user. The default values were used for these quantities, set to 2 x 106 Pa, 1 x 106 Pa and
8.9 x 10-4 Pa-s respectively. The RSTT was then obtained by scaling all the flow times by the
minimum over all DFNs, as is defined in (4.7). Clearly there is no reason to assign any physical
relevance to the absolute shortest travel time derived from this procedure, since the pressures and
viscosity were assigned in an arbitrary fashion. The meaning of this quantity should be seen as a
relative ranking of the speed with which fluid can move from the repository to the aquifer across
DFNs.

In accordance with intuition, it was found that the RSTT was positively correlated with the
mean travel time of the peak 1291 concentration (as defined in 4.2.7) for observation times after
10,000 y, as well as the mean travel time of the maximum 1291 concentration taken over all times
(see Figure 4-23a and b). Both QoIs are measures of how rapidly fluid flows through the DFN, so
it is expected that an increase in one would correspond to an increase in the other.
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Finally, the RSTT was found to be positively correlated with the rock-to-aquifer mass flow at
late times (100,000 and 1 million years), but negatively correlated with the maximum (over time)
rock-to-aquifer mass flow, as shown in Figure 4-24. This difference in the sign of the correlation
may be explained by the change in sign of the rock-to-aquifer mass flow from early to late time.
In early time the mass flow is positive, while it is negative for later times, as can be seen Figure
4-24a. For positive mass flows, as for the peak rock-to-aquifer mass flow, one would expect the
negative correlation, since shorter travel times would correspond to DFNs where fluid could flow
more rapidly. On the other hand, for the negative mass flows at later time, it is less clear why there
would be a positive correlation.
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Figure 4-25 shows the correlation of RSTT with the mean peak 1291 concentration, showing
that shorter travel times correlate with higher mean peak 1291 concentrations.
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Figure 4-25. Mean of Peak 1291 Concentration (averaged over epistemic parameter
realizations) vs. RSTT.

Figure 4-26 does not average over the epistemic parameter realizations but shows the graph
attribute of relative shortest travel time vs. the peaks of all the QoIs. Note that relative shortest
travel time is most strongly correlated with mean travel time from the PFLOTRAN simulations.
This is a good sanity check because these metrics quantify the same thing. Note that graphs with
larger values of "relative shortest travel time" have the smallest maximum flow rates to the aquifer
(third graph from left). These larger values of relative shortest travel time also correspond to longer
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residence times in the respository and lower peak 1291 concentrations. Striations in the plot are the

result of spatial uncertainty; there are 20 vertical clusters, one for each DFN.

These results show promise that correlations between graph QoIs and repository performance

metrics of interest can be identified and used for analysis downstream.

1 o°
Relative Shortest

Travel Time

Relative Shortest

Travel Time

Relative Shortest

Travel Time

X 05
Q4bcoaoIDo 0 o 0 0

44bcameoo 0 o 0 0

OP)(swotO 000 o
Q4D(.®CTJd10 0 o 0 o
gib coraO 00 o O

tazroz:31.:o8 0 80 o8 8 §

I

Relative Shortest

Travel Time

ca x 105 x 105
0 Te __,

8 a • P co

(7". 7.5 4 1 o • . 2c ,—
Cr3 - 3.5

7 
1 IS 

"6 '`')
WI
>
Lu IF O 3

>,` .:.' 6 5 I @ > 'cr,

I 1— (̀,:2) 2.5
i— 6 cC i_i— 22 2

10o 105 10o

Relative Shortest Relative Shortest

Travel Time Travel Time

185

1
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4.3.5 Interaction plots

As mentioned, one key focus for this analysis was to identify peak 1291 concentration and its
relationship to the DFN and associated characteristics. This next series of plots highlights a
particular QoI on the y-axis as a function of inputs, but the responses are colored by DFNs. These
plots highlight clear patterns with respect to DFN, which is an artifact of the small spatial sample
size. Offline, we performed a graph analysis study with the 20 DFNs as well as with a larger set
of 100 DFNs. We saw significant correlations of the graph QoIs and DFN number with 20 DFNs
but very little correlation with 100 DFNs.

