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A R T I C L E I N F O

Article history:

A B S T R A C T

We present a super-time-stepping scheme for numerically solving parabolic
partial differential equations with Dirichlet boundary conditions (BC). Using
the general Forward Euler scheme, one can show that by taking varying step
sizes there is the potential of propagating the solution forward in time by a
greater amount than with uniform step sizes, while maintaining the same or-
der of accuracy. As shown in [1] and [2], if one further requires that the scheme
have the Convex Monotone Property (CMP), then there exists a scheme which
results in linear, monotone stability of the solution. This monotone stability is
highly desirable in many physical situations, such as thermal diffusion, where
the physical system will not oscillate, but will behave monotonically. How-
ever, the schemes devised in [3], [4], [1], and [2] do not include situations
that have a boundary condition, and the inclusion of boundary conditions will
henceforth be our focus. It is shown that a particular Runge-Kutta-Gegenbauer
class of schemes [5] will maintain the CMP even in the presence of Dirichlet
BC.

c© 2020 Elsevier Inc. All rights reserved.

1. Introduction

There are many physical situations which can be described by a parabolic partial differential equation (PDE),

whereas there are not many numerical methods designed to handle these problems in an efficient manner, requiring

egregious amounts of computational resources for accurate answers. Physical situations which include a boundary

condition are of particular interest — thermal diffusion in a system with boundaries held at a fixed temperature, for

example. This situation is still described by the heat equation, but the boundary condition causes many issues in terms

of analytic and numerical solutions for the problem. Here, we provide the Runge-Kutta Gegenbauer (RKG) scheme,

as presented by [5], which is a super-time-stepping (STS) scheme that solves this boundary condition problem and

has the Convex Monotone Property (CMP) as defined in [1].
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Suppose we are solving a scalar, parabolic PDE with solution u(x, t). We discretize the x-t plane with spatial grid

points x0, x1, . . . separated by spatial step ∆x and temporal grid points t0, t1, . . . separated by time step ∆t. Let un
i

denote a numerical approximation of u(xi, tn) where xi is some spatial grid point and tn is some temporal grid point.

This numerical approximation will be determined by the numerical scheme we choose and the initial condition

u0
i = u(xi, t0). (1)

Let un denote the vector of approximations un
i at temporal step tn. For our purposes, our numerical solution un+1

i at

spatial grid point xi will be some function of un and i. In other words,

un+1
i = H (un; i) . (2)

When solving such a PDE, it is useful for the method to be monotone stable. We say that a numerical method is

monotone or monotone stable if at any time step n

vn
j ≥ un

j ∀ j =⇒ vn+1
j ≥ un+1

j ∀ j, (3)

where vn
j and un

j are the numerical solutions resulting from any two initial conditions. In words, this property guaran-

tees that if one solution v is greater than or equal to u at every point in space, then this will remain true for all times.

It has been shown by [6] that
∂

∂un
i
H (un; j) ≥ 0 for all i, j, un (4)

is a sufficient condition for a method to be monotone. By imposing Dirichlet Boundary conditions, we then follow the

derivation in section 3 of [1] for the point immediately adjacent to the boundary, as this point will be most affected by

the boundary, to derive a new super-time-stepping scheme.

Fig. 1
Using RKL2 (Left) and RKC2 (Right), a delta function of T = 100 ◦C at x = −9.9 cm with T = 0 ◦C elsewhere and a boundary
condition of T(x = −10 cm) = 0 ◦C was time evolved for a single super-step. The presence of a negative region shows that neither
RKL nor RKC is capable of properly handling Dirichlet boundary conditions.

To illustrate the insufficiency of other STS schemes, we use second-order Runge-Kutta-Legendre (RKL2) [1]

and second-order Runge-Kutta-Chebyshev (RKC2) [4] schemes to solve the 1D heat equation for a copper rod with

thermal diffusivity α = 1.166 cm2/s. In Figure 1, we illustrate the resulting numerical solutions from RKL2 and
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RKC2 after starting with a delta function initial condition and evolving the system for a single super-step. We see that

after a single super-step, the numerical schemes RKL2 and RKC2 clearly fail to be monotone by yielding negative

temperatures. This strongly indicates the need for a new scheme which can handle the boundary condition, which is

what we turn our attention to in the next section.

