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TBASS: A Robust Adaptation of Bayesian Adaptive Spline Surfaces

Andy A. Shen, Kellin N. Rumsey, Devin C. Francom

Statistical Sciences Group (CCS-6): Los Alamos National Laboratory

Abstract
The R package TBASS is an extension of the BASS package created by Francom and Sansó (2019).

The package is used to fit a Bayesian multivariate adaptive spline to a dataset that either follows a
Student’s t-distribution or has outliers. Much of the framework for TBASS is adapted from the concepts
of Bayesian Multivariate Adaptive Regression Splines (BMARS), specifically the work done by Denison,
Mallick, and Smith (1998). The spline function is fit using a Reversible-Jump Markov Chain Monte Carlo
algorithm,. By including this more robust generalization, a dataset with outliers can be accurately fit
using the BMARS model, without the possibility of overfitting or variance inflation.

Keywords: splines, robust regression, Bayesian inference, nonparametric regression, sensitivity analysis

1 Introduction
Splines are a commonly used regression tool for fitting nonlinear data, both univariate and multivariate.
Splines can act as basis functions, where each basis function combines to form the X matrix. The simplest
way to create the ith basis functions can be represented as

Bij = [si(xj − ti)]+ (1)

Equation (1) is used to calculate the ijth element of the B matrix of basis functions, where si ∈ {−1, 1}, ti is
called a knot and [a]+ = max(0, a).

For example, given the nonlinear data shown in Figure 1 below, we can use (1) to fit a spline model shown in
Figure 2.
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Figure 1: Univariate nonlinear data
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Figure 2: The blue line represents the spline function fit to the data using three knots
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2 Robust BMARS
2.1 Overview
We want to extend the theory behind frequentist univariate spline regression to a multivariate Bayesian
framework. Moreover, we want to accurately fit nonlinear data that has outliers. We adopt the Robust
BMARS model based on the standard Gaussian framework used by Denison, Mallick, and Smith (1998) and
Francom et al. (2019) when deriving our likelihood and full conditional distributions for the parameters.

In the presence of outliers, Gaussian BMARS will attempt to capture the excess noise by either adding
basis functions (overfitting) or inflating the variance term (σ2). The Robust BMARS model accounts for
this sensitivity to outliers by avoiding overfitting or variance inflation when the degrees of freedom (ν) are
low. When ν is high, the t-distribution closely mimics a normal distribution, so the Robust BMARS model
behaves in a similar way.

The function used to fit the Robust BMARS model in the TBASS package is the tbass() command (see
section 3).

2.2 Likelihood
In creating the Robust BMARS model, we introduce new auxiliary parameters not used in the Gaussian
model (Gelman et al. (2013)).

Similar to Gaussian BMARS, we let yi be our dependent variable and xi be our independent variable. Without
loss of generality, all independent variables xi are scaled from zero to one (Francom and Sansó (2019)).

In the robust case, the dependent variable y is modeled as

y = Bβ + ε, ε ∼ tν
(
0, σ2I

)
(2)

or equivalently,

yi|Vi ∼ N
(

Bi
′β,

σ2

Vi

)
. (3)

We also assume Vi follows a a Gamma distribution with shape and rate ν
2 , such that

Vi ∼ Γ
(
ν

2 ,
ν

2

)
(4)

where B represents the matrix of basis functions by column, β is the vector of regression coefficients, ε is the
error term, ν represents the degrees of freedom in a Student’s t-distribution, and σ2 ν

ν−2 is the variance term
for yi.

The basis functions themselves are produced the same way as in the BASS package by Francom and Sansó
(2019).

2.3 Priors
Our regression coefficients β follow a Gaussian prior such that

β ∼ N
(
0, τ2I

)
. (5)

We assume an Inverse-Gamma prior for σ2 with default shape γ1 = 0 and default rate γ2 = 0 such that

σ2 ∼ IG (γ1, γ2). (6)
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For λ, we assume a gamma prior such that h1 = h2 = 10 by default:

λ ∼ Γ (h1, h2) . (7)

2.4 Posterior
The full posterior up to a constant is

N
(

Bi
′β,

σ2

Vi

)
Γ
(
Vi|

ν

2 ,
ν

2

)
N
(
β|0, τ2I

)
IG (σ2|γ1, γ2) Γ (λ|h1, h2) (8)

2.4.1 Regression Coefficients

We can marginalize β out of the posterior to obtain a marginal posterior that relies on the regression estimate

β̂ = 1
σ2

(
1
σ2 B′VB + τ−2I

)−1
B′V y (9)

where τ2 is the prior variance for βi and V−1 = diag( 1
V1
... 1
Vn

).

