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ABSTRACT
We developed a computational strategy to correlate bulk combustion metrics of novel fuels 
and blends in the low-temperature autoignition regime with measurements of key 
combustion intermediates in a small-volume, dilute, high-pressure reactor. We used neural 
net analysis of a large simulation dataset to obtain an approximate correlation and proposed 
experimental and computational steps needed to refine such a predictive correlation. We 
also designed and constructed a high-pressure laboratory apparatus to conduct the proposed 
measurements and demonstrated its performance on three canonical fuels: n-heptane, i-
octane, and dimethyl ether.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
RH Hydrocarbon

R Alkyl radical

ROO Peroxy radical

QOOH Hydroperoxyalkyl radical

T Temperature

P Pressure

IDT Ignition delay time

LLNL Lawrence Livermore National Laboratory

NUIG National University of Ireland, Galway

LPR Laser photolysis reactor

FR Flow reactor

CNN Convolutional neural net

DNN Dense neural net

CV Cross-validation

RMS Root-mean-square

FAGE Fluorescence Assay by Gas Expansion

HPFR High-pressure flow reactor

MFC Mass flow controller

PID Proportional-integral-derivative (control loop)

SS Stainless steel

OD Outer diameter

ID Inner diameter

LIF Laser-induced fluorescence

RGA Residual gas analyzer

Nd:YAG Neodymium-doped yttrium aluminum garnet

FWHM Full width at half max

PMT Photomultiplier tube

DME Dimethyl ether



10

1. INTRODUCTION
Autoignition is important in spark and compression ignition engines,[1, 2] and susceptibility to 
autoignition is a key factor in fuel performance. Given the diversity of emerging fuel candidates, 
[3] considerable efforts are underway to classify fuels using high-throughput measurements [4-6] 
or structure-property relationships. [7-9] The purpose of this project is to design a simple, rapid, 
low-volume laboratory experiment to assess the autoignition propensity of candidate fuels using 
measurements of chemical intermediates during dilute fuel oxidation reactions. 
Autoignition occurs at low temperatures (T ≤ 900 K) and is sensitive mainly to oxidation 
reactions, rather than to fuel decomposition. [10, 11] Figure 1 shows schematically the initial 
steps in autoignition. Hydroxyl radicals, OH, abstract H atoms from the fuel, RH, to form 
carbon-centered radicals, R, which can undergo a series of oxygen additions, isomerizations and 
bond scissions to potentially yield more than one OH per each initiating OH (radical chain 
branching), thereby contributing to even faster fuel consumption. Radical intermediates, 
including alkylperoxy, ROO, and hydroperoxyalkyl, QOOH, can divert flux from the 
autoignition cycle to form relatively unreactive HO2, inhibiting fuel consumption. However, at 
some conditions the reactions of HO2 with the fuel can become the dominant route to radical 
chain propagation.

Figure 1: Key elementary reactions in autoignition. Radical chain branching steps are shown as 
red arrows, chain propagating steps in black, and chain inhibition steps in blue.

Although the rates and product branching of the individual steps shown in Figure 1 depend on 
the chemical structure of the fuel, OH and HO2 are always key intermediates, and the propensity 
of a fuel to form OH versus HO2 may be a universally good predictor of its overall reactivity. 
Formaldehyde, CH2O, is a ubiquitous intermediate in autoignition, and CO2 is the product of 
combustion of all hydrocarbon fuels. The present report is divided into two major sections. In 
section 2 we shows by computational means that measurements of OH, HO2, CH2O, or CO2 from 
low-T oxidation of very dilute fuel/air mixtures (~1000 times less fuel than in typical engines) 
can predict reactivity at engine-relevant conditions without detailed knowledge of a complete 
chemical mechanism. Section 3 describes the design and construction of an experimental 
apparatus to perform such measurements and the results of preliminary experiments on three 
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canonical hydrocarbon fuels: n-heptane, i-octane, and dimethyl ether.

2. PREDICTION OF 1ST-STAGE IGNITION DELAYS BASED ON CHEMICAL 
KINETICS MODELING

As proof of principle, our goal was to demonstrate that reactivity measurements in a dilute 
laboratory reactor can be used to predict 1st-stage ignition delay times (IDTs) – common metrics 
of fuel reactivity at engine conditions. To accomplish this, we used automated chemical 
modeling and sensitivity analysis to simulate extensive datasets of dilute reactivity 
measurements and IDTs. We then applied statistical analysis methods to search for a predictive 
correlation between the simulated measurements and simulated 1st-stage IDTs. This 
computational approach enabled us to explore different types of hypothetical measurements (e.g. 
target species, reactor configurations), as described below. Our strategy and results were also 
published as a peer-reviewed paper in the journal Combustion and Flame in 2020.[12]

