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SIZE EFFECTS IN FERROICS (R. E. Newnham, 1992)

MMulti-domain Single Domain Superpara-M/ESS Fara-M/E/S
D_' . O
J
1000 nm 100 nm 10 nm I nm
ML,E,e
it | P,E MF M,P,E
1 1 :E ‘
>
H.E,5 HE, H,E,S H.E,5
S
k 4 Y

Transitions expected in Ferromagnetics, Ferroelectrics and Ferroelastics
as 4 function of size.....
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Ferroelectric Nanoparticles
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Benefits of
Nanocrystalline Dielectrics

Nanocrystalline ceramics show much higher
breakdown strength (BDS) compared to coarse grain
ceramics = higher energy density
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Benefits of
Nanocrystalline Ferroelectrics

» For ferroelectric (FE) dielectrics, there are additional benefits:
— Permittivity increases with decreasing grain size down to a critical size
dimension (higher energy density)

— High frequency performance improves with decreasing grain size (maintain
permittivity and low loss to higher frequencies)

— Field dependence of permittivity may improve (i.e. lower voltage coefficient of
capacitance or VCC)
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Benefits of
Nanocrystalline Ferroelectrics

 Nano-scale grains lose long N P24
range ordering f -
* Reduce lattice coupling and
hence reduce strain 2 i
- Better electromechanical .
performance and increased
shot life BT L I

Fig. 3.28 Grain size dependence of the induced strain in PLZT ceramics.

from Kenji Uchino’s book, Ferroelectric Devices
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Polymer-Based
Nanocomposite Dielectric Films
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of BaTiO., (vol.%

Violume Fraction

BTOiniso- | . High energy densities demonstrated,
PP: 9 Jicm’ but proof of performance in devices
Is lacking

* Low volumetric fraction of the
inorganic particles (~ 25-30% loading)

» Size effects in ferroics not exploited
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Ceramic/Glass
Nanocomposite Solution

» Greater energy density through higher volumetric loading of the high
permittivity dielectric

— Glass based nanocomposite matrix provides a method for obtaining
>90% loading of the nanoceramic =» higher energy density

Volume mixing law: log e =v, xlog g, +v, xlog ¢,

1 5
Energy Density:  EnergyDensity = EEOEE,E :

» Glass matrix should provide better thermal stability than polymer
materials for improved TCC (Temperature Coefficient of Capacitance)

» Glass phase has been shown to improve electromechanical reliability
(higher BDS & shot life)

— Composite structure can support electric fields well in excess of 500
V/mil

* More robust devices @ o
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Integration into
Multilayer Configuration

* The technology for fabricating
multilayer polymer-based
nanocomposite capacitors for
pulsed energy applications is
not mature

* This effort uses ceramic tape
casting routes for casting,
laminating, and firing multilayer
parts

Lab-scale tape casting setup at SNL
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Materials Approach

Approach:

» Synthesize nanoscale precursors for ceramic capacitors
using room temperature solution based chemistry

* Develop sintering profile for nanoscale precursors and
incorporate grain growth inhibitors and/or sintering aids
to decrease firing temperature further and improve device
performance

Traditional approach: Our approach:

PLZT
nanoparticles
PLZT nano-
precursors
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PLZT Scaleable Aqueous Synthesis Route

* Pb(NO;), , ZrO(NO;), |
& La,0; dissolved in HNO;
* Diluted Ti(OPr), "

« Ammonium hydroxide to rapidly raise
the pH

 Wash, centrifuge, and filter precipitate

 Dry amorphous precipitate with large
surface area
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PLZT Nanoparticle Based Capacitors

As calcined powder = 18.4 m3/g
PLZT

~

As Calcined, 500°C for 1h

| N

N

- Pyrochlore

As Precipitated, 400°C for 7h

Relative Intensity

As precipitated powder = 59 m?/g

20 30 40 50 60 70
Degrees 2-Theta

Significant lowering of calcining temperature (300 — 500 "C)

Crystallite size is reliably <100 nm but the dry powder is
agglomerated
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Lowered Sintering Temperature
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« > 4-fold decrease in electrode cost transitioning from Pt
to 70/30 Ag/Pd

