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ABSTRACT

Nearly every protocol used to analyze the performance of quantum information processors is based
on an assumption that the errors experienced by the device during logical operations are constant
in time and are insensitive to external contexts. This assumption is pervasive, rarely stated, and
almost always wrong. Quantum devices that do behave this way are termed ‘“Markovian,” but
nearly every system we have ever probed has displayed drift or crosstalk or memory effects — they
are all non-Markovian. Strong non-Markovianity introduces spurious effects in characterization
protocols and violates assumptions of the fault-tolerance threshold theorems.

This SAND report details a three year laboratory-directed research and development (LDRD)
project entitled, "Diagnosing and Destroying non-Markovian Noise in Quantum Information Pro-
cessors." This program was initiated to build tools to study non-Markovian dynamics and quantum
systems and develop robust methodologies for eliminating it. The program achieved a number of
notable successes, including the first statistically rigorous protocol for identifying and characteriz-
ing drift in quantum systems, a formalism for modeling memory effects in quantum devices, and
the successful suppression of drift in a Sandia trapped-ion quantum processor.
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Figure 2-3. Measuring qubit stability using time-resolved GST. The results of two time-
resolved GST experiments — using the gates Gj, Gx and Gy — with adjustments
made after the first experiment aimed at stabilizing the qubit. A-B. The evidence
for instability in each circuit in the first experiment, quantified by A, (see main
text). A pixel is colored when A;, is large enough to be statistically significant,
otherwise it is greyscale. Each circuit consists of repeating a germ sequence [
times in between six initialization and pre-measurement sequences. The data
is arranged by germ and approximate circuit length L, and then separated into
the 6 x 6 different preparation and measurement sequence pairs, as shown on
the axes of B (“{}” denotes the null sequence). Only long circuits containing
repeated applications of G; exhibit evidence of drift. In the second experiment
none of the A, are statistically significant (data not shown). C-D. The result
of time-resolved tomographic reconstructions of the gates in each experiment,
summarized by the diamond distance error of each gate, and the decomposition
of the coherent errors in the idle gate G; into rotation angles around £, y and Z,
over the duration of each experiment (fnax ~ 8 hours and tpnax ~ 2.5 days for
the first and second experiment, respectively). E. The power spectrum for each
experiment obtained by averaging the individual power spectra for the different
circuits, with filled points denoting power above the 5% significance thresholds
(MOt SHOWI). .ot e e e e e 17






1. INTRODUCTION

The continued rapid progress in qubit technology development depends critically on reliable char-
acterization protocols that quantify as-built qubits’ performance, identify error modes, and guide
R&D for the next generation. Sandia’s gate set tomography (GST) [1, 2] is the most powerful pro-
tocol of this sort. All of these protocols, including GST, assume that the qubits’ noise is Markovian
— it is not changing or correlated in time. But real qubits always suffer from significant “non-
Markovian” noise, and in nearly every qubit system we have probed, the noise drifts and/or dis-
plays memory effects. When this Markovianity assumption is violated, characterization protocols
quickly become unreliable, and in the worst case their results are meaningless and unpredictable.
Non-Markovianity therefore poses a massive source of unmitigated risk for future qubit technolo-
gies, limiting the performance of all known quantum algorithms and violating core assumptions
of the fault-tolerance threshold theorem. It also inhibits qubit characterization — it’s impossible to
assess quantum hardware in the presence of uncontrolled and unidentified non-Markovianity.

The goal of this program was to solve these problems by creating new, reliable protocols for mod-
eling and characterizing non- Markovian noise. We identified two distinct and experimentally
relevant classes of non-Markovianity, low-frequency drift and short-time memory effect, and tar-
geted our our work at identifying and characterizing these particular effects. The result is a suite
of non-Markovianity tools to support comprehensive assessment of quantum device performance.
These tools provide means to augment standard characterization and performance assessment pro-
tocols so that they continue to function in the presence of non-Markovianity. Among the most
important of these newly-augmented tools is gate set tomography.

1.1. Non-Markovian gate set tomography

Quantum process tomography is a technique designed to learn a process-matrix representation
of the logic operations of a quantum devices. This protocol is relatively straightforward, but it
suffers from self- consistency problems and cannot cope with state preparation and measurement
(SPAM) errors. These problems motivated the development of randomized benchmarking (RB),
which solves the problems with SPAM error, but is only able to measure a single reduced metric
of processor performance. While convenient for reporting and tracking broad performance trends,
this particular fidelity is not obviously relevant to the long term goal of quantum error correction.
RB also provides no diagnostic information about the gates being characterized, which limits its
utility for debugging and improving qubit performance.