2.1.Computational strategy

2.1.1. Generation of simulation dataset

We sought to generate a sufficiently diverse simulation dataset of hypothetical fuels to reveal 
complex trends that are independent of fuel molecular structure. This dataset had to represent a 
range of fuel structures and functional groups that lead to different reactivities. Unfortunately, 
there are few literature fuel oxidation mechanisms that are validated at autoignition conditions. 
Although these mechanisms fall into diverse fuel classes (alkanes, alkenes/aromatics, oxygenates 
and blends), there are not enough of them to constitute a large dataset on which to base chemical 
kinetics simulations. To address this challenge, we created synthetic (“clone”) mechanisms, 
based on a subset of “baseline” mechanisms, which we considered to be well validated at T ≤ 
900 K. These baseline mechanisms, including 18 pure compounds and 5 reference fuel blends, 
are listed in 
Table 1. Whenever possible, we employed widely-used mechanisms from Lawrence Livermore 
National Laboratory (LLNL) [13] and National University of Ireland Galway (NUIG) [14].
To generate clone mechanisms, we first simulated the proposed dilute oxidation experiments as 
well as 1st-stage IDTs of each baseline fuel or blend using the CHEMKIN-Pro version 17.2 
program package. [15] Next, we identified sensitive reactions and ranked them by their impact 
on the desired experimental observables. Finally, we systematically perturbed the most sensitive 
reaction rate coefficients of the baseline mechanisms by factors of two individually or in random 
pairs. All chemical modeling, sensitivity analysis, and mechanism perturbation was performed 
via automated workflow that makes use of PyChemkin, [16] a set of scripts that serve as a 
Python interface to CHEMKIN. The resulting clone mechanisms can be thought of either as 
entirely new mechanisms that simulate new hypothetical fuels, or simply as perturbations of the 
original mechanisms within their likely uncertainties. In machine learning analysis, this approach 
to building large datasets is a form of data augmentation, wherein a small yet reliable dataset is 
expanded to a larger one by making well-chosen perturbations to the original data. [17] A total of 
5296 clone mechanisms was created, from which thousands of unique simulation pairs of dilute 
reactivity measurements and IDTs could be run. The T and P range of simulations is included in 
Table 1. 
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Table 1: Baseline fuel oxidation mechanisms, simulation conditions, and the number of clone 
mechanisms.

Class Baseline Fuel T (K) P (Bar) # Clones Ref.

n-Pentane 650 – 700 10 29 [18]

i-Pentane 650 – 700 10 59 [18]

neo-Pentane 650 – 700 10 22 [18]

n-Heptane 650 – 700 13.5 – 40 421 [19, 20]

i-Octane 700 40 53 [21]

Cyclohexane 650 – 700 12.5 75 [22]

Alkanes

Methylcyclohexane (MCH) 650 – 700 15 228 [23]

1-Butene 700 30 62 [24]

i-Butene 700 30 43 [25]

1-Hexene 650 – 700 10 104 [26]

2-Hexene 650 – 700 10 51 [26]

Alkenes/

Aromatics

Butylbenzene 700 30 51 [27]

1-Butanol 700 20 12 [28]

i-Pentanol 650 – 700 20 67 [29]

Dimethyl Ether (DME) 650 – 700 13 – 40 183 [30]

Dimethoxy Methane (DMM) 600 – 700 10 – 40 87 [31]

Tetrahydrofuran (THF) 650 – 700 7 71 [32]

Oxygenates

Methyl Decanoate 650 – 700 12 215 [33]

PRF 650 – 700 15 778

TRF 650 – 700 15 313

TPRF 650 – 700 15 1515

EPRF 650 – 700 15 448

Blends

ETPRF 650 – 700 15 409

[26]

Total 5296

2.1.2. Choosing an experimental platform for dilute oxidation 
measurements

We first employed our modeling approach to choose the best experimental platform for the 
proposed dilute reactor. Using CHEMKIN-Pro, [15] we simulated measurements in two common 
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reactors in chemical kinetics research: a laser photolysis reactor (LPR) and a flow reactor (FR). 
In an LPR, [34] a dilute homogeneous gas sample flows through a constant-T and P vessel. 
Reactions are initiated by laser photolysis of a radical precursor, added in small concentrations to 
the fuel/air mixture, and the chemical composition is measured as a function of time elapsed after 
the initiating laser pulse. We modeled the LPR as a constant T and P, homogeneous batch 
reactor, containing O2, dilute fuel, and Cl2 in a balance of N2. We simulate photolysis of Cl2 by 
introducing a known concentration of Cl atoms at time t = 0. Cl atoms rapidly abstract H atoms 
from the fuel and create radicals, which are subsequently oxidized. The simulations output the 
concentration profiles for all chemical species as a function of post-photolysis time delay. 
However, we found that unanticipated reactions of Cl with O2 interfered with fuel oxidation 
chemistry, which resulted in poor correlations with 1st-stage IDTs, as described in more detail in 
[12]. Because of this, we consider the LPR to be unsuitable for the proposed measurements of 
dilute fuel reactivity.
In an FR, a plug of a radially homogeneous gas mixture reacts as it flows in the axial direction 
for a set residence time, , after which the chemical composition is analyzed. [35-42] Different 𝜏
residence times can be obtained either by varying the physical length between the point where 
reagents are introduced and the probing/sampling position, or by adjusting the total flow velocity 
through the reactor. We model the FR as a constant T and P, homogeneous plug flow reactor 
with a maximum residence time, . The modeled gas mixture consists of air (21% O2 and 79% 𝜏𝑚𝑎𝑥