Figure 4-27 is similar to Figure 4-12 but colored by the spatial realization. As discussed, the
predominance of the higher DFN numbers associated with larger 1291 in this figure is an artifact of
having only 20 DFNs. The number associated with a spatial realization is the order in which that
DFN was generated by dfnWorks; it has no meaningful relationship to features of the DFN. There
are 40 vertical clusters (one for each parameter loop sample) and 20 points within each cluster
(one for each spatial loop sample).
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Figure 4-27. Peak 1291 Concentration vs. epistemic inputs defined in Table 4-1, colored by

DFN.
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Figure 4-28 shows a strong dominance of DFN on mean travel time. Note that this figure
indicates the mean travel time is almost totally dominated by DFN: there is not a strong influence
of the epistemic parameters. The dominance of the DFN uncertainty is why the clusters in the plot
(which appear like horizontal striations at different QoI magnitudes) are each a uniform color.
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Figure 4-28. MTT at 1Ma vs. epistemic inputs defined in Table 4-1, colored by DFN.
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Figure 4-29 shows a similar plot for mean residence time. The correlation between pBuffer and
the mean residence time appears to be a significant trend, with the DFN effect being somewhat
less obvious for other parameters.
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Figure 4-29. MRT at 1Ma vs. epistemic inputs defined in Table 4-1, colored by DFN.
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Figure 4-30 shows the interaction between the time of the peak 1291 concentration and its value,
colored by rnean travel tirne of a conservative tracer frorn the repository to the aquifer location of
the peak 1291 concentration. There are sorne interesting observations from Figure 4-30. The time of
the peak 1291 concentration is divided into two groups. For the group with the earlier tirne of peak,
the earliest peaks occurred with shorter (blue) travel tirnes. The second grouping showed
increasing travel tirnes as the tirne of the peak concentration increased.
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Figure 4-30. Peak 1291 concentration vs. Time of Peak, colored by Mean Travel Time of a
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Another example of a time-dependent relationship between parameters is shown in Figure
4-3 1 . This figure shows again the time of peak 1291 concentration vs. the peak value, but it is colored
by the mean waste package degradation rate. Here, higher values of mean WP rate correspond to
early peak 1291 times and lower values correspond to later peak 1291 times. This correlation is driven
by the waste package degradation: the faster the waste package degrades, the earlier it fails, which
turns on the radionuclide source term.
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4.3.6 Sensitivity Analysis

The next series of plots show the sensitivity analysis of various outputs with respect to the 7
epistemic parameters that were sampled as well as a graph characteristic that was used as a proxy
for the DFNs. Note that the inclusion of graph metrics (see Section 4.3.4) in the sensitivity analysis
is a new development. It was only attempted with one graph metric (the relative shortest travel
time) for this analysis, but this demonstrated its utility; we anticipate being able to use more graph
characteristics as proxies for a parametric representation of the DFNs in the future.

The plots below show the Sobol' main and total effect indices. Recall that the Sobol' indices
are variance-based indices. The main effect index indicates the fraction of the total response
variance that can be attributed to a particular parameter alone. For example, if a parameter has a
main effect index of 0.3 with respect to a response, that means that 30% of the variance in the
response can be attributed to the effect of that parameter's variance. The total effect index indicates
the combined or total effect of a variable and its interaction with other variables on the variance of
the response. The main effect indices should sum to one if there are no interaction effects; in the
presence of interaction effects, their sum will be less than one. The total effect indices are bounded
below by one because they include interactions in addition to the main effects. If the main and
total effect indices are the same value for a given parameter, this indicates the parameter does not
have significant interaction effects on the response with respect to other parameters.

The calculation of these sensitivity indices is a costly computation, requiring tens of thousands
of model evaluations. Because this is not feasible, the 800 sample realizations were used to
generate two types of surrogate models that were then used to perform the Sobol' variance-based
decomposition. The two surrogates used were polynomial regression (a second-order quadratic
regression) and polynomial chaos expansion. Both surrogates were applied without including the
graph metric as an input and a second quadratic regression was applied with the relative shortest
travel time (RSTT) included. The sensitivity results from the polynomial chaos expansion
surrogate are denoted by PCE2 (for polynomial chaos expansion, order 2) in the plots and the
results from the quadratic surrogate are denoted by Quad. Thus, the main effect Sobol index
estimated using the PCE surrogate is denoted PCE2 Main in the plots. The total effect Sobol index
estimated using the PCE surrogate is similarly denoted PCE2 Total, and the indices from the
quadratic surrogate are denoted analogously. The quadratic surrogate results are also labeled in
this fashion.

