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ABSTRACT
Analog quantum simulation is an approach for studying physical systems that might otherwise be
computationally intractable to simulate on classical high-performance computing (HPC) systems.
The key idea behind analog quantum simulation is the realization of a physical system with a
low-energy effective Hamiltonian that is the same as the low-energy effective Hamiltonian of
some target system to be studied. Purpose-built nanoelectronic devices are a natural candidate for
implementing the analog quantum simulation of strongly correlated materials that are otherwise
challenging to study using classical HPC systems. However, realizing devices that are sufficiently
large to study the properties of a non-trivial material system (e.g., those described by a
Fermi-Hubbard model) will eventually require the fabrication, control, and measurement of at
least 0(10) quantum dots, or other engineered quantum impurities. As a step toward large-scale
analog or digital quantum simulation platforms based on nanoelectronic devices, we propose a
new approach to analog quantum simulation that makes use of the large Hilbert space dimension
of the electronic baths that are used to adjust the occupancy of one or a few engineered quantum
impurities.

This approach to analog quantum simulation allows us to study a wide array of quantum impurity
models. We can further augment the computational power of such an approach by combining it
with a classical computer to facilitate dynamical mean-field theory (DMFT) calculations. DMFT
replaces the solution of a lattice impurity problem with the solution of a family of localized
impurity problems with bath couplings that are adjusted to satisfy a self-consistency condition
between the two models. In DMFT, the computationally challenging task is the high-accuracy
solution of an instance of a quantum impurity model that is determined self-consistently in
coordination with a mean-field calculation. We propose using one or a few engineered quantum
impurities with adjustable couplings to baths to realize an analog quantum coprocessor that
effects the solution of such a model through measurements of a physical quantum impurity,
operating in coordination with a classical computer to achieve a self-consistent solution to a
DMFT calculation.

We focus on implementation details relevant to a number of technologies for which Sandia has
design, fabrication, and measurement expertise. The primary technical advances outlined in this
report concern the development of a supporting modeling capability. As with all analog quantum
simulation platforms, the successful design and operation of individual devices depends critically
on one's ability to predict the effective low-energy Hamiltonian governing its dynamics Our
project has made this possible and lays the foundation for future experimental implementations.
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Figure 1-1. An exemplary EQI realizing an analog quantum simulation of a quantum im-
purity model and self-consistently adjusted to facilitate solution of a DMFT
calculation. a) A cross-sectional view of a lithographic quantum dot in which
bath and impurity gates are used to accumulate charge carriers at an interface
in a semiconductor heterostructure. The coupling gate is used to tune the hy-
bridization of the bath and impurity. b) An energy level diagram illustrating the
coupling of the continuum of bath states to the discrete energy levels in the EQI
through a tunnel barrier. The charge density in the bath, the bath-impurity hy-
bridization, and the energy level structure of the EQI are all electrically tunable
and a particular voltage configuration realizes an analog quantum simulation of
a particular instance of a quantum impurity model (see Eqs. 1 and 2a 2c). c)
The single impurity in our analog quantum simulator can be self-consistently
adjusted to serve as a coprocessor for a DMFT calculation. In DMFT, the quan-
tum impurity model parameters that realize a Green's function of a single quan-
tum impurity are adjusted until they match the on-site Green's function for a
lattice of quantum impurities. 13

Figure 1-2. An overview of the hybrid analog-quantum/digital-classical approach to DMFT
inspired by Ref. [11] , particularly Fig. 1. Most of the technical details in this
report are concerned with establishing a high-fidelity device model that can be
used to reliably describe an analog quantum simulator based on various semi-
conductor EQI technologies. 15

Figure 3-1. Numerical verification of the Hardy space method for an analytically tractable
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Figure 3-2. The Hardy space method used to extract the tunneling rates for a realistic dot
potential for a Ge hole EQI device. (Top) A one-dimensional slice of the elec-
trostatic potential defining the EQI. The voltages were chosen as to keep the or-
bital ground state and curvature of the EQI fixed while allowing the tunnel bar-
riers between the EQI and baths to vary. (Bottom) The transmission probability
through the EQI as a function of the barrier height and bath mode wavenumber
for the potential on the left. Note that the transmission probability is exponen-
tially sensitive to the barrier height and incident wave numbers, highlighting the
broad tunability of the Yam coefficients in Eq.2c 31

Figure 3-3. Exemplary calculations of the current across two APAM-fabricated chains. (Top)
Current through a chain of 2 single-donor EQIs. (Bottom) Current through a
chain of 5 single-donor EQIs. In both cases, the vertical axis corresponds to a
source-drain bias voltage from one end of the chain to the other and the hor-
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using, e.g., a top-gate [21] . The regions of low current correspond to Coulomb
blockade of transport through the chain.
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Figure 3-4. Exemplary calculations of the differential conductance across two APAM-fabricated
chains (Top) Differential conductance across a chain of 2 single-donor EQIs.
(Bottom) Differential conducatance across a chain of 5 single-donor EQIs. In
both cases, the vertical axis corresponds to a source-drain bias voltage from one
end of the chain to the other and the horizontal axis corresponds to the uniform
on-site energy of each EQI controlled using, e.g., a top-gate [21] . The charge
transitions corresponding to high values of the differential conductance corre-
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7

40



TERMS AND DEFINITIONS

Abbreviation Definition
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DMFT Dynamical mean-field theory
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1. INTRODUCTION

We begin by describing analog quantum simulation in Section 1.1, contrasting it with digital
quantum simulation in particular. We then propose to use engineered quantum impurities (EQIs)
in semiconductors as an analog quantum simulation platform for quantum impurity models in
Section 1.2. We augment the power of such an approach by proposing an analog quantum
coprocessor for dynamical mean-field theory (DMFT) calculations in Section 1.3. Finally, we
briefly highlight the outcomes of this project in Section 1.4

1.1. What is analog quantum simulation?

Quantum technologies offer the promise of powerful new approaches to simulating physical
systems. In the early 1980s, Richard Feynman was among the first to speculate about the
possibility that a quantum computer is ultimately necessary to accurately simulate quantum
mechanical systems [3]. Even going back to Dirac in 1929 [4], it has long been understood that
the models governing generic quantum mechanical systems are "much too complicated" to be
solved analytically, semi-analytically, or even numerically using increasingly capable classical
computers in the intervening decades. One of the key distinguishing features of quantum
mechanical systems is that the dimension of the state space (Hilbert space) that describes them
grows exponentially in the number of degrees of freedom (e.g., electrons, atoms, quarks, qubits,
etc.). Further, the principle of quantum superposition means that a valid state for such a system to
exist in need not consist of amplitude on a single basis vector, but potentially exponentially many.
Thus, in aggressively overly simplistic terms, the accurate simulation of an arbitrary quantum
mechanical system on a computer requires a computer that can represent such superpositions in
an exponentially large state space.

In the time since Feynman's original speculation, he has been shown to have been correct [5].
Digital quantum simulation algorithms for studying the properties of quantum mechanical
systems have been developed [6]-9] and in many instances they are likely to achieve an
exponential advantage over classical computing resources in doing so. These algorithms rely on
encoding the Hilbert space of the physical system to be simulated in the Hilbert space of a register
of qubits in a quantum computer. A particular encoded state is prepared in this register, realizing a
digital representation of the system being studied. An auxiliary register of qubits is then
entangled with the register representing the physical system while some unitary evolution is
implementeC The auxiliary register is then manipulated and measured, from which a single bit
of some observable of the encoded system (e.g., its total energy) is extracted [I I 11, 112].

While this approach to simulation is conceptually straightforward, its implementation on an
actual quantum computer is likely to remain an outstanding technical challenge for years to come.
To realize a quantum computer with simulation capabilities beyond those of classical HPC

l It is worth noting that there are approaches that do no require the addition of auxiliary qubits, but these are limited
in what can be extracted in a single execution of the algorithm [101.
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systems, the number of qubits and their requisite fidelities2 are orders of magnitude larger than
what is available today. For example, recent projections indicate that error-corrected execution of
a state-of-the-art digital quantum simulation algorithm for the Fermi-Hubbard model [1 31, IA] will
require — 105 — 106 physical qubits with error rates of 10-4 — 10-3, respectively [13]. As it
stands, the largest digital quantum simulations that have been executed consist of variational
simulations of the Hartree-Fock approximation to the ground state of a few small molecules on at
most 12 noisy physical qubits [M. In spite of these seemingly modest numbers the development
of a quantum hardware platform that can execute such a calculation represents critical progress
toward the goal of fault-tolerant quantum simulation, even if it is likely to remain many years
away.

We conjecture that the primary advantage that a machine capable of fault-tolerant digital quantum
simulation will provide over classical HPC is in accuracy. In fact, methods for efficiently
approximating the properties of quantum systems are ubiquitous in the physical and chemical
sciences and even predate the widespread use of classical digital computing technology, e.g., the
Thomas-Fermi [T7I, IS] and Hartree-Fock methods [B-21]. Modern computational chemical and
materials science has produced a wide array of options for such approximate simulation, ranging
from density functional [Z2] and coupled cluster theories [Z3] to quantum Monte Carlo [N.
Roughly, these methods offer a trade off between computational cost and accuracy. Many of these
methods achieve useful levels of accuracy with classical HPC resources scaling as a polynomial in
the size of the system being simulated. However, it is likely the case that the cost of realizing
arbitrary levels of accuracy will always scale as an exponential in the system size. In achieving
arbitrary accuracy in the simulation of physical systems, fault-tolerant digital quantum computers
are likely to provide an exponential advantage [7, 25] .

So, we begin this report by recognizing that digital quantum algorithms for quantum simulation
are likely to achieve an important but subtle advantage over classical algorithms for quantum
simulation. However, this advantage will likely only be realized in a future in which orders of
magnitude more qubits are available with error rates in an integrated setting that are also orders of
magnitude lower than the current state of the art (see, e.g., Ref. [IN for a contemporaneous
assessment of the state-of-the-art in testbeds comprised of superconducting qubits). It is useful to
then consider whether there are opportunities to leverage quantum technologies to execute useful
simulation tasks in the intervening years, while also supporting development toward the long-term
goal of a fault-tolerant quantum computer that achieves an exponential advantage in efficient and
accurate simulation with digital quantum algorithms Analog quantum simulation is one such
opportunity.

Analog quantum simulation is predicated on the idea that well-characterized and highly
controllable quantum systems can realize low-energy effective Hamiltonians that are the same as
the low-energy effective Hamiltonians of other physical systems [27—M. Here, the equivalence
of only the low-energy effective theories is essential. Two physical systems with Hamiltonians
that are equivalent across all energy scales are physically indistinguishable and there is little
utility in trying to replicate one with the other, aside from assessing reproducibility (e.g., that

2High fidelities or, equivalently, low error rates are needed to execute circuits without error to ensure accurate out-
comes. As the desired simulation circuits get deeper, corresponding to improved accuracy in the digital quantum
simulation, the requisite error rates decrease.
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multiple samples of a particular material system have statistically indistinguishable properties).
By instead focusing on a particular subspace one can imagine two or more physical systems that
are indistinguishable within that subspace but distinguishable outside of it. This suggests a
powerful opportunity. Given a naturally occurring physical system with a particular low-energy
effective theory, one can build an analog quantum simulator that realizes the same theory within
an engineered physical system that may provide a number of advantages. One advantage might be
realized if the this theory is difficult (perhaps intractable) to study using classical computing
resources. Analog quantum simulation might then provide a context in which the particular
theory of the target physical system can be validated. Another advantage might occur if variations
in the parameters of the theory are resource intensive to realize in naturally occurring physical
systems. One example of this is the Fermi-Hubbard model, for which realizing variations in the
doping fraction and Hubbard U It ratio requires years of effort in materials synthesis and
characterization [31]. Thus another advantage might occur in realizing a reconfigurable analog
quantum simulator for which the parameters of the low-energy effective theory can be varied at a
dramatically reduced cost. Unlike digital quantum simulation, these advantages aren't easily
quantified in terms of improvements in accuracy but rather in terms of an improved understanding
of the phenomenology of the effective theory.