Gate set tomography (GST) was designed to provide these diagnostics. GST reconstructs all as-
pects of the quantum logic gates, and then any metric of interest can be computed from that re-
construction. Standard GST is designed to characterize generic qubit systems, making minimal
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assumptions about the underlying physics. This has allowed the use of GST to successfully char-
acterize many physical systems, including Si/SiGe quantum dots, trapped ions, phosphorus impu-
rities in Si and superconducting transmons. These successful experimental demonstrations have
shown that GST is a useful tool for assessing and debugging qubits. The Sandia GST team has
released a well-tested, open-source python GST package called pyGSTi.

Standard GST does make one strong, critical assumption about the underlying physics of the sys-
tem: that the gates being characterized are stationary and Markovian. In other words, a gate’s
effect on the quantum processor does not depend on time, context, or other gates in the past. Un-
fortunately, there is overwhelming experimental evidence that this assumption is strongly violated
in many physical systems. Standard GST can detect this “model violation”, but has no ability to
characterize the nature of the non-Markovianity or provide debugging hints.

GST is an extremely flexible platform, however, and in this report we detail methods for extending
it to encompass two distinct kinds of non-Markovianity: drift and memory. In Sec. 2 we report our
techniques and tools for identifying and characterizing drift in quantum information processors. In
Sec. 3, we report on a new class of quantum process models that are able to capture a wide range of
memory effects, including ion heating, pulse duration spillover, and coupling to classical degrees
of freedom.
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2. TIME DEPENDENCE

Quantum devices are prone to errors. Further, they are prone to inconsistent errors. Quantum
information processors are extremely sensitive to their environment, and — almost invariably —
this environment is unstable. Laser amplitudes change slowly, laser phases change quickly, and
surface electromagnetic fields fluctuate erratically and across vastly disparate timescales. These
environmental fluctuations conspire to leave quantum information processors exhibiting an always-
changing cacophony of errors.

Though drift in experimental quantum hardware is ubiquitous, theoretical treatments of quantum
devices are nearly always predicated on stable, Markovian models. Almost every quantum char-
acterization protocol is similarly built on an unstated assumption that target system is stable, but
drift in the target system violates these a assumptions and introduces uncontrolled errors in the
output metrics and estimates. Furthermore, near-term quantum algorithms, such as the variational
quantum eigensolver [3] or the quantum approximate optimization algorithm [4], are particularly
sensitive to drift. These hybrid heuristic algorithms work by pairing a classical optimizer to a
quantum accelerator — if the output of this accelerator is drifting, the entire algorithm can fail.

A particularly important casualty of drift is the stability assumption of the various fault-tolerance
theorems [3, 6, 7]. These theorems are among the crown jewels of quantum information theory
but they generally demand that errors be sufficiently uncorrelated and stable [5, 6]. Beyond the
obvious consequences of increased average error rates, the role of drift in this case is somewhat
subtle. If an environmental degree of freedom common to many qubits is stable, then the errors
on these qubits can be perfectly uncorrelated, even if the environment is not optimally tuned.
For instance, if the global, quantizing magnetic field of a set of spin qubits is a little higher than
expected, then all of the qubits will experience small, coherent Z rotations. These errors are local
and uncorrelated (since they are not random). But if the field is unstable, then all of the qubits will
experience the same instability, and the errors will become correlated. As an extreme example,
if the field suddenly grew sufficiently large to generate a phase flip in a single clock cycle, that
phase flip would be experienced by every single qubit. For many quantum codes, this corresponds
to a logical phase flip — an uncorrectable error. Less-dramatic fluctuations will still be correlated
across all qubits, increasing the probability of high-weight errors against which the code is not
fault tolerant.

In order for quantum computers to be trusted, their temporal variability must be controlled and cer-
tified. While unstable classical systems can be readily measured and monitored for drift, quantum
information processors are intrinsically and fundamentally limited by shot noise. Overcoming this
shot noise either simultaneous measurement of many qubits, or sequential measurements of one
or a few qubits over a long time. The first approach is experimentally demanding [8, 9], while the
second raises complex questions about how to extract meaningful time-dependent estimates from
shot-noise-corrupted time series data. In this program, we investigated this latter approach and
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developed a robust, statistically rigourous framework to assess the stability of quantum systems.
We discuss this work in Sec. 2.1.