These surrogate model methods and the calculation of the Sobol' indices were discussed
extensively in last year's GDSA UQ/SA report [14]. Note that this year's dataset posed some
challenges to surrogate construction because there were 20 spatial replicates for each parameter
sample. That is, there was a 1 input 4 20 output values mapping. Many surrogate types perform
better with a 1 input 4 1 output mapping and this limited the order of the surrogate models that
could be used. Higher order polynomials or polynomial chaos expansions as well as Gaussian
process models require more unique input samples.

The data from this crystalline reference case poses an additional challenge because the
variability over the 20 replicates at each input parameter value is often quite large and dominated
by spatial uncertainty. When the RSTT is not included in the surrogate model, the spatial
uncertainty cannot be attributed to any of the parameters, so the surrogate model fails to explain
much of the variance or may spuriously attribute it to parameter interactions. This can be seen in
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some of the sensitivity analysis plots in this section. In the top plot of Figure 4-32, both the
quadratic and PCE models suggest interactions between many of the input parameters and no
single parameter stands out as substantially more important. When the RSTT is included, however,
the bottom plot shows that most of the variance is accounted for by the spatial uncertainty.

The plots below corroborate the trends shown in the scatterplots in Section 4.3.2 and provide
a quantitative ranking of parameter importance. Because this ranking is dependent on the quality
of the surrogate model, multiple models are provided. Inconsistencies between models highlight
the difficulty of fitting accurate surrogate models to this type of data. When the models are
consistent with each other, this suggests a relatively strong trend.

Figure 4-32 shows the sensitivity indices for the Peak 1291 concentrations when the RSTT is
not included to account for spatial uncertainty (top) and when the RSTT is included (bottom). The
surrogate models for sensitivity analysis on the peak 1291 concentration were fit using the logio
transformed peak concentrations. This technique can reduce the effects of different input/output
scales and improved the quality of the surrogate model results for peak 1291 concentration. The
only parameter with a clearly significant main effect according to both surrogates is kGlacial. The
mean waste package degradation rate and the permeability parameters all appear to have some
significance. Though the relationship with permeability parameters is less clear, the scatterplots in
Figure 4-27 support a negative correlation between kGlacial and peak 1291 concentration and a
positive correlation between meanWPrate and peak 1291 concentration. The total sensitivity indices
for the permeability parameters are at least double the value of the main sensitivity indices,
indicating that much of the permeability effects are interaction effects, which would explain why
the trends are not obvious in two-dimensional scatterplots.

Inclusion of the RSTT (bottom) did not improve the quality of the polynomial surrogate model
for Peak 1291 concentration. The model attributed very little variance to this graph metric, so the
Sobol indices do not suggest a different conclusion regarding variable importance. Results from
the quadratic model including RSTT identify the same dominant parameters as the polynomial
chaos expansion surrogate without the RSTT. For the remaining figures, the analysis including the
RSTT is only included when it improved the quality of the surrogate model.

4-42



Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework
September 2020

Un
ce

rt
ai

n 
P
a
r
a
m
e
t
e
r
 

Un
ce

rt
ai

n 
P
a
r
a
m
e
t
e
r
 

perrnBuf f er (m2)

permDRZ (m2)

kGlacial (m2)

rateUNF (yr-1)

stdWPrate (logjo(yr-1))

meanWPrate (logio(yr-1))

pBuf fer (-)

RSTT (-)

permBuf fer (m2)

permDRZ (m2)

kGlacial (m2)

rateUNF (yr-I)

stdWPrate (logio(yr-1))

rneanWPrate (logio(yr-I))

pBu f f er (-)

Peak 1291 Concentration [M]

■

■

I

Quad. Total
Quad. Main
PCE2 Total
PCE2 Main

0 0.2 0.1 0.0 0.8 1

Index Value

CC'

