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} Outline

1. Two Motivating Examples
1. Well Field Design (UNC6)
2. Hydraulic Capture (HC)
2. Asynchronous Parallel Pattern Search (APPS)
3. Hybrid algorithms
1. MFO
2. APPS-TGP
3. EAGLS
4. Results

5. Future Work
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}. Simulation-Based Optimization
Response

OPTIMIZER

Design Parameters

Evaluate f(x), g(x)
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}i Hydrological Applications

< Objective Function: discontinuous, nonlinear,
nonconvex, many local minima
\/

< Evaluating the objective function requires the solution
of an approximate numerical model
© Expensive
€ Low resolution of physical phenomena
¢ Legacy code
“* Models of natural systems
€ Not closed
€ Stochastic parameters

\/

“* Physical aspects result in mathematical concerns
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# The Community Problems

\/

“» Description

1. A suite of optimization problems and solutions where
problems are implemented with standard simulators.
(Mayer, Kelley, Miller)

2. 4 Applications, 5 Domains, 2 Objective Functions, 6
Constraints, 30 Design Applications

< Usefulness in testing of optimization methods

1. Use the complexities introduced by simulators to put
the algorithm through its paces, uncover bugs,
discover what “features” need to be added, etc.

2. Hidden constraints make the problems challenging.

3. Introduce a community to our algorithm by
demonstrating it on a problem they care about or can
relate to

Sandia
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%’ Remediation

“* Hydraulic Capture (HC)
In a homogeneous, unconfined aquifer, place n < 4 wells and

determine their pumping rates to prevent a contaminant
plume from spreading. Minimize the installation and

operation costs.
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}‘ HC Objective Function

/discontinuous
n , n¢
J(u)= Z:coa’l.O +ch
i=1 =1

m by ( n hmin b2 n
Z gs
installation cost

N ZczQ(h 2,0+ Y0, i
i=n°+1 \

N y, Black-box

4
operational cost

Evaluationof J(u) requires h = flow simulation
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} HC Constraints

Well capacity —0.0064 < Q. <0.0064 m%

Net pumping rate ZQi > —0.0032’””%
1=1

Boundson hydraulicheads 2™ < h < h™m

Don't install a useless well :

Q

<107 m% — Removewell from design
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}I HC Formulations

%+ Continuous

4
4
4
4

For each well, there are 3 associated variables (12 variables)
Two position; Pumping rate (12 continuous)

2 linear constraints

Up to 8 nonlinear constraints (2 per well)

< Mixed Integer

© O 0 o 9P

For each well, there are 4 associated variables (16 variables)
0,1: indicates well is on or off (4 discrete)

Two position variables, Pumping rate (12 continuous)

2 linear constraints

Up to 8 nonlinear constraints (2 per well)
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} Optimal Well Field Design

<+ Well Field Design

Position n < N wells and determine their pumping rates in a
homogeneous aquifer A so that the total cost of installing
and operating the wells needed to supply a given amount of
water is minimized. The pumping rates are constant over

time and the wells have a fixed depth.
<+ UNCSB: Let A be unconfined and N = 6 aiddua

PUMP HOUSE
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}- Formulation

% Black Box (MODFLOW)

%+ Continuous

For each well, there are 3 associated variables & 2*n + 2
constraints

® 2 positional & 1 pumping rate

® 2 linear constraints

€ 2 nonlinear constraints per well
< Mixed Integer

For each well, there are 4 associated variables & 2*n + 2
constraints

€ 0,1: indicates well is on or off (discrete)

€ 2 position variable & 1 pumping rate (continuous)

® 2 linear constraints

® 2 nonlinear constraints per well St



}I The Shootout

<+ Fowler et al, 2008

% Continuous Formulation

» Feasible initial iterate supplied

2 50 x 50 grid

2 Each algorithm was applied by the algorithm creators

* Allowed a maximum of 3 changes to default parameters
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< Asynchronous parallel pattern < Genetic Algorithm (GA)

Derivative-Free Methods

search (APPS) ¢ Population based global search
¢ Direct search ¢ Barrier or penalty approach to
® Predetermined pattern of points include constraints

¢ Reduces processor latency € NSGA-Il (Deb & Agrawal)