In Sec. 2.2 we discuss a family of lightweight protocols for controlling drift in quantum infor-
mation processors based on shot-noise-tolerant stochastic optimization. Our work in this area is
preliminary and will be developed further under a DOE ECRP award.

2.1. Characterizing drifting quantum information processors

This thrust focused on development of the first statistically rigorous algorithms for identifying and
characterizing drift in quantum information processors. These tools have been released publicly
as a key component of the pyGSTi software package. Our methods have also been adopted by the
IARPA LogiQ program as sufficient for satisfying the program requirements for device stability,
and have seen broad adoption by the experimental quantum computing community. This work is
captured in the following paper and its supplementary material.

Detecting, tracking, and eliminating drift in quantum information processors

Timothy Proctor, Melissa Revelle, Erik Nielsen, Kenneth Rudinger, Daniel Lobser, Peter Maunz,
Robin Blume-Kohout, and Kevin Young

Sandia National Laboratories

Albuquerque, NM and Livermore, CA

In press at Nature Communications (accepted June 24, 2020)

Available at arXiv:1907.13608 [10]

Abstract If quantum information processors (QIPs) are ever to fulfill their potential, the diverse
errors that impact them must be understood and suppressed. But errors fluctuate over time in most
processors and the most widely used tools for characterizing them assume static error modes and
rates. This mismatch can cause unheralded failures, misidentified error modes, and significant
waste of experimental effort. Here, we demonstrate a fast spectral analysis technique for resolving
time dependence in QIPs. Our method is simple and statistically sound, and it can be applied to
time-series data from any repeated QIP experiment. We use data from both numerical simulations
and trapped-ion qubit experiments to show how our method can resolve time dependence when
coupled to popular characterization protocols, including randomized benchmarking, gate set to-
mography, and Ramsey spectroscopy. In the experiments, we detected instability and localized its
source, then implemented drift control techniques to mitigate it, and finally used our methods to
demonstrate that the instability had been eliminated. See Figs. 2-1, 2-2, and 2-3.

2.2. Controlling drift in quantum information processors

Computationally useful quantum information processors (QIP’s) are expected to contain millions
of qubits, each of which will undergo precisely tuned preparation, gate, and measurement opera-
tions. The experimentally tunable parameters that describe these operations are numerous and may
include, for example: the strength of an externally applied magnetic field; the amplitudes, phases,
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Figure 2-1. Diagnosing time-dependent errors in a quantum information processor.
A. A flowchart of our methodology for detecting and quantifying drift in a QIP, us-
ing time-series data from quantum circuits. The core steps (1-3) detect instability,
identify the dominant frequencies in any drift, and estimate the circuit outcome prob-
abilities over time. Additional steps (4 and/or 5) estimate time-varying parameters
(e.g., error rates) whenever a time-independent parameterized model is provided for
predicting circuit outcomes. B. An example of circuits on which this technique can
be implemented — Ramsey circuits with a variable wait time /#,, — as well as an illus-
tration of data obtained by “rastering” (each circuit is performed once in sequence
and this sequence is repeated N times). C-E. Results from performing these Ramsey
circuits ona !7'Yb™ ion qubit (/ = 1,2,4,---,8192, 1,, ~ 400us, N = 6000), and the cor-
responding stages of the flowchart. C. The power spectra observed in this experiment
for selected values of /. Frequencies with power above the threshold almost certainly
appear in the true time-dependent circuit probabilities, p; (7). D. Estimates of the prob-
ability trajectories (unbroken lines are estimates from step 3 of the flowchart; dotted
lines are the probabilities implied by the time-resolved detuning estimate shown in
E). E. The standard Ramsey model p;(¢t) = A + Bsin(2mnl#,Q), where Q is the qubit
detuning, is promoted to a time-resolved parameterized model (step 5a) and fit to the
data (step 5b), resulting in a time-resolved detuning estimate. The shaded area in
the inset is a 20 confidence region. The estimated detuning closely mirrors ambient
laboratory temperature.

frequencies, and polarizations of laser or microwave pulses; the electrical potentials applied to
surface electrodes; etc. Deviations of these parameters from their nominal values will necessarily
result in increased error rates for quantum operations. In order to function properly, a large QIP
must then be equipped with an automated suite of tools for tuning these parameters to their nom-
inal values. Furthermore, as these parameters may change over time, these tools must be able to
compensate for drift without introducing a significant increase in the error rate.