Whether such an approach to simulation can be realized on a timescale intermediate to digital
quantum simulation will be determined by the underlying sensitivity to errors in the fabrication
and operation of an analog quantum simulator. The resource requirements for digital quantum
simulation are so great, in part due to a lack of intrinsic robustness in digital quantum simulation
algorithms. However, analog quantum simulation is likely to be robust to errors to the same extent
that the physical systems they are simulating are thermodynamically stable. The idea that
low-energy effective theories have a certain insensitivity to errors has its roots in notions of
critical phenomena and universality [321, 33]. These notions are restricted to a particular setting in
which there are thermodynamically many microscopic degrees of freedom, such that one can talk
about a fixed point under transformations across many length scales. Notions of insensitivity to
errors for quantum simulators that aren't thermodynamically large might be related to sloppy
low-energy effective theories [M] or low purity of the relevant observables [33].

Ultimately, the fundamental limits to how well an analog quantum simulation can be executed on
a given quantum platform are limited by our ability to characterize, control, and measure it.
Quality characterization is critical so that we know the low-energy effective Hamiltonian that is
being implemented in our analog quantum simulator. Controllability is essential to being able to
adjust the parameters of that low-energy effective Hamiltonian with precision Finally, the ability
to accurately measure the system is ultimately the key determining factor in the type, accuracy,
and precision of information that can be extracted from such a platform. In all cases, we can see
that it is essential to have a reliable device-level model of an analog quantum simulation platform
to facilitate design and operation.

1.2. Engineered quantum impurities in semiconductors

This report introduces a new approach to analog quantum simulation using semiconductor
quantum technologies. It is based on using EQIs in highly controllable nanoelectronic devices to
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simulate quantum impurity models. Generally an EQI is comprised of a semiconductor
heterostructure with nanoscale gates patterned onto the device (see Fig. 1-1a). Voltages applied to
these gates can be used to accumulate or deplete free charge carriers (e.g., electrons or holes) in
nanometer regions of the heterostructure. With these devices we can precisely manipulate and
measure one or a few such particles, and control their coupling to one or more adjacent
thermodynamically large bath(s). The particular technologies that we focus on are lithographic
quantum dots based on both holes and electrons, as well dopant-based devices fabricated using
atomic precision advanced manufacturing (APAM) [Eki]. Each of these technologies is potentially
dual-purpose, as they might also eventually be used as qubits in implementing digital quantum
simulation (see, e.g., Refs. [171-41] for contemporaneous state-of-the-art qubit experiments
spanning these technologies). While there has been significant development dedicated to qubits in
these platforms, fabricating and controlling enough EQI-based qubits with error rates necessary
for large-scale digital quantum simulation remains a long-term goal. However, intermediate
applications in analog quantum simulation might help to develop these technologies toward that
end goal.

The low-energy effective theory governing the behavior of the particles in the EQI is ultimately
one of the 0(10 nm) atomic-orbital-like states that describe the charged degrees of freedom that
are mostly strongly coupled to the electrostatic controls. We will describe these states using a
theory of their envelope functions (e.g., effective mass theory). The energy scale on which these
states are separated from the bulk band structure of the underlying host crystal is 0(10 meV), and
relative to a bulk bandgap of 0(1 eV)3. As the thermal energy scale at room temperature is 30
meV, at least a 300-fold reduction in the operating temperature of an EQI is required to suppress
excitations out of the low-energy subspace and for the particles in the bath region to remain
degenerate. Accordingly, the devices that we are proposing to use for analog quantum simulation
must operate at dilution refrigerator temperatures of 1 K or below, with 100 mK temperatures
being preferable to achieve higher fidelity in few-particle measurements.

The use of the term "EQr instead of the more common "quantum dor is motivated by two
subtleties. The first is that the confining potential for one of the technologies (APAM-fabricated
dopant-based devices) is due to a combination of the attractive potential of one or more dopant
atoms and externally impressed voltages on nanoelectronic gates. Thus is it not strictly a
lithographic quantum dot as most of the confining potential is due to the Coulomb field of dopant
nuclei. The second (and more important) is to reflect the intended use of these devices. It is not
just the the charged particles occupying the confining potential that we are concerned with
leveraging for analog quantum simulation. We are also interested in using the charged particles
occupying nearby thermodynamically large baths to which the impurities are controllably
coupled. In fact, by strongly coupling an EQI with a relatively small Hilbert space dimension to a
bath with a significantly larger Hilbert space dimension, we aim to realize a composite system
with a much larger Hilbert space dimension than just the EQI alone. This gives us the prospect of
realizing a device with a small number of individual components that still manages to simulate a
much larger quantum system.

We illustrate an exemplary EQI energy-level diagram in Fig. ri—fb. The key features of an EQI are

31n other words, thermal leakage into delocalized states near the band edge from which they are bifurcated is a more
severe concern than excitations across the host material's bandgap.
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Figure 1-1 An exemplary EQI realizing an analog quantum simulation
of a quantum impurity model and self-consistently adjusted to facil-
itate solution of a DMFT calculation. a) A cross-sectional view of a
lithographic quantum dot in which bath and impurity gates are used

to accumulate charge carriers at an interface in a semiconductor het-
erostructure. The coupling gate is used to tune the hybridization of
the bath and impurity. b) An energy level diagram illustrating the cou-
pling of the continuum of bath states to the discrete energy levels in
the EQI through a tunnel barrier. The charge density in the bath, the
bath-impurity hybridization, and the energy level structure of the EQI

are all electrically tunable and a particular voltage configuration real-
izes an analog quantum simulation of a particular instance of a quan-
tum impurity model (see Eqs. and -2c). c) The single impurity in our
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a coprocessor for a DMFT calculation. In DMFT, the quantum impurity

model parameters that realize a Green's function of a single quantum
impurity are adjusted until they match the on-site Green's function for
a lattice of quantum impurities.
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the tunability of the bath, impurity, and their coupling. Specifically, we can adjust the density of
the particles in the bath, the energy level structure of the impurity, and the energy-dependent
coupling between the two. When EQIs are used as qubits, one typically reduces the coupling
between the bath and impurity during coherent operation, and an appreciable tunnel coupling is
only maintained during preparation and measurement. For analog quantum simulation of a
quantum impurity model, we are interested in a regime in which the bath and impurity are
strongly coupled while the impurity remains in a few-particle state on average. The motivation for
this is to effect analog quantum simulation of a computationally challenging strongly correlated
regime of the quantum impurity model. That such regimes are possible to achieve is motivated by
the observation of the Kondo effect in lithographic quantum dots in GaAs [42-44], noting that
this is more challenging in the material platforms that we are primarily concerned with. Later we
will see that one of the key challenges for studying such strongly coupled systems is the
representation of states that are strongly hybridized between the EQI and bath. One of the
contributions of this project has been the implementation of new methods for studying these
states, described in Section 3.2

From Fig. [1-1113 it is evident that a single EQI is a natural realization of a quantum impurity model.
Later in the report (Section 2.1) we provide a mathematical statement of a generic form of the
quantum impurity model and much of the rest of the report describes how to extract the
coefficients of such a model from a CAD-level description of an EQI device. An experimental
realization of our analog quantum simulation platform idea will need to be supplemented by a
modeling tool that can convert the voltages supplied by an experimentalist into the particular
quantum impurity model coefficients that will be realized. To this end, we added numerous new
features to our in-house modeling tool, LACONIC. We note that EQIs can be realized in a wide
variety of semiconductor quantum systems for which Sandia National Laboratories has
fabrication and/or measurement proficiency, including electron quantum dots in the Si/MOS
system, hole quantum dots in Ge/SiGe heterostructures, or dopant-based devices realized using
ion implantation or APAM. We also note that LACONIC can be straightforwardly applied to any
of these systems.

1.3. A quantum analog coprocessor for dynamical mean-field theory

While simulating a single quantum impurity model is itself a worthwhile goal, we are ultimately
interested in augmenting the power of our EQI-based simulator by using it as an analog
coprocessor for dynamical mean-field theory (DMFT) calculations. The basic theoretical concept
underlying DMFT is that a particular family of instances of the infinite-dimensional Hubbard
model can be mapped onto an Anderson impurity model [45, MI]. In other words, that we can
replace a strongly correlated lattice model with a precisely chosen single impurity model. Rather
than starting with a large array of EQIs, each of which needs to be characterized, controlled, and
measured, we are instead interested in understanding whether we can control a single EQI and its
coupling to a bath with sufficient control as to simulate many instances of the Anderson impurity
model.

The identification between a strongly correlated lattice model and a single structured impurity
model relies on achieving a form of self-consistency between the solutions to the two problems.
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In particular, DMFT seeks the particular impurity model parameters such that the Green's
function for the single impurity matches the on-site component of the lattice problem's Green's
function [!ro, 4J]. However, we do not have direct access to the lattice problem's Green's function
otherwise we would not need this mapping. Consequently, one must verify self-consistency
through a self-energy that relates the mean-field Green's function for the lattice problem to the
impurity Green's function. This is further elaborated in Section 2.3

Treating self-consistency as a condition that can be efficiently verified given the mean-field and
impurity Green's functions, we see that the primary computational bottleneck of a DMFT
calculation is solving the Anderson impurity model over and over again with different parameters
until the self-consistent instance is found. In fact, it is the solution of the Anderson impurity
model which is the classically difficult simulation task [IS-510] that we are seeking to replace with
our analog quantum simulator. We note that we are far from the first group to have such an idea,
and that it was recently proposed to use a digital quantum computer to facilitate the solution of
the Anderson impurity problem in a hybrid digital-quantum/digital-classical approach to
DMFT [1]. However, this approach to DMFT will require the execution of algorithmic primitives
that are likely to require quantum error correction to be successfully executed for non-trivial
model systems. Thus we expect that the requisite quantum resources are far from being available,
recalling the estimates for simulating the Fermi-Hubbard model described in Section

input: Strongly correlated material

Identify parameters for
a lattice model

Compute observables
for lattice model

Classical computer

Self-consistency lool2<-

1.1

input: Device model

Impurity problem l N Adjust device to realize
specification limpurity problem instance

fi
Compute
self-energy

Allow system to equilibrate

 I Infer Green's function
from measurements

Qm.....,............,..ator

Output- Spectral function, equation of state

Figure 1-2 An overview of the hybrid analog-quantum/digital-classical
approach to DMFT inspired by Ref. [1], particularly Fig. 1. Most of the
technical details in this report are concerned with establishing a high-
fidelity device model that can be used to reliably describe an analog
quantum simulator based on various semiconductor EQI technologies.

Taking inspiration from Fig. 1 in Ref. [1], we provide a flowchart that summarizes our approach
in Fig. 1-2. While we do not expect this approach to hybrid simulation to be as universal or as
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powerful as an approach that uses a digital quantum computee, we hope that we can realize
non-trivial demonstrations using devices that can already be fabricated and measured. Part of this
hope is based on our prior observation that our simulator will have an effective Hilbert space
dimension that is not only determined by the EQIs but the thermodynamically large baths to
which they are coupled. Of course, we are not accessing the entire Hilbert space of this composite
system but by realizing a strong coupling we still hope to expand the effective Hilbert space
dimension of our simulator to be significantly larger than that of the EQIs alone.

