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Simulation-Based Optimization
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Hydrological Applications

 Objective Function: discontinuous, nonlinear, 
nonconvex,  many local minima

 Evaluating the objective function requires the solution 
of an approximate numerical model

Expensive

Low resolution of physical phenomena

Legacy code

 Models of natural systems

Not closed

Stochastic parameters

 Physical aspects result in mathematical concerns  



The Community Problems

 Description
1. A suite of optimization problems and solutions where 

problems are implemented with standard simulators. 
(Mayer, Kelley, Miller) 

2. 4 Applications, 5 Domains, 2 Objective Functions, 6 
Constraints, 30 Design Applications

 Usefulness in testing of optimization methods
1. Use the complexities introduced by simulators to put 

the algorithm through its paces, uncover bugs, 
discover what “features” need to be added, etc.

2. Hidden constraints make the problems challenging.

3. Introduce a community to our algorithm by 
demonstrating it on a problem they care about or can 
relate to



Remediation

 Hydraulic Capture (HC)

In a homogeneous, unconfined aquifer, place n ≤ 4 wells and 
determine their pumping rates to prevent a contaminant 
plume from spreading.  Minimize the installation and 
operation costs.



HC Objective Function
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HC Constraints
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HC Formulations

 Continuous

For each well, there are 3 associated variables (12 variables)

Two position; Pumping rate (12 continuous)

2 linear constraints

Up to 8 nonlinear constraints (2 per well)

 Mixed Integer
For each well, there are 4 associated variables (16 variables)
0,1: indicates well is on or off (4 discrete)

Two position variables, Pumping rate (12 continuous)

2 linear constraints

Up to 8 nonlinear constraints (2 per well)



Optimal Well Field Design

 Well Field Design  

Position n ≤ N wells and determine their pumping rates in a 
homogeneous aquifer A so that the total cost of installing 
and operating the wells needed to supply a given amount of 
water is minimized. The pumping rates are constant over 
time and the wells have a fixed depth.

 UNC6: Let A be unconfined and N = 6 



Formulation

 Black Box (MODFLOW)

 Continuous

For each well, there are 3 associated variables & 2*n + 2 
constraints 

2 positional & 1 pumping rate 

2 linear constraints

2 nonlinear constraints per well 

 Mixed Integer
For each well, there are 4 associated variables & 2*n + 2 

constraints

0,1: indicates well is on or off (discrete)

2 position variable & 1 pumping rate (continuous)

2 linear constraints

2 nonlinear constraints per well 



The Shootout

 Fowler et al, 2008

 Continuous Formulation

 Feasible initial iterate supplied

 50 x 50 grid

 Each algorithm was applied by the algorithm creators

 Allowed a maximum of 3 changes to default parameters



Derivative-Free Methods

 Asynchronous parallel pattern 
search (APPS)

Direct search
Predetermined pattern of points
Reduces processor latency
APPSPACK (Kolda et al)

 Dividing Rectangles (DIRECT)
Divide space for deterministic 
sampling
Gablonsky, Kelley et al

 NOMAD
Generalized pattern search using 
Latin Hypercube
Two versions 
Abramson, Audet, Dennis, et al

 Genetic Algorithm (GA)
Population based global search
Barrier or penalty approach to 
include constraints
NSGA-II (Deb & Agrawal) 

 Implicit Filtering
Projected quasi-Newton method
Uses a large stencil to account for 
noise
IFFCO (Kelley)

 Design Explore (DE)
Generalized pattern search on 
model problem
Booker et al (Boeing)



HC Shootout Results



HC Results

Optimizer Cost ($) Solution 

(# of 
wells)

IFFCO $23,421 1

DIRECT $49,549 2

Nomad(2N) $50,797 2

Nomad(N+1) $50,574 2

APPS $25,018 1

APPS (MFO) $22,428 1

GA (integer) $24,934 1

GA (real) $54,973 2

Surrogate 
(MINLP)

$23,491 1

 Starting point

4 active wells

Cost of $78,587

 FBHC formulation

 Continuous formulation

 MFO: both FBHC & TBCC

 References:

Fowler et al, Adv. Water 
Res., 31(5), 2008

Hemker et al, Opt & Eng, 
2007



HC Results: Initial Iterates

 Space-filling design of 100 
points

 More than 1/3 infeasible  62 
feasible starting points

 Remaining points used as 
starting points for two of the 
successful local methods

 For all feasible starting points 
in this test, algorithms got 
“stuck”

 Continuous formulation

APPS IFFCO

Stuck at 
starting 
point

11 5

Stuck at a 
local min 51 57



UNC6 Results



Issues

 What if an initial point is not supplied?