Sandia
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Glass Sintering Aids

5
0 {——
\ -
5 1 —1250°C at 35°C/min
=10
X
T 45 -
-20 A
) J
25 4
'30 L] ) L] L} L] L]
0 200 400 600 800 1000 1200 1400

Temperature (°C)
* 0.5 w/w loading

* Need to ensure glass does not detract from electrical Sandi
pI‘Operties @ National
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Electric Field Assisted Sintering
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* Higher electric fields may result in even lower sintering
 Temperatures similar to spark plasma sintering @ T,
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SEM of Sintered PLZT

Sintered with glass aid

No field assist

Good densification

Some grain growth

Possible grain pull-out
during polishing

10 um '}

 All grains are < 2um with many sub-micron grains

 Electric field may assist densification with smaller grain XBda
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BaTiO,; Nanoparticle Synthesis,
Ba(OH),-8H,0 Reagent

BaTi03-080302 Hisl 1

50 nm Lambda 1.5405 A, L-8 cycle 2732 Obsd. and Diff Profiles
—— I I I T I I

of | XRD pattern fits
tetragonal phase
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« Ba(OH),-8H,0 and Ti(OPr), precursors at 80 °C

* Redesigned synthesis using air-free chemistry and with improved
control over water addition

» Modified synthesis for our dry environment through extra H,O
addition

 XRD indicates tetragonal phase present when particles
synthesized with 0.5 and 0.6 mol H,O @ Sandia

National
Yoon et. al., J. Am. Ceram. Soc. 90 311 (2007) Laboratories



BaTiO,; Nanoparticle Synthesis,

Ba(OH),-8H,0 Reagent

TG /%

84

™\

T ex

82

81

Value: 196.8 min, -0.1479 pVimg

Value: 196.8 min, 122.8 °C

195 200 205 210
Time /min

Temp. /°C
DSC /(uvimg)

[0.05
[0.00
4l

L 0.05
L0.10
" lois
0.20

r-0.25

- 900

- 800

- 700

- 800

- 500

-400

- 300

- 200

- 100

* Reheated BTO particles after initial cycle to 1300 'C

« Endotherm at 122.8 'C consistent with BTO Curie

temp. (tetragonal = cubic phase transition)

()
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BaTiO; from TPL: SEM

qes

As received g, 1100 °C, 1 hr.
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* Primary particles of ~60 nm agglomerated into several micron clusters
e Coarsening of primary particles (~0.5 um) with heating
* Breaking up agglomerates will improve homogeneity of composites
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BaTiO; Nanocomposite Devices
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» Sintered TPL nano-BTO pellets from 0 - 20 vol% borosilicate glass
loading

- Sintering temp. reduced by almost 300°C through glass addition
- Sample porosity also appears to decrease @ ok}
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0 vol % glass

Polarization (uC/em?)

=]

Applied Electric Field (kv/cm)

1 vol % glass

Polarization (uC/em?)
[=]

Applied Electric Field (kv/cm)

0 with the addition of glass
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SEM of SPS BTO
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TPL BTO, grain size 300 — 400 nm SNL BTO, grain size 100 — 200 nm

« Spark Plasma Sintering (SPS)
« BTO powders pre-calcined
« SPS at 950 'C
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Conclusions - Ferroelectrics

A scalable, environmentally benign synthesis route to
generate nano-crystalline PLZT & BTO has been
developed

« Several techniques to lower sintering temperature have
proven effective and will assist fabrication of test
devices

* Finding appropriate sintering aid amounts &
chemistries + ideal sintering conditions (temperature,
pressure, electric field, atmosphere) is crucial!

Acknowledgments
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Future Work - Ferroelectrics

» Spray drying, thermal spray, and sonic dispersion (in
combination with surfactants) will be examined to
enhance particle dispersion

* Electric field assisted sintering and Spark Plasma
Sintering (SPS) will be explored further

* More electrical results will be forthcoming

 All lessons learned processing PLZT will be applied to
nano-BTO processing
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Ferromagnetic Nanoparticles
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Fe Nanoparticles

oo s * Thermal decomposition of iron
ey Sl pentacarbonyl in organic solvent

. . «Size control (2 — 10 nm diameter)
. - through controlling ratio of iron
» | pentacarbonyl to surfactant

e i - +Synthesized with two
_ ~ surfactants: acetylacetone (2,4-
s S pentanedione or PD) and
A hexaethylene glycol
e N iie monododecylether (C12E6)