N2) and a fixed small amount of fuel (typically 3.2·1015 molecules∙cm-3, equal to 0.1 Torr at 300 
K). The output of the simulations are the concentrations of each chemical species in the reacting 
mixture as a function of τ. FR simulations produced good correlations with 1st-stage IDTs, and 
for the remainder of this project we focused on the FR as the appropriate experimental platform.

2.1.3. Simulations of 1st-stage IDT

We modeled IDTs from simulated air/fuel mixtures (equivalence ratio φ = 1) in a homogeneous, 
adiabatic, constant volume batch reactor, which approximates typical conditions in shock tube 
and rapid compression machine experiments. [43] Such IDTs can also be used to create “maps” 
of fuel reactivity as a function of T and P, from which the fuel’s overall performance can be 
predicted for different T and P trajectories during an engine cycle. [44, 45] Fuel concentrations 
in the IDT simulations were ~3 orders of magnitude higher than in the FR/LPR simulations. The 
energy released by the oxidation reactions of stoichiometric fuel/air mixtures results in ignition, 
which is manifested as a large increase in the sample temperature and pressure. The output of 
this simulation is a pressure trace as a function of time, as well as species profiles. We extracted 
1st-stage IDT values from the simulation outputs using the first peak in [OH], which is equivalent 
to using the inflection point in the pressure profiles prior to the main ignition event [11, 46].

2.1.4. Statistical analysis of correlations

To search for a predictive correlation between simulated reactivity measurements and simulated 
IDTs we explored a progression of increasingly complex methods: linear regression models, 
principal component analysis, compressed sensing, and neural net fitting. Overall, convolutional 
neural net (CNN) fitting produced the best results.
CNN’s are used to connect a structured input of high dimensionality (e.g. a 2-D image) with an 
output of lower dimensionality (e.g. a label of what is contained in the image). [47] At each 
convolution layer, filters containing a small number of fitted weights are applied to localized 
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regions of the input data and scanned across the input to generate new images/profiles that are 
called feature maps, which indicate in what regions of the input data certain features appear. The 
feature maps are then input to the next convolution layer. After the last convolution layer, the 
final feature maps are combined with scalar values (e.g. T and P of the simulation) and converted 
to a single output value using a dense neural net (DNN).
The CNN fitting approach is shown schematically in Figure 2 for an example case, in which 
simulated OH and HO2 radical measurement in a flow reactor are used as neural net inputs. The 
CNN output is a predicted 1st-stage IDT value for a given clone fuel. This output is compared to 
the explicitly simulated 1st-stage ignition delays for the same clone fuel. The baseline 
mechanisms from which we generated clone mechanisms were primarily validated against IDT 
measurements. Hence, we expect the simulated IDT results for the clone fuels to be realistic 
representations of the autoignition of hypothetical fuels, in which key reactions are either faster 
or slower than in the baseline fuels. The CNN parameters were varied to minimize the difference 
between the predicted and simulated IDT, and the final goodness of fit was evaluated by its root-
mean-square cross-validation (CV) error.

Figure 2: Schematic of CNN architecture used to find correlations between simulated flow reactor 
profiles and 1st-Stage IDT. The example simulations are for n-heptane at 600 K, 13.5 Bar. 

 
2.2.Results

Typical outputs of our simulations of the FR and IDT measurements are illustrated in Figure 3. 
The left side presents results for n-heptane at P = 13.5 bar and T = 600 K, whereas the right side 
shows results for i-pentanol at 20 bar and 700 K. The top two rows show modeled concentrations 
of fuel, OH, HO2, CH2O, and CO2 in the FR. The vertical dotted line shows a reactor residence 
time τSO at which the fuel begins to spontaneously oxidize, and reaction intermediates begin to 
appear. The third row plots the rate of production of OH, HO2, CH2O, and CO2 in the FR. The 
bottom rows depict the fuel concentration and pressure time trace at stoichiometric conditions (φ 
= 1) in air, from which IDT values are obtained. 