¢ APPSPACK (Kolda et al)
< Implicit Filtering

< Dividing Rectangles (DIRECT) ¢ Projected quasi-Newton method
¢ Divide space for deterministic ¢ Uses a large stencil to account for
sampling noise
¢ Gablonsky, Kelley et al ¢ IFFCO (Kelley)
< NOMAD % Design Explore (DE)
¢ Generalized pattern search using ¢ Generalized pattern search on
Latin Hyp_ercube model problem
¢ Two versions ¢ Booker et al (Boeing)

¢® Abramson, Audet, Dennis, et al
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HC Shootout Results

HC

12

11

10

Function Value

IFFCO
Direct-

L

Nomad2N
NomadN+1

GA
DE
APPS

10’
Number of Function

10°
Evaluations
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} HC Results

Optimizer Cost ($) | Solution

o

L)

Starting point

(# of ¢
wells) ® 4 active wells
IFFCO $23,421 1 ¢ Cost of $78,587

e

*

FBHC formulation
Continuous formulation
Nomad(2N) | $50,797 MFO: both FBHC & TBCC
Nomad(N+1) | $50,574 References:

DIRECT $49,549 2
2
2
APPS $25,018 1 € Fowler et al, Adv. Water
1
1
2
1

e

*

e

*

e

*

APPS (MFO) |$22,428 Res., 31(5), 2008
. € Hemker et al, Opt & Eng,
GA (integer) |$24,934

2007
GA (real) $54,973
Surrogate $23,491
(MINLP)
sandia
National



}-‘ HC Results:

Initial Iterates

Space-filling design of 100
points

More than 1/3 infeasible - 62
feasible starting points

Remaining points used as
starting points for two of the
successful local methods

For all feasible starting points
in this test, algorithms got
“stuck”

Continuous formulation

APPS IFFCO
Stuck at
starting 11 5
point
Stuck at a
local min 51 57
sandia
National



UNCG6 Results

I ‘ -
— |FFCO
—o— Direct-L
S Nomad2N
% NomadN+1
3 i ; —— GA
S 14 DE
o : —— APPS
B 1.35 : ]
= i
2 1
- '
1.3F ': .
1.25) S -
1.20 ' : """'1 ' . ......|2 . . ,,,,,,3
10 10 10 10
Number of Function Evaluations 'I‘ m |
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}-I Issues

*» What if an initial point is not supplied?
¢ All methods that did not rely upon or were not supplied
with an initial iterate failed.

€ Investigation of 100 other initial iterates: APPS, IFFCO,
and NOMAD failed.

CONCLUSION/QUESTION: Find a method that is efficient
despite the lack of initial iterate.

\/

<+ Can we use the mixed integer formulation?
© GA is the only method that can handle integer variables.
©® GA seeded with a “good” initial iterate works well.

CONCLUSION/QUESTION: Improve the GA to eliminate need

for initial iterates. S
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- Hybrid Optimization Algorithms

\/

< Take advantage of the benefits of more than one
approach

+ Overcome method-specific shortcomings

+ Goal: simultaneously perform global and local searches
(cheap and accurate!)

» Categorization scheme (Radl ‘06)

1. Class of algorithms used to form hybrids,

2. Level of hybridization- tightly or loosely coupled

3. Order of execution- sequential or parallel

4. Control strategy- integrative or collaborative

+ Tailoring hybrids to address the characteristics of the
problem

L)
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.0

L)
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}-iConsiderations for Creating Hybrids

“* What should we combine and why?

< How do we combine two or more methods to best
exploit the advantages of each?
< What are the theoretical implications?
« Convergence
 Implementation

< What else can hybridization buy?
 Less “tuning” time
 Multiple perspectives of the domain
 Additional computational data points
« Robustness
* Inclusion of uncertainty

Sandia
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} Basic Sequential

1.
2.

4

L)

L)

4

L)

L)

Apply method A.

Use thhn cealiitinan Af mathaAad A Aac A ctariina nf\ir‘t for

metl
App
Solver A best
/4.\ Solver B best
Mos LN 4
'?.
Hyb " o ./ o5k dA
Feasible Region
Sandia
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}I Multi-starts

1. Select a set of starting points

2. In parallel, run your optimization method of choice
on each algorithm

3. Compare results

¢ Comparing results:
— Loosely coupled: Share results at predefined times
— Cache sharing

— Hybrid component: Decision making about which
point to use

Sandia
National
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} Maintain Solver Integrity

Optimization
Problem

Software Interface

s s <GS
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National
Laboratones



A
}- Allow Solver Interaction

Optimization
Problem

Software Interface
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A |
} Share Evaluation Processors

Solver A / ‘x
_ f ’ f(“") ~h

SolverB /& X, f(x) =

. PR LS
Solver C

|
&=
‘-
O]

L
=
-

m

=)
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} Share Function Evaluation Results

\ Solver A /

\ Solver B /

\ Solver C /

Function Value

Cache
|_— X {x, f(x), c(x)}

<

C

%
g

Wi
L0
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Order Points

Solver A - Solver B

A points B points

I Smart Ordering Interface '

?

