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The framework for today is a multichip system connected by a WDM optical system.
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The chips can be thought of as existing in an optically connected mesh network.
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... which may in fact be a network of nodes each of which contain a number of chips



Suprcomputer inter-chip BW

e

Data Center Energy Consumption

IBM / U of lllinois
Blue Waters,
http.//www.ncsa.illinois.edu/Blue Waters

Google Dalles, Or

\ http://www.nytimes.com ’r

R http.://scienceblogs.com
S _ I N
=== == ESEaLTTE E= == | S
< I R I |
ESETEEEE EE === == SSEE EEESEIES
S I I I N
= === c=oohmns Eoeoemes | SoEsEmEs
NN AN AN

A network like the one considered may serve as a large computer or data center



These networks improve as server chips get faster
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We talk about communications because
of the memory and off chip data needs

Memory: 0.5-1Byte/FLOP
Off-Chip: 0.2Bytes/FLOP
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through silicon vias are a promising DRAM access technology with industry support
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Key finding: optics is not necessary on chip for chip-to-chip interconnect or memory
Implication: crystalline lattice silicon photonics can enable exascale interconnect



analysis on TSV’s assumed only 1-3% of the chip for I/O and 1Gbps BW per TSV
yet 3Gbps TSV interconnect has been shown as have pitches below 10um
=TSV BW could increase by 5-10

=>Mem BW estimates may decline for multicore, large cache chips



analysis on TSV’s assumed only 1-3% of the chip for I/O and 1Gbps BW per TSV
yet 3Gbps TSV interconnect has been shown as have pitches below 10um
=TSV BW could increase by 5-10

=>Mem BW estimates may decline for multicore, large cache chips
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10 core Xeon from Intel

[1Optics for core and cache interconnect to reduce latency is another area of study
[1Application of optics to DRAM access seems less likely



2nd key requirement — power, scaled to bandwidth using energy/bit

~10W available
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Basis:
[1100W available per chip
[1allocate 10% to the transmitter (Miller, 2007)
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silicon photonics VCSELs
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research device attributes for a 2018, 10 TFLOP chip Dis Si Photonics VCSEL
Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100fJ/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v  (300mV) v ?

Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2 (WDM) 457 (35Gbps)

Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) v v ?

AN

Data center virtualization (long haul) 4 v




The frequency selective modulator of the WDM transmitter solution

resonant silicon microdisk — optical properties
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resonant silicon microdisk — electrical properties
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The frequency selective modulator portion of the WDM transmitter solution

resonant silicon microdisk — optical properties
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3.5 micron diameter

Silicon on Insulator 250nm thick silicon on 3um buried oxide

5Sum deposited oxide over the device and waveguide
operates in reverse bias



research device attributes for a 2018, 10 TFLOP chip is Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100fJ/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v  (300mV) v ?

Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2 (WDM) 457 (35Gbps)

Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) v v ?

AN

Data center virtualization (long haul) 4 v
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Sub-Threshold/Reverse Bias Modulation

Resonant Frequency as a Function of Voltage

Frequency shift is a function 15 = ‘
] -»-Frequency
of the square root of voltage: 1 +-Depletion Approdimation
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Working partly in the sub-threshold region maximizes the return on voltage

E_ v 10GHz Energy savings is ~“50%
_Q _ 13GHz Energy savings is ~“67%




Sub-Threshold/Reverse Bias Modulation

Modulator Resonances
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Energy Measurement and Theory

Analytical: I
Using the depletion approximation plug  diade
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Another design approach for reducing voltage and Ebit

Resonant Frequency as a Function of Voltage

20 ‘ ,
-3.5u m Partial
15~ ~3.5um Full
R=2X and C=2X -4 m Partial
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In practice, at 5Gb/s
20% E,;, reduction
~2.5f)/bit 4dB extinction

Fully doped disks run at lower voltages in exchange for less bandwidth



research device attributes for a 2018, 10 TFLOP chip Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100f]J/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2(WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) v v ?

Data center virtualization (long haul) v (74 v




For even lower voltage drivers differential signaling is considered for driving the device

circuit input

waveform
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Differential signaling would ease integration with the potential for much lower V4



The experimental setup requires GSGSG 50Q terminated probes.