2.2.1. Sorted cross-validation error test
Our first approach to neural net fitting involved training and test sets that were randomly chosen 
from all PFR/IDT simulations. This random CV test produced good agreement of predicted vs. 
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simulated IDTs. However, we were concerned that random test sets may result in overfitting of 
the simulations and may appear accurate yet produce no useful correlation. 
To guard against overfitting, we employed a 10-fold sorted CV test. Briefly, we ran 13004 
unique PFR/IDT simulations and sorted them into 10 equal batches in the order of increasing 1st-
stage IDT. We then trained the CNN 10 times (folds). Each fold used one of the batches as test 
data and the other nine batches as training data. In other words, fold 1 trained the CNN on the 
least reactive 90% of the simulations (i.e. with largest IDT values) and tested the IDT predictions 
for the most reactive 10% of the simulations. Fold 2 trained the CNN on the least reactive 80% 
and most reactive 10% the of the simulations, with the test set falling between 10% and 20% in 
the order of decreasing reactivity, and so on. This approach evaluates the transferability of the 
correlation to IDT ranges that were not included in CNN training and is less prone to overfitting. 

Figure 3. Simulated profiles for oxidation of n-heptane at 600 K and 13.5 bar (left) and i-pentanol at 
700 K and 20 bar (right) under flow reactor (top) and ignition delay time (bottom) conditions. 
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The 10-fold sorted CV test results are shown in Figure 4 as a plot of all predicted vs. explicitly 
simulated 1st-stage IDTs. The CNN in Figure 4 was trained on OH and HO2 profiles (CNN’s 
trained on other species profiles are discussed below).  The predicted IDTs match the simulated 
IDTs well, although the agreement varies slightly among the different folds. The overall error 
distribution is centered on 0% with root-mean-square (RMS) error of only 10.2%, which is 
comparable to typical reported uncertainties for measured IDTs. [25] Thus, these results suggest 
that a meaningful correlation exists between the proposed OH/HO2 measurements in FR and 1st-
stage IDT.

Figure 4: Predicted 1st-stage IDT (from OH/HO2 FR training data) vs. explicitly simulated 1st-stage 
IDT. Combined results are shown for the sorted 10-fold CV test, in which the test data consisted of 
consecutive 10%-wide subsets of all simulations, in order of increasing 1st-stage IDT values (i.e. 
0–10%, 10–20%, … 90–100%). Dashed lines represent factor of two errors.

2.2.2. Leave-one-fuel-out test
A key question for our project was whether the correlation, described in Section 2.2.1, is general 
(i.e. independent of fuel structure). This is difficult to answer because our dataset consists of 23 
baseline fuel mechanisms that were each perturbed many times. Therefore, instead of thousands 
of independent samples, our dataset might instead be 23 distinct clusters of samples, with each 
cluster subject to its own unique correlation between simulated OH/HO2 production and IDT. To 
guard against this possibility, we conducted further tests of CNN fitting, in which all simulations 
derived from a single baseline mechanism formed a test dataset, with all other simulations used 
as training data. We repeated these leave-one-fuel-out tests for each baseline mechanism. The 
summary statistics for each of these tests are shown in Figure 5 for CNN fits using simulated OH 
and HO2 profiles (fits to other species are described briefly below). In nearly every case, the 
leave-one-fuel-out tests predicted 1st-stage IDTs with median errors of a factor of two or less, 
with THF and 1-butene being the exceptions. Although the agreement is fair overall, it is worse 
than in the case where all 23 mechanisms are represented in the training and test datasets.
There are two perspectives from which to view these results. On one hand, if we assume that 
every mechanism faithfully reflects reality, then our correlation may never fully capture some 
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fuel-dependent details of autoignition. Even so, one can expect to predict 1st-stage IDT within 
50% for most fuels, which is sufficient for fuel screening purposes. However, some fuels, like 
THF and 1-butene, will not be predicted so accurately, and it will be difficult to know a priori 
which fuels exhibit structure-dependent effects. On the other hand, most of our baseline 
mechanisms are not extensively validated against detailed chemical speciation data and are 
significantly under-constrained. [48] Because these mechanisms are imperfect, a correlation 
based on real FR measurements may be better than Figure 5 implies. 

Figure 5: Error distributions of predicted 1st-stage IDTs in the leave-one-fuel-out tests of the 
FR/IDT simulations. CNN was trained on FR profiles of OH/HO2.

2.2.3. Choosing an appropriate measurement target
In addition to the OH/HO2 results discussed above, we optimized CNN fits using simulated 
CH2O and CO2 profiles. Figure 6 plots the sorted CV error of the neural net fits as a function of 
chemical species being detected. We consider various combinations of species as inputs into the 
CNN, as well as a case in which no reaction products were detected, but fuel depletion was 
measured, allowing a determination of τSO. The CV error ranges from roughly 10 to 14% if the 
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profiles of any of the simulated species are input to the CNN. If only the fuel depletion is 
monitored, the CV error is 19.4%.
The clearest conclusion from Figure 6 is that any direct measurement of the overall timescales of 
spontaneous oxidation (τSO) of dilute fuel-air mixtures can likely be correlated with autoignition 
timescales at stoichiometric conditions. If, in addition, residence time profiles of key radical or 
closed-shell species produced during autoignition are known, the quality of the correlation 
improves further. Nominally, the best correlation is obtained when OH profiles are the only input 
(9.7% CV error). Leave-one-fuel-out tests for CH2O and CO2 inputs are of similar quality to 
those for OH and HO2 inputs in Figure 5. Therefore, all four species are likely useful 
experimental targets for the prediction of 1st-stage IDT.