We briefly reference recent progress in the state-of-the-art in hybrid quantum/classical approaches
to DMFT since the publication of Ref. M. Given the focus of our project, we have not included a
review of the vast literature on classical solvers for impurity models aside from prior citations to a
few key articles. Two-site dynamical mean-field theory [51] has been investigated as a minimal
example that might be realized on near-term quantum hardware [52]. While noise has been
identified as a strong limiting factor to realizing a digital approach, particularly with respect to
convergence of the self-consistency loop [53], clever compilation schemes promise to help
mitigate some of these concerns [5A]. Noise-resilient variational quantum approaches have also
been implemented for the two-site problem [55], though the overall scalability of this approach to
digital quantum simulation remains an open question. Finally, we note the recent development of
a quasi-polynomial algorithm for efficiently solving the quantum impurity problem given in
Ref. [5ii], which might be useful in efficiently preparing an approximation to the impurity model
ground state on a quantum computer for use in a hybrid approach.

Most of the remaining technical work in this report is concerned with developing a high-fidelity
device model that will enable analog quantum simulation of a wide variety of Anderson impurity
model instances. Such a model is used to map from the voltages applied to the various gates in a
hypothetical device to the Anderson impurity model coefficients that are realized. This is
essential not only for controlling such an experiment but for designing one in the first place.

1.4. Summary of outcomes

The primary outcome of this project is a technical capability that is sufficient to both design and
operate our proposed analog quantum coprocessor. This involved numerous advances to both
modeling and theoretical capabilities that are summarized in this section. Among the secondary
outcomes was a collaboration, enabled by this project, to study a first-of-its-kind EQI.

The primary modeling tool used to design and operate the proposed analog quantum coprocessor
is LACONIC. Some of the highlights to advances to this modeling capability include:

• A configuration interaction solver: This was based on an approach that was originally
developed for QCAD [51]. Novel features of the new approach include the use of an IP
discretization of the Poisson equation to ennsure compatibility with the enriched basis sets

4Indeed, accelerating the DFT+DMFT approach that allows one to augment the accuracy of DFT calculations for
arbitrary strongly correlated materials would require much more development of this idea and the associated tech-
nologies. This approach is reviewed in Ref. [O] and targeted in Ref. [L1]. Here, we are strictly focused on taking
the first steps of simulating strongly correlated lattice problems.
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that are specific to LACONIC. This advance enables the evaluation of the Uoth8 coefficient
in Eq.2a

• Support for modeling germanium hole devices: This was done in synergy with other
experimentally-driven projects. Both single- and multi-band models were developed and
implemented.

• Support for modeling APAM devices: Adaptive hydrogenic basis functions were
implemented to enable the study of dopant-based devices fabricated using APAM5. The
mathematical details are preserved in Appendix A.

• Implementation of Hardy space infinite elements [51]: This allows us to describe
scattering states in baths, as well as resonance states in EQIs. This advance enables the
evaluation of the En, and Van, coefficients in Eqs. 2b and 2c

• Quantum transport through interacting regions: The Meir-Wingreen formula for
computing the current passing through an interacting region was implemented [W]. This
advance enables us to predict the differential conductances that would be used in a bias
spectroscopy measurement of one of our devices. While a capability for device-level
transport modeling in quantum dots has been previously demonstrated using mean-field
theory [60], the approach discussed in this report is an explicitly many-body approach that
can capture Coulomb blockade.

Many of these advances are generically useful to both ongoing and prospective quantum device
modeling efforts.

Other outcomes include more basic advances to our theoretical capabilities with highlights
including:

• Broader understanding of DMFT: This isn't strictly limited to implementations on
classical HPC systems and our own hybrid proposal, but approaches on NISQ and future
fault-tolerant digital quantum hardware.

• Resonances in EQIs: We have a sharper perspective on the basic physics and mathematics
associated with the theory of resonant states and non-Hermitian quantum mechanics. One
outcome of this is a new perspective on the structure of many-body Hilbert spaces for open
quantum systems in terms of biorthogonal systems.

• New proficiency in non-equilibrium many-body theory: Simulating transport
measurements of an EQI coupled to a bath requires facility with non-equilibrium
many-body theory to derive the relevant equations. We developed such a facility,
culminating in the adaptation of our approach in terms of biorthogonal systems to a
re-derivation of the Meir-Wingreen formula.

A final secondary outcome involved external collaborations enabled by this project. Members of
the team were approached by collaborators at the University of New South Wales (UNSW)
concerning a new type of EQI that had been experimentally realized and for which the theoretical
description was still developing. Unlike the EQIs considered elsewhere in this report, the

50f course, these methods also work equally well for single- or few-dopant devices fabricated using ion implantation.
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quantum degrees of freedom were not individual electrons themselves but the spin of a single
nucleus. In fact, the group at UNSW had for the first time coherently manipulated a single
spin-7/2 nucleus, 123Sb, implanted in a silicon nanoelectronic device. This project helped
contribute to the theoretical understanding of this novel EQI technology, for which the results are
reported in Ref. [6111].

2. THEORY

We first state the precise form of the second-quantized quantum impurity model and the
first-quantized low-energy effective theory that we use to model EQIs in Section 2.1. We next
provide a brief overview of Green's functions to describe the key quantities of interest in analog
quantum simulation of DMFT in Section 2.2. Finally, we describe the self-consistency condition
that is used to relate the properties of a single impurity to those of a lattice of impurities in
Section 123

2.1. Quantum impurity models and low-energy effective theories

The key observation that inspires our approach is that a system of one or a few EQIs coupled to a
bath are a natural realization of a tunable quantum impurity model. Generically, the
second-quantized quantum impurity model Hamiltonian takes the following additive three-term
form,

in which

= + + (1)

iii=E6aataaa+Eta,3ataa,3 + Uamettocel;d08, (2a)
a a, a,13,7,8

Nb

Hb = Embtmbm, and (2b)

Hi—b = E vamatabm+Vambtmacc. (2c)
a,m

The three terms are respectively the impurity (Hi), bath (Hb), and coupling (Hi_b) Hamiltonians.
The impurity consists of Ni localized orbitals with single-particle energies Ea, between which
there is a tunneling energy tap and a mutual Coulomb repulsion energy Uam. The bath consists
of Nb delocalized fermionic modes with single-particle energies Em. The impurity and bath are
coupled such that orbital a and mode m can exchange a particle with a rate proportional to the
modulus of Voun. The operator dot (dta) annihilates (creates) one flavor of fermion in orbital a of
the impurity and the operator bm (btm) creates (annihilates) a distinct flavor of fermion in mode m
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of the bath. The two flavors of fermions are mutually distinguishable but otherwise obey the
canonical anticommutation relations within a given flavor,

facoetol ={19.,b,i}= 0, (3a)

{erta,a;}={"ht„„b,ti} =o, (3b)

{aa,a;} = Sap, and = 8mn• (3c)

To develop an EQI-based quantum simulation platform for this model, it is necessary to also
define a first-quantized low-energy effective theory of the analog quantum simulator itself. This
allows us to develop a device model from which we can extract the coefficients in Eq. given the
operating conditions of the simulator. One such theory is effective mass theory, which has
previously been applied to model donor atom [62] and quantum dot [0] EQIs in silicon.
Effective mass theory allows us to express the first-quantized Hamiltonian for Np particles in an
EQI system as

Np ( 02 Np 
e2ri

H(ri , , rN ) = E --2m* + Vext (ri) +i=1 
E 

47Ge I ri — r j
(4)

where the first term is the kinetic energy renormalized by the effective mass, m*, the second term
is the interaction of each carrier with an externally-impressed electrostatic potential (e.g., due to
the control electrodes and/or built-in potential in the heterostructure), and the third term is due to
the Coulombic repulsion between carriers, screened by the bulk dielectric constant of the host
material, E. We note that there are a few subtleties that we are eliding for brevity. First, generally
the effective mass is a tensor quantity. Second, it is often the case that there are internal quantum
numbers that are also relevant to the physics, e.g., the valley index for electrons in silicon devices
or the light-hole/heavy-hole band index in germanium quantum wells. We will proceed by simply
asserting that we know how to incorporate these platform-specific details.

Thanks to the interaction term in Eq. 4, the problem of finding the Hamiltonian's lowest energy
eigenstates is generically computationally intractabl . However, one can apply mean-field theory
(e.g., Hartree-Fock or density functional theory) to approximate the ground state of Eq. 4, and a
basis for a many-body Hilbert space that could be used to instantiate Eq.

We describe the numerical solution of Eq. 4 and the extraction of the impurity model parameters
in more detail in Section 3. For now it suffices to state the overall workflow:

1. A CAD-level design of the EQI device is specified in terms of the composition of the
material stack and the dimensions and relative positions of the electrostatic gates.

2. This description of the device is used to specify a semiclassical electrostatics model (e.g.,
Thomas-Fermi theory [GIC 0]) that defines Vext (r) as a function of the experimental control
voltages.

6Generically, the problem of finding the ground state of an algebraically local Hamiltonian is related to a QMA-
COMPLETE decision problem [641 This is roughly the quantum equivalent of NP-COMPLETE, in which a quantum
proof can be efficiently verified by a quantum computer but it is unlikely that a quantum computer can find the
proof without further restrictions.
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3. A region of space around the EQI and bath are isolated from the electrostatics model and an
instance of Eq. 4 is posed, using mean-field theory to approximate the interaction term. The
associated eigenproblem is solved, yielding the single particle orbitals associated with the
creation and annihilation operators.

4. The coefficients of Eq. are extracted. Repeated solutions for different voltages can be
used to study the space of realizable parameters for design purposes. This can also be used
to simulate measurements on the analog quantum simulator for the purposes of calibration
and, eventually, operation.

Next, we introduce one of the key theoretical abstractions that is needed to connect analog
quantum simulation of a single quantum impurity to a lattice of impurities.

2.2. Green's functions

There are two contexts in which Green's functions are relevant to our aims. The first is as a
central quantity in DMFT, through which the properties of a single quantum impurity are related
to the properties of a lattice of quantum impurities. The other is in simulating transport
experiments that could be used to design or operate the analog quantum coprocessor platform
proferred in this report. We begin by referring the reader to Refs. [66]—M] for textbooks with
excellent discussions on the Green's function in the context of many-body theory.

The term "Green's functioC appears elsewhere in physics in the context of solving
inhomogeneous linear partial differential equations [Z]. In that context, Green's functions
encode the inverse of the linear operator defining a partial differential equation and the constraints
that specify the initial and/or boundary conditions needed for its unique solution. The Green's
function can be convolved with the inhomogeneous term to yield the solution to arbitrary
instances of the partial differential equation. Noting that most of the equations that we care about
in quantum many-body theory are nonlinear due to the presence of interactions, the use in this
context is slightly more expansive. In particular, they are useful in perturbatively treating
interactions and/or in constructing and closing infinite hierarchies of equations for many-body
problems. It is only in the particular limit of a non-interacting problem that the two-point Green's
function corresponds to the "classic" use.

To define the Green's functions that we are interested in, we first need to define a transformation
that relates operators defined in the Schrödinger picture to those in the Heisenberg picture. This is
no different than the usual presentation in introductory quantum mechanics in which one has a
choice between assigning the dynamics of a system to the state of a quantum system or its
observables [M11]. The Heisenberg picture annihilation operator for an arbitrary EQI orbital is
defined as,

iiii,a(t) = etece—iftt, (5)

where ii is the system Hamiltonian and t is time. It is evident that this operator obeys the
so-called Heisenberg equation of motion,

i
dt
cletH 

'
a(t) = [eiH,a(t),i1] ,
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where extensions to the creation operator, bath operators, or arbitrary products thereof, should be
evident. We will henceforth suppress the subscripted H on Heisenberg operators and assume that
the existence of a temporal argument is enough to distinguish it from its Schrödinger picture
counterpart. Being a first order differential equation, given an initial condition on eta (t), e.g.,
zio,(o) = aa, there exists a unique solution to Eq. 6.