The S probe points are driven differentially into the N and P type silicon.
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This demonstration uses one source networks and two outputs driven 180° out of phase.



The easiest to implement is symmetric differential signaling
... the common modes are the same

V Fwd
+.250 +.250
-.250 / -.250
common mode Rev results in consistent

arbitrarily chosen input to the device




Assymetric signaling is a larger challenge
... the common modes are different and require negative voltages

v Fwd A +700
-.250 -.450 -.300
Rev

Fwd .700
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research device attributes for a 2018, 10 TFLOP chip Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100f]J/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2(WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) v v ?

Data center virtualization (long haul) v (74 v




Monolithic Integration

optoelectronic chip

50um lumped 3.5um disk
input inverter 24fF
pads chain ~1600 ohm

-
waveguide
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High Speed Modulation
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Power and Energy Consumption
Device [Power |Energy [BW

Discrete Disk 3.5V 200uW  ~50fl/bit  10Gbps
Monolithic 3.3V 1.68mW 840fl/bit  2Gbps

2D 2.5V 8mW 1.6pJ/bit  5Gbps
2D 3.5V 11.2mW 2.2pJ/bit  5Gbps
Monolithic - “ Pads/ESD (fj)

& Driver Cap (fj)
2D 2.5V -

Mod (fj)

2D 3.5V )
T “ Driver Current

| (fi)
0 1000 2000 3000




research device attributes for a 2018, 10 TFLOP chip Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100f]J/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2(WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) v v ?

Data center virtualization (long haul) v (74 v




4 Channel Transmitter 40Gbps aggregate BW
@3fJ/bit, P~120uW

Channel spacing is 400GHz ...



4 Channel Transmitter 40Gbps aggregate BW
@3fJ/bit, P~120uW

Channel spacing is 400GHz ...
well it was designed that way anyhow!



If two identical resonators are fabricated using the same mask on a wafer in two
different locations the frequencies usually will not match

0] ‘ ,f\ . ‘ ‘ . 0 / ‘
2 1
- _ o 4 _
23 TE Frequencies g TM Frequencies
— 4l | S -6/

-5 | -8\

o 01 02 03 04 05 -10 i

Frequency Shift (GHz) Frequency Shift (GHz)

This precludes the implementation of WDM signaling



research device attributes for a 2018, 10 TFLOP chip Si Photonics

Manufacturing volume to match server chips 1:1 v (V4 (V4
Energy/bit (on chip) (2018 ~100fJ/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2 (WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) / v ?

Data center virtualization (long haul) v (74 v




To quantify this 5 identical disks per chip were fabricated on eight chips across a wafer

12345 Frequency Deviation by Wafer Location
1 [eee0e_ 2000 ‘ ‘ ‘ ‘
2 (00000 5 1500 ,
3 (ee0 00 S
< 1000
| 4 (00000 g
\ 5 (00000 = 500
©
6 (00000 = o
£
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= =500
8 (00000 =
- . —1000;
notc
- -4 -2 0 2 4 6
Distance from Center (cm) (top to bottom)
WO [metal] W1 [metal] w2 [W1-W2|
From [13] (filtered) [Si only]
TE Mean 192.0 191.0 (191.2) 192.2 1.117
(THz)
TE Std Dev 285 556 (357) 430 126 3 Wafers were measured
(GHz) .
TE Median 192.0 191.0 (191.0) 192.0 0.966 Focus from here is on W1 & W2
(THz)
TM Mean 195.8 194.1 (194.5) 194.8 0.666
(THz)
TM Std Dev 741 1,194 (749) 957 237
(GHz)
TM Median 195.7 194.2 (194.2) 194.4 0.215
(THz)

30=240MHz, with TEC @ 35°C



The cause of the frequency mismatch is segmented by measuring TE & TM frequencies

6um disk is measured for the simplicity of its dimensions
It has a thickness and a width and the FSR is manageable

TE =-140GHz/nm
TM =-330GHz/n

A 2D finite difference modesolver predicts
the above dimension driven frequency shift