In this section, we introduce a set of tools for tuning and drift compensation (TDC) targeted specif-

15



0.2 A
0.0

L
0 1000 2000

0.06 Ff —— Truth

= Estimate 0.01

0.05 L

Phase

0.04 |

0.00 f

Error Rate

1
1
0.03 |

Rotation Angle (rad)

—0.01

0.02 |

f . "y
0 500 1000 1500 2000 0 250 500 750 1000
Time (arb. units) Time (arb. units)

1.00 Po E

- Time 0 0.006
YaYa /\ l/\ \ \
’ Y - y S ~ o
-

®  Time 2000

®  Time 1000
0.000
4

Success Probability
Rotation Angle (rad)

———————————— —0.006 >
0 20 40 60 80 660 700 740
Randomized Benchmarking Length Time (arb. units)

Figure 2-2. Time-resolved randomized benchmarking & tomography on simulated
data. A-C. Time-resolved RB on simulated data for gates with time-dependent phase
errors. A. The simulated phase error over time. B. The RB error rate () versus time
and an estimate obtained from simulated data. C. Estimated instantaneous average-
over-circuits (points) and per-circuit (distributions) success probabilities at each cir-
cuit length, and fits to an exponential (curves), for the three times denoted in B. Each
instantaneous estimate of r is a rescaling of the decay rate of the exponential fit at
that time. D-E. Time-resolved GST on simulated data, for three gates G;, G, and G,
that are subject to time-dependent coherent errors around the Z, ¥ and § axes, respec-
tively, by angles 6;, 6, and 6,. The estimates of these rotation angles (denoted 0;, 6,
and éy) closely track the true values. The shaded areas are 2¢ confidence regions.

ically to gate-model QIPs. Despite the wide variety of technologies used to implement quantum
devices, our tools utilize only experimental resources that all such QIPs must admit: state prepara-
tion, application of quantum circuits, and measurement. The state preparation and measurements
will be limited to the computational basis, while the quantum circuits, S;, will be composed of
gates, G;, from some small set, { G}. We don’t demand that the gates be universal, or even gen-
erate a unitary 7-design. The protocols we propose here will consist of specific quantum circuits
as well as classical post-processing algorithms for updating the control parameters conditional
on the circuit measurement results. For ease of presentation, we shall restrict our discussion to
single-qubit experiments, but our results are easily generalizable to many qubits.

The quantum circuits we utilize fall into two broad classes. The first class consists of those circuits
which, when perfectly implemented, yield a deterministic outcome (either O or 1). The second
class consists of those for which the ideal outcome is random and unbiased (50% chance of either
0 or 1). For reasons that will be made clear shortly, we shall refer to the class of deterministic
circuits as quadratic, and the class of unbiased random circuits as linear.

We indicate the state of the control parameters with a vector, (). At any given time, the error
rate of the QIP would be minimized if the controls were set to their nominal values, Mg (z). It
will be convenient to define the difference, 8(¢) =N (z) —M(¢), which we call the deviation. The
deviation characterizes how far the current control parameters of the QIP are from their optimal
configuration. Importantly, all state preparations, p(8(z)); gates, G(8(¢)); and measurements,
M (8(¢)) depend on the deviation.
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Figure 2-3. Measuring qubit stability using time-resolved GST. The results of two
time-resolved GST experiments — using the gates G;, G, and G, — with adjustments
made after the first experiment aimed at stabilizing the qubit. A-B. The evidence for
instability in each circuit in the first experiment, quantified by A, (see main text). A
pixel is colored when A, is large enough to be statistically significant, otherwise it
is greyscale. Each circuit consists of repeating a germ sequence [ times in between
six initialization and pre-measurement sequences. The data is arranged by germ and
approximate circuit length L, and then separated into the 6 x 6 different preparation
and measurement sequence pairs, as shown on the axes of B (“{}” denotes the null
sequence). Only long circuits containing repeated applications of G; exhibit evidence
of drift. In the second experiment none of the A, are statistically significant (data not
shown). C-D. The result of time-resolved tomographic reconstructions of the gates
in each experiment, summarized by the diamond distance error of each gate, and the
decomposition of the coherent errors in the idle gate G; into rotation angles around £,
vy and Z, over the duration of each experiment (f,,x =~ 8 hours and #;,,,x =~ 2.5 days for
the first and second experiment, respectively). E. The power spectrum for each ex-
periment obtained by averaging the individual power spectra for the different circuits,
with filled points denoting power above the 5% significance thresholds (not shown).

