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Thermal transport regimes

Need to understand the “bottom” to engineer “up”



Thermal boundary conductance
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Outline

•Thermal boundary conductance: background

•Time domain thermoreflectance (TDTR)

•Controlling hK with structure and quantum dots
•Collaborators: John Duda, Chris Petz, Jerry Floro (U. Virginia)

•Work in progress: Thermal transport in STO/CTO 
superlattices with structurally variant interfaces

•Collaborators: Jayakanth, Pim, Ramesh, Arun (this group – Berkeley)



Thermal boundary conductance

Nanoelectronic design

Thermoelectric nanomaterials



Diffuse mismatch model (DMM)

Two phonon scattering (elastic)

Side 1 Side 2

Diffuse assumption (specularity)
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Density of states, side 2Density of states, side 1

Hopkins, J. Appl. Phys. 106, 013528 (2009)



Chemically roughened Al/Si interfaces

Hopkins et al., Phys. Rev. B 82, 085307 (2010)
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Time domain thermoreflectance (TDTR)
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• Can measure thermal conductivity of thin 
films and substrates () separately from 
thermal boundary conductance (hK)

• Nanometer spatial resolution (~10’s of nm)
• Femtosecond to nanosecond temporal 

resolution
• Noncontact

Hopkins, et al., J. Heat Trans. 132, 081302 (2010)



Time domain thermoreflectance (TDTR)
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Using QDs to control interface roughness



Thermal boundary conductance of QD 
patterned interfaces



Thermal boundary conductance of QD 
patterned interfaces



Phonon attenuation

Beer’s law for photon attenuation

Parallel for phonon attenuation around rough interfaces

Thermal boundary conductance with attenuation



Room temperature trends in thermal boundary 
conductance at QD patterned interfaces



Long wavelength “phonon filtering” at QD 
patterned interfaces
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CaTiO3–SrTiO3 superlattices on SrTiO3 substrates
Jayakanth and Pim



Thermal conductivity of STO/CTO superlattices



Thermal conductivity of STO/CTO superlattices



Thermal conductivity of STO/CTO superlattices



Approaching the minimum limit



Summary
Controlling thermal boundary conductance with 

structure: From single interfaces to superlattices 

•Thermal resistances at interfaces can pose a dominant 
resistance in nanosystems

•TDTR is an effective technique to measure thermal 
resistances in nanosystems

•Quantum dots can be used to control interfacial 
roughness, and therefore thermal boundary conductance

•Roughening in STO/CTO superlattices can effectively 
reduce the thermal conductivity (close to theoretical 
minimum for STO)
Thanks to funding from the Harry S. Truman Fellowship Program through the 

LDRD office at Sandia.



Chemically roughened Al/Si interfaces

Hopkins et al., Phys. Rev. B 82, 085307 (2010)