—
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}' APPSPACK

http://software.sandia.gov/appspack/

< Asynchronous parallel pattern
search (can be synchronous)
< C++ implementation
€ Object-oriented design
€ User customizable
interfaces
< MPI for message passing
¢ Generic C++ wrapper
¢ Manager-worker paradigm

Kolda, Hough, Griffin, Gray, Torczon, Lewis

< Software Tools
¢ CVS repository
¢ Autotools for configuration
¢ Bugzilla for bug-tracking

% Freely available via GNU L-
GPL Licensing

Sandia
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http://software.sandia.gov/appspack/

APPSPACK Example

1 (@
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# Synchronous Pattern Search

__—
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Processor Load Balance Considerations

<+ The number of trial points can vary at each iteration.
® Cached function values
® Search patterns change
® Constraints (infeasible trial points are not evaluated)

< Evaluation times can vary for each trial point.
¢ Different processor characteristics
¢ Effect of input on function
¢ Function evaluation faults

Sandia
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APPSPACK Example

Worke
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APPSPACK Example
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APPSPACK Example
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APPSPACK Example

Worke

f
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APPSPACK Example

Worke

h
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APPSPACK Example
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> APPSPACK Example
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APPSPACK Example
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d /..} APPSPACK Example
Worke q/
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APPSPACK Example

Note: Cannot Prune on
Unsuccessful Iteration
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APPSPACK Example

Worke

S
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Oracle

An oracle predicts points at
which a decrease in the
objective function might be
observed.

Analytically, an oracle can
choose points by any finite
process.

Oracle points are used in
addition to the points defined
by the search pattern.

APPSPACK convergence is
not adversely affected
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} Oracle 1: Space Mapping

< Often referred to as:
€ Multifidelity Optimization (MFO)
¢ Surrogate-Based Optimization (SBO)

% The low-fidelity surrogate model retains many of the important
features of the high-fidelity “truth” model, but is simplified in
some way.

€ Decreased physical resolution
€ Decreased FE resolution

¢ Simplified physics

€ Fewer design parameters

<+ Want models such that low-fidelity trends match high-fidelity
trends

% Space mapping acts as a conduit between the high and low
fidelity models (Bandler et al.)

Castro, Gray, Hough, Guinta Notionsl



MFO for HC

Space Mapping
Via Nonlinear
Least Squares

Calculation

Inner Loop




>
* MFO Results for HC

Initial cost: $78,586

MODFLOW (mf2k): ~2 seconds
mt3d: ~50 seconds



Function Value

6]

n

~n

MFO Results for HC

APPSPACK lteration
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}‘ Oracle 2: tgp

Gaussian Process: stochastic process that
quantifies the uncertainty about future
evaluations conditional on previously evaluated
points

Adapted to complex computer simulations using
treed partitioning

tgp: R code implementation (Gramacy, Taddy,
Lee)

¢ Available from the CRAN

¢ Stats award for Gramacy thesis

Sandia
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}j Implementation of APPS-tgp

1. Discretize decision space and include a dense LHS
of extra points around current “best” point

2. The stats model (MCMC fit) produces a “posterior”
distribution for the response at each point

3. The resulting model gives a full distribution of
points for improvement

< NOTES:
¢ Recursive algorithm ranks the list of points to be
evaluated
¢ Alternative: Pre-seed tgp so that it can start working
immediately
Netore
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APPS-TGP

Evaluated function values
returned to both iterate
generators

APPS :>

Evaluation
Processors

Worker 1

Ordere

List of

TGP

Worker 2

lterates

Worker k

Cached function values

returned to both iterate
generators

Sandia
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}i HC Results with APPS-tgp

“* No initial point
*» Solutions: 1 well with cost of

L)

L)

L)