E.(TE Mode) E,(TM Mode)
R=3pm F R=3um p

z z
9l_.r el_.f

modesolvi prediction

»
ar
af

T

TE

™

TE X|:

™ _|

af
dp
af
dp

meagured
AT} ~ {Afm }
AD JAY

Linear invertible matrix provides a unique solution

A finite element modesolver and linear system of equations are used to
isolate the cause of non-uniformity in the resonator frequency



Frequency Deviation by Wafer Location
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Dimensional Variation Resolved by TE Shift

1000 =Thickness Contribution

--Diameter Contribution

500

=500"

Frequency Deviation (GHz)

—-1000-

-1500

- -2 0 2 4
Distance From Wafer Center (cm)

Thickness variation is the primary driver of frequency deviation

HANANANAT

Remember that we don’t need to
connect wafers to each other, just chips

In the 2D torus it is 4 chips
in Blue Waters’ 5D torus there are 10

Silicon photonic chips manufactured on scale of server chips can be automatically sorted
250 die/wafer X 5000 wafers/fab = 1.25 million/fab/week

Using the 28 chips tested (3 wafers) it is possible to match micro-disk resonators
of two chips to within 7GHz and 42% of the chips match within 25GHz



Within Chip Dimension Deviation Subtract the normalized mean of all points

-0.1;

-0.2/

Dimension Deviation (nm)
o

.3
G,

~W1 Diameter from the data on the left to get residual values
-W1 Thickness
~\W2 Diameter

~'W2 Thickness

No technique with this much sensitivity is
known to exist in existing metrology
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Probability

Probability Plot of Within Die Frequency Variation
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PS — EnH
AT=25°C
Ny=7UWW/GHz 1.14mW
91.2fJ/bit
P5=280uW

@12.5Gbps=22.4fJ/bit



Thermal Control - Partial Solution

— - — P, = 0mW (0V, Oma)
Slllmdg / Silicon —— P.=9mW [6.25V, 1.4mA)
Insulating Leads 0

= P.=18mW (11V. 1.6mA) |
Integrated 5
Tungsten Si-Heater

Transmission (dE)
o

.05
Vacuum Clad =
Device

3?5.'35 1540 1545 1550 1556 1580 1585 1570 1575

4.4uW/GHZ Havelengt fom
At 10Gbs 1THz uses 1pJ/bit

Watts, Zortman et al, CLEO 2009

We prefer a system that is already close to the desired frequency so less
tuning (energy) is required. This means limiting process induced variation



Industry Solutions and a Goal

30 - This
Stud 160nm

— ‘

25 - thickness
=
c (MEMC)
' 20 _
c
_9 15 - CD: 30 <1nm M Thickness
) on 45nm M Diameter
cC D: 30 =8nm (ITRS, Intel)
Q 10 (ITRS) 40nm

10
E Thickness
E o - (SOITEC)

0 —
6 inch 8 inch 12 inch
Wafer Technology

Revisit your energy and bandwidth predictions

To match gate and processor core speeds the silicon industry has improved on
the performance of six inch silicon which can be applied to silicon photonics



research device attributes for a 2018, 10 TFLOP chip Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100f]J/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2 (WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) / v ?

Data center virtualization (long haul) v v v




data centers are connected using existing long haul networks

virtualization is a routine server scaling procedure in a data center

a photonic communication system that can provide low power short haul and long
haul interconnect could allow true virtualization across geographies



_ O
m
Z
n
3
—1-10
_w, (0V)
_15 _o_(=3.5V)|
~20 0 20 40
Frequency (GHz)
J(@© —0,(1))
S 1 ;
J(@ =0y (1) +
T(¢) 1

p-type n-type
ohmic Vertical pn junction ohmic
contact n on bottom contact
St p on top

bus waveguide

wn

intrinsic
silicon

intrinsic
silicon

"metal
contacts

vertical pn junction
n on bottom
p on top

Pulse Tragsmission
o

10.5

Phase (radians)

Tin§8st)