2. Monotone Stability Analysis

To compare our method to other STS schemes and demonstrate its necessity, we will consider a 2-stage STS

scheme for a heat equation problem with Dirichlet boundary conditions. To impose this boundary condition, assume

that the solution value at the left endpoint un
0 is fixed at some value, thus un

0 = u(x0, tn) = u(x0, t0). For a general

2-stage STS scheme, we can conceptualize the scheme as two explicit Forward Euler (FE) time steps of different

sizes. Denoting the time steps as ∆t1 and ∆t2 of the first and second stages respectively and writing the heat equation

as
∂u
∂t

= α
∂2u
∂x2 , (5)

FE gives us the following two equations for each stage:

un+1
i − un

i

∆t1
= α

un
i−1 − 2un

i + un
i+1

∆x2

un+2
i − un+1

i

∆t2
= α

un+1
i−1 − 2un+1

i + un+1
i+1

∆x2 .

(6)

Using the first of these equations, we can express the point adjacent to the boundary un+2
1 as:

un+2
1 = (δ1 + δ2 − 2δ1δ2) un

0 + (1 − 2δ1 − 2δ2 + 5δ1δ2) un
1 + (δ1 + δ2 − 4δ1δ2) un

2 + δ1δ2un
3, (7)

where δ1 = ∆t1α/∆x2 and δ2 = ∆t2α/∆x2 are scaled substeps. The values we choose for δ1 and δ2 will determine our

numerical scheme and its properties.
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Fig. 2
A plot of the coefficients of the 3 stage RKL2 and 3 stage RKC2 scheme. The negative region indicates a loss of the CMP on both
of them.

For instance, we can guarantee our scheme will be monotone by imposing equation (4) as a constraint, which is

equivalent to requiring that the coefficients for un
0, u

n
1, etc. must all be non-negative. If we plot the values of δ1, δ2 that
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satisfy these constraints, we obtain the orange region given in Fig. 3. Had we performed this derivation in the absence

of BC, the values of δ1, δ2 for which equation (4) is satisfied would be given by the blue region. We say a STS scheme

given by (δ′1, δ
′
2) has the CMP if the line between (δ1, δ2) = (0, 0) and (δ1, δ2) = (δ′1, δ

′
2) is contained within the region

of monotone stability. For an s-stage STS scheme, the procedure outlined above can be followed to derive an equation

that is analogous to equation (7), in which case the coefficients will be functions of δ1, δ2, . . . , δs. Throughout the rest

of this paper, we will use the term “coefficients” to refer to these functions of δ1, δ2, etc. for other STS schemes.

Supposing we followed such a procedure for an s-stage scheme, we could denote ci(δ1, . . . , δs) as the coefficient for

un
i . A convenient way to visually determine whether an STS scheme is monotone or convex monotone is to plot the

values of the coefficients along the line from the origin to the point ~δ′ = (δ′1, . . . , δ
′
s) specifying the scheme. To do this,

we set (δ1, . . . , δs) = ρ(δ′1, . . . , δ
′
s), where ρ is a parameter we can vary from zero to one, and thus turn each ci into a

univariate function ci(ρ) ≡ ci(ρδ′1, . . . , ρδ
′
s). If any of these functions is ever negative for 0 ≤ ρ ≤ 1, then the method

does not have the CMP, and if one of the functions is negative for ρ = 1, then the method is not monotone either. To

illustrate, we plot in Figure 2 the coefficient functions for 3-stage RKL2 and 3-stage RKC2 when Dirichlet boundary

conditions are imposed. Due to the negative regions in both plots, we can infer that these methods do not have the

CMP and are not even monotone, which explains why these methods gave negative temperatures in Figure 1.

We define the optimal monotone STS scheme for the BC problem as the configuration of δ1, δ2 that is within the

orange region and maximizes the total time step τ = ∆t1 + ∆t2. Similarly, the optimal convex monotone STS scheme

is the configuration of δ1, δ2 that has the CMP and maximizes τ. Because the orange region is subsumed by the blue

region, the optimal scheme with the BC (for both monotone and convex monotone) will have a smaller total time step

than the optimal scheme without the BC.