Explicitly, the probability of measuring outcome j of a POVM, {4}, after performing a sequence
of quantum gates, S; = G;, 0...0 Gj, © Gj,, 1s:

P\ (8) = T (94,(8)5(p(3): 8)) @D
— ((M(8)| 5:(8)[p(8))). 2.2

The second equality introduces an extension of the bra-ket notation to the Liouville space of su-
peroperators on density matrices[11]. When the deviation is small, the probability of measuring 1
after some quantum circuit is well approximated by the Taylor expansion

- ; i [ING
P! (8) = p(0)+p!) (0)8;+ 5503, + 0 (8") (2.3)

where we have used the Einstein summation convention (implicit summation over repeated indices)
and the comma derivative, defined as

d 0°

P,j(O) = EP(S) P,jk(o) = mp(s)

=0 ‘5~0
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By appropriate choice of the circuit, §;, one can make either the linear term or the quadratic term
dominate the other in the Taylor series. For example, consider two very simple circuits composed
only of /2-pulses along Gy:

S51(8) = Gx(d) (2.4)
$52(8) = Gx(8) 0 Gx(9) (2.5)
In this example, the unknown parameter is the pulse amplitude, so Gy(8) = exp(—i(w/4+ )0y ) is

a unitary operator. Assuming the qubit is prepared in the |0) state, then the probability of finding
it in |0) state after the circuit is

p1=1/2—1/2sin(28) ~1/2 -3 (2.6)
pa = sin(28)? ~ 48? 2.7)

It is here that we make connection to the previously introduced linear and quadratic circuit classes.
Restricting to linear circuits, those for which the zero-deviation outcomes are uniformly random,
small unitary errors can admit linear changes to circuit outcome probability. For quadratic circuits,
those for which the zero-deviation outcomes are deterministic, small unitary errors can result in
quadratic changes to the circuit outcome probability.

Because the response to deviation is different for these two classes of circuits, the TDC proce-
dures which rely on such circuits will be different as well. Ultimately we will require methods to
handle four broad classes of tuning and drift situations: single and multiple parameter TDC, each
with either linear or quadratic circuits. As we mentioned above, this work remains under active
development, and the remainder of this section will discuss:

1. Single-parameter, quadratic TDC
2. Single-parameter, linear TDC
3. Multi-parameter, linear TDC

We emphasize that we are not attempting optimal parameter estimation. The techniques we present
are almost certainly not the most efficient probes for the deviation parameters, and they are not
intended to be.

2.2.1. Single-parameter, quadratic tuning and drift control

In this section we consider the tuning of a single parameter using quadratic circuits. Recall that
quadratic circuits are those for which the probability of an unexpected result should be quadratic
for small deviation:

Pu(d) ~ 58 2.8)

We call s the sensitivity of the circuit and will assume that it is known. Such circuits abound
in quantum information — in the no noise/zero-deviation limit, ®-gates, XY-Ramsey sequences,
and syndrome extraction circuits all have have deterministic outcomes and are thus quadratically
sensitive to parametric errors. The goal of a TDC protocol is to find a value of the parameter, 1,
for which the probability of an unexpected outcome is less than some specified error, €.
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Our algorithm for minimizing the error proceeds as follows. Take data until n; 1’s are obtained
(with ng being the number of 0’s recorded). The distribution of ng should be given by the negative
binomial distribution. An unbiased estimator for the probability is p = (n; —1)/(no +n; —1).
From this we can estimate the magnitude of the deviation: |8| = \/1% Since we don’t know the
sign of the deviation, we guess, assigning a value of plus- or minus-one to a coin, ¢, and adjust the
parameter 1 <— 1+ cg|8\, where g is a gain parameter. This procedure is repeated, alternating the
sign of the coin each time, until the estimate of the probability is consistently below the target €.

This procedure is very accurate and surprisingly robust. Alternating the sign of the coin as de-
scribed above imposes a degree of self correction. If one choses the wrong direction at first, then
the deviation is increased by the correction step, increasing the probability of error. In the next
round, the probability estimate will reflect this increased error rate and the change in the coin’s
sign will ensure that this subsequent correction is in the right direction.