1 080



80

1.5
1 Laser
. -5 fg Frequency
m S 05
B o
@ g
§_1o B
&£-05
o
_o, (0V) [
_15- _o_ (=3.5V)|
‘ ‘ 1.5 ‘ ‘ ‘
-20 0 20 40 -20 0 20 40 60
Frequency (GHz) Detuning (GHz)
C_ e-o,m) 6 =tan” {r ()]0 -0, ()]}
t . 1 i
J(@ =0, (0)+
() 1 \ 1
<
9o m
(7] o
2 S
@ g
§O.5 :*O.S
” 2
()] =
L o
=
(a

0 Tin§8st) 1 080



Power Penalty (dB)

With normalization over the length of the pulse, the chirp is about 70MHz
Using a basic analysis, a power penalty estimate can be made

Power Penalty at 40Km and 70Km

2 . : . .
—=70Km Dispersion Penalty F
15! 70Km Chirp Penalty /]
~ |[—-70Km Total Penalty /
’ |—40Km Dispersion Penalty / /' :
40Km Chirp Penalty J/ / Dispersiong, =—510glo(1—(4BLD0x) )
05 —40Km Total Penalty 7 // |4Chirp 5, =—10log,,(1-4BLDAL )
| ,y Total Penalty Penalty
O — —L-‘:_""',_—‘:-f/
-0.5

0 1 2 3 4 5
Bit Rate (Gb/s)

Agrawal, G.P., “Fiber Optic Communication Systems” Wiley (2002)



Measurement Setup
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Bandwidth Limitation

Frequency Dependence (O0Km)

|~-10Gbs
5Gbs
-—3Gbs

0.01

Bit Error Rate

1e-06 \

1e-10 \

1e-14 | | | |
-22 -20 -18 -16 -14 -12
Received Power (dBm)

Resonator bandwidth is limited by the contact pad capacitance leading to
a power penalty at 10Gb/s even in back to back measurements



Disk Resonator 5Gbs

Distance Dependence at 5Gbs

\ =—0Km
M 40 Km
y \\ —~70 Km
0.01 A Model 40 km |
\ —-Model 70 km
Q
©
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Received Power (dBm)

Negative pulse chirp contributes to the minimal power penalty at 40km



Disk Resonator 10Gbs

Distance Dependence at 10Gbs

;—OKm
40 km
=70 km

001\
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The bandwidth limitation exacerbates Inter-Symbol Interference at 10Gbs



Mach Zehnder Modulator Comparison

MZM is JDSU LINbO; OC-192 V11=5.8V
Device Comparison at 5Gbs
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The disk resonator is seen as a competitive technology out to 70km



Mach Zehnder Modulator Comparison

MZM is JDSU LiNbO; OC-192 Vri=5.8V
Device Comparison at 10Gbs
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With elimination of pad capacitance the 10Gbs should improve power penalty



research device attributes for a 2018, 10 TFLOP chip Dis Si Photonics

Manufacturing volume to match server chips 1:1 v v v
Energy/bit (on chip) (2018 ~100fJ/bit) v ~100f)/bit ~140f)/bit
Energy/bit (total) ~150f)/bit ~140f)/bit
Low Voltage Compatibility v (300mV) v ?
Fibers per chip (assume 10Gbps SiP, 100 channels, 5THz) 2 (WDM) 457 (35Gbps)
Fibers per exascale system v 200 thous. 45.7 million
Integration with TSV v vx
Monolithic with CMOS (electrical multiplexing) / v ?

Data center virtualization (long haul) v v v

Transmitter to do list:
- method for locking the heater onto the resonance
- low loss fiber attachment

Receiver to do list:

- low capacitance high speed detector
- conversion of /, to a voltage

- thermally controlled low loss filters




Link 2.5Gbps




Scientific Impact

World record low energy modulator of any kind

World record low voltage - same

Two patent disclosures - vertical pn junction MZM, single mode disk resonator

Only evaluation of high volume manufacturing in the field of silicon photonics
Introduction of new high resolution metrology technique

First demonstration of the long haul capabilities of silicon resonant technology, still the

only one with a supporting theoretical model

Only demonstration of LVS compatibility with silicon resonant technology

Only 10Gbps modulator with integrated heater

4 Journal Articles, 17 Conference Publications

47 references as of May 2011

1.