¢ FBHC Formulation: $23,796
¢ TBCC Formulation: $22,182

Without a starting point, most (singular)
methods quit without finding a reasonable
solution

The GA does not require a starting point but
exits without converging after ~1000 evaluations

The hybrid finds the solution in about ~700
evaluations

Parallelism means improved wall clock time
Sandia
National
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EAGLS

Current Implementation: EA =

NSGAII; LS= APPS

Generate a population using
the GA

Evaluate the GA population
Select “promising” points

Refine promising points using

the LS

J/

% Only real parameters can
vary

< Integer parameters held
fixed

Ranking algorithm prevents

prohibitive growth

Fowler (Clarkson), Griffin
(SAS), Hemker (TU-
Darmstadt), Parno (MIT)
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EAGLS

Evaluated function values
returned to EAGLS

EAGLS Evaluation
Processors
{ NSGA-I ]
Worker 1
{ APPS } Ordered
] List of CACHE R Worker 2
. lterates *
_>[ APPS } Worker k
Cached function values
returned to EAGLS St
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EAGLS to SOLVE UNC6

1.6
Yy =1
155 -10.9
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- UNC6 Summary
S e e

Solution? Evaluations Requwed?

APPS 176

IFFCO Y < 200 Y

DIRECT N --- Y

GA Y 161 Y *

APPS-TGP Y 492 N

EAGLS Y 65 N

*No starting point required by the algorithm; no solution found without a starting
point

Sandia
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}‘ Not All Hybrids Work

L)

4

+ What should we combine and why?

* How do we combine two or more methods to best
exploit the advantages of each?

* Remember the goal: global convergence with the work
of a local method

L)

4

L)

L)

L)

o0
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DIRECT-IFFCO

< ldea: Use DIRECT to find starting points for IFFCO
< Carter, Goblansky, Patrick, Kelley, Eslinger (2001)

showed this approach to be useful for gas pipeline
transmission

For UNCG6

A 4
\ 4

4

Points identified by DIRECT were too close to local minima

DIRECT unable to locate any solutions with 5 wells
operating on the bound constraint pumping rates

IFFCO unable to improve upon points identified by
DIRECT

Conclusion: not useful for this problem

Sandia
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DIRECT-TGP

Goal: improve local search capabilities of DIRECT
Algorithm

.0

Build TGP surrogate using all known function values

. Start a local search on the surrogate, constrained to the

.0

rectangle using the center of the rectangle as the starting
point
Evaluate f at the local minima and return this value

Initial testing of algorithm is promising for test problems
an application with few local minima

Still problematic for UNC6
NOTE: DIRECT + local search not a promising approach

.0

.0
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Plume Site

r"
}c Lockwood Solvent Groundwater

» Located near Billings, MT

** Two separate plumes of
= chlorinated solvents
o)\ Jetsm/d migrating towards the
Yellowstone River

2 Six pump-and-treat wells
proposed to prevent
further expansion

< Minimize pumping while

successfully containing

plumes

Northem boundary (no flow

o Candidate Remediation Wells

K=15m/d

Eastem boundary (specified head)

‘ K=6m/d

o
K=0.015 m/d |
K=4.6 m/d %, | +

PJumonl

300 meters

Bedrock Outcrop (no flow)

Sandia
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Pressure Gradient




Results

;,

< Six well solutions at specified sites (Mattot)
® Tried 10 different derivative-free methods
¢ Wide range of solutions
© Minimized cost ranged from $23K-$50K

<+ Determine the location of the six wells too
©® Reduces the cost to $19K

+ Are six wells needed?

¢ Some 6 well solutions showed no pumping or a very low
pumping rate for 1 or 2 of the wells

¢ Reformulate problem: allow the wells to be moved, add a
cost for installation, add a discrete variable to
include/exclude wells from the design

® EAGLS found a two well solution (one well in each plume)

Sandia
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What’s Next

}

< SQUaC: Simultaneous Quantification of Uncertainty and
Calibration

¢ Examining iterates after the completion of the optimization
creates a sequential UQ process

©® Consider a more parallel process where UQ and
optimization are being performed simultaneously

® Use a hybrid approach with a new version of TGP for
mixed variable parameter sets; SA info for free

“* Berry Farm Planning
¢ Salinas Valley growers

¢ Minimize water usage

€ Follow planting rules

€ MINLP with many constraints S
Naticmal



