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Thermal transport regimes

Need to understand the “bottom” to engineer “up”
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Thermal boundary conductance
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Thermal boundary conductance

Material 1 Non-metal
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Outline

Thermal boundary conductance: background
Time domain thermoreflectance (TDTR)

-Controlling hy with structure and quantum dots
*Collaborators: John Duda, Chris Petz, Jerry Floro (U. Virginia)

‘Work in progress: Thermal transport in STO/CTO

superlattices with structurally variant interfaces
Collaborators: Jayakanth, Pim, Ramesh, Arun (this group — Berkeley)
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Diffuse mismatch model (DMM)

Density of states, side 1 Density of states, side 2

Diffuse assumption (specularity) Two phonon scattering (elastic)
TS ' Side 1 Side 2
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Chemically roughened Al/Si interfaces
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Thermal boundary conductance: background
Time domain thermoreflectance (TDTR)

-Controlling hy with structure and quantum dots
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‘Work in progress: Thermal transport in STO/CTO

superlattices with structurally variant interfaces
Collaborators: Jayakanth, Pim, Ramesh, Arun (this group — Berkeley)
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Time domain thermoreflectance (TDTR)

K1
Spectra Physics Mai Tai n\ .
90 fs pulses at 80 MHz v V i . o h
785 nm imating Adjustable K.12
lenses A2
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« Can measure thermal conductivity of thin
F films and substrates (x) separately from

thermal boundary conductance (hy)

CCD
~4ns * Nanometer spatial resolution (~10’s of nm)
* Femtosecond to nanosecond temporal
Diode Y

resolution

* Noncontact
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Time domain thermoreflectance (TDTR)
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Thermal boundary conductance: background
Time domain thermoreflectance (TDTR)
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Using QDs to control interface roughness
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Thermal boundary conductance of QD
patterned interfaces
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Thermal boundary conductance of QD
patterned interfaces
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Phonon attenuation

Beer’s law for photon attenuation

I = loexp | =52d|

Parallel for phonon attenuation around rough interfaces

I = Iyexp {_;55}

Thermal boundary conductance with attenuation

( hDMM A >0
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Room temperature trends in thermal boundary
conductance at QD patterned interfaces
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Long wavelength “phonon filtering” at QD
patterned interfaces

hpmwm A> 0
hk = 4
K= S hpvw | exp | — Amf ) A< 6
\ A
250 =y .
O &5=0.08 nm (no QDs)
A 5=028nm
vV 6=0.53nm
® 5=138nm
200 ©
¥
ég 150 D}/ﬂ;é:f:fi f § .
> AT, ¢ $ ¢
- A o & 0. % . Q]
% & O T
~ ok / & T ; o § ) (& i

DMM + SiO2 resistance + 6= 5.0 nm

50 o [ o [ o [ Py [ o [ o [ o
100 150 200 250 300 350 400 450
T(K Y Sonc
EYN=T &) ) i,
lahoratories




Outline

Thermal boundary conductance: background
Time domain thermoreflectance (TDTR)

-Controlling hy with structure and quantum dots
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Jayakanth and Pim

CaTiO,;-SrTiO, superlattices on SrTiO; substrates

Well defined series

Sample name

desired super lattice
CaTiO3 + S5rTiO3
(monolayers)

average doublelayer
thickness (nm)

estimated total
thickness (nm)

PR281 (4+4) x 65 3.1 205
PR282 (9+9) x 29 7.2 201
PR285 (29+28) x 9 22.6 204
PR286 (89+87) x 3 72.5 217

Less defined series

Sample name

desired super lattice
CaTiO3 + 5rTiO3
(monolayers)

average doublelayer
thickness (nm)

estimated total
thickness (nm)

PR280 (4+4) x 65 3.3 214
1101108 (4+4) x 65 3 195
PR279 (9+9) x 29 7 204
110106 (29+28) x 9 24 216
110104 (89+87) x 3 70 210

Extra samples

Sample name

desired super lattice
CaTiO3 + 5rTiO3
(monolayers)

average doublelayer
thickness (nm)

estimated total
thickness (nm)

PR316 - Bad* (2+2) x 130 NA** 150
PR317 - Good (2+2) x 130 NA** 200 .
NS4 PR318 alloy NA** 189 7y | et
lahoratories




Thermal conductivity of STO/CTO superlattices

Bulk STO

Bulk STO (literature)
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Thermal conductivity (W m’ K'])
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Thermal conductivity of STO/CTO superlattices
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Thermal conductivity of STO/CTO superlattices
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Approaching the minimum limit
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Summary
Controlling thermal boundary conductance with
structure: From single interfaces to superlattices

Thermal resistances at interfaces can pose a dominant
resistance in nanosystems

*TDTR is an effective technique to measure thermal
resistances in nanosystems

Quantum dots can be used to control interfacial
roughness, and therefore thermal boundary conductance

‘Roughening in STO/CTO superlattices can effectively
reduce the thermal conductivity (close to theoretical

minimum for STO)
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Chemically roughened Al/Si interfaces
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