* Water and oxygen are carefully
excluded through air free
chemistry techniques
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Normalized Moment

1.0
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0.0

Tg vs. Fe Nanoparticle Diameter

AAA
AAAA,
A A

AA Y
4 A
‘AA
A °
A
N -
)
A N diameter, T___
A )
A P
A o A 3.1 nm, 41 K <
A o
A °
. ® 4.5 nm, 115 K
¢ | '
50 100 150

Temperature (K)

 All curves ZFC
* Broad peaks for larger particles expected
* Plotting o vs. T/Tg peaks would superimpose @ Leboraeories

Tg scales
with V
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Fe,O, Nanoparticles

[ | | vy
- v -
| Temp =295 K i W
i v
2+ |
R 4
— - 4
N H
£ B A
: | ]
¥ 1 A —
(] L
£ |
° ~ ':
= i v i
-5 '5
-2x10 [ ]
- ' i -
v i
v é
v Y | | | |
1.0 0.5 0.0 0.5 1.0

Magnetic Field (T)

*Fe;0, Nanoparticles with poly(ethylene glycol) or PEG ligands

* Also possible to synthesize Zn,Fe,; O, and Ni,Fe;_ O,
nanoparticles (suitable for transformer core materials) @ T
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Project Motivation & Goals

 Form composites with high volumetric loading of
ceramic nanoparticles in a glass matrix

— Achieve energy densities of 10 J/cc in robust devices
with long shot life

— Glass matrix will limit grain growth to preserve beneficial
nanoscale properties of ferroelectrics

— Glass will increase device breakdown strength (BDS)

* Develop BaTiO; & PLZT nanoparticle syntheses that
will maximize device performance

— Provide precise control over particle size and phase —
allowing exploitation of size effects in ferroics

— Tailorability of ceramic surface functionality to minimize
grain growth and agglomeration while maximizing
dispersion @ _
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Exploiting Size Effects for
High Energy Density Dielectrics

Paraelectric=®Ferroelectric (cubic=>tetragonal) phase transformations can be
induced in ferroelectric materials that have lost their spontaneous polarization
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Increased Energy Density
Through Phase Transformation

* Increased energy storage possible through field induced phase transformation
» Transition BTO from cubic (paraelectric) to tetragonal (ferroelectric)

* Device hysteresis will allow energy densities > 10 J/cc

 Nanoscale ferroelectric domains exhibit superparaelectric effect

P Stored Energy

T
——

&

\. Super-

| paraelectric
'______,_..:—-ﬂ"' \ ’ E
Paraelectric
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BaTiO, Results



BaTiO,; Nanoparticle Synthesis,
Wada Synthesis Route

 >100 nm BTO particles
synthesized via thermal
decomposition of barium titanyl
oxalate in atmosphere or
vacuum

« Synthesized BTO precursor,
barium titanyl oxalate, via
aqueous route using
K,TiO(C,0,), and Ba(NO,),

| B = ‘enﬁf/;,“ TEM image of BTO nanoparticles
[ . ¢ and SAED (inset)
1 LS :

Hoshina et. al., “Size and temperature induced phase
transition behaviors of barium titanate nanoparticles,”
J. Appl. Phys. 99 054311 (2006)

Rotary vacuum pump
atic ¢

i
.“ j _:-.‘:'.'
Fig. 1. Sct ( 1i £t i t for the 2-st Sandia
1g. . aCnemantc lgram o e preparation system or e Z-slep H
thermal decomposition method. I.Naai}:l(:giltllrles



High temperature XRD of
Barium Titanyl Oxalate

Al,0, * Formation of strong
(104) ‘&‘,'32)3 amorphous pattern
ALO, between 400 and 550 'C

(113) *Crystallization of fine-

grained BaTiO, at 600 "C,
followed by further
coarsening

Al,O; BaTiO, BaTiO,
(012)  (110) (111)

*Al,O, peaks appear at
- higher temperatures as the
BTO powder consolidates
and leaves the substrate
area exposed
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BaTiO; from TPL: Raman
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Raman indicates conversion to tetragonal phase begins at 500 °C
Transition is complete at 800 °C
XRD shows splitting of (001) and (100) peaks after 1100 °C @
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BaTiO; from TPL: STA