2.211. Example

In this section we present the simple case where only a single parameter is being adjusted and
we restrict our quantum circuits to those for which p(0) = 0 or 1. To illustrate our approach, we
consider tuning the action of a 7 pulse:

Gx(n) = exp(—inocy). (2.9)

In this case, the ideal value for the parameter is g = m/2. Rewriting the gate in terms of & =

N —"No;
G(8) = oexp(—idoy) (2.10)

After repeated applications of the gate, the probability of an error is given simply by per =

sin(8n)2. For small values of the deviation, this is simply per = 8?12, So the error is quadratic in
the deviation, as expected. For small deviation, the probability of measuring a 1 is

d2

Ep(O) = 58° (2.11)

1
Pi(8) =58

where the sensitivity is equal to s = 8% p(8)|s—o and will depend on the particular sequence being
implemented. Our approach can be summarized with the following pseudocode:

2.2.2. Single-parameter, linear tuning and drift control

Consider a qubit prepared in the state |[+) and allowed to freely evolve. If the frequency of the AC
control field reference Mg is not exactly equal to the Larmor frequency 1, the qubit’s Bloch vector
will precess in the x/y-plane at an angular frequency, ® = (1 —1). By applying a t/2-pulse about
the x-axis after some time, ¢, the qubit is left in the state

W) = cos(m/2+ (N —no)t) [1) +cos(m/2 — (M —mo)t) |-1), (2.12)
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ALGORITHM 2.1. SINGLEPARAMETERQUADRATICTDC

1.1

Input: n,e € (0,1),ko € Z~
I: c+ lLk+<1,n+1

2: while k/n > € do

33 n+0k+0

4:  while k < ko do

5; PREPARE |0)

6: APPLY G,(M)

7: if MEASURE |0)(0| then
8: k< k+1

9: end if
10: n<—n+1

11:  end while

122 Mente/(k=1)/(s(n—1))
13: c< —¢C

14: end while

where we have departed from the usual |0/1) qubit state notation in favor of |£1). The probability
of measuring r € {—1,1} is then

(14 rsin((n — o)) ~ ~ (1 +¢(n —10)) 2.13)

Pr(rin) = ;

N =

For small, 0, the probability is approximately linear in | — 1. Note that if we observe r = 1, it is
more likely that 1 > 1o that the reverse (and visa-versa). This suggests a stochastic optimization
approch to stabilizing the | parameter.

Explicitly, consider a one-parameter model with circuits whose outcome distributions are linearly
sensitive to the parameter 1. As above, we can write the probability of measuring r as given by

Pr(rn) = = (14 rsin(2s(m—mo))) (2.14)

| —

where 1 is the ideal operating point and s is a sensitivity parameter characterizing the amplifica-
tion power of the sequence (equal to ¢/2 in the earlier example). With each experiment, we get a
result, r, € {—1, 1}, and adjust the parameter through

MNn+1 = MNx -l-grn/S (2.15)

for g, a gain parameter. The gain parameter should be chosen small, g < 1, so that the system is
never kicked outside the linear response region of of the probability function.

Because r;, is a random variable, these relations define a stochastic difference equation describing
the dynamics of the parameter, 1, and imply a Fokker-Plank difference equation for its probability
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distribution P(7).

oo

Pr()= [ Kn)Pe(n)an (2.16)

Where K(n,m’) is the integral kernel defined through Eq. (2.15) as,

Kmn)= Y, 3m—Mm —gr/s)Pe(rln) (2.17)
r=—1,1

= 2 [801— (0 —g/5)) (1-+sin (2507~ 10))) + .18

dM—('+g/s)) (1 —sin(2s(Mm"=mno)))] (2.19)

To solve for the stationary distribution, we appeal to the central limit theorem and use the ansatz:

- ¢—(M-Mo)*/20° —
Prin) = ———. .
s V2n6?
We then solve for the variance, 62, through

Pr) = [ K(nm)Pr(n ) @21)

= S (1+sin(25(n )P +g/5) + (1 —sin(2s(n - Mo))P(n —g/s)]  (222)

After some algebra, assuming that the gain parameter, g < 1, we find that

M) =no, (2.23)
(Mm—mo)*) = %- (2.24)

That is, the mean of this process is a well-calibrated device, and the variance can be reduced
arbitrarily by increasing the sequence sensitivity and decreasing the gain. Because these results are
asymptotic, future work should focus on optimizing the sensitivity and gain schedules to minimize
the time required to achieve a given target variance.

Drift in the one-parameter model We now consider a situation where the underlying parameter
is no longer static, but drifts under a random walk process with step size, [. The kernel for this
process is then:

Kmn)= Y 8Mm—m—gr/s—Iq))Pr(q)Pr(r) (2.25)
q,r=—1,1
Here g is a random variable indicating whether the drift step is to the left or right. We assume an
unbiased random walk, for which Pr(g) = 1/2.