Figure 6: Effect of different inputs to the CNN: markers are 10-fold averaged CV error and the 
shaded area marks the minimum and maximum test errors of the folds. In the τSO case the DNN is 
trained only on T, P and τSO values, without product profiles input into the CNN.

2.2.4. Optimizing the design of measurements

Finally, we used our modeling approach to estimate how the accuracy of the predicted 1st-stage 
IDT depends on the design parameters for a hypothetical experiment that measures the 
concentrations of key combustion intermediates in a flow reactor. Specifically, we considered 
how the observation time range, fuel dilution, detection sensitivity, and temporal resolution 
affect the predictive power of the derived correlation. These results are detailed in [12].
Briefly, we found that residence times at least two times larger than τSO are required. (τSO is 
defined as the point at which 1% of the fuel has been consumed, i.e. the start of spontaneous 
oxidation.) This is an important parameter in designing a flow reactor, because it marks the 
minimum residence time over which the reacting mixture must maintain well-defined transport 
properties. Our simulations show that a flow reactor that accommodates residence times of 1 – 2 
s should be appropriate for most fuels.
We also found that the perfect FR should operate with ~ 0.1 Torr partial pressure of fuel. Higher 
fuel concentrations will result in too much heat release, violating the isothermal assumption for 
the FR. On the other hand, lower fuel concentrations will decrease the predictive quality of the 
correlation.
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The residence time resolution of ~1 ms is optimal. Lower time resolution results in the loss of 
kinetic information in the detected chemical species profiles and in decreased predictive power 
of the correlation. Achieving a 1 ms time resolution in a high-pressure FR is an ambitious goal, 
and our solution to this challenge is discussed in detail in Section 3.1.1.
Lastly, minimum detection sensitivity of ~1012 molecules∙cm-3 or better is required. This targeted 
detection limit of 1012 molecules∙cm-3 for OH/HO2 in a high-pressure environment can be 
achieved for OH using laser-induced fluorescence detection. [49, 50] Additionally, the related 
technique of fluorescence assay by gas expansion (FAGE) has potential for measurements of OH 
and HO2 simultaneously and with similar sensitivity above ambient pressures. [51] 

2.3.Summary

Our computational models suggest that a laboratory measurement of OH (and possibly HO2, 
CH2O, or CO2) concentrations in a dilute flow reactor can be used to predict bulk autoignition 
properties such as 1st-stage ignition delay times. The following sections describe the design and 
construction of an experimental apparatus using a high-pressure flow reactor and FAGE detector 
and initial proof-of-principle attempts at detecting OH and HO2.
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3. CONSTRUCTION OF A HIGH-PRESSURE HPFR/FAGE APPARATUS.
The computations described above identified a promising experimental strategy to measure OH 
radical concentrations during the oxidation of dilute fuel/air mixtures as a proxy for autoignition 
propensity of a given fuel or fuel blend. The following section details the construction and 
commissioning of a laboratory apparatus designed for fuel screening experiments, as shown 
schematically in Figure 7. The apparatus consists of a heated high-pressure flow reactor (HPFR), 
operating at engine-relevant conditions, and a Fluorescence Assay by Gas Expansion (FAGE) 
detector. The FAGE quantifies the concentration of OH and other chemical species as a function 
of residence time (i.e. reaction time) in the HPFR. Below we report the design, assembly, and 
calibration of the HPFR/FAGE, along with proof-of-principle experimental measurements of the 
oxidation of representative hydrocarbon fuels n-heptane, i-octane, and dimethyl ether.

Figure 7. Overview schematic of the HPFR/FAGE apparatus. Top insert: cartoon of the rapid fuel 
mixer in the HPFR. Right insert: cartoon of the sampled gas flow and laser-induced fluorescence 
probing in the FAGE. 

3.1.High-Pressure Flow Reactor.