I 7Quad. Total
Quad. Main

0 0.2 0 1 0 6 0.8

Index Value

1

Figure 4-32. Sobol indices for Peak 1291 concentration without including the graph metric
(top) and with the RSTT (bottom).
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Figure 4-33 shows the sensitivity indices for the mean travel time at 1Ma. Again, we see several
parameters have some effect, with pBuffer ranking the highest followed by the permeability of the
buffer, the permeability of the DRZ, and kGlacial. As mentioned previously, the meanWPrate,
stdWPrate, and rateUNF cannot affect travel time or residence time. We suspect that the small
main effect indices are an artifact of using sampling methods to estimate the Sobol' indices and
also due to the fact we are using surrogate models to calculate these indices. The surrogate models
are constructed over replicates with significant replicate variability: that is, for one parameter
setting, there are 20 DFN realizations that yield significantly different outputs. The surrogate
estimation is thus challenging in the face of such noise, and we see that noise reflected in part with
some spurious main effects indices which should be zero but are small (<0.1). There is also some
disagreement between the models regarding the top ranked parameter. The quadratic surrogate
attributes more variance to the permeabilities of the buffer and DRZ than to pBuffer, whereas the
polynomial chaos expansion model clearly attributes most of the variance to pBuffer.

We added one of the graph attributes, the RSTT, to the set of inputs and re-ran the calculations
to see if the graph attribute (representing DFN variability) would account for the variance in the
output. Figure 4-32 shows that adding the graph attribute does not significantly change the ranking
of parameter significance with respect to peak 1291 concentration. However, it does significantly
change the parameter ranking for mean travel time and in fact now is the dominant factor. Figure
4-33 shows that all the variance in peak mean travel time may be attributed to the RSTT, which is
a proxy for the DFN. The RSTT also appears to have a significant effect on mean residence time
(accounting for 35% of the variance, Figure 4-34) and on the flow rate from the rock to aquifer
(accounting for 60% of the variance, Figure 4-35) but not on the east boundary flow rate which is
still dominated by kGlacial (Figure 4-36). We are currently investigating more graph attributes.
The fact that the RSTT shows a significant main and total effect on many of the QoIs is consistent
with the DFN effect observed in scatter plots and demonstrates that the importance of the DFN on
these results can be captured by a summary statistic.
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Figure 4-33. Sobol indices for mean travel time of a conservative tracer from the repository
to the aquifer at 1Ma without including the RSTT (top) and with the RSTT (bottom).
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The peak mean residence time shows a different result: the variance it is totally dominated by
pBuffer as shown in Figure 4-34, where pBuffer accounts for nearly 100% of the variance.
However, when the RSTT is added, the effect of the DFN influence is seen. This is consistent with
the trends observed in scatterplots; the mean residence time is positively correlated with the RSTT
in Figure 4-26 and positively correlated with pBuffer in Figure 4-29. Both trends are distinct but
the pBuffer trend is stronger and more monotonic, which is consistent with its higher index values.
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Figure 4-34. Sobol indices for mean residence time of an initial conservative tracer within
the repository on [0, 1 Ma] without including the RSTT (top) and with the RSTT (bottom).

For the rock to aquifer flow rate (Figure 4-35), we see pBuffer having a strong effect on the
peak flow rate from the rock to the aquifer, contributing nearly 50% of the variance with some
other parameters having a small main or total effect. Adding the graph metric changes the
sensitivity analysis results, with RSTT accounting for 60% of the variance. As with the mean
residence time, the sensitivity results including the RSTT are consistent with trends observed in
the scatterplots. Figure 4-15 shows a weak positive trend between pBuffer and the maximum rock
to aquifer flow rate and Figure 4-26 shows a stronger negative trend between the RSTT and the
maximum rock to aquifer flow rate.
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Figure 4-35. Sobol indices for rock to aquifer maximum water flow rate without including
the RSTT (top) and with the RSTT (bottom).
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Finally, kGlacial is the most significant parameter affecting the flow rate from the rock to the
east boundary, as shown in Figure 4-36, accounting for all the variance. This result also make
sense. The maximum east boundary rate is plotted against the epistemic input parameters in Figure
4-37. Note that there are 40 clusters in the plots, one for each realization of the parameter loop,
and 20 points within each cluster, one for each spatial realization. The positive trend with kGlacial
is clearly the dominant trend. Unlike the other QoIs, there is comparatively very little effect from
the spatial uncertainty, so it makes sense that the RSTT did not change the sensitivity index results.
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Figure 4-36. Sobol indices for maximum east boundary water flow rate.
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boundary water flow rate, showing the strong dependence on kGlacial.