Without the BC, we see from the blue region that the optimal monotone scheme is given by the blue asterisk, and

the optimal convex monotone scheme is given by the red asterisk. These schemes have been studied before and are

known as 2-stage Runge-Kutta-Chebyshev (RKC1) [4] and Runge-Kutta-Legendre (RKL1) [1] respectively. With the

BC, the optimal monotone scheme is given by the green asterisk, which corresponds to

(δ1, δ2) = (1/3, 1) , (8)

and thus the total time step is

τ = δ1
∆x2

α
+ δ2

∆x2

α
=

2
3

∆texp + 2∆texp =
8
3

∆texp, (9)

where ∆texp = ∆x2/2α is the maximal time step allowed in Forward Euler that maintains monotone stability. We will

call this scheme 2-stage RKU1. At two stages, RKU1 requires the same number of operations as two steps of FE but

integrates τ = 8
3 ∆texp instead of τ = 2∆texp. The amount that our STS scheme can integrate over FE for the same

amount of computational work tells us how much advantage the former has over the latter. For instance, the RKC1

scheme is given by

δ1, δ2 =
2 +
√

2
2

,
2 −
√

2
2

(10)
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Fig. 3
A plot of the regions in the δ1-δ2 plane which give 2-stage STS schemes which are monotone stable with no boundary conditions
(blue) and with boundary conditions (orange)

and has total time step τ = 4∆texp. Thus, RKC1 has a greater advantage over RKU1, but RKC1 has the disadvantage

that it will not necessarily be monotone once a Dirichlet BC is imposed. For 3-stage RKU1, the time steps are

∆t1 = (2 −
√

2)∆texp (11)

∆t2 = ∆texp (12)

∆t3 = (2 +
√

2)∆texp (13)

which gives

τ = 5∆texp. (14)

In general, we find that the scaling of τ is quadratic with the number of stages

τ =
s(s + 2)

3
∆texp. (15)

The numerical scheme can be derived for a larger number of stages by using shifted Chebyshev polynomials of the

second kind. This differs from RKC1 which uses Chebyshev polynomials of the first kind. Chebyshev polynomials

of the second kind are denoted Un for the polynomial of degree n, hence the name RKU1.

The STS schemes that we will describe are intended to solve the ODE system resulting from the discretization of

a parabolic PDE. Let
du
dt

= Mu(t) (16)
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be such a ODE system where M is a constant coefficient matrix that represents the discretization of the PDEs parabolic

operator. As an ODE system, the analytic solution to (16) is

u(t) = etMu(0) =

∞∑
n=0

(tM)n

n!
u(0) (17)

We can express our numerical scheme by its stability polynomial Rs(z), which acts as an approximation to (17).

For an s-stage STS scheme, the stability polynomial will have order s and evolves our numerical solution from time t

to t + τ with the relation

u(t + τ) ≈ Rs(τM)u(t). (18)

A scheme specified by polynomial Rs(z) is pth order accurate when Rs(z) has leading order terms that match the series

expansion of ez up to and including the term of degree p. Throughout this paper, we will use the notation conventions

in [1, 7] to specify the stability polynomial and the other parameters needed to implement a super-time-stepping

scheme. The stability polynomial for an RKU1 scheme with s stages is given by

Rs (z) = bsUs (1 + w1z) (19)

bs =
1

(s + 1)
(20)

w1 =
3

s(s + 2)
(21)

µ j =
2b j

b j−1
; ν j = −

b j

b j−2

µ̃ j = µ jw1 = µ j
3

s(s + 2)
.

However, as shown in Figure 4, this scheme does not satisfy the CMP even at 2 stages. As such, we now turn our

0.2 0.4 0.6 0.8 1.0
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0.4
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0.8
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Fig. 4
A plot of the coefficients of the RKU1 scheme, where the negative regions indicate a lack of the CMP.

attention to the scheme which does satisfy the CMP: the Runge-Kutta-Gegenbauer method.
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3. RKG1: Runge-Kutta-Gegenbauer method at first-order

With careful analysis of the conditions which lead to the CMP for the Dirichlet Boundary conditions, one finds that

this lends rise to a Runge-Kutta-Gegenbauer (RKG) scheme whose stability polynomials are the shifted Gegenbauer

Polynomials with α = 3
2 , a particular instantiation of the work described in [5]. The stability polynomial of an s-stage

scheme is given by:

Rs (z) = as + bsC(3/2)
s (1 + w1z) (22)

Where C3/2
s is the s-order Gegenbauer polynomial with α = 3/2. Imposing the condition that Rs(0) = 1 and R′s(0) = 1,

it can be easily verified that:

bs =
2

(s + 1)(s + 2)
(23)

w1 =
4

s(s + 3)
. (24)

With as = 0 ∀s. At this point it becomes necessary to note that the Gegenbauer Polynomials have a recurrence relation

as follows, independent of α:

Cα
s (z) =

1
s

[
2z(s + α − 1)Cα

s−1(z) − (s + 2α − 2)Cα
s−2(z)

]
. (25)

As this recurrence relation is what allows us to build the recursion scheme for a numerical method. We find that the

stability polynomials for the RKG method obey the following:

b jC
(3/2)
j (1 + w1z) = µ jb j−1C(3/2)

j−1 (1 + w1z) + ν jb j−2C(3/2)
j−2 (1 + w1z) + µ̃ jb j−1C(3/2)

j−1 (1 + w1z). (26)

Where the parameters are defined as:

µ j =
2 j + 1

j
b j

b j−1

µ̃ j = µ jw1

ν j = −
( j + 1)

j
b j

b j−2
.

Which leads to the following numerical scheme:

Y0 = u(t0)

Y1 = Y0 + µ̃1τMY0

Y j = µ jY j−1 + ν jY j−2 + µ̃ jτMY j−1, 2 ≤ j ≤ s

u(t0 + τ) = Ys.

Where M is an operator with real, negative eigenvalues.

For a two stage scheme, we find that the values of δ1, δ2 that are optimal and satisfy the CMP are:

δ1 =
5 −
√

5
8

δ2 =
5 +
√

5
8

.
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4. RKG2: Runge-Kutta-Gegenbauer at second-order

As is done in section 2.3 of [1], second-order accuracy requires that we impose the additional constraint on the

stability polynomial, R′′s (0) = 1. From there, we find the following constraints:

w1 =
6

(s + 4)(s − 1)
(27)

b j =
4( j − 1)( j + 4)

3 j( j + 1)( j + 2)( j + 3)
(28)

a j = 1 −
( j + 1)( j + 2)

2
b j. (29)

Where we have chosen b0 = 1 and b1 = 1
3 . Using the recurrence relation found in equation 25, we find that the

stability polynomials for the second order RKG method obey the following (after simplifying):

a j + b jC
3/2
j (1 + w1z) =µ j

(
a j−1 + b j−1C3/2

j−1(1 + w1z)
)

+ ν j

(
a j−2 + b j−2C3/2

j−2(1 + w1z)
)

+ µ̃ j

(
a j−1 + b j−1C3/2

j−1(1 + w1z)
)

+
(
1 − µ j − ν j

)
+ γ̃ j.

Where we have the following definitions:

µ j =
2 j + 1

j
b j

b j−1

µ̃ j = µ jw1

ν j = −
( j + 1)

j
b j

b j−2

γ̃ j = −µ̃ ja j−1.

This recurrence easily lends itself to the following second order accurate scheme for numerical implementation:

Y0 = u(t0)

Y1 = Y0 + µ̃1τMY0

Y j = µ jY j−1 + ν jY j−2 +
(
1 − µ j − ν j

)
Y0 + µ̃ jτMY j−1 + γ̃ jτMY0, 2 ≤ j ≤ s

u(t0 + τ) = Ys.

In general, for a first-order accurate scheme

w1 =
1 + 2α

s(s + 2α)
,

and for a second-order accurate scheme

w1 =
3 + 2α

(s + 2α + 1)(s − 1)
.

One then finds that in the limit as α → ∞ that w1 → 1, and the timestep τ approaches the maximal time step

allowed under Forward Euler, ∆texp. This scheme satisfies the CMP, as we have have verified for up to 12 stages

with a Mathematica script, and we provide a direct example of RKL, and RKG with 7 stages including the boundary

condition in Figure 5.
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Fig. 5
A plot of the coefficients of 7-stage RKL2 (left) and RKG2 (right) with Dirichlet Boundary Conditions. RKG2 still has the CMP
with boundary conditions while RKL2 does not.

5. Convergence Analysis

5.1. One-dimensional heat conduction

In this subsection, we will test that RKG2 indeed converges to the correct solution at second-order by applying

this method to one-dimensional heat conduction problems that have analytic solutions. In the first example, we solve

the one-dimensional heat equation for two bars of equal length that are brought into contact with each other. Each

of the bars is 10 cm in length. Both of the bars are composed of the same material with a spatially-independent

thermal diffusivity given by α = 1 cm2/s. Let the temperature of the bars be given by u(x, t). We assume that at

t = 0 the bar on the left has temperature u(x, 0) = 0 ◦C and the bar on the right has temperature u(x, 0) = 100 ◦C. For

our boundary conditions, we assume the left boundary is fixed to u(−10, t) = 0 ◦C and the right boundary is fixed to

u(10, t) = 100 ◦C. Our initial value problem is therefore

u(x, 0) =

0 ◦C x < 0
100 ◦C x ≥ 0

, u(−10, t) = 0 ◦C, u(10, t) = 100 ◦C (30)

where the boundary conditions hold for all t > 0. The exact solution u(x, t) for the temperature field in the domain