The n-particle Green's functions are related to expectation values of particular ordered products
of 2n single-particle Heisenberg operators with respect to some known state (e.g., the ground state
or an equilibrium thermal state). The ordering of the constituent creation and annihilation
operators distinguishes different types of Green's functions, which correspond to functions whose
Fourier transforms are analytic on different portions of the complex planeZ. As we will see later,
the region of the complex plane over which one of these functions is analytic encodes information
about the boundary conditions in the physical system and the causal structure of the operator
product.

For the purposes of DMFT the particular Green's function of interest is the time-ordered
1-particle Green's function of the impurity,

Gap(t) = rcia(t)alp. (0)] IT 0)

= —i(Yole(t)iia(t)etto(0) — 13(-04(o)eia(olkPo)

(7a)

(7b)

where 7 is the time-ordering operator, which is defined explicitly in the second line. We note
that this Green's function is itself a Ni x Ni-matrix-valued function of time, in so far as a and 13
index {1, ... NZ }. Intuitively, this Green's function is a matrix of amplitudes associated with the
impurity returning to its initial state after a time t elapses between adding a fermion to a specific
orbital and removing a fermion from a potentially distinct orbital. For positive times the
added/removed fermion is a particle and for negative times it is an antiparticle. We note that we
will suppress the a and 13 subscripts and add a carat when referring to the 1-particle Green's
function independent of a particular basis for the single-particle Hilbert space, i.e.,
Gap(t) G(t)

The Fourier transform of the Green's function in Eq. is analytic in neither the upper nor lower
half of the complex plane. Instead we often work with the retarded (R) and advanced (A) Green's
functions, the Fourier transforms of which are so distinguished,

G4(t) = —ie(t)(1Poloot(t),4(0)11%), and (8a)

Gi,(t)=i13(-0(i-Poloa(t),4(0)}1iP0)•

Here it is evident that Gap (t) can be reconstructed from Gi,(13(t) and GRl3 (t) Physically, thesea 
functions are all ultimately related to the density of single particle excitations which one can
imagine measuring in the time or frequency domain through, e.g., charge sensing or bias
spectroscopy.

(8b)

7More specifically, we are referring to the extensions of the Fourier transforms evaluated on the real line onto the
complex plane.

8Here we specifically refer to particles and antiparticles because the particles in a hole-based device are holes and
the antiparticles are electrons. Of course, one could reverse this convention with care.
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From the 1-particle Green's function one can compute many properties of the reference state,
including the expectation value of any single-particle operator, the energy of the reference state,
and the spectrum of excitations [6ki]. Of course, if one had direct access to ITO), these same
properties would be accessible but at the expense of needing to work with a state vector whose
dimension scales exponentially in Ni and Nb. The primary advantage to working with Gap (t) is
that it is a lower-dimensional object. Thus, given an initial condition Gap (t = ti), one can imagine
writing the equation of motion for Gap and time evolving to solve for Gap (t) at arbitrary times.
This equation of motion is

Goip(t) = 8(084 + (11J010(t) [eta(t),H] etp(0) — 0(—t)a113(0) [aa(t),Ii] IT 0) , (9)

where we quickly find that the second term on the right-hand side generally leads to an infinite
hierarchy of equations of increasing dimensionality PI In the specific case of the Hamiltonian
in Eq. , there are two major complications. The first is that the quartic term due to on-site
interactions in Hi couples the 1-particle Green's function to the 2-particle Green's function. The
equation of motion for the 2-particle Green's function depends on the 3-particle Green's function,
and so on. The second is that Ili_b gives rise to terms that couple in n —point correlations over the
entire system, including the bath. This obviates the utility of working with a Green's function
localized to the EQI by increasing the dimensionality of Green's functions to accommodate the
dimensionality of the bath. In fact, these two complications compound one another. Thus, one of
the central challenges in quantum many-body theory is arriving at approximate closures to
hierarchies like this that are both accurate and physically sensible, e.g., they obey the same
conservation laws as the many-body system.

In addition to providing a heuristic description of the most basic elements of the many-body
Green's function formalism, this description should highlight the computational difficulty of
solving for Gap (t), which is itself a seemingly simple pathway to understanding many of the
interesting properties of a system described by the Hamiltonian in Eq. . Accordingly, the ability
to either make direct or indirect measurements of Gap (t) in a highly tunable EQI is a
computationally powerful capability. We next consider the manner in which DMFT allows us to
relate the properties of a single EQI hybridized with a particular bath to the properties of a lattice
of EQIs representative of, e.g., a strongly correlated material.

2.3. Relating a single impurity and a lattice of impurities

The contents of this section related to self-consistency make use of many well-established
relationships from the literature on DMFT 4:11 The central premise of DMFT is that we
can study the properties of a strongly correlated lattice model through the properties of a proxy
system governed by Eq. . Such a strongly correlated lattice model might be, e.g., the
Fermi-Hubbard model for which DMFT was first developed [45], but the idea is more general
than that particular model. We simply require that each site obey a Hamiltonian of the form in
Eq. 2a with the connectivity of the sites and their coupling remaining arbitrary. It is evident that
the standard Fermi-Hubbard model would correspond to a single-site impurity Hamiltonian in
which Ni = 2, and the two orbitals correspond to opposite spins that are uncoupled, i.e., ti,2 = O.
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Because of this generality, we will remain agnostic to the particular instance of the lattice
Hamiltonian and simply assert that we are interested in the properties of some unspecified Hiatt.
We assume that Hiatt has some non-interacting or mean-field limit, Mato that is efficiently
computable and for which there exist good quantum numbers, k, related to the discrete translation
invariance of the lattice. As indicated in Fig. 1-1, the lattice model and the single impurity model
are identified with one another when their Green's functions are equal,

Giatt,ap (0)) = Gap (0)) Voc, r3 c (10)

where Giatt is defined with respect to Heisenberg evolution by Hiatt in Eq. 8a, and we have taken
the Fourier transform of both Green's functions. We have chosen to work in the Fourier domain to
facilitate practically achieving this condition. In fact, the self-consistency condition will be
verified for Nm imaginary values of (0, Matsubara frequencies,

wn,M = i(2n 1)7cT , V n {1, . . . }, (11)

where T is the electronic temperature. Given an estimate of Gap ((0) at real frequencies from
either a direct frequency-domain measurement or a real-time measurement of the EQI, one can
compute the Green's function at the Matsubara frequencies by way of a Hilbert transform.

Thus the primary technical challenge of relating the properties of a single EQI to a target lattice
impurity problem becomes that of finding the coefficients in Eq. 2b and Eq. 2c for which a
measurement of a single EQI realizing that Hamiltonian satisfies Eq. 10 for a particular instance
of Hiatt at the NM Matsubara frequencies. Of course, we have no easy way to compute or measure

Glatt,ap (0) or else we would not need DMFT. To arrive at a scheme for approximating Giatt,ap((0)
such that we can compute it using Gap((0), we need to define the notion of a self-energy.
Intuitively, the self-energy is an operator that captures the difference between a local sector of a
non-interacting Hamiltonian and an interacting version of that Hamiltonian that is coupled to the
rest of the universe. For the lattice problem, the self-energy is given as

ilatt(k,Q)n) = latlt ,0(1(1 6latlt(kl()), (12)

where 6/aux' is the efficiently computable Green's function for latt ,O and we have introduced a
dependence on k, the good quantum numbers for IIlatt ,O • The two Green's functions are then
defined as

6latt ,0 (k, On) = [(Wn + 1,1)i — latt ,0(k)]1 and

6latt(k, Wn) = [(Wn + p) - latt ,0(k) Zan (k, COO] 1 ,

(13a)

(13b)

where Eqs. and 13a are sufficient to derive Eq. 13b. Noting that we cannot easily compute Zan

either, we approximate it with a local self-energy, E/att(k, Wn) '-,--% E(0)n) in Eq.

a latt (k, Wn) '''-'' [(0)n + 11)i — Chau ,0(k) — i(0)n)] 1 , (14)

where i(on) is the self-energy for the single impurity problem.

12

The DMFT consistency condition in Eq. 10 can then be rewritten as

13b

Os (0)n) = 61 a t t (k = 0 n) = [(0) + 411)i ill at t ,0 (k = 0) (0) n)] 1 • (15)

To satisfy this condition in practice, an iterative procedure can be applied:
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1. Index each iteration by an integer, j.

2. Guess tj=0(con) for the first iteration.

3. Execute the following for each j = 1, ... until convergence is reached, quantified by an
error tolerance Etoi.

a) Compute Cpatt (k = 0, con) from ii(0),).

b) Compute the single impurity model parameters {Ea, Varn} j for Eq. 1 that are consistent

with G/,iatt(k = (on).

c) Using the low-energy effective theory in Eq. 4, find voltages that realize {Ea, Vam}i in
the EQI-based analog quantum simulator.

d) Infer 6j(con) from measurements of the EQI-based analog quantum simulator.

e) Check whether 116/ (ton) — 6./-1 (ton ) 1 1 < Etni •

f) If convergence has been reached, exit loop.

g) Otherwise, compute ±i+1 (on) and go to a.

4. Extract physical properties from C.Liatt calculated using

The above self-consistency procedure makes it clear that we can augment the computational
power of an analog quantum simulator for a single quantum impurity by leveraging it as the
impurity solver within a DMFT loop, allowing us to study lattices of such impurities. The key
technical advances that are required are then a sufficiently high-fidelity model of the EQI-based
analog quantum simulator that we can realize a particular instance of Eq. on the fly. The
remainder of this report is primarily concerned with establishing such a high-fidelity model and
future work will see its continued use in designing and demonstrating this approach to analog
quantum simulation.

3. NUMERICAL TOOLS

The numerical solution of the low-energy effective theory in Eq. 4 using the LACONIC software
package is described in Section 3.1. The use of the Hardy space method to represent states in the
EQI and bath is described in Section 3.2, introducing the need for biorthogonal systems to
discretize non-Hermitian operators. We then briefly describe the use of LACONIC to extract the
Hamiltonian coefficients in Eq. in Section 3.3, providing the particular example of a Ge hole
EQI. Finally, we derive a biorthogonal version of the Meir-Wingreen formula [59] for transport
through an interacting system in Section 3.4, demonstrating its utility in simulating the types of
transport measurements that may be used to infer the single impurity Green's function in our
analog quantum simiulator.
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3.1. Numerical solution of the low-energy effective theory

To model the behavior of our analog quantum simulator, we make use of the LACONIC software
package to solve Eq. 4 for a potential landscape, V„t(r), derived from a semiclassical
electrostatics model solved in C OM S OL [rm. The particular details of the semiclassical
electrostatic model vary from platform to platform, but we typically use a 2D Thomas-Fermi
model to govern charge accumulation at the interfaces at which we expect the bath states to
accumulate, while constraining the region corresponding to the EQIs to have no accumulation. To
generate the single-particle orbitals, energies, and other coefficients, we typically start with a
self-consistent mean-field approximation to Eq. in which

N„ v2

H(ri,r2, ...,rA,p) = L 
2m

i* + vex, (ri) + vnif [n(r)] (ri) , such that ( 1 6a)
i=1

(16b)n(r) = f dr2dr3...drATPIY(ri,r2, • • ,rNP)12, and

[n(r)] (r) = VH [n(r)] (r) + V„ [n(r)] (r), where

V • (EVVH(r)) = n(r),

(16c)

(16d)

and V„ [n(r)] is a suitable density functional approximation to electronic exchange and
correlation. This ultimately leads to the need to self-consistently solve an eigenproblem of the
form

where

( 

2m 

v2

*
+17„t(r)+V„,f [n(r)] (r) Fa(r) = EaFa(r), Va E (17)

N,
n(r) = E f fp,Te] (EaVa(r)12

a=1

in which f [,u,Te] (Ea) is the Fermi-Dirac distribution, Te is the electronic temperature, ,u is the
chemical potential of the EQI at zero bias, and Ea are the single particle energies from Eq.
This is the central problem that LACONIC solves.