4.4 Conclusions for Crystalline Reference Case UA

This analysis was performed for a reference case repository for commercial spent nuclear fuel
in fractured crystalline host rock. The uncertainty and sensitivity analyses were designed using
lessons learned to build upon the analyses performed on this reference case in [14]. The same
epistemic uncertainties were included as in the previous uncertainty analysis, but the sampling
structure was changed such that each epistemic parameter sample was repeated for each spatial
loop. This sampling strategy was chosen to distinguish the effects of epistemic parameter
uncertainties from the effects of spatial heterogeneity) uncertainties on key QoIs. In addition to
changing the sampling strategy, we defined new DFN-related bulk characteristic QoIs to add
insights into repository performance beyond those gained from analysis of peak 1291

concentrations.
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The peak 1291 concentration QoI was also changed to be the maximum taken over all
observation points in the aquifer, rather than analyzing the 1291 concentrations only at a few
observation points. The work described in Section 4.3 emphasizes the spatial heterogeneity of the
problem and metrics designed to tease out such effects.

The effects of spatial uncertainty were emphasized as a result of the new sampling strategy.
This interfered with the ability of surrogate models to adequately characterize sensitivity of the
QoIs to the epistemic parameter uncertainties, due to the small overall number of unique paramter
samples and because of the high variance in the 20 different estimates of the QoI at each of the 40
epistemic samples introduced by spatial uncertainties. We were able to investigate sensitivity to
the epistemic parameter uncertainties by including a graph metric (the RSTT) in the surrogate
model that acted as a proxy for the DFN. This improved performance of the surrogate for QoIs
that are sensitive to the DFN and led to sensitivity results less dominated by (potentially spurious)
interaction effects.

In summary, some of the key findings from the sensitivity analyses are:

1) Relative shortest travel time, mean travel time, mean residence time, and even peak flow
rate from rock to aquifer all provide similar measures of connectivity/transport in the rock.

2) There is a significant scatter in peak 1291. We did not find one parameter that clearly drives
uncertainty in the peak 1291 concentration. kGlacial and the permeability parameters have some
effect, and there are small interaction effects. We had hypothesized that the measures of
connectivity would be strongly influential factors, but they were not. In some ways, we are
divorcing the fracture connectivity relationship from the iodine concentration by taking the peak
1291 over the entire aquifer compared to a maximum 1291 at a location, because the location of the
peak could be due both to different fracture paths and different waste package breaches. That is,
even if we don't see an explicit effect of connectivity, there still could be some interaction between
fracture path, waste package breach order, and location of waste package that accounts for most
of the remaining variance in the 1291 concentration not accounted for by kGlacial and the
permeability parameters. This would be very hard to tease out.

3) The mean travel time, mean residence time, and maximum flow rate from the rock to aquifer
were all heavily influenced by the relative shortest travel time which is a proxy for DFN: these
quantities were significantly influenced by DFNs. Additionally, the relationships between buffer
porosity and measures of connectivity can be explained by the physics of the problem and may be
of secondary importance compared to the dominant influence of the DFN.

4) Repeating the epistemic parameter samples helped us identify how much variability comes
from the spatial uncertainties but also limited the utility we got out of the sensitivity analysis.