The central limit theorem again implies that the stationary distribution will be Gaussian, but with
a larger variance due to the underlying parameter drift. Some more algebra gives the stationary
variance as:

(2.26)



2.2.3. Multi-parameter, linear tuning and drift control

Now consider a more general set of gate sequences,

Gi=[]ei; (2.27)
j

selected so that Pr(r = 1) = 1/2 if all gates are perfect. For any given gate sequence, we can
compute the Jacobian of the sequence with respect to the experimentally adjustable parameters,
c

S; =V.G; (2.28)

We call this Jacobian the sensitivity vector. Computing the sensitivity vector requires a model for
the gate dynamics as functions of the control parameters. We can now use the following proceedure
to minimize the error in these parameters.

1. Select and run a gate sequence, G;
2. Measure the qubit state, r,

3. Conditional on the state of the qubit, adjust the parameters using the update rule:

Chtr1 = Cp +grnsi/|si|2 (229)

Now, assuming that the Jacobians span the space of adjustable parameters, this update rule should
converge on the target. The Fokkor-Plank equation describing the probability distribution over the
parameters is given by the kernel

K(e,d) =Y 8(c—(¢'—grsi/|si|*) Pr(rlc,s:) (2.30)
r==+1

Where Pr(r|c,s;) = 1/2(1 +sin(2s; - ¢)), or in the linear response region, Pr(r|c) = $(1+2s;-¢;).

We can now average over the sensitivity vectors to get
AN 1 & S / . 12 /.
K(e,¢') = T, Z (e— (¢ —grsi/|si|")) Pr(r|c,s;) (2.31)
r=%li=1

Again, taking the ansatz that the stationary distribution is

Pr(e) = Xleo,Z) (2.32)
B (2n)11Vdet(>:) “2b <_%(C_CO>T21(°—C0)) (2.33)

Solving for the stationary variance leads to the following relation between it and and the sensitiviy
vectors,

Y S/Tr(S;-2) = Y —£8; (2.34)

74l
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where we have defined S; = sisiT / |s,~|2, the projector onto the sensitivity vector, s;. This set of
projectors spans a subspace, 4 = span({S;}), of real, symmetric, n-by-n matrices. These projectors
further define a frame for A4, and we see that the left-hand side of (2.34) is equal to the frame
operator’s action on X. Recall the definition of the frame operator:

F(Q) =Y Si(S;,0) (2.35)
J

=) SiTr(S;i- Q) (2.36)
J

The operator F is invertible over 4, giving the stationary covariance matrix as:

z=r" (Z g s-). (2.37)

7 als;P

This relation has been demonstrated in simulation. The extension to drifting situations is straight-
forward, but also somewhat cumbersome.
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3. MEMORY DEPENDENCE

3.1. Non-Markovian noise in quantum information processors

The time-dependent characterization and tuning protocols discussed in the previous section ac-
count for drift on timescales of entire quantum circuits. In this section, we address non-Markovian
behavior with correlation times that are on the timescales of one or more quantum gates. In this
regime, a quantum gate G that is applied several times within a single circuit may not act the
same way each time. Current process-matrix-based approaches are incompatible with this kind of
noise, despite the ubiquity with which this phenomenon occurs in physical systems — this particular
non-Markovian behavior can arise from high-frequency electromagnetic noise, coupling to neigh-
boring qubits, serial context dependence, heating, leakage, or any of a number of other physical
sources. In this section we detail our approach to modeling, and eventual characterization of, fast
non-Markovianity.

3.2. Augmented completely-positive maps

Our approach to constructing simple models for describing non-Markovian noise in QIPs is to be-
gin with a description for Markovian noise, and then to generalize as needed. The most general
model for time-stationary Markovian noise in a QIP is one wherein each quantum logic gate (in-
cluding state preparation and measurement) is described by a completely positive, trace preserving
(CPTP) map Gi, where i denotes the specific logic gate. For a quantum system with Hilbert space
Hg and dimension ds , CPTP maps can be represented as d§ X a’§ matrices, or equivalently as
superoperators on the state space B(Hs).

A key advantage of using the CPTP map model for describing noisy quantum logic gates, as
opposed to using an ensemble of ideal gates distributed over the values of some noise parameter
and then simulating trajectories of noise processes using Monte Carlo, is that the CPTP map model
for Markovian noise permits probabilities to be calculated exactly without Monte Carlo. It is a
time/space tradeoff; more memory is required to store the density matrix of the QIP instead of a
pure state, but the simulation time scales only logarithmically with the desired precision (instead
of linearly or quadratically as for Monte Carlo).