All methods that did not rely upon or were not supplied 
with an initial iterate failed.

Investigation of 100 other initial iterates: APPS, IFFCO, 
and NOMAD failed. 

CONCLUSION/QUESTION: Find a method that is efficient 
despite the lack of initial iterate.

 Can we use the mixed integer formulation?

GA is the only method that can handle integer variables.

GA seeded with a “good” initial iterate works well.

CONCLUSION/QUESTION: Improve the GA to eliminate need 
for initial iterates.



Hybrid Optimization Algorithms

 Take advantage of the benefits of more than one 
approach 

 Overcome method-specific shortcomings 

 Goal: simultaneously perform global and local searches 
(cheap and accurate!)  

 Categorization scheme (Radl ‘06) 

1. Class of algorithms used to form hybrids, 

2. Level of hybridization- tightly or loosely coupled

3. Order of execution- sequential or parallel

4. Control strategy- integrative or collaborative

 Tailoring hybrids to address the characteristics of the 
problem 



Considerations for Creating Hybrids

 What should we combine and why?

 How do we combine two or more methods to best 
exploit the advantages of each?

 What are the theoretical implications?

• Convergence

• Implementation

 What else can hybridization buy?

• Less “tuning” time

• Multiple perspectives of the domain 

• Additional computational data points

• Robustness

• Inclusion of uncertainty



Basic Sequential

1. Apply method A.  

2. Use the solution of method A as a starting point for 
method B.

3. Apply method B.

 Most common: A is global and B is local

 Hybrid component: Stopping criteria for method A



Multi-starts

1. Select a set of starting points

2. In parallel, run your optimization method of choice 
on each algorithm

3. Compare results

 Comparing results:

– Loosely coupled: Share results at predefined times

– Cache sharing

– Hybrid component: Decision making about which 
point to use



Maintain Solver Integrity

Optimization
Problem

Software Interface

Solver A

Solution A

Solver B Solver C

Solution B Solution C



Allow Solver Interaction

Optimization
Problem

Software Interface

Solver A Solver B Solver C

Solution



Share Evaluation Processors



Share Function Evaluation Results



Order Points



APPSPACK 
http://software.sandia.gov/appspack/

 Asynchronous parallel pattern 
search (can be synchronous)

 C++ implementation

Object-oriented design

User customizable 
interfaces

 MPI for message passing

Generic C++ wrapper

Manager-worker paradigm

 Software Tools

CVS repository

Autotools for configuration

Bugzilla for bug-tracking

 Freely available via GNU L-
GPL Licensing

Kolda, Hough, Griffin, Gray, Torczon, Lewis

http://software.sandia.gov/appspack/


APPSPACK Example
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Synchronous Pattern Search

Inherently (or embarrassingly) parallel,
but processor load should be considered. 



Processor Load Balance Considerations

 The number of trial points can vary at each iteration. 

Cached function values

Search patterns change

Constraints (infeasible trial points are not evaluated)

 Evaluation times can vary for each trial point.

Different processor characteristics

Effect of input on function 

Function evaluation faults



APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example

Workers
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Unsuccessful Iteration
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Oracle

 An oracle predicts points at 
which a decrease in the 
objective function might be 
observed.

 Analytically, an oracle can 
choose points by any finite 
process.

 Oracle points are used in 
addition to the points defined 
by the search pattern. 

 APPSPACK convergence is 
not adversely affected



Oracle 1: Space Mapping

 Often referred to as: 
Multifidelity Optimization (MFO)
Surrogate-Based Optimization (SBO)

 The low-fidelity surrogate model retains many of the important 
features of the high-fidelity “truth” model, but is simplified in 
some way.

Decreased physical resolution
Decreased FE resolution
Simplified physics
Fewer design parameters

 Want models such that low-fidelity trends match high-fidelity 
trends

 Space mapping acts as a conduit between the high and low 
fidelity models (Bandler et al.)

Castro, Gray, Hough, Guinta



MFO for HC
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MFO Results for HC

Method Cost % decrease # Fn 
evals

FBHC $24,175 69.2% 117 mf2k

0 mt3d

TBCC $20,362 74.1% 188 mf2k

160 mt3d

MFO $22,428 71.5% 152 mf2k

86 mt3d

Initial cost: $78,586

MODFLOW (mf2k): ~2 seconds
mt3d: ~50 seconds



MFO Results for HC



Oracle 2: tgp

 Gaussian Process: stochastic process that 
quantifies the uncertainty about future 
evaluations conditional on previously evaluated 
points 

 Adapted to complex computer simulations using 
treed partitioning

 tgp: R code implementation (Gramacy, Taddy, 
Lee)