2,

Journal Publications

Zortman, Trotter, Lentine, Robertson, Hsia, Watts, "Integration of Silicon Electronics
and Photonics," IEEE Photonics Journal (2011) (in press)

Zortman, Lentine, Young, Trotter, Watts, "Long Haul Transmission Using Silicon
Microdisk Modulators," Photonics Technology Letters (2011)

. Zortman, Trotter, Watts, "Silicon Photonics Manufacturing," Opt. Express 18, 23598-

23607 (2010)
Watts, Zortman, Trotter, Young, and Lentine, "Low voltage, compact, depletion-

mode, silicon Mach-Zehnder modulators" Journal of Selected Topics in Quantum
Electronics (JSTQE), Vol. 16 pp 159-164(2010)



Conference Proceedings

-_

. A. Nejadmalayeri, H. Byun, J. Kim, D. C. Trotter, C. DeRose, A. L. Lentine, W. A. Zortman, M. R. Watts, and F. X. Kartner,
“Integrated optical phase-locked loop,” Conference on Lasers and Electro Optics (CLEO) 2011.

2. DeRose, Watts, Young, Trotter, Nielson, Zortman, Kekatpure, "Low Power and Broadband 2x2 Silicon Thermo-Optic Switch,"
IEEE Opitcal Fiber Conference (OFC) (2011)

3. Zortman, Lentine, Trotter, Robertson, Watts, "Monolithic Integration of CMOS with Silicon Photonics," SPIE Photonics West, San
Francisco, Ca (2011)

4. Zortman, Trotter, Lentine, Robertson, Watts, "Integration of Silicon Electronics and Photonics," IEEE Photonics Society Winter
Topicals, Keystone, Co January (2011)

5. Li, Breivik, Feng, Lin, Patel, Zortman, Crowley, Lester, A low repetition rate all-active monolithic passively mode-locked quantum
dot laser, IEEE Photonics Annual Meeting, Denver, Co (2010)

6. Lentine, Zortman, Young, DeRose, Trotter, Watts "Silicon Microphotonic Backplane for Focal Plane Array Communications," Oak
Ridge National Labs Sensors Workshop (presenter) (2010)

7. Shaner, Lentine, Young, Wright, Trotter, Zortman, Watts, "Thermal Microphotonic Focal Plane Array," Oak Ridge National Labs
Sensors Workshop (presenter) (2010)

8. Zortman, Watts, Trotter, Young and Lentine, "Low-Power High-Speed Silicon Microdisk Modulators," OSA Conference on Lasers
and Electro Optics (CLEO), San Jose, Ca. (2010)

9. Zortman, Lentine, Watts and Trotter, "Power Penalty Measurement and Frequency Chirp Extraction in Silicon Microdisk
Resonator Modulators," (OFC), San Diego, Ca (2010)

10.Zortman, Watts and Trotter, "Determination of Wafer and Process Induced Resonant Frequency Variation in Silicon Microdisk-
Resonators," OSA International Photononics and Nanophotonics Research and Applications, Honolulu, Hi(2009)

11.Watts, Zortman, Trotter, Young, and Lentine, "Low-Voltage, Vertical-Junction, Depletion-Mode, Silicon Mach-Zehnder Modulator
with Complementary Outputs" IPNRA, Honolulu, Hi (2009) (PDPC) (postdeadline)

12.Watts, Lentine, Trotter, Zortman, Young, Campbell, and Shinde, "Low Power Silicon Microphotonics for Embedded Systems"
Lexington, Ma (2009) (invited)

13.Watts, Zortman, Trotter, Nielson, Luck, Young, Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal
Microphotonics," OSA CLEO, San Jose, Ca (2009) (postdeadline)

14.Zortman, Trotter, Watts, "Analytical energy and bandwidth model for compact silicon photonic microdisk resonators," IEEE High
Speed Interconnects Santa Fe, NM (2009)

15.Watts, Shaw, Rakich, Lentine, Nielson, Wright, Zortman, and McCormick, "Microphotonic Thermal Detectors and Imagers" SPIE,
San Jose (2009) (invited)

16. Watts, Trotter, Young, Lentine, and Zortman, "Limits to Silicon Modulator Bandwidth and Power Consumption" SPIE, San Jose
(2009) (invited)