LACONIC is based on an interior penalty [72, 73] discontinuous Galerkin discretization [®] of
Eq. n. It does so using a mesh-based representation of the problem domain, with the flexibility to
handle tetrahedral, quadrilateral, triangular, and linear elements - with support for hexahedral
elements being finalized near the end of this project. The key reason for using a discontinuous
Galerkin discretization is to allow for the local enrichment of the function spaces used to
represent the solution of Eq. n in the vicinity of regions with known physics [75]. Dopant-based
devices fabricated using APAM provide the strongest motivation for this. In such devices, each
individual dopant or clusters thereof produces a Coulomb singularity in Vext (r). This produces a
cusp in Fa(r) that requires significant adaptation to resolve when exclusively using conventional
compactly supported polynomial basis functions. One of the advances in this project was the
development of anisotropic atomic orbitals that can be used to locally augment such basis
functions with linear combinations of hydrogenic orbitals to appropriately capture the anisotropy
of the effective mass. Some of the details of the basis, including a subset of the necessary
integrals, are given in Appendix A. Other areas that require enrichment of the local function space

(18)
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include the accurate representation of the evanescent tail of a wave function penetrating a
potential barrier at a material interface and in the description of bath states, as described in
Section 12.

To solve Eq. 17, we begin with a restriction of the problem domain to S/ c Rd with boundary an.
52 is tesselated by Ne tetrahedral or hexahedral elements, {T, e {1, . ,Ne}, where the ith
element has boundary aTi. The envelope function is then approximated as

Ne Np(e)

Fa(r) E E ca,e,pfe,p(r),
e=1 p=1

(19)

where Cot,e,p are the unknown coefficients to be resolved for the ath eigenvector of Eq. 17 and
fe,p(r) is the pth basis function with support restricted to the eth element. We are careful to use a
notation in which the number of basis functions per element is explicitly dependent on the index
of the element. The fact that the local basis functions can change from element to element is one
of the key features that we are seeking to leverage.

In the interior penalty discretization scheme used in LACONIC, the eigenproblem in Eq. 17 is
rendered as a finite-dimensional linear system of equations, one row for each basis function. The
row corresponding to fe,,p,(r) is

1

Eca'"(2M*(( fe',111V fe,p)Te ({fvfe,p,}},[[fe,p1DaTe — ([[fe,,p,]],{{Vfe,p}})aTe ...
e,p

+ p(Te)([[fel,pdb[Lfe,pflaTe) + (Vext +Vmf) fe,P)Te) = Ea ECa,e,p(fe',p, , fe,p)Te l (20)
e,p

where (., •)Te denotes an inner product over Te, ,•)aTe denotes an inner product over aTe, P(Te) is
a positive real penalty factor that is scaled by the area of the interface, [[.]] is the jump operator,
and {{.}} is the average operator - both of which accommodate the discontinuous representation
of the solution across elements [75]. LACONIC assembles a sparse matrix by aggregating Eq.
for each basis function and the resulting eigenproblem is solved using the Locally Optimal Block
Preconditioned Conjugate Gradient (LOBPCG) method [N. The solutions to Eq. 20 are a
discrete representation of single-particle orbitals that span a Hilbert space that can be used to
generate many-particle states through association with the creation and annihilation operators in
Section 2.1. By postprocessing solutions to Eq. 29 we can then generate the coefficients to Eq.
as we will discuss in Section 3.3. First, however, we discuss a novel aspect of studying EQIs that
are strongly coupled to baths and that is the representation of bound, quasi-bound, and unbound
states.

3.2. Representing the quantum impurity and bath

20

One of the primary technical challenges in creating a detailed device-level model for an EQI that
is strongly coupled to a structured electronic bath is the representation of the extended states in
the bath and their coupling to bound states in the EQI. Even more subtle is the representation of
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quasi-bound states in which the partition between the extent of the state on the impurity and in the
bath is blurred due to strong hybridization. Here, the problem can be more abstractly articulated
as finding a basis for the Hilbert space of single-particle states in the bath, with infinite extent and
satisfying the appropriate asymptotic boundary conditions. Hardy space methods offer one
solution.

The general class of Hardy space methods for open systems has seen wide application in applied
mathematics [L5S, 7711—Ea] and there has even been a demonstration relevant to transport in
nanoelectronic devices [82]. The central concept underlying all of these methods is the fact that
the space of square integrable functions on some domain admits an orthogonal decomposition
into two spaces of square integrable functions that obey either incoming or outgoing asymptotic
boundary conditions. These two spaces are Hardy spaces, which are spaces of holomorphic
functions with boundary values that obey particular conditions. When equipped with an
appropriate inner product they are themselves Hilbert spaces that individually span state spaces
describing incoming and outgoing particles.

We consider a single spinless particle, the properties of which are completely specified by its
position, r , in a domain, n C Rd. We are particularly interested in the specific case in which
5-2 = flint U next, where flint in an interior domain with finite extent (e.g., a region containing
EQIs), and n„t is an exterior domain with infinite extent (e.g., the baths to which the EQIs are
coupled). The two subdomains have ATI-, boundaries between them, { E 1 , NO, and we
would like to construct a particular partitioning of the Hilbert space for states in n„t that
differentiate between states that describe an incoming particle entering n int and outgoing particles
leaving 52int. This differentiation can be achieved using the Hardy space method, and we draw
heavily from Ref. [5S] in describing it.

The key technical consideration for the Hardy space method is the so-called "pole condition" that
relates the asymptotic properties of states to their analytic behavior. Simply put, the meromorphic
extension of the Laplace transform of incoming and outgoing states for a transform variable
conjugate to a radial coordinate normal to Fi are analytic on different halves of the complex
plane. We define such a radial coordinate as r and ignore any dependencies in transverse
directions for simplicity, the conjugate transform variable is s. The Laplace transform, L, of an
arbitrary function of r, f (r) , is given as

(L f)(s) = f dr e' f (r)

0

(21)

The Hilbert spaces of functions for which the extensions of (Lf)(s) to C are analytic on the upper
and lower halves of the complex plane form an orthogonal decomposition of the full Hilbert
space. The two halves of this decomposition correspond to incoming and outgoing states. By
constructing a basis for either of these two subspaces, we can represent functions that are strictly
incoming or strictly outgoing.

We can also apply another transform, subsequent to the Laplace transform, to render the pole
condition in terms of analyticity on the interior or exterior of the complex unit disc. A basis for
functions that are analytic on the interior of the complex unit disc is particularly straightforward,
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consisting simply of monomials in the transform variable, z. The transform that accomplishes the
desired mapping is the Möbius transform,

(Mkof)(z) = V-2iko(f mk0)(z) 
z 1
1  where

z + 1
mko (z) = ik0 

z — 1
,

(22a)

(22b)

and we have chosen the \/-2ik0 prefactor to ensure unitarity. In fact, the Möbius transform is a
family of transforms parametrized by k0 E C, where the notation k0 is intended to evoke a
physical wave number. This will be relevant in its application to studying scattering and
quasi-bound state problems.

In Ref. [L5N and subsequent work, the choice of the Laplace-M8bius transform is convenient
because it converts a straightforward formulation of the Helmholtz eigenproblem from being
quadratic in the wave number to one that is linear in the wave number. Additionally the matrix
elements take on a particularly simple form thanks to the monomial basis in the transform
variable. In this project, we have chosen to investigate the Hardy space method to assess whether
it is a more economical basis than others for representing EQI states that are strongly coupled to
the bath states. Similarly the infinite element framework that we have added to LACONIC can be
easily extended to other basis functions.

For many of our derivations and because we are working with a Helmholtz-like equation with
non-constant coefficients (i.e., Eq. [17), we have found it more convenient to work directly with
the eigenfunctions of the Laplace-Möbius transform in the untransformed variable. These
eigenfunctions are

u,n(r) = —2ikoe—i4xL,(-2ilcor) (23)

where L„, is the mth Laguerre polynomial, and Re{ ko} > 0 and Im{ko } < 0 ensures that these
eigenfunctions describe the desired set of quasi-bound states. Such a basis has been implemented
in LACONIC using the interior penalty formulation in the previous section. We have verified our
implementation for scattering, quasi-bound, and bound state problems relevant to EQI modeling,
with exemplary results in Fig.3-1

In the course of our implementing the Hardy space method we came across a curious feature. The
basis functions in Eq. 23 are not orthogonal in the usual sense as complex conjugation maps
between Hardy spaces that satisfy different asymptotic boundary conditions. Instead, the
orthogonality relation holds without complex conjugation. In order for the usual inner product to
hold for the evaluation of matrix elements, we then need to define a biorthogonal system in which
the dual basis to the one in Eq. 23 are the complex conjugates to those functions.

One consequence of this is in the construction of matrix elements in Eq. 29, where we must now
be careful to use the Hardy space basis and its dual. While this might seem to be a simple
substitution, it ultimately means that self-adjoint operators will no longer necessarily generate
Hermitian matrices. Another more subtle consequence is that we must revise the usual fermionic
operator algebra to accommodate the creation of many-body states that respect the Hardy space
formalism. We will illustrate this with an explicit construction in our re-derivation of the
Meir-Wingreen formula in Section 3.4
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Resonant state calculations for a square well

position

Figure 3-1 Numerical verification of the Hardy space method for an an-
alytically tractable one-dimensional finite square well. The wave func-

tions for exemplary bound (lowest two), quasi-bound (middle), and un-
bound (top two) states are illustrated. The vertical shifts are commen-

surate with the real parts of the corresponding energy eigenvalues.
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3.3. Extracting quantum impurity model parameters

One of our primary goals is extracting the coefficients of Eq. from a direct simulation of a
high-fidelity device model as a necessary condition for designing and operating our analog
quantum coprocessor. We note that while solving for the properties of a quantum impurity model
might be computationally difficult, determining the coefficients of Eq. is more computationally
straightforward. By solving for the spectrum of states in the EQI and bath using the approach
described in Sections 3.1 and 3.2, we can directly extract ea, tap, and Em. To extract Ual31,8 and
Vam, we require some postprocessing.

The evaluation of Uai31,8 can be done by using single-particle states, {Fa(r)}a that come out of
solving Eq. 17. In particular, we make use of a trick from Ref. [157] that leverages a Poisson
equation formulation. We can write Ua078 as

Uapy8 = f drFa(r)Fp(r)171,8(r), where (24a)

V • (EVVy8(r)) = —Fy(r)F8(r). (24b)

making use of an interior penalty discretization of the Poisson equationWe can solve Eq.
where

24b

Ne Np(e)

Vy8(r) ',-:_-, E E do,e,pge,p(r),

e=1 p=1

in which we may use a different basis set from the one in Eq. 19, and the row of the resulting
system of equations corresponding to ge,,p, is

Ed7,8,e,p((V ger ,p,r ,V ge,P)Te — ({{V ge',134}1[[geADaTe — ifigef,pdb {{vge,p}})aTe ...
e,p

(25)

...+0(Te)([[8y,pd],[[ge,p]])aTe) = (ge, ,p, , FA) Te . (26)

This sparse system of equations is formed and solved using the Generalized Minimal Residual
Method (GMRES) [I83] for each y and 8. The associated integral in Eq. is then evaluated for
each a, 13, y, and 8 by quadrature.