The HPFR is a cylindrical reactor, in which a homogeneous gas mixture is allowed to react for a 
well-defined time period (τ) at T = 300 – 1000 K and P = 1 – 100 bar. It operates in the laminar 
flow regime, which we chose because it is easily implemented in chemical kinetics simulation 
codes. The simple gas transport physics of laminar flows are well understood and enable high-
fidelity modeling of the chemistry in the reactor. The HPFR is an Inconel chamber with a 4 cm-
long inner bore of 8 mm diameter. The inner bore is lined with an annular insert, ID = 6 mm, OD 
= 8mm (see inset in Figure 7), that can be made of either Inconel or of Fused Silica, if a more 
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chemically inert insert is needed. Fuel vapor (diluted in N2) and air enter the HPFR separately 
through a custom-built gas mixer, mix together, and flow forward at constant temperature and 
pressure. The construction of the gas mixer is detailed below. Most of the reacting fuel/air 
mixture exits the HPFR through six openings, located symmetrically around the circumference 
of the inner bore at the endwall. A small central portion of the mixture exits the HPFR through 
an interchangeable laser-drilled orifice in the endwall and enters the FAGE section. 
The speed of the fuel/air flows is set by precision mass flow controllers (MFCs, Bronkhorst) to 
obtain a desired maximum sample residence time in the reactor, τmax. The gas mixer moves 
axially from fully withdrawn (at the reactor entrance, position x = 38 mm) to fully inserted (at 
the sampling endwall, x = 0 mm). This translation at constant gas flow speed continuously varies 
the effective reactor length and hence sample residence time τ: 0 < τ < τmax. A computer-
controlled motorized stage moves the mixer without venting the HPFR, which is enabled by a 
graphite mixer seal with a slip fit. The endwall sampling orifice diameter (typically 0.005 – 0.07 
mm) is chosen such that ~10% of the total gas flow is sampled into the FAGE at the desired T 
and P.
The HPFR is equipped with three independent resistive heaters: pre-heater located at the gas 
inlet, main section heater, and front flange heater located at the interface with the FAGE section. 
Thermocouples sense the gas temperature in three zones: just before the inner bore of the HPFR, 
at the tip of the gas mixer, and at the exit of the reactor. PID-based current relays control the 
power output of the heaters to maintain desired temperature throughout the reactor. The main 
exhaust of the reactor flows to a roots pump, and a PID-controlled throttle valve in the exhaust 
line maintains desired pressure. Initial fuel concentrations are always small enough that heat 
released during the complete oxidation process raises the reactor T by <5 K.

3.1.1. Construction of the rapid laminar gas mixer

Our chemical kinetics simulations indicate that for the purposes of rapid fuel screening, the 
HPFR must operate over a wide range or residence times, from 10s of ms to multiple seconds. 
Achieving the low end of this range of τ is challenging, because it requires reaction initiation 
times much shorter than τ, i.e. <<10 ms.  To address this challenge, we designed a rapid gas 
mixer, which combines pre-heated fuel and air (unreactive when separate) into a homogeneous 
reactive sample, while maintaining a laminar flow field. An alternative approach of rapidly 
heating a pre-mixed fuel/air mixture was found to be not feasible. Fluid dynamics simulations 
(see below) show that mixing times less than 10 ms are attainable even at high pressures, despite 
diffusion being slow. To achieve short mixing times, the mixer is made up of many small 
stainless steel (SS) injector tubes, spaced on a square grid inside a larger SS tube (OD = 6 mm, 
ID = 5.54 mm). The fuel/N2 gas flows through the tubes, and the air flows between the tubes. 
The linear speed of the fuel and air flows are set to be approximately equal. When the two flows 
combine at the exit of the tubes, complete fuel/air mixing requires diffusion on short length 
scales of only ~0.1 mm (the ID of the injector tubes), resulting in rapid mixing.
We constructed the gas mixer by spot welding a square SS mesh to the front opening of a 30-cm 
long SS tube, as shown schematically in Figure 8A. Commercially available hypodermic SS 
tubes were inserted through the mesh in a checkerboard pattern, protruding by 2 mm out of the 
mesh. The interstitial space between the needles was filled at the back of the mixer with an 
epoxy seal. The epoxy plug is sufficiently strong to withstand typical pressure drops across the 
mixer (< 1 psi), required to flow dilute fuel/N2 through the hypodermic tubing. The front section 
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of the mixer resides inside the HPFR and is heated, but the back section is at room temperature, 
such that the epoxy plug is not damaged by heat. Air enters the mixer through holes, drilled 
around the circumference of the outer tube. Air diffuses between the hypodermic tubing and 
flows forward, mixing with the fuel/N2 at the tip of the mixer. Figure 8B shows the front of the 
mixer prototype (version 1), made up of 71 hypodermic tubes (ID = 0.15 mm, OD = 0.3 mm), 
assembled in a 0.36 x 0.36 mm mesh. More recently, we have constructed an improved version 2 
of the mixer, in which ~140 hypodermic tubes (ID = 0.11 mm, OD = 0.21 mm) are spaced 
equally on a 0.28 x 0.28 mm mesh. The more numerous, smaller tubes of the second version 
provide improved mixing performance.