5) The inclusion of a graph attribute for sensitivity analysis showed promise and helped
improve the sensitivity analyses given our small epistemic sample size. In particular, the graph
attributes allowed us to quantify the effect of spatial uncertainty in the sensitivity analysis of the
crystalline reference case, something that could not be done previously. We will continue
investigation of such graph characteristics in future work.
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5. UQ WORKFLOW

The GDSA computational framework is largely comprised of two primary computational
capabilities: PFLOTRAN and Dakota, as described in Section 1.2. An analysis supporting the
performance assessment of a geologic repository necessarily requires the development and use of
many additional connective computational components beyond these two primary components,
including the development of input files, scripts that connect the capabilities of PFLOTRAN and
Dakota, scripts to submit calculations to computational resources, capabilities to gather and post-
process results, and much more. The collection of these computational components that comprise
the complete body of work required to produce results of interest from a computational simulation
capability, such as the GDSA framework, is hereafter referred to as an analysis workflow.

The development of GDSA analysis workflows often occurs on an analysis-by-analysis basis
and requires the expertise of highly experienced modelers/analysts who are very familiar with the
PFLOTRAN code base. Often, these complex analysis workflows involve many manual steps and
continuous monitoring of simulations. This can make it difficult to replicate previous analyses,
hand-off analyses between analysts, and/or train new analysts to produce analysis workflows as
the reproducibility of these analyses depends on how well the modeler/analyst organized and
documented what was done.

To improve analysis workflow automation, development, reproducibility, and traceability for
repository PA simulations, the GDSA team began developing automated analysis workflows using
the Next-Generation Workflow (NGW) capability in FY20. The Next-Generation Workflow
(NGW) capability is an open source engine that was developed at Sandia National Laboratories to
provide analysts with a capability to construct, execute, and communicate end-to-end
computational simulation analysis workflows [1]. This capability is a graphical, node-based
interface that includes many pre-programed support functions which are often utilized within
computational simulation analysis workflows. NGW is available within the Dakota Graphical User
Interface (GUI) [2] and is thus available to the GDSA analysis community.

Development of NGW analysis workflows for the GDSA Framework is focused providing an
automated workflow capability with the following objectives:

• Reduce the learning curve for new users to set up and run simulations and analysis
workflows

• Speed up analysis workflow execution time

• Eliminate/reduce the need for manual intervention and allow for automated monitoring

• Reduce the potential for the introduction of human errors

• Increase traceability and reproducibility

A series of NGW analysis workflows for GDSA analysis exemplars, including a short course
exercise and the Crystalline Reference Case, were developed in FY20 to pilot the use of this
capability for the GDSA program [3]. Section 3.2.1 of the GDSA Framework report [3] details the
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development of these workflows, provides examples of their use, and proposes a path forward for
additional development. Appendix C of [3] provides a complete graphical workflow,
demonstrating an uncertainty quantification study. This workflow sets parameters of interest,
inserts these parameters into the PFLOTRAN input file, collects additional input files, runs
PFLOTRAN, and develops and runs a post-processing script. The eventual goal of this work is to
develop an analysis workflow library that can be made available to the GDSA analysis community.

5.1 References: Chapter 5
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6. INTERNATIONAL COLLABORATIONS

6.1 Sensitivity Analysis of Reference Cases

This year, two cases studies were performed as part of an international collaboration on
sensitivity analysis. This activity is part of a working group focused on sensitivity analysis methods
that falls under the umbrella of the Integration Group for the Safety Case (IGSC) Symposium on
the Safety Case of of OECD/NEA [1]. Participating organizations or countries include GRS
(Germany), Clausthal University of Technology (TUC) (Germany), Sandia National Laboratories
(SNL) (USA), Posiva (Finland), SCK-CEN (Belgium), and the Nuclear Safety Institute of the
Russian Academy of Sciences (Russia). The cases are briefly described below. For a more
complete description, see [2]. Note that a variety of sensitivity analysis approaches were used by
the participating organizations, including simple and partial correlation coefficients on the raw
data and on rank-transformed data, regression approaches, CUSUNORO curves, and scatterplots.
Below we present only the variance-based results because this was of particular interest to this
working group.

6.1.1 GRS: LILW repository in salt

The case study provided by GRS involved a Low and Intermediate Level Waste (LILW) in a
salt repository [3]. There were four separate data sets provided by GRS involving 6 uncertain
inputs or 11 uncertain inputs, and 4096 samples or 8192 samples. The analyses performed involved
creating surrogate models (linear regression, quadratic regression, multivariate adaptive regression
splines (MARS), and polynomial chaos expansion (PCE)). The surrogates were then used to
estimate the Sobol' variance-decomposition sensitivity indices. Correlations and scatterplots were
also used.