17.Watts, Kim, Kaertner, Lentine, and Zortman, "Towards an Integrated Optic Phase-Locked Oscillator" 40th Annual Precise Time

and Time Interval (PTTI) Meeting, Reston, Va (2008) (invited)
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Conclusions

We modeled and measured the dispersion penalty of a Si Photonic Disk resonator

The negative chirp of the output pulse allows for zero power penalty at 40 km

The performance is competitive for long distance at 5Gb/s indicating that if the pad
capacitance is reduced or eliminated 10Gb/s should be competitive as well



Motivation and Requirements

Chip to Chip/Board to Board Supercomputing
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Montana State University

2015 off chip bandwidth forecast

D.A.B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips” Proceedings of the IEEE Vol 97 No 7 (2009)

Maintaining 1byte/flop on a 200W chip leaves only 97fJ/bit for the transmitter
—pp10fJ/bit in 2022

CMOS
1‘ | / _~ Heater- C. T. Derose, CLEO (2010)
E— —> | Off Chip
Source Modulator

Our focus here is the electrical energy/bit (E, ;) consumed driving the modulator



Disk Resonator Design

Depletion Mode Vertical PN Junction
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Top View of Fully Doped Modulator
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vertical pn junction mfta!c
n on bottom contacts
p on top

Reverse bias enabled expansion of the depletion region sweeps out carriers and

changes the refractive index via the plasma carrier dispersion effect



Disk Resonator Desigh Progression

p-type
ohmic vertical pn junction
contact n on bottom contact

p on top

bus waveguide

metal

ertical pn junction
vertl pn Junctl contacts

n on bottom
p on top

Blanket doping is inefficient
considering a whispering
gallery mode.

Watts et al, Group IV (2008)
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ohmic vertical pn junction ohmic

contact n on bottom contact
p on top /
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>
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o vertical pn junction mf at

n on bottom contacts
p on top
Doping only about the

periphery where the mode
lives results in

Lower capacitance

Lower energy... Lower BW
Electrically — A ring

Optically — A disk

See Watts et al, CLEO 2009
and Derose et al, CLEO 2010
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ohmic
contact
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ohmic
contact

vertical pn junction
n on bottom
p on top

intrinsic
silicon

intrinsic
silicon

bus waveguide

metal
contacts

vertical pn junction
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p on top

... to limiting doping at it radians
resulting in even lower

R and C and a 12Gb/s disk

This also results in a decrease

in the mode-depletion
interaction length, L, (higher E, )

The result of design iteration has been to reduce the energy and increase BW



Silicon Photonics

3.5u m Disk 10Gbs 3.5V

Transmission

Disk Resonator )
Time (ps)

Dense Integration of filters, modulators and detectors on CMOS

The potential to integrate complex functions consisting of many devices




Resonance Sweep

for a reverse biased pn junction modulator

Periphery

When viewed from the side, the disk is a capacitor

Amplitude Modulation

Modulator Resonances

The amplitude of the wave in the disk: ° Logic “1”
da . 1 2+ o G &
— = a,(jo () ——) Laser 4

dt (1)

where T and w, are functions of time

wo(f)= exp(—fj t(1)=1 eXp(—T’j .

(=]

Loss (dB)

e e -147 - - —o{t) @ 0V
PRTT, Y] —ao{t) @ 3.5V
15 ‘ _ Logic “0” ol
20 -10 0 10 20 30 40 50

Little, et al, Microring Resonator Channel Dropping Filters, JLT, Vol. 15 No. 6 (1997) Frequency (GHz)



Overview
Motivation

Low power designs for off chip links
Disk Design

Optimization of mode interaction with PN junction
Performance

We demonstrate 3.2f)/bit at 12.5Gb/s
Ideas for reducing E, ., further




Photonic Integration — Very Active Area

Oracle/Luxtera/Kotura  |BM Intel

Macrochip Multichannel CMOS  On chip interconnect
integrated modulators Transmitter
and detector 7

Krishnamoorthy et al Proc IEEE July 2009

CMOS
integrated
photodetectoPD chip

VLSI chip

Zhen et al OPEX Dec 2009
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Receiver

circuit N
o

ptical
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Kobrinsky et al Intel Technology Journal 2004