The extraction of Vam requires the solution of a non-interacting scattering problem in which a
particular bath mode, m, is identified and scattered off of the EQI potential. This is as simple as
reformulating the eigenproblem in Eq. 17 as a scattering problem, discretizing with the interior
penalty method and making use of the Hardy space method to represent the incoming and
outgoing states as described in Section 3.2. In Fig. 3-2 we illustrate an exemplary calculation of
the transmission probability as a function of the bath wave number for a realistic potential
extracted from a model of a Ge hole device. While the transmission probabilities aren't projected
onto individual EQI states to arrive at, e.g., Van, for a specific value of a, this is itself another
simple postprocessing step given the spectrum of Fa(r) from a solution to Eq.

24a

17

With these tools developed, we have a high-fidelity device model that can be used to design or
operate an EQI system as an analog quantum simulator. In the next Section, we consider the
problem of simulating experimental data that might be used to infer the Green's function as
required by the self-consistency cycle described in Eq.
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Figure 3-2 The Hardy space method used to extract the tunneling rates
for a realistic dot potential for a Ge hole EQI device. (Top) A one-
dimensional slice of the electrostatic potential defining the EQI. The
voltages were chosen as to keep the orbital ground state and curva-

ture of the EQI fixed while allowing the tunnel barriers between the EQI

and baths to vary. (Bottom) The transmission probability through the

EQI as a function of the barrier height and bath mode wavenumber for

the potential on the left. Note that the transmission probability is ex-
ponentially sensitive to the barrier height and incident wave numbers,
highlighting the broad tunability of the Va„, coefficients in Eq. 2c.

31



3.4. Simulating transport measurements

In this Section we re-derive the Meir-Wingreen formula [5_9] for the steady-state current through
an interacting region within the biorthogonal formalism that was introduced in Section 2.1 to
accommodate the use of the Hardy space method in representing incoming and outgoing particles
in a bath. We first define a dual set of creation and annihilation operators, distinct from the
creation and annihilation operators for fermionic states on the EQI. The relationships between
these distinct sets of operators and the non-Hermitian character of operators comprised of their
Hermitian analogues is then considered. We then briefly introduce the Keldysh Green's function,
noting here that textbook references [67, rilV] can supplement this somewhat sparse description.
We are careful to point out several subtleties that arise in our biorthogonal construction, relative to
the more conventional formalism. Finally, we use these definitions and tools to express the
Heisenberg equation of motion for the current in a coupled EQI-bath system (i.e., an instance of
Eq. in which there are 2 or more baths with different chemical potentials relative to the EQI).
This leads us to the Meir-Wingreen formula, which we then apply to an exemplary EQI system
comprised of chains of phosphorus donors fabricated using APAM. We illustrate particular
simulations that are illustrative of the types of experiments that would be needed to infer Green's
functions in the context of our analog quantum coprocessor concept.

We must first define a set of creation operators tem each of which creates a fermion in state m
and which anticommute,

{etni,ein-} = o. (27)

This also implies that m cannot be occupied by two or more fermions. We define the action of etm
on the vacuum state, 10) in the usual way,

etm10) = lu.), (28)

where lum) is a single-particle basis state in which there is one fermion in um. Where things start
to diverge from the usual approach is the need to create a second set of operators, {c/m},n, which
also anticommute,

{4,4} = o. (29)

However, these operators create single-particle basis states that are dual to flum)},n, which we
will denote as { (//m1},n, such that

= (aml.
These two sets are biorthogonal,

(30)

(andun) = 8inn • (31)

Typically, one would define the anticommutation relations that the creation and annihilation
operators have and use this algebra to build a many-fermion Hilbert space. Here, we start with the
known structure of biorthogonal basis states and work to prove that this structure is consistent
with the standard anticommutation relations.

The first step is showing that the creation operators for one set will work as annihilation operators
for the other set, i.e.,

jmlUn) = 8mn
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which can be proved by applying a biorthogonal resolution of the identity,

= 10)(01+E + an I + • • • , (33)

to the left hand side of Eq. 32. We are careful to note that the inner product between a k-particle
state and an l-particle state is proportional to the delta function 6k1.

We next prove that the biorthogonal sets of basis states still allow for the anticommutation
relations by considering the action of such an anticommutator on the ket for the vacuum and all
possible single-electron states9,

and

thus

fetni,4110) = dzinlo) + and lo)
+ Itini)

= 8.10),

{d,cin} luo) = etmjnluo) + ândluo)

= n o etm 10) + (1 —8mo , .I14m, uo ,

= 8nolUm) + (1 — 8mo) 8mnluo) + (1 — 8mo) 8mo
= 8mnluo)

etm = 8mn •

u„)

We note that a physically intuitive basis for many-particle Hilbert spaces is provided by
eigenstates of the number operator. The number operator for state m

and we are careful to note that

= etmcim,

(^1. cPenm= cm m — — m m

(34a)

(34b)

(34c)

(35a)

(35b)

(35c)

(35d)

(36)

(37)

(38)

This is an example of the fact highlighted in Section 3.2 that self-adjoint operators may no longer
result in Hermitian matrices with a biorthogonal discretization.

While we may also find that fit, the form of the Schrödinger equation is not fundamentally
changed by our choice of basis. Thus the time-evolution operator for a constant Hamiltonian can
still be written as

0(t) = (39)

9We note that the case of multi-electron states can be handled similarly.
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While this is no longer necessarily a unitary matrix the inverse can still be written as e+ifit . This
can be used to show that the Heisenberg equation of motion of an operator Q is stil

dt 
= i [E,0(t)] . (40)

In deriving the Meir-Wingreen formula, we need to make reference to such operator evolutions on
the Keldysh contour [M], denoted by y E C. It is a contour parametrizing the argument of
Heisenberg operators in real- and imaginary-time, and we thus substitute the t E R argument of
the Heisenberg operators with a z E y. The contour itself is directed in such a way as to define an
ordering with respect to which products of Heisenberg operators are "normally ordered", thus
permitting the application of Wick's theorem. Wick's theorem is used to easily construct
diagrammatic perturbation theories for Green's functions and other quantities relevant to
performing actual calculations. In the context of this derivation, we need it to define a
contour-ordered Green's functio . The 1-particle Keldysh Green's function for a system with
Hamiltonian H(z) is then defined by

Tr {e-i f7dz" 11(z") Ty [dm (z) etn(2)]}
iGmn(z, 2) =   (41a)

Tr {e-i fydz" ii(e)}

= ö(z,i)-F 9(z, z') (4(z) etn(Z) — e(z ,z) Ketn(Z)4(z)) , (41b)

where Ty is the contour ordering operator, creation and anihilation operators are time-evolved on
y, expectation values are now taken with respect to thermal states, and 8(z, z) and 0(z, z) are
defined with respect to y.

For a non-interacting system with the quadratic Hamiltonian

= hmnemjn, (42)
m ,n

we derive the Heisenberg equation of motion for Gmn(z, zi) and find that it is similar to the
standard case for an orthonormal basis. Differentiating with respect to z we see that

dz 
—Gmn (z , 2) =.3(z, 2) (dm(Z)en(2)) ie (z , 2) ([1 1 , 4(z)] ein-(2)) (43a)

— 8(z,Z)Kel,(Z)cim(z)) — ie(z,Z)Ke;ti(Z) [1 , 4(z)] (43b)

=8(z, zi)8mn EhmoGon(z,Z), (43c)
o

where we note that we have chosen a quadratic Hamiltonian to prevent a hierarchy of
dependencies on n-particle Green's functions as was discussed in Section
dependence on a specific single-particle basis this can be rewritten as

(i—d d(z,Z) =03(z,i)i,
dz

1°We first encountered the Heisenberg equation of motion in Eq. 6
11In contrast to the time-ordered Green's function in Eq. 7.
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where h denotes the projection of CI onto a single-particle Hilbert space, rather than the full Fock
space.

We can solve Eq. 44 in the Fourier domain if we assume that our system will reach a steady state,
in which case G(z, z') G(z — z') and

6(œ) = (45)

As with the time-ordered Green's functions in Section 2, we can define retarded and advanced
components of this Green's function. The retarded Green's function corresponds to z < 2 and is
given in the Fourier domain as

ÛR (CO) = lim [(CO ii)i — 
—1

,
ri-r0+

(46)

and the advanced Green's function corresponds to z > .2, given by

6A (0)) = lim [(co — — it] -1 . (47)
ri->0+

We also introduce lesser and greater Green's functions that are defined in the time domain as

z') = (etn(Z)d,n(z) (48)

and
G,,„>,(z,Z) = Kcin(z)d(z)) . (49)

These latter two Green's functions will appear in the Meir-Wingreen formula and it is useful to
first see their relationship to the retarded and advanced Green's functions through the
fluctuation-dissipation theorem.

Differentiating Eq. 12 with respect to the time arguments and solving relative to initial conditions
at (z,Z) —> (0,0), we see that

6` (z, z') = e±iizz6< (0, (50)

Restoring the dependence on an explicit single-particle basis it should be clear that

= —i(etn(0)ci,n(0)) = —i8mn (eLcin), (51)

which is simply the particle number in orbital m in the initial state. As we are starting in a thermal
state, this is simply a Fermi-Dirac distribution. We can then Fourier transform Eq. 50 to arrive at

6< (œ) = —f (œ) 8 (coi —

= — f (0)) lim ([(0)-F in)i 1 — [(( 0 —

= — f (0)) (ÛR (0)) — 6A (0)))
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where f is the Fermi-Dirac distribution. This is the fluctuation-dissipation theorem. A similar
equation including the complement of the Fermi-Dirac distribution can be derived for G> . We
were careful to have shown these relationships because they imply that the retarded and advanced
Green's functions are related by

6A(03) = (6R(co)— _ i)-1 OR(w)t. (53)

Whereas the retarded and advanced Green's functions would be related through Hermitian
conjugation in the usual case for an orthogonal system, for our biorthogonal case this relationship
is more subtle.

We now have the definitions and tools necessary to derive the Meir-Wingreen formula for current
through an interacting system. We will continue to use e",;, and dm to denote the creation and
annihilation operators for bath modes that are being injected into the system through a bias. As
before, we will use eita and aa as the creation and annihilation operators on the impurity. Note that
because an orthonormal basis is a special case of a biorthogonal basis where the left and right
basis sets are the same, all of the Green's function relationships that we have demonstrated apply
to the impurity, as well. This also suggests that the derivation of the formula for the current is
relatively similar to the standard orthonormal case.

We consider a Hamiltonian of the form in Eq. repeated for clarity,

=

where Hi is the same as in Section 2, Hb is the total energy of the states in the leads, and we
update to reflect the new biorthogonal operator algebra,

= E (vmaetmaa + vanititcAn) , (55)

then we can examine the Heisenberg evolution of the total number operator for the bath,

Sib = Edjm,

(54)

(56)

to get the current flowing out of the associated lead. If fib conserves the electron number in the
bath, we find that

[11,44] = [iii_b,etkjk] = -E8jk (V jaetkela — Vajeltik) . (57)
j,a

Because the current flowing from the lead is the time derivative of the expectation value of the
number of fermions in the bath, we can use the above expression with the Heisenberg equation of
motion to determine an expression for the current at time z as

Ibw= b (Z))

LEK [ft, ek(z)jk(z)]

= —iLE6;k (via Kel(z)tia(z)) — va; (eita(z)cik(z)))
j,a k

= Tr Z)}
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where and izi_b are the single-particle matrix defined by the coefficients in going from
the bath to the impurity and the vice versa, respectively. We have also introduced projections of
the time domain lesser Green's functions Gb i(z,z) and Gi b (Z, Z) with the same convention.