Figure 6-1 shows the main effects indices as a function of time, based on different surrogate
models for the 11 variable case and 8192 samples. These show similar patterns of variable
importance over time. IniPermSeal, AEBConv, and GasEntryP are the most important parameters
in terms of significant main effects.
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Figure 6-1. Main Sobol' index calculated for the peak 1291 concentration [M] for the GRS
Salt case.

Figure 6-2 shows the main effects with the total effects obtained using the PCE model. The
total effects indices account for the variable itself as well as interactions with other variables. The
higher total sensitivity indices in Figure 6-2 suggest significant interaction effects (note scale
differences compared with Figure 6-1). Including second-order interactions, RefConv gains some
importance but the rankings of the top three parameters are similar. GasEntryP appears to have
more significant interaction effects than main effects later in time. This sharp decrease in the main
index is due to a threshold effect [3].
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Figure 6-2. Main and total Sobol' indices calculated for the peak 1291 concentration [M] for
the GRS Salt case.

To summarize the sensitivity analysis results for the GRS salt case: most of the surrogate
models performed well and gave similar results, though Mars did not perform as well with small
sample sizes. Some Sobol' index estimates are not precise (e.g. values greater than 1 or less than
0), which should be resolved by increasing the sample size applied to the surrogate. Nonetheless,
trends and rankings are consistent.

Variance-based methods with surrogates that can detect non-linear and non-monotonic
relationships show that there are interactions that may not be captured using only linear methods.
AEBConv importance remains high over time when measured with the total index, even though
the main index decreases. This is consistent with the GRS analysis which showed that linear
methods did not adequately detect AEBConv importance for the full (relevant) duration of the
simulation.

6.1.2 !brae

The Ibrae case study was provided by the Nuclear Safety Institute of Russia. It is a case
involving a cross-sectional groundwater flow model in heterogeneous geological media. There are
12 inputs: seven representing hydraulic conductivities of the different structural elements in the
media and five boundary conditions. There are 37 outputs, representing 37 values of hydraulic
heads at different observation points in the domain.

We used the same approach as for the GRS salt case: surrogate model construction and Sobol'
index calculation (main and total effects). The BC2 input was identified as the most influential
parameter by far, regardless of which surrogate was used. There was also essentially no difference
between main and total indices, indicating the Ibrae model does not include variable interaction.
The Sobol' indices estimates were repeated for multiple sample sizes (number of simulations).
Results were essentially the same for 140 samples as for 28,000. These results were consistent
with the sensitivity analyses performed by Ibrae on this case.
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6.2 Survey of Sampling-Based Sensitivity Analysis Methods in the
International Community

Sitakanta Mohanty, in collaboration with Laura Swiler and Emily Stein, has written a report
titled "Survey of Sampling-Based Sensitivity Analysis Methods Used in Geologic Disposal Safety
Assessments." (SAND2020-XXXX) [4]. This report presents a review of UQ/SA methods used
by selected non-US countries (seven countries) and international consortia engaged in repository
PAs over the past two decades. The report describes sampling-base sensitivity analysis methods
formally used in performance assessment calculations to meet regulatory requirements and
describes methods used for supplemental, experimental, or developmental purposes. It lays out (i)
the current practices by various countries, (ii) international collaborations, and (iii) some
recommendations on future developments.

For each country, a brief description is provided of the PA model, which is the UQ/SA
performance function model. The review also suggest that future efforts should focus on handling
parameter interactions in the PA model with a large number of sampled parameters (>>10),
elegantly handling correlated parameters, dealing with discontinuity in the model output,
developing a protocol for selecting the appropriate UQ/SA methods based on input-output
relationships, and continued development of UQ/SA toolboxes with a full suite of traditional and
advanced methods.
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7. CONCLUSIONS

This report covers the main topics addressed in the GDSA UQ/SA work performed in 2020.

The report provides an overview of an exciting new uncertainty quantification method
involving models at multiple levels of fidelity. We presented results demonstrating the use of these
multifidelity uncertainty quantification approaches to calculate a mean estimate of a quantity of
interest more cheaply and with lower variance than an equivalent number of high-fidelity
simulations. We also demonstrated the use of multifidelity methods in calculating Sobol'
sensitivity indices.