After marginalizing out β, we can simplify our Likelihood L to

L(y | ·) ∝
(
τ2)−M+1

2 |V|−1/2 ∣∣H−1∣∣−1/2 exp
(
−1

2y′V−1y
)

exp
(
−1

2 β̂′H−1β̂ − 2β̂′B′V−1y
)

where H = (B′V−1B + τ−2I).

We then complete the square on the first exponential term using y′ V−1B H−1 B′V−1y which simplifies to
β̂′Hβ̂ since B′V−1y = Hβ̂ from (9).

From there, we can derive our marginal posterior:

L(y | ·) =
(
2πτ2)−M+1

2 |V|−1/2 exp
(
−1

2

(
y′V−1y− β̂′Hβ̂

))
exp

{
−1

2

(
β′Hβ − β′Hβ̂ − β̂′Hβ + β̂′Hβ̂

)}
=
(
2πτ2)−M+1

2 |V|−1/2 exp
(
−1

2

(
y′V−1y− β̂′Hβ̂

))
exp

{
−1

2

[(
β − β̂

)′
H
(

β − β̂
)]}

=
(
2πτ2)−M+1

2 |V|−1/2 exp
(
−1

2

(
y′V−1y− β̂′Hβ̂

))
N
(

β | β̂, H−1
) ∣∣H−1∣∣−1/2 (2π)

M+1
2

=
(
τ2)−M+1

2 |V|−1/2 ∣∣H−1∣∣−1/2 exp
{
−1

2

(
y′V−1y− β̂′Hβ̂

)}
=
(
τ2)−M+1

2 |V|−1/2 ∣∣H−1∣∣−1/2 exp
{
−1

2

(
y′V−1y− β̂′

(
B′V−1B + τ−2I

)
β̂
)}

⇒ L(y | ·) = (τ2)
M+1

2 |V|−1/2 ∣∣(B′V−1B + τ−2I)−1∣∣−1/2 exp
{
− 1

2
(
y′V−1y− β̂′(B′V−1B + τ−2I)−1β̂

)}
(10)

Equation (10) is the marginal posterior for the current model with M basis functions.
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2.5 Reversible-Jump Markov Chain Monte Carlo (RJ-MCMC)
Like Gaussian BMARS, the robust algorithm adaptively builds, deletes, and modifies basis functions,
sampling candidate knot locations, signs, interaction degrees, and accepting or rejecting the candidate values
using a RJ-MCMC algorithm.

RJ-MCMC is a generalization of the traditional Metropolis-Hastings algorithm in the sense that RJ-MCMC
allows for parameter dimension change, allowing for simulation when the number of parameters is unknown.
This is important for BMARS because we want have an unknown number of basis functions. We also want to
know if certain basis functions should be added, deleted, or changed.

Our Robust generalization for the RJ-MCMC algorithm is largely based off the work by Denison, Mallick,
and Smith (1998).

The BMARS model has three possible move types, which is sampled using a discrete uniform:

• Birth: adding a basis function

• Death: deleting a basis function

• Change: changing a knot, sign, and values of a basis function

Once the move type is sampled, the RJ-MCMC algorithm is used to determine acceptance of that move type.

Our acceptance ratio α is denoted by

α = min
{

1, π(θ′) S(θ′ → θ)
π(θ) S(θ → θ′)

}
(11)

where θ′ represents the candidate model parameters and θ represents the current model parameters, π is the
likelihood multiplied by the prior, and S is the proposal density to jump from one model to another.

Section 2.6 details the RJ-MCMC algorithm for the birth step in detail. The death and change steps are very
similar in nature.

2.6 Birth Step
2.6.1 Likelihood Ratio

Since a basis function is added for the birth step, we have that

L(y | θ′ = M ′) ∝
(
τ2)−M+2

2 |V|−1/2 ∣∣H−1∣∣−1/2 exp
{
−1

2

(
y′V−1y− β̂′

(
B′V−1B + τ−2I

)
β̂
)}

(12)

Using (10), the marginal posterior ratio L(θ′)
L(θ) is then represented as

L(y | θ′ = M ′ = M + 1)
L(y | θ = M) =

(
τ2)−M+2

2 |V|−1/2
∣∣H−1

c

∣∣−1/2 exp
{
− 1

2

(
y′V−1y− β̂′c

(
B′cV−1Bc + τ−2Ic

)
β̂c

)}
(τ2)−

M+1
2 |V|−1/2 |H−1|−1/2 exp

{
− 1

2

(
y′V−1y− β̂′ (B′V−1B + τ−2I) β̂

)}
(13)

where the subscript c denotes the candidate move type of the algorithm (a birth step in this case).

The death is very similar to the birth step, with a candidate likelihood of L(y | θ′ = M ′ = M − 1). There is
no dimension change in the change step.