Integrated transceivers

IPR Intel Press Release July 2010 Monterrey



Power Penalty Measurement and Frequency Chirp
Extraction in Silicon Microdisk Resonator Modulators
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Motivation: Large Arrays of Resonators

Filters, Modulators, Sensors
IR Sensitive Disks

Interchip Communications

To / From Memory

/'/ ///'/7
|k ik

Network ﬁ l¢

.. for servers/datacenters

1 3

Optical
Power
Supply

Microprocessor Chip

M.R. Watfts et al,
Nature Photonics 2007

Process non-uniformity leads to frequency variation across wafers
inhibiting applications requiring large arrays of resonators



Silicon Photonics

Disk Resonator Photonic Crystal

Acc’ Spot Maan Det WD b——— 1 1
10.0 3.0 3600x SE 106 Dev9r100-200 d220. Dec 5. 2005

Ndi et al, Optics Express 2006

10Gbs, 10-°BER, E<100fJ/bit
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Data 1
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ill, AR @> ||

B =1 kraodband CVY source (TX)

Waveguide coupled resonators in silicon offer the potential to
create low energy/bit scalable arrays of CMOS interconnects




Summary

Modulation optimization and efficient junction design

3.2f)/bit

12.5Gb/s (limited by pads and test equipment)
3.7dB Power Penalty

Questions?

Sandia National Labs Albuquerque, NM
Applied Photonic Microsystems

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000
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The Integrated Device

Depletion Mode Vertical PN Junction built on Silicon on Insulator
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Top View of Fully Doped Modulator
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Reverse bias enabled expansion of the depletion region sweeps out carriers and

changes the refractive index via the plasma carrier dispersion effect



Reverse Bias Modulation Action

Modulator Resonances
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Resonator Integrated with CMOS
10Gbps

Top View of Fully Doped Modulator . -
type type - Disk 3.5V Drive
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Power Penalty (dB)

Long Haul Perform

Modeling
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Silicon Photonic Resonator
Integration with CMOS Electronics

platform for manufacturing of integrated parts
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Determination Of Wafer And Process Induced
Resonant Frequency Variation In Silicon Microdisk-
Resonators

*William A. Zortman, Michael R. Watts and Douglas C. Trotter
*(UNM Advisor: Luke F. Lester)
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Two Demonstrations

Wire Bonded Monolithic

Potential 3D Integration Utilizing TSV or Capacitive Coupling
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Two Dimensional Integration at 5Gbps
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Two Demonstrations

Wire Bonded Monolithic

Potential 3D Integration Utilizing TSV or Capacitive Coupling
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2D Integration for Large Machine Interconnect
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Layout of the Monolithic Chip

Top view from L-edit shows

the driver and optics

Standard CMOS stack
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Equivalent Circuit

optoelectronic chip
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Multiprocessor chip and large machine performance is
increasing the need for high bandwidth off chip solutions

Integration of low power modulators in monolithic and 2D
regimes has been demonstrated

The potential exists for using a 1V low current (3mW)
driver in monolithic integration.

A special thanks for support from my advisors:

Luke F. Lester Michael R. Watts
S T

. , . m -
BN THE UNIVERSITY of I
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Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
7 YA L =97 for the United States Department of Energy’s National Nuclear Security Administration
A" A EDF' under contract DE-AC04-94AL85000

tional Nuclear Security Administration



Back Up

Requirements:

[ JSmall footprint

[ IGate level switching
Temperature Stability
<10fJ/bit modulation
Low power source
Integration




Overview

* Motivation
* Theory

* Measurement



Within Wafer Frequency Variation

Wafer Map of Measured Devices
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Manufacturability

Frequency Deviation by Wafer Location
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Dimension Contribution to Variation
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Local Relative Frequency Control
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Wafer uniformity is motivated by the

Summary
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measurement and simulation
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2D or Hybrid Integration

IBM 90nm CMOS dri\{e_e[ photonic chip
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Sandia’s Silicon Photonics Platform

Mach-Zehnder
Modulator
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Sandia’s Silicon Photonics Platform
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