−10 < x < 10 is

u(x, t) =

∞∑
k=−∞

û(x − 2kL, t) + kT0 (31)

û(x, t) =
T0

2
(1 + erf( x

2
√
αt

)) (32)

where L = 10 cm and T0 = 100 ◦C. In Table 1, we have recorded the L1, L2, and L∞ error for RKG2 with varying

spatial and time steps showing clear 2nd order convergence for RKG2.

6. Examples and Applications

In this section we present numerical calculations of the heat equation in two dimensions. In general the heat

equation reads as:

∂u
∂t

= α∇2u.
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Table 1
Errors for the RKG2 method when the 1D heat conduction problem is solved with an s-stage scheme, Nx spatial grid points, and
the numerical solution is iterated Nsts super-time steps.

Nx Nsts s L1 L2 L∞

RKG2
80 15 3 4.15 × 10−1 1.84 × 10−1 1.17 × 10−1

160 30 5 9.92 × 10−2 4.35 × 10−2 2.77 × 10−2

320 60 7 2.44 × 10−2 1.07 × 10−2 6.78 × 10−3

640 120 10 6.06 × 10−3 2.65 × 10−3 1.68 × 10−3

1280 240 14 1.51 × 10−3 6.60 × 10−4 4.18 × 10−4

2560 480 20 3.77 × 10−4 1.65 × 10−4 1.04 × 10−4

For two dimensions, we use the following centered finite difference discretization:

un+1(xi, yi) − un(xi, yi)
∆t

= α
un(xi−1, yi) + un(xi+1, yi) + un(xi, yi−1) + un(xi, yi+1) − 4un(xi, yi)

∆x∆y
.

In the two dimensional Forward Euler scheme, we find that the maximal time step allowed that is still stable is:

∆texp =
∆x2 + ∆y2

8α
=

∆x2

4α
,

where the last equality holds when ∆x = ∆y. In Figure 6, we compare the numerical solutions of 3-stage RKL2

and RKG2 after a single super-step. We start with the initial conditions of u(x, y, t) = 100 ◦C at the point (x, y, t) =

(0.02 cm, 0.97 cm, 0) and 0 ◦C elsewhere and with boundary conditions u(x, y, t) = 0 ◦C at x = 0, 1 and u(x, y, t) = 0

at y = 0, 1 for all t ≥ 0. We use step sizes ∆x = ∆y = .01 cm. In this problem, RKL2 fails to maintain monotonicity

but RKG2 succeeds. This is demonstrated by the fact that the RKL2 solution has regions of negative temperature,

which violates equation (3). The negative components regions in RKL2 solution are a direct result of the negative

Fig. 6
These plots show the numerical solutions given by RKL2 and RKG2 on the left and right respectively after a single super-step.

region present in Figure 2. It is worth noting that in the asymptotic regime, RKL is linearly stable and will thus

approach the correct solution. However at early times, the lack of monotonicity causes a violation of the Second
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Law of Thermodynamics - there are areas getting colder and different areas getting hotter without any external energy

input. As such, RKG provides a much more reliable method for calculations at early times with Dirichlet boundary

conditions.

7. Conclusions

We have shown that current STS methods are incapable of handling boundary conditions and maintaining mono-

tonicity, thus presenting a clear need for a new method. The RKG3/2 method fills this need, maintaining monotonicity

throughout calculations while still being capable of performing super-time steps that scale in proportion to the number

of stages squared and thus providing a clear advantage over the Forward Euler scheme. Furthermore, this scheme can

be used with Strang Splitting, thus allowing for equations which are not purely parabolic PDEs to take advantage of

STS on the parabolic aspect of the equation. It is worth mentioning that in particular, RKG allows for accurate model-

ing of solutions at early times and as such if early times are under investigation RKG is the optimal scheme. However,

RKC, RKL, RKU, and RKG are all linearly stable and as such will all approach the correct solution asymptotically

at long times. The usefulness of RKL for finding the asymptotic solution should not be ignored in favor of RKG, as

RKL will be more computationally efficient even when including boundary conditions.
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