Temp. I°C
TG /% DSC /(pV/mg)
) E)&I
102.01 1015 11200
101.5
- +1000
101.0 :o 10
+ 800
+600
10.00 400
Cubicto tetragonal phase
transition for nano barium . 1200

titanate (005 |

on——" 50 100 150 200 250

Time /min

« Simultaneous thermal analysis (STA)
» Tetragonal to cubic phase transition is apparent for calorimetric
results (DSC or differential scanning calorimetry)
— Phase transition only visible after heating to 1300°C @ Nofiow
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BaTiO; from TPL: High Temp. XRD

[0025C raw] 10-06-22 10194 BaTi03 TPL alumina 1100C air

Cubic (200)
splits to the
Tetragonal
(002) / (200) RT after
o cooling

| N k 1100°C

BaCO, Initial (RT)

WL"{ -' "JL JL Jk g

TW -Theta dg)

Intensity(Counts)

« TPL BTO shows an initial cubic structure
« peak sharpening of the cubic pattern at 1100 "C (grain growth)
- Tetragonal splitting of peaks upon cooling back to RT @ Notiora
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BaTiO; from TPL: High Temp XRD

. ~ 80 nm
BaT|O3 0.28
(110)
0.26 -
7w 0.24 1
o
3
S 0.22 -
: /
L 0.20 - Statistical
aberration?
0.18
~1 um
0.16 T T T T T T
0 200 400 600 800 1000 1200

Temperature (°C)

« FWHM for (110) BTO 100% peak shows decease from RT to 150 °'C
« FWHM levels off until ~800 °C
- Above ~800 °C we see another significant drop in FWHM @ Moo
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Barium Borosilicate Glass

Components | Mole % | Weight %
Bal >0 03. 73
510, 20.97 11.29
AlLO. 102 0.93
H.BO. 24 14.97
£rid, 2.01 2.22
Sro 2 1.86

* Glass sintering aid for BTO/glass nanocomposite
* Provided by Missouri University of Science and Technology
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BaTiO; Nanocomposite
High Field Hysteresis

BTO/epoxy nanocomposite

Epoxy composites will allow rapid
testing of different BTO particle
syntheses and sizes & optimize
system

Master Bond EP30HT and TPL
BTO, 50 wiw %

We will form composites with
BTO nanoparticles that we
synthesize next

Cures with low porosity

Beginning to dice and coat with
electrodes for electrical testing
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PLZT Results



Previous synthesis: variety of phase evolution
paths and several intermediate compositions

25°%C 400°C 500°C

850°C

1000°C

v

Pb(NO,),
+ 470°C

Nano-crystalline *small cell”

phase Perovskite

- " formation

25°C to 400°C (a~4.04)
L ]
b 510°C
420°C “large cell’
Fluorite Perovskite
structure formation
forms (a~4.14)
L ]
410°C

Pb(NO,), gone,
XRD pattern shows
amorphous signature

®
850°C

Fluorite gone
“small cell”
Perovskite
consumed
“large cell”
Perovskite
dominates

1000°C, 1 hr
Decay of
“large cell”
980°C Perovskite
Re—:emergenc:e and
of'small ce!l dominance of
Perovskll;e “small cell”
(@a~4.0A% Perovskite
1000°C
Tetragonal
ZrQ,
formation

Full understanding of raw materials and better chemistry control

allows simplification of the synthesis route
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Large calcined particle size,
nanoscale crystallite size

While this result was not anticipated, it may facilitate
sample fabrication by easing safety issues @ Sandia
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Choice of Glass Sintering Aids

0.00 -
-0.05 A
iy
< . PLZT
3 -0.10 - ,
» PLZT+0.7 w/o Viox
+» PLZT+3.7 w/o Viox
-0.15 -
-0.20 r Y r -
500 700 900 1100 1300

Temperature (°C)

« Several glass sintering aids are available
« Optimizing the chemistry and quantity is essential @ o
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Post-Sintering XRD

Calcined PLZT
J A A 2 A A

Relative Intensity

Furnace PLZT+0.5 wo PbB, 1150°C for 12m, CIP

A A A l " 1 A

20 30 40 50 60 70
Degrees 2-Theta

 Secondary surface phases are present after dilatometer sintering
- Likely due to platinum reaction or uncontrolled atmos EQia
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