We will next use Eq. 58d to derive the expression for the steady-state current. We begin by noting
that 61(t ,t) — , t)t , in contrast with the standard case using an orthonormal basis,
preventing us from simplifying this equation in the usual textbook fashion [M]. In order to
develop a new expression for this quantity, we begin with the Keldysh Green's function for the
composite system of the bath and the impurity, split into parts. Assuming no interactions on the
impurity for simplicity0, we can write the equation of motion as

(d [ hb_i1)1 Ob(z,zf) z')] _ 
8(z, )i , (59)

idz Liii_b hi ) [6i_b(z, z') Gi(z,z')

where itivi is the single-particle Hamiltonian on the bath/impurity and 6/0(z, e) is the
corresponding Keldysh Green's function. Elimination can be used to define the Green's function
on the impurity as

(i
dz

— iii) 6i = 8(z,

and we can formally solve this equation by defining Ob_i to be

Gb_i(z,z)= fdegb(z,e)hb_i6j(e,z),
where gb(z,zi) is the Green's function of the bath decoupled from the impurity. Defining
Gb_i(Z,2) as an integral over the Keldysh contour like this allows us to use Langreth rules to
express the lesser Green's function [RI:1]. Defining the embedding self-energy of the bath as

ib(Z,Z)=hi—bgib(z,Z11:1b—i,

we can rewrite the first term on the right-hand side of Eq.58d in the steady state as

(60)

(61)

(62)

i(z,z) = f dz' (z, z1)6 z) + 4 (z, z1)6‘ (Z,z)) (63a)

= 7t f da) (4(°))6(0)) +n(0))6(0))) •
Similar substitutions can be made for b(z,z), and with that we finally arrive at the
Meir-Wingreen formula for the current in steady state,

(63b)

'<, \AA '.AR/ \A< .\</ \AA ÷Ri--\A<h f dcoTr {Eb m)(ii ((o) +2.,b m)tii (co) —2.1 (co)ub(o)) —Li m)cfb (6))} , (64)
271

where Ei is the embedding of the impurity to the lead defined similarly to the equation for
Note that the Green's functions for the bath and impurity are linked, as Eq. 60 implies. A change
to the lesser Green's function for the impurity, for example, affects all the other Green's functions

12These would be absorbed into appropriate self-energies in a more complete derivation.
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involved here. Luckily, Eqs. and 53 imply that for steady state systems with no interactions,
the ability to calculate the retarded component of the Green's function allows one to calculate all
other components of the Green's function. This and Eq. 60 transformed to the frequency
domain,

52

di(w) = — hi — ib((o)]-1 , (65)

give us all of the tools we need to calculate a current through an interacting region.

We have implemented this approach to computing the current through interacting regions for
Hamiltonians of the form in Eq. , noting that we are principally concerned with EQIs in contact
with 2 or more baths and that this generalization is straightforward. As a benchmark problem, we
study two EQIs comprised of phosphorus donor chains coupled to 2 baths in Fig. 3-3 We use the
formulation of multi-valley effective mass theory considered in Ref. [62] to generate Hamiltonian
coefficients for EQIs consisting of both 2- and 5-donor chain. In the results that we have shown,
we chose the bias windows for the baths relative to the EQIs such that we can see Coulomb
blockade, i.e., regions in which the current through the chain is suppressed due to the prohibitive
energetic cost associated with having too many electrons on the EQI. In bias spectroscopy
experiments, one typically looks at the voltage derivative of this signal (i.e., the differential
conductance) which is computed and illustrated in Fig. 3-4. In this example the regions of high
differential conductivity correspond to many-particle eigenstates of the EQI being brought into
the bias window of the device.

These calculations simulate precisely the sort of experiment that we would like to use to infer
Green's functions for EQIs in the context of our analog quantum coprocessor concept. It is
evident from the form of Eq.164 that its voltage derivative provides us with access to
spectrally-resolved information about Gi, provided a model for Gb, Thus we can imagine
bias spectroscopy experiments with a 3-terminal device, in which 2 are used to supply a probe
current and the 3rd is used to serve as the controllably coupled bath in our single impurity model.
The differential conductance as measured by the 2 terminals used to supply the current can then
be used to infer Gi at real frequencies which can be Hilbert transformed to yield the Green's
function at the Matsubara frequencies needed to ensure self-consistency with respect to a target
lattice problem, as described in Section 2.3. One can also imagine a less intrusive measurement
that makes use of a 1-terminal device with an adjacent charge sensor, in which the spectrum of
current fluctuations in the charge sensor can be used to infer 6i in real-time, starting from
Eq. 58d. At the close of our project the relative advantages and disadvantages of these two
approaches remain a topic of ongoing research.
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Figure 3-3 Exemplary calculations of the current across two APAM-

fabricated chains. (Top) Current through a chain of 2 single-donor

EQIs. (Bottom) Current through a chain of 5 single-donor EQIs. In both

cases, the vertical axis corresponds to a source-drain bias voltage from

one end of the chain to the other and the horizontal axis corresponds

to the uniform on-site energy of each EQI controlled using, e.g., a top-

gate [2]. The regions of low current correspond to Coulomb blockade

of transport through the chain.

39



bi
as
 a
cr
os
s 
ch
ai
n,
 p
 

bi
as
 a
cr
os
s 
ch
ai
n,
 p
 

Simulated differential conductance
across a 2 donor chain

on-site energy, E

Simulated differential conductance
across a 5 donor chain

on-site energy, E

high

low

high

-13

low

Figure 3-4 Exemplary calculations of the differential conductance
across two APAM-fabricated chains. (Top) Differential conductance
across a chain of 2 single-donor EQIs. (Bottom) Differential condu-

catance across a chain of 5 single-donor EQIs. In both cases, the verti-
cal axis corresponds to a source-drain bias voltage from one end of the
chain to the other and the horizontal axis corresponds to the uniform
on-site energy of each EQI controlled using, e.g., a top-gate [2]. The
charge transitions corresponding to high values of the differential con-

ductance correspond to eigenstates of the chains being brought into
the bias window, giving us a direct map of the energy-level structure of
the two chains.
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4. CONCLUSION

The approach and tools developed in this report are the foundation for realizing our analog
quantum coprocessor concept in practice. The most obvious next step is to build a single EQI
system connected to a single tunable bath in an attempt to realize two-site DMFT [51]. While this
particular instance of DMFT is far from computationally intractable, it is a simple exemplary case
that 1) captures phenomenology relevant to strongly correlated systems and 2) is analytically
tractable in such a way that our approach can be verified and validated.

As for the particular material system that should be targeted, our recommendation is to pursue Si
electron-based quantum dot devices, Ge hole-based quantum dot devices, and APAM-fabricated
dopant devices due to local expertise. All of these systems have rich physics beyond the simple
isotropic effective mass theory described in Section 2.1. Fortunately, progress over the course of
this LDRD has also augmented our ability to study these systems, namely a Luttinger-Kohn-based
approach to studying the Ge hole devices and anisotropic atomic orbitals for dopant devices. This
capability will have impacts beyond the scope of the particular application to designing and
operating the analog quantum coprocessor concept described in this report.

There are a few other future prospects worth mentioning. We note that the DMFT mapping on
which this approach is based is only exact in the infinite-dimensional limit This means that the
particular embedding that we're studying is an approximation in dimensions corresponding to
physical systems (e.g., two or three). Nevertheless, one can replace the single impurity model
with increasingly large clusters to mitigate the error due to this approximation. We note that
creating increasingly large and structured EQIs is one of the dimensions along which we might
imagine scaling our approach. We also note that driven impurity models might be an opportunity
for an analog quantum simulation platform based on EQIs. In particular, we note Ref. [84] which
studies the computational complexity of the periodically-driven Anderson impurity model and
illustrates the rapid growth in the EQI-bath entanglement entropy in a certain regime of driving.
While this entropy is itself predicated on the specific ordering of the bath modes, the fact that it
continues to grow rapidly even with a particularly optimal ordering is suggestive of the fact that
this is also a hard problem. The tools developed in this LDRD could also be used to design an
EQI-based simulator for this model, as well.
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APPENDIX A. ANISOTROPIC ATOMIC ORBITALS

We begin by considering a single-valley effective mass equation,

We consider the specific
is longitudinal,

case

F (r) = E F(r) . (66)

y masses are transverse and the z mass

F (r) = E F (r). (67)

2mx 2my 2m, 47cEsir

of a valley in which the x and

Vx2 V; e2

2m 2m 2m 47cE r1 1 11 si

The mIlm11, is introduced such that this

02 Ng e2

can be rewritten as,pararneter, y = m

F (r) = E F (r), (68)
2m1 2ymi 47CEsir

which is evidently a hydrogenic Hamiltonian with a correction to its kinetic energy. The kinetic
energy correction breaks the separability of the PDE in spherical coordinates. In what follows, we
construct a separable basis of hydrogenic orbitals and use it to solve Eq.68

If we ignore the kinetic energy correction that breaks spherical symmetry, we are left with a
separable PDE,

V2 e2
F (r) = EF (r) .

2m1 47cEsir

We know the complete spectrum of hydrogenic solutions. The bound states are given as,

(69)

fnim(r) = Rni(r)Yim(0,0), (70)

where n, l, and m are the radial, angular, and magnetic quantum numbers, Y11„(0, 0) is a spherical
harmonic, and Rii1(r) is given as,

( 2 3(n — —1)1  —rInai (2r 
1
L21+1 2r

na1/ 2n [(n On - nal n-1-1 nai)

+ \where Ln21—/
1 
1(u) is an associated Laguerre polynomial. The effective Bohr radius,

47cEsfi2
al = 

rn_Le2

(71)

(72)

is for an electron with an isotropic effective mass equivalent to m1 in a medium in which the
strength of the static Coulomb interaction is renormalized by the dielectric constant of silicon.
The energies of these eigenfunctions are determined entirely by the radial quantum number, n,

( m_Le4 1
32,7c2e,i#2 ) n2en =
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We use these bound state solutions as a basis for a solution to the fully anisotropic problem,

Inserting this into Eq.68

F (r) = EcnImfnim(r).
nlm

, we are left with

v2
Eenlm (en  z fnlm (r) = E E cnImfnlm(r),2,7m1nlm nlm

which can be projected onto a particular basis function, fan,' (r),

=

68

(74)

(75)

(76)

Here, #37:1„,/ mi is a Kronecker delta symbol that evaluates to zero unless the integer strings in the
subscript and superscript are identical. Eq. 76 defines an eigenvalue problem in terms of the bare
orbital energies and matrix elements of the anisotropic correction to the kinetic energy. These
matrix elements are given as

00 ic 27c
v

zl

2
Ann;l:nmi = — f dr f de f r2 sin(9)Rn*,/, (r)17/%m, (0, 0) Rn1(r)Yim(9 , 0) .

4m 
o o o

In the following subsection we evaluate this integral.

A.1. Matrix elements for the anisotropic correction to the kinetic energy

Integration by parts can be applied to Eq. 77 and the matrix elements are then rendered as,

(77)

1 TC 2n

A nn = 27m1 dr I do f dcb r2sin(0)—
a 

az (Rniii(r)171 
aZ

, (0,0)) — (Rn1(0171m(O,0)) • (78)

0 0 0

Because the z derivative does not act on the Q coordinate, we can evaluate the integral directly,

=nlm

00

a' f dr f de r2sin(0) a (Rny (re (cos(0))) — (Rni(r)Pm (COS (0))) , (79)
az /

0 0

TC

where the constant prefactor Vnim is

qv:1'm  
—

1

- m 27mi
(21 + l)(2/' +1)(1 )1(/m)!