5



2.6.2 Prior Ratio

For the birth step, our prior ratio p(θ′)
p(θ) is of the following form, based on Francom et al. (2019):

λ

M + 1

(
1
2

)J(
p

J

)−1( 1
Jmax

)
(M + 1) (14)

where λ
M+1 is the prior for the number of basis functions with M current basis functions,

( 1
2
)J is the prior for

the signs,
(
p
J

)−1 is the prior for the number of possible variable combinations to create basis functions with,
1

Jmax
is the prior for the number of interactions, and M + 1 is accounting for ordering the basis functions.

2.6.3 Proposal Ratio

Our proposal ratio for a birth step S(θ′→θ)
S(θ→θ′) can be expressed as:

1
3

1
M+1

1
3

1
Jmax

(
p
J

)−1( 1
2 )J

(15)

which is effectively the probability of selecting a death step multiplied by the probability of selecting a specific
basis function to kill, over the probability of proposing the already-proposed basis function.

The RJ-MCMC algorithm in TBASS calculates the likelihoods, priors, proposals, and acceptance ratios all on
the log scale.

2.7 Gibbs Sampling
Once the basis function move type is complete, the model parameter values λ, Vi, σ2, and β can then be
sampled using Gibbs Sampling, since the full conditionals are all closed-form (Denison, Mallick, and Smith
(1998)). The Gibbs Sampling steps shown below are not unique to the birth step as they are performed after
every RJ-MCMC iteration.

Derived from section 2.3, the full conditionals are of the following form:

λ|· ∼ Γ
(
h1 +M, h2 + 1

)
(16)

Vi|· ∼ Γ
{
ν + 1

2 ,
1

2σ2

n∑
i=1

(y−Bβ)2

}
(17)

σ2|· ∼ IG
(
γ1 + n

2 , γ2 + 1
2 (y−Bβ)′ (y−Bβ)

)
(18)

β|· ∼ N
(

β̂, σ2 (B′V−1B + τ−2I
))

(19)

where β̂ is denoted in (9).
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3 Simulation with tbass()

We now demonstrate the capabilities of the TBASS package using the main command, tbass(). The command
uses an Rcpp interface (C++ functions) to optimize computation time. For all parameter values of this
function, please refer to the help documentation by running ?tbass after loading the package.

Software Requirements and Dependencies

At this time, you must have R Version 4.0.2 (Taking Off Again) or higher to install and use TBASS.

The package mnormt is REQUIRED in order to use TBASS. Please run install.packages("mnormt") to
install the package. This dependency will be removed when the package is updated further. No other
dependencies are required.

We begin by loading in the package and setting the seed for reproducibility. The package can be installed
using the following command: devtools::install_github("aashen12/TBASS") which requires installing
the package devtools.

When installing TBASS, you may be asked to update packages to a more recent version. Please update all
packages (option 1).

When installing RcppArmadillo, you may be asked to install the package from sources which need compilation.
Please type “no”.

If you are not asked for these updates, please allow the installation to proceed normally.

set.seed(12)
library(TBASS)

3.1 Friedman Function Simulation
We fit the Robust BMARS model to the infamous Friedman Function (Friedman (1991)):

10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (20)

In R:

f <- function(x) {
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2 + 10*x[,4] + 5*x[,5]

}

We set our true value of σ = 1 and attempt to capture the same variability in using tbass().
sigma <- 1 # TRUE noise sd
n <- 1000 # number of observations
x <- matrix(runif(n*5), nrow = n, ncol = 5)
y <- rnorm(n, mean = f(x), sd = sigma)

We then add extra noise to simulate a dataset with outliers, and categorize them for plotting later.
ind <- sample(n, size = 10) # convert 10 points to outliers
y[ind] <- rnorm(5, f(x[ind,]), 15)

col <- rep(1,n) # for coloring the outlier points in a later plot
col[ind] <- 2
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From there, we can run the tbass() command with 30000 MCMC iterations (default 10000). Our first
simulation is with ν = 10 degrees of freedom to simulate a t-distribution with thicker tails.
nmcmc <- 30000 #number of iterations
tb <- tbass(x, y, nu = 10, nmcmc = nmcmc, verbose = FALSE)

3.2 Results
3.2.1 Overfitting and Prediction

We begin by plotting the number of basis functions throughout the entire simulation in Figure 3.
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Figure 3: Trace plot of number of basis functions

We see that BASS and TBASS both produce a spline with a similar number of basis functions.

We then assess the accuracy of our predicted y values (Bβ) vs the actual y-values for all MCMC iterations
in Figure 4.

We see that the prediction is quite accurate despite the presence of outliers.

3.2.2 Gibbs Sampling Results

We set a burn-in value to the first 50% of samples.
burn_final <- nmcmc/2
burn <- 1:burn_final

From there, we plot our σ values in Figure 5 to ensure there was no variance inflation.