Figure 8. A: schematic of the rapid laminar gas mixer. (Dimensions not to scale and only 7 needles 
are shown for illustration purposes.) B: photograph of front of the 1st prototype version of the 
mixer.

3.1.2. Temperature profile in the HPFR

Our chemical kinetics simulations show that the reactivity of many typical fuels depends 
strongly on temperature in the autoignition regime, and constant T throughout the reactor is 
critical to proper modeling of the HPFR results. Figure 9 shows measured centerline temperature 
profiles in the HPFR for two different maximum residence times and four T setpoints. At each 
T/τmax combination, we mapped out the temperature profile as a function of axial position at 5 
different mixer positions, which correspond to 5 data points in a typical τ scan. To measure these 
profiles, we inserted an independent thermocouple through a large sampling orifice in the 
endwall and translated it axially from the mixer (4, 12, 20, 28, and 36 mm) to the endwall (x = 
0). These measurements show that the temperature profiles in the HPFR are constant to within 
±5 K at slow sample flows (τmax = 1 s) and ±2 K at fast flows (τmax = 0.1 s) and that the profiles 
do not change appreciably during a τ scan.
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Figure 9. Temperature profiles under typical operating conditions at P = 13 bar in the HPFR with 
average residence times τ = 1 s (left) and 0.1 s (right).

3.1.3. Fluid dynamics simulations of the HPFR

We ran 3D simulations of the HPFR in COMSOL [52] to characterize both the expected flow 
field and the mixing timescale. Figure 10 and Figure 11 show that the simulated flow field 
strongly resembles a simple “entrance region” model, [53] wherein a flat velocity profile 
develops into a radially symmetric parabolic profile over a well-known axial distance. 
Conveniently, the reduced-dimension, 2D entrance region can be modeled in the advanced 
chemical modeling software CHEMKIN, which enables accurate treatment of both physical 
transport and complex, detailed chemistry. Figure 10 shows that the 2D CHEMKIN model is a 
good approximation of the full 3D COMSOL model at two extreme values of τmax. Modeling 
results shown in section 4 use the 2D CHEMKIN model of the flow field, which is implemented 
via the Cylindrical Shear Flow module with a very thin boundary layer at the reactor entrance. 

Figure 10. Reduced velocity vr (defined as the ratio of gas velocity to the average velocity) as a 
function of the spatial position in the HPFR at P = 13 bar and T = 600 K. The gas flow from the 
mixer at x = 40 mm to the sampling endwall at x = 0 mm is simulated for τmax = 1 and 0.1 s.
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Figure 11. Simulated centerline reduced velocity at P = 13 bar, T = 600 K, τmax = 1 and 0.1 s.

Regarding the mixing timescale, τmIx, the 3D COMSOL simulations are consistent with back-of-
the-envelope estimates for diffusion: at 10 bar and 600 K a typical fuel like n-heptane will be 
well-mixed in the bulk air flow within ~1 ms. This timescale depends on pressure and 
temperature through a simple analytical expression:  . For the low-temperature 𝜏𝑚𝑖𝑥 ∝ 𝑃 ∙ 𝑇 ‒ 1.75

oxidation chemistry that we hope to observe, a 1 ms mixing time is sufficiently faster than the 
reaction timescale (10 ms to seconds), such that our subsequent 2D CHEMKIN models assume 
that the fuel/air streams are well-mixed at the entrance of the HPFR. 

3.2.FAGE detector

FAGE instruments are routinely used to detect species, sampled from the atmosphere (i.e. near 
room temperature, 1 bar pressure) by laser-induced fluorescence (LIF). [51] Our FAGE differs 
from other existing FAGE setups in two ways: it is 1) capable of analyzing gas, sampled from a 
heated high-pressure reactor and 2) capable of operating in a time-resolved Photolysis/LIF mode, 
as detailed below. The purpose of the FAGE here is to measure the concentration of OH and 
other species of interest in the reacting gas, sampled from the HPFR. The FAGE is a SS chamber 
(shown schematically in Figure 7) that attaches to the front flange of the HPFR. The sample 
enters the FAGE through a 1.5 cm-long, 6.2 mm-diameter channel. Four thin channels, machined 
into the front flange, allow for additional gas (labeled FAGE co-flow in Figure 7) to enter the 
FAGE and mix with the effluent from HPFR immediately after the sampling orifice. The co-flow 
inlets are located symmetrically around the sampling orifice, and the amount of co-flow is 
metered by a dedicated MFC.
The sampled gas traverses the FAGE and exits through a centerline exhaust port. The pressure in 
the FAGE is controlled by a downstream throttle valve and is typically 5 Torr. We do not 
actively regulate the temperature in the FAGE. Typically, the front of the FAGE approaches the 
HPFR temperature and the exhaust section is at room T. The FAGE has 4 optical ports: two 4.6 
mm-dia. horizontal ports (with Brewster angle windows) orthogonal to the HPFR/FAGE 
centerline and two 25 mm-dia. off-axis ports directed at 57° up and down in a vertical symmetry 
plane of the FAGE. The optical ports are used for spectroscopic detection of OH and other 
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species. In addition, the exhaust port is equipped with a residual gas analyzer (RGA, MKS 
Instruments), which can be used for the detection of high-concentration species such as the fuel.