Available from the CRAN

Stats award for Gramacy thesis



Implementation of APPS-tgp

1. Discretize decision space and include a dense LHS 
of extra points around current “best” point 

2. The stats model (MCMC fit) produces a “posterior” 
distribution for the response at each point

3. The resulting model gives a full distribution of 
points for improvement

 NOTES:

Recursive algorithm ranks the list of points to be 
evaluated

Alternative: Pre-seed tgp so that it can start working 
immediately



APPS-TGP

Worker 1

Worker 2

Worker k

Evaluation
Processors

APPS

TGP

Ordered 
List of 

Iterates

Cached function values 
returned to both iterate 

generators

Evaluated function values 
returned to both iterate 

generators

CACHE



HC Results with APPS-tgp

 No initial point

 Solutions: 1 well with cost of

FBHC Formulation: $23,796

TBCC Formulation: $22,182

 Without a starting point, most (singular) 
methods quit without finding a reasonable 
solution

 The GA does not require a starting point but 
exits without converging after ~1000 evaluations

 The hybrid finds the solution in about ~700 
evaluations

 Parallelism means improved wall clock time



EAGLS

 Current Implementation: EA = 
NSGAII; LS= APPS

 Generate a population using 
the GA

 Evaluate the GA population

 Select “promising” points

 Refine promising points using 
the LS  

 Only real parameters can 
vary

 Integer parameters held 
fixed

 Ranking algorithm prevents 
prohibitive growth

 Fowler (Clarkson), Griffin 
(SAS), Hemker (TU-
Darmstadt), Parno (MIT)



EAGLS

Worker 1

Worker 2

Worker k

Evaluation
Processors

Ordered 
List of 

Iterates

Cached function values 
returned to EAGLS

Evaluated function values 
returned to EAGLS

CACHE

EAGLS

NSGA-II

APPS

APPS



EAGLS to SOLVE UNC6



UNC6 Summary

Method Found 5-well 
Solution?

# of Function 
Evaluations

Starting Point 
Required?

APPS Y 176 Y

IFFCO Y < 200 Y

DIRECT N --- Y

GA Y 161 Y *

APPS-TGP Y 492 N

EAGLS Y 65 N

*No starting point required by the algorithm; no solution found without a starting 
point



Not All Hybrids Work

 What should we combine and why?

 How do we combine two or more methods to best 
exploit the advantages of each?

 Remember the goal: global convergence with the work 
of a local method



DIRECT-IFFCO

 Idea: Use DIRECT to find starting points for IFFCO

 Carter, Goblansky, Patrick, Kelley, Eslinger (2001) 
showed this approach to be useful for gas pipeline 
transmission

 For UNC6

Points identified by DIRECT were too close to local minima

DIRECT unable to locate any solutions with 5 wells 
operating on the bound constraint pumping rates

IFFCO unable to improve upon points identified by 
DIRECT

Conclusion: not useful for this problem



DIRECT-TGP

 Goal: improve local search capabilities of DIRECT

 Algorithm

1. Build TGP surrogate using all known function values

2. Start a local search on the surrogate, constrained to the 
rectangle using the center of the rectangle as the starting 
point

3. Evaluate f at the local minima and return this value 

 Initial testing of algorithm is promising for test problems 
an application with few local minima

 Still problematic for UNC6

 NOTE: DIRECT + local search not a promising approach



Lockwood Solvent Groundwater 
Plume Site

 Located near Billings, MT

 Two separate plumes of 
chlorinated solvents 
migrating towards the 
Yellowstone River

 Six pump-and-treat wells 
proposed to prevent 
further expansion

 Minimize pumping while 
successfully containing 
plumes



Pressure Gradient



Results

 Six well solutions at specified sites (Mattot)

Tried 10 different derivative-free methods

Wide range of solutions 

Minimized cost ranged from $23K-$50K

 Determine the location of the six wells too 

Reduces the cost to $19K

 Are six wells needed?  

Some 6 well solutions showed no pumping or a very low 
pumping rate for 1 or 2 of the wells

Reformulate problem: allow the wells to be moved, add a 
cost for installation, add a discrete variable to 
include/exclude wells from the design

EAGLS found a two well solution (one well in each plume)



What’s Next

 SQUaC: Simultaneous Quantification of Uncertainty and 
Calibration 

Examining iterates after the completion of the optimization 
creates a sequential UQ process

Consider a more parallel process where UQ and 
optimization are being performed simultaneously 

Use a hybrid approach with a new version of TGP for 
mixed variable parameter sets; SA info for free

 Berry Farm Planning

Salinas Valley growers

Minimize water usage

Follow planting rules

MINLP with many constraints