From this plot, we see that our simulated σ2 values are close to 1, which matches our true value of σ2 when
we generated our data.

We then plot our 1
Vi

values to see if the outliers are accounted for. We thin every nmcmc/100 iterations after
the burn-in. See Figure 6.
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Figure 4: Predicted vs Actual Values
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Figure 5: TBASS variance trace plot
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Figure 6: TBASS trace plot of V_i

We see that the peaks in Vi are accounting for the outliers, while the majority of Vi values are in the bottom
portion of the plot. Additionally, the samples of Vi that are relatively large over all MCMC iterations also
indicate outlier capturing in the TBASS model.

3.3 Comparison with BASS

To account for the differences in behavior for Robust BMARS (TBASS) and Gaussian BMARS (BASS), we
compare our results from TBASS to the output from BASS, which assumes a Gaussian likelihood.
set.seed(12)
library(BASS)
b <- bass(x,y,nmcmc = 30000) # automatically runs 10000 nmcmc iterations
# > MCMC Start #-- Sep 23 11:44:21 --# nbasis: 0
# > MCMC iteration 1000 #-- Sep 23 11:44:23 --# nbasis: 11
# > MCMC iteration 2000 #-- Sep 23 11:44:25 --# nbasis: 11
# > MCMC iteration 3000 #-- Sep 23 11:44:27 --# nbasis: 12
# > MCMC iteration 4000 #-- Sep 23 11:44:29 --# nbasis: 11
# > MCMC iteration 5000 #-- Sep 23 11:44:31 --# nbasis: 10
# > MCMC iteration 6000 #-- Sep 23 11:44:32 --# nbasis: 10
# > MCMC iteration 7000 #-- Sep 23 11:44:34 --# nbasis: 10
# > MCMC iteration 8000 #-- Sep 23 11:44:36 --# nbasis: 10
# > MCMC iteration 9000 #-- Sep 23 11:44:38 --# nbasis: 10
# > MCMC iteration 10000 #-- Sep 23 11:44:41 --# nbasis: 10
# > MCMC iteration 11000 #-- Sep 23 11:44:43 --# nbasis: 9
# > MCMC iteration 12000 #-- Sep 23 11:44:45 --# nbasis: 10
# > MCMC iteration 13000 #-- Sep 23 11:44:47 --# nbasis: 10
# > MCMC iteration 14000 #-- Sep 23 11:44:49 --# nbasis: 9
# > MCMC iteration 15000 #-- Sep 23 11:44:50 --# nbasis: 9
# > MCMC iteration 16000 #-- Sep 23 11:44:52 --# nbasis: 9
# > MCMC iteration 17000 #-- Sep 23 11:44:54 --# nbasis: 9
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# > MCMC iteration 18000 #-- Sep 23 11:44:56 --# nbasis: 9
# > MCMC iteration 19000 #-- Sep 23 11:44:58 --# nbasis: 9
# > MCMC iteration 20000 #-- Sep 23 11:45:01 --# nbasis: 9
# > MCMC iteration 21000 #-- Sep 23 11:45:03 --# nbasis: 9
# > MCMC iteration 22000 #-- Sep 23 11:45:05 --# nbasis: 9
# > MCMC iteration 23000 #-- Sep 23 11:45:07 --# nbasis: 9
# > MCMC iteration 24000 #-- Sep 23 11:45:09 --# nbasis: 10
# > MCMC iteration 25000 #-- Sep 23 11:45:10 --# nbasis: 11
# > MCMC iteration 26000 #-- Sep 23 11:45:12 --# nbasis: 10
# > MCMC iteration 27000 #-- Sep 23 11:45:14 --# nbasis: 10
# > MCMC iteration 28000 #-- Sep 23 11:45:16 --# nbasis: 10
# > MCMC iteration 29000 #-- Sep 23 11:45:18 --# nbasis: 11
# > MCMC iteration 30000 #-- Sep 23 11:45:20 --# nbasis: 10

3.3.1 BASS Basis Functions

Figure 7 shows that there are also 10 basis functions once the BASS algorithm is complete, similar to TBASS.
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Figure 7: BASS Basis Function Count

3.3.2 BASS Variance

In Figure 8, we see that the σ2 from Gaussian BMARS is over two times as large as the σ2 from TBASS,
indicating that Gaussian BMARS is more sensitive to outliers and will inflate σ2 when outliers are present.
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Figure 8: BASS Variance Trace Plot

4 Conclusion
We constructed a generalized version of Gaussian Bayesian Multivariate Adaptive Regression to accommodate
data with outliers or data that is non-Gaussian. This framework provides reliable and accurate parameter
estimation. The R package TBASS adopts this framework from the original BASS package. These two models
have been tested and compared to show their differences and demonstrate how a low value of ν can emulate
the results from a Student’s t-distribution.
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