(l+m
ni
)V-Fm)!
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Pr (u) is an associated Legendre polynomial, and we have made use of the fact that Rnl (r) is
real-valued. Eq. 79 can then be decomposed into a sum of 4 terms,

=nlm

cn;„,l'm =ri 

Tyi'em =nlm

Anfrmf Amin/I'm 
+ 

_L rn'l'm _L 
, where"nlm — urn -Alm L-nlm 2-"nlm

dr r2
ar ar  du u2 Pr (u)Pr (u)

aRny(r)aRnl(r) 

(.1 dr rakm(r)  Rni(r)ar 
(1 du u(u2 1)117(u)

afr (u))

0

au
o -1

)dr raRanlr(r) Ro,(r) 

1 

f du u(u2 1)Pr (u)apP:u(u)

_1
0.

ai:17(u)) al:1 )7(u 
f dr Rol (r)Rni(r)) f du (u2 - 1)2 

au au
o -1

A WI'
'nl "lm

= yin?'

(81)

(82a)

(82b)

= dicLm, and (82c)

= dr: . (82d)

Here we have applied the usual transformation from an integral over 0 E [0, it] to an integral over
u = cos(0) E [- 1, 1]. Next, we will evaluate the integrals over associated Legendre polynomials to
establish selection rules on l and then evaluate the remaining integrals over the radial orbitals.

A.2. Integrals involving associated Legendre polynomials:

To evaluate the integrals over u, we will need three identities. The first is the orthogonality
identity,

1

f du Pr (u)Pr (u) = 
2  (l +m)! 

2/ + 1 (l - m)! 1 •
-1

(83)

The second is a recurrence relation involving products of the argument and associated Legendre
polynomials,

1
uPr (u) = 

2/ ± 1 
[(l - m + 1)Pai(u)+ (/ m)Pr i(u)] .

The third is an expression for the derivative of an associated Legendre polynomial,

p

a 

m (u)
(u2 1) = lupin (u) - (1 + in)pr i(u).

Henceforth, we will suppress the arguments of the associated Legendre polynomials for brevity.

Using Eq. 84, 4: can be written as,

arm = 
lm (2/ +1)(2/7+ 1) • 

du

(84)

(85)

(l_m+1)Pr+1+(l+m)Pr_1] Rr-in+omi+(li+m)Pir_i].
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Applying the orthogonality identity to this expression, it becomes evident that there are three

distinct cases in which this integral is non-zero, I' = l and l' = ± 2.

(l—m+1)(l' —m+1)(l+m+1)! (l+m)(r+m)(l+m-1)! 
(2/+3)(l—m+1)! (2/-1)(/—m-1)!

2 
(l—m+1)(l' +m)(l+m+1)! 

acm —  (2/+3)(l—m+1)!

— (2/ + 1)(21' + 1) (l+m)(1' —m+l)(l+m—l)! 
(2/-1)(/—m-1)!

when 11 = ,

when 11 = l + 2
' (87)

when 11 = — 2,

otherwise.

A similar selection rule on l and will be evident for the remaining integrals, which renders

Andm' Im sparse.

Using Eq.84and Eq.85, bl
,
il: can be written as,

1

blm 
= 1 

2/' + 1 
f du[ 

21+ 1
{(1 — m + 1)Pr+1+(l+m)Pr_if—(l+m)Pin_ii [(r-m+ 1)Pr-F1 (/' m)/31/7-1] •

—1

We can again apply the orthogonality identity to evaluate this expression,

l(l—m+1)(li —m+1)(l+m+1)! 
(2/+1)(2/+3)(l—m+1)!

l(l—m+1)(r+m)(l+m+1)! 
(2/+1)(2/+3)(l—m+1)!

l(l+m)(l —m+1)(l+m-1)! 
(21+1)(2/-1)(/—m-1)!

(88)

when 11 = ,

when = l + 2,

when = — 2,

0 otherwise.

(89)

This result can be recycled if we notice that tg,inn and cL'm are trivially related by a relabeling of

indices,

Finally, we rewrite di: as

l(l+m)(l' +m)(l+m-1)! (l+m)(r+m)(l+m-1)! 
(21+1)(21-1)(/—m-1)! (2/-1)(/—m-1)!
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,l'm Llm
lm =
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dr: = f du [luPr (1 + m)Pr-i] [1' upr (1' +m)Pr-11 •
-1

(90)

(91)

It is convenient to expand the product of sums in the integrand and to commute summation and

integration, leaving

dim =(l m)(l' m) f du Pr_1Pr 1 — l(li m) f 
1
du uPr Pr

- 
-1
1

— (l m) f du uPr_iPP f du u2PrPir
-1 -1
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The last term is evidently proportional to alm and the remaining integrals can be evaluated using
the same identities as before, leading to

2(1+m)(P+m)(1+m-1)! 21(1'+m)(1+m)(1+m-1)! 2r(l+m)(1-m)(1+m)!
(21-1)(1-m-1)! (21+1)(21-0(1-m-0! (21-1)(21+1)(1-m)!
21(P+m)(1-m+1)(1+m+1)! 
(21+1)(21+3)(1-m+1)!

21'(1+m)(1+m-1)(1+m-2)! 
(21-1)(21-3)(/-m-2)!

di: ;in — 11141"

0

A.3. Integrals involving associated Laguerre polynomials:

when r = l,

when r = / + 2,

when r = l — 2,

otherwise.

(93)

First, it is useful to restate the definition of the radial wave function to introduce notational
shorthands,

Rni(r) =
(  2 3(n 1)! e_ final (  2r [21+1 2r _ Rile—til2n (1!)l Ln21+11 (U)

na ) 2n[(n l)!] —11-1-1(nai 1 n
(94)

where u = 2r 1 al. This function's derivative is then conveniently rendered as,

aRni(r) tt 271 1 U )1-1 to 0+1[(2n/ () — 2u0+2 (u
ar n2a n) n-1-1 n-1-2 n)] •

Inserting this expression into the radial integrals in Eq.
integrals of the form,

0

79

(95)

we see that we will need to evaluate

pr
PIZ [a, 13] = f du e'12u13-1 T (aiu)Lsq(a2u), where a = al +a2. (96)

The 1 subtracted from 0-1 was so chosen as to simplify the expressions that we will derive
below. To begin evaluating this integral, we recall that the associated Laguerre polynomials can
be expressed in terms of generalized hypergeometric functions,

r+ l)„Lrp(ociu) =( 1F1(—p;r+1;a1u). (97)
P!

We recall the definitions of the Pochhammer symbol and the generalized hypergeometric function
as,

(a) p = 
F(a p)
r(a) (a)o = 1, (—a)p = (—a)(—a + l) ... (—a p — l) (98a)

mFn[ai . . . am; bi . . .bn;z] 
(al)l • • • (am)l

(98b)
i=0 (bi)/ (bn)l n

For the Pochhammer symbol, we have presented both a definition in terms of gamma functions
for the sake of certain identities, and as a rising factorial. This allows us to easily see that
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(—a)p = 0 for p > a, which renders certain infinite sums as finite. For example, the negative
argument in Eq. 97 terminates the otherwise infinite hypergeometric series to generate a
polynomial of finite order. Plugging in the definition of the associated Laguerre polynomials in
terms of hypergeometric functions and expanding that definition we can write Eq. 961as,

CO

11;.qc [a 
(r + 1) p(s + 1) q px-1 (—PW—On 

m!n! (r + 1) m(s +Z.+r!s! 
ociai2z f du e—aul2u

Vin+n-1

The remaining integral is trivial to evaluate,

(99)

1,1.35:7 [a, (2V (r + 1)p(s + 1)q (—p),n( —41-(m + n 13) (2ai m 2a2 n
(100)

ia,) r!s! m rI7', m!n!(r + 1),n(s +1)n a ) a

We can rewrite this in terms of Appell's F2 function by noticing that
F(m n F(3)(3)m+n,

11: [a, = (2)13 (r +1)p(s + 1V(p) (—p)m(—q)n(113)m+n (2ai )1" (2a2\ n

r!s! m,n=o nqr + 1),n(s + 1)n a ) a )

Irs fa (31 =pq
(2113 (r+Op(s+1)q1"(13)  F2[ 2ai 2a2

oc) r!s! 
p;_p,—q;r+1,s + l; ( a , a • (101)

Here F2 is a bivariate generalization of the hypergeometric function. Because the second two
arguments are negative integers, this is simply a bivariate polynomial in the last two arguments,
rather than an infinite series. In point of fact, the power series definition of F2 is only guaranteed
to converge when the L1-norm of the last two arguments is less than one. We will proceed
assuming that this is something for which we can code up a stable evaluation routine without
further reduction for the specific instances relevant to our integrals. Nevertheless, there are likely
tricks that we can do to reduce this to a single hypergeometric function (3F2) if necessary.

Next, we render the specific integrals in terms of ir,sq, [a,I3]. We begin with Dnn7 because it is the
simplest,

n'rDni = f dr Rny (r)Rni (r) =  f due— ni-ki n)u12 u1+I'L2r+i (") T2141 (U)
2n1+1' ni—li-1 nr n

  21+121/+l [1 1
= 

2n1n6' 
/-1-1,n -1 —1 n -4Dnl — 1+1]n (102)

From numerical experimentation in Mathematica, the only selection rule appears to be that this
integral is zero if n = n' and l P.
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There are three integrals comprising CZ/1 and Bdii which are themselves related as Bni/' = Cninl 9 nl n 111

CZ1' = f dr raar
„ Ro,(r)

o

4n1+1wl/al f du e- 21,11+P [(2nl n-1-1 (-U) - 2uL21+2n n-1-2 LI n'-1/-1 1 )n n= RuRzil' (11n+11n/)ul _ to L21+1 ( 14)1 L211+1 ( 1'1 )

o

4111+1- e
al (2nl 121+1n-1-1,W-li-1 n ni 'l + 1 1 + li

-1-W-li-1 n ni ' 2 • • •
1 ± 1 /+r+ 1= Ril R,,,l, 

,v+1 +1 121+1,21' +1

. . . - 2 1 
P

21+2,2r 1 1 +1 [
n-1-2,n' 1 n+ n ,1+1/H-2]). (103)

Numerical experimentation in Mathematica doesn't appear to indicate that there are any selection

rules to make use of for these integrals.

Finally, we consider Ann?' which consists of nine integrals. Noticing that the first argument of I is
always 1/n + 1/n', we will suppress it henceforth.

Annil = f dr r2 al?, aRo, , , °°
ar aro

a2
, f du e-(11 ri+11 n')u 1 21,11+1' [(2n1 n 1 1 n n 1 2 n)]

_ to L21+1 C) -2ue+2 C...= MC/1' 
8nl-Elnll +1

CO

o

x [(2nili - u) r-iLi (11 - 2uLn21::Fp2_2 (-nu ,)]
a2

= X/R2/P8nl+ln'P+1 (4nn, 11, In
2
-
l+
l-
1,
1
2
,n;F-

1
/' -1 [.9 +11+1] -2n1 I21+1 n-1-

,
1
2r+ 
,n' -1' -

1
kl-Flf +2] ...

. - n4 1 121+ 1,2P+2 [. 1 + 2] — 2n11' .I2l+1,2P+1 , +21 , 121+1,2P+1 ,
n-1-1,n/ -1'-2 n-1-1,n' -1' -1 L 7 n-1-1,n' -1'-1 L

• • •

• • •

+ 
2121+1,211+2

n-1-1,n' -1' -

+ 
4121+2,2r+2

n-1-2,n' -1'

121+2,2e+1
2 [• , 1 + l' +3] - 4n'1' 1[.,1-4+ 2] + 211+2,2r+1n-1-2,n' -1' - n-1-2,r -1' -

[.,l+li +3]). (104)

This is an unwieldy expression, but we can have a computer evaluate it. Yet again, there are no

obvious selection rules.
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