3.2.1. FAGE operating modes 

There are three operating modes of the FAGE detector:
The LIF-only mode is used to detect molecules that produce strong fluoresce signals and can be 
efficiently detected by LIF. In the present report we use this mode to measure steady state OH 
concentrations in the sampled gas. We have calibrated the OH detection efficiency of our 
apparatus as described below, enabling absolute OH quantification. A probe laser pulse, directed 
through the horizontal ports, intersects the sampled gas at 90° and excites the (0,1) band of A2Σ+ 
⟵ X2Π transition of the OH radical. The probe pulses come from the frequency-doubled output 
of a Nd:YAG-pumped dye laser at 281.9 nm with duration of 6 ns (FWHM).  The LIF signal at 
308 – 312 nm from the (1,1) and (0,0) bands of OH is collected through the upper off-axis port 
using two focusing lenses and a 310-nm bandpass filter with 10-nm bandwidth. The signal is 
detected with a photomultiplier tube (PMT, Thorlabs), conditioned with a pre-amplifier, and 
recorded by a 1-GHz digital oscilloscope. 
The Chemical titration/LIF mode detects molecules that do not produce strong LIF signals 
themselves but can be chemically converted to good LIF targets. A reactant is introduced in the 
FAGE co-flow and reacts with the effluent from the HPFR after the sampling orifice (without 
affecting the chemistry in the HPFR). Here, we use this approach to quantify HO2 radicals by 
adding NO, diluted in N2, to the co-flow, as is commonly done by FAGE apparatus. [51] The 
reaction HO2 + NO → NO2 + OH titrates HO2 (which cannot be detected by LIF) to OH, which 
is then detected by LIF. We have not yet fully calibrated the HO2 detection efficiency and 
therefore do not use this mode extensively; however, a demonstration of this capability is 
included below.
The Photolysis/LIF mode is used to detect chemical species that do not produce strong LIF 
signals but can be converted to good LIF targets by laser photolysis. Here we use a “pump” laser 
pulse with 10 ns duration from an excimer laser to photodissociate H2O at 193 nm or H2O2 at 
248 nm (as described in detail in sections 3.2.2 and 3.2.3), both of which produce known yields 
of OH. A time-delayed, probe laser pulse then detects OH by LIF as described above. The OH 
concentration is measured as a function of pump-probe delay with ~12-ns resolution.

3.2.2. Calibration of OH detection efficiency.

The A2Σ+ electronic state of OH relaxes primarily by two competing processes: fluorescence and 
collisional deactivation. Thus, fluorescence yield from excited OH(A2Σ+) – and hence our 
detection efficiency – depends on the environment in the FAGE: specifically, on the frequency 
of collisions and the collision partner. Practically, the best way to calibrate our OH sensitivity is 
to measure LIF signals from known OH concentrations at the expected FAGE operating 
conditions. The calibration protocol includes three steps, in which the FAGE operates in the 
Photolysis/LIF mode.
First, we flow a mixture of H2O vapor in N2 (variable partial pressure of H2O, diluted in total P = 
1 bar) through the FAGE chamber. A photolysis laser pulse at 193 nm enters the FAGE through 
the bottom off-axis port and dissociates H2O into OH + H. We calculate the absolute 
concentration of nascent OH immediately after the photolysis pulse using measured photon flux 
at 193 nm and the known absorption cross section and OH yield of H2O. [54] A time-delayed 
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probe laser pulse at 281.9 nm detects the OH concentration by LIF as a function of delay from 
the photolysis. 

Figure 12. Representative OH time profiles measured using the Photolysis/LIF mode at total P = 1 
bar (N2) in the FAGE. Computed initial OH concentrations are 1.5·1011 and 2.5·1013 cm-3. Solid lines 
are fits using the chemical model of Zhang et al. [55] 

Figure 12 shows two representative OH time profiles in 1 bar of N2 bath gas, taken with 
computed initial OH concentrations of 1.5·1011 and 2.5·1013 cm-3. The figure includes fits using 
the chemical model of Zhang et al., [55] shown as solid lines. According to this model, at low 
[OH] (black symbols) the signal decays mainly due to OH diffusion out of the probe volume; the 
fitted decay coefficient (which is the only adjustable model parameter) is 78 s-1. At high initial 
[OH], the signal decays due to diffusion and to radical-radical reactions that consume OH: OH + 
OH → products and OH + H → products. The model predicts that the observed decay timescale 
in the high-OH regime is very sensitive to