We construct a simple model for non-Markovian noise, that similarly avoids the trajectories ap-
proach, by extending the state space on which the gate matrices act. Our model is the simplest
possible: the CPTP map applied to the system is conditioned on a finite-state classical environ-
ment, which evolves stochastically following each gate in a Markovian way. That is, although the
system dynamics is conditioned on a hidden environment and can therefore be non-Markovian, the
environment dynamics itself is Markovian and independent of the system.
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Specifically, our model is defined as follows:

1. Each logic gate labelled by i is described by a parameterized CPTP map G;(k), where k € Zg
for some integer K represents the classical state of the K-state environment.

2. All logic gates {Gi(k),i = 1,2,...} are conditioned on the same K-state environment.
3. Subsequent to each gate, the environment is updated via a stochastic map J.

(In this representation, at each clock cycle the conditional CP-map is applied before the environ-
ment is updated; this could be done the other way around, but it allows for the possibility of starting
with the environment in a deterministic state, from which it equilibrates toward its stationary dis-
tribution.)

We define such a model to be a discrete-environment augmented CP map model, and gates are now
described by augmented completely-positive (ACP) maps. To represent ACP maps compactly, for
each gate i there is a ACP map Q; defined as

Qi=(1®J)o (ZG ) ® k) k!) (3.1)

Relative to the standard system-bath approach to modelling non-Markovian behavior, this model is
extremely limited. The ‘environment’ is not only modelled classically, but also by a finite number
of states K (and we will be considering cases where K is small, in particular K = 2). The envi-
ronment dynamics is completely Markovian, and is not influenced by the system at all. Finally, all
logic gates G; will be conditioned on the same environment.

3.3. Modeling common Non-Markovian errors

The simplicity of this model belies its power. As we will demonstrate, even the simplest K =
2 model is capable of quantitatively describing many features of QIPs in the presence of non-
Markovian noise sources. In this section of this report, we provide several examples demonstrating
that the simple ACP model we propose can describe a number of realistic non-Markovian noise
effects on QIPs.

3.3.1. Low-frequency noise

Low frequency noise can cause correlated errors within the timeframe of a single quantum circuit,
but over the course of a full experiment noise may change dramatically. Assume the noise is a
low-frequency, two-level fluctuator with states + that causes the qubit frequency to change by +39,
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respectively. For a gate set that includes I, X, and Y, the corresponding ACP map matrices are (as
block matrices):

G = ( z(;s) } Z(g 5 ) 53)
Gx = (’é%) (3.3)
Gy — (%%) (3.4)

Here we have assumed that only the identity gate is appreciably sensitive to the qubit frequency
error. The initial state of the bath should be (1,1)" /2 and the measurement should average equally
over the bath states. We can similarly model noise with shorter time correlations. For symmetric
two level systems characterized by a transition rate 7, this leads to ACP maps with off-diagonal
blocks that are non-zero, such as

=9z | yzZ(=9)
g’—( YZ(+9) \(1—v>z<—6>) &-2)

3.3.2. Serial context dependence

Quantum information processors execute quantum circuits as a series of precisely timed electro-
magnetic control pulses. Ideally, the pulses implementing a particular quantum operation will stop
before the next operation is to begin. In many cases, however, a quantum operation will be neg-
atively impacted by the operation that came before. A common source of such errors is the finite
ring-down of microwave cavities, but it can also arise in trapped ion systems or because of overly
optimized control pulses. Pulse predistortion can even appear to violate causality, leading to gates
performance that depends following operation.

The ACP map formalism is well suited to modeling this type of error. As an example, we will
consider a single qubit with I, X, and Y gates. The identity will experience additional decoherence
if the preceding gate is an X or a Y, but will work well if the preceding gate is another identity. The
classical state space can then serve as a memory recording whether the last gate was an identity or
not. In block matrix form, the associated matrices are:

o Iood Ibad
g1—< 0 T o ) (3.6)
01X
gX:(TT) )
0Y
gYZ(TT) &R

Here Ly04/baq are the process matrices associated to the good identity gate and the bad gate, re-

spectively. The initial state of the bath should be (I,O)T, and, as usual, the measurement should
average equally over the final bath states.
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3.4. Discussion

ACP map models are attractive, compact, and intuitive representations for memory effects in quan-
tum information processors. We are currently working to incorporate these models in pyGSTi, and
to test our ability to fit these models using data from real hardware.
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