This year, we performed several verification exercises on the discrete fracture networks
because the FY1 9 results demonstrated that DFNs were a main source of uncertainty for the
crystalline reference case. We examined the DFNs closely to ensure consistency of the number of
fractures and fracture area per unit volume with respect to estimates from the SKB Forsmark site.
We also upscaled the DFNs to obtain equivalent continuous porous medium (ECPM) results in
terms of the hydraulic conductivity tensor values. We compared the ECPM obtained from
upscaling the DFNs with those reported by SKB and found good agreement.

This year, we extended the sensitivity analysis of the crystalline reference case performed in
FY1 9, focusing on indicators of fracture connectivity as well as information about the flow
between the repository and the aquifer. To facilitate this, PFLOTRAN added several new
quantities of interest, including maximum concentrations (of 1291 and tracers) in the aquifer at each
time step, along with the location of the peak concentrations, mean travel time from the repository
to various locations, residence time within the repository, and total water flow rate in various
directions. The results of the sensitivity analysis of the crystalline reference case based on a new
set of 800 PFLOTRAN runs (20 realizations of spatial uncertainty x 40 epistemic samples) showed
that these new quantities of interest gave us several new insights. The flow rates, mean travel time,
and mean residence time were somewhat correlated. There was not one parameter that clearly
drives the uncertainty in peak 1291 concentration. The most important parameters for several of the
QoIs were kGlacial and pBuffer.

A new capability we developed this year was to calculate graph attributes from the DFNs, such
as number of nodes and edges, average degree and relative shortest travel time. When we included
a graph attribute in the sensitivity analysis, it had a significant effect on responses such as mean
travel time, mean residence time, and flow rates, suggesting that the variability in DFNs drives the
uncertainty in these responses. The inclusion of these graph attributes in sensitivity analysis shows
promise and helped improve sensitivity results with our small epistemic sample size.

Another activity started this year was the GDSA Workflow. This workflow couples Dakota,
PFLOTRAN, and SAW (the Sandia Analysis Workflow software) to present the user with a unified
interface where the actual workflow can be dictated in an easy-to-use graphical format. This
workflow also allows greater reproducibility and traceability of the actual files and scripts used for
a particular study. This is increasingly important as we scale up analyses and extract more
quantities of interest that must be tracked both as function of time and location (e.g. peak 1291
concentration). We demonstrated the UQ workflow for a GDSA study involving two sampling
loops over spatial and epistemic uncertainties.
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Finally, we continue to engage with the international community on sensitivity analysis topics.
This year, we presented results for two international case studies as part of an international working
group focused on UQ/SA for repository analysis.

There is a rich legacy of UQ/SA being performed in repository assessment. Development,
implementation, and demonstration of new tools and methods for uncertainty and sensitivity
analysis in GDSA Framework will maintain leadership of the repository science community in
UQ/SA methods, while also maintaining an infrastructure of proven tools. Geologic repository
performance assessment in the U.S. involves coupled, multi-physics modeling at high resolution,
large parameter spaces, and greater use of random (stochastic) field modeling. It requires high-
performance computing and costly sample evaluations. UQ/SA methods discussed in this report,
including surrogate modeling to reduce computational expense, variance-based sensitivity analysis
to quantify importance of parameter interactions in a multi-physics system, and new multi-fidelity
methods will enable analysis methods to keep pace with the increasing sophistication of the
physics models. GDSA Framework development seeks to keep abreast of improvements to existing
UQ/SA methods, employ new methods, and maintain an infrastructure of proven tools that can be
extended to support computationally expensive analyses.

There are several possible avenues of future UQ/SA development, including:

• Time-dependent sensitivity analysis methods
• Dimension reduction
• Importance sampling
• Surrogate models
• Bayesian calibration
• Estimating/generating distributions/ranges for uncertain inputs
• Multifidelity UQ approaches
• Model form uncertainty
• Density-based SA methods

Future work will involve further development of the items above as they align with the GDSA
Framework and the repository performance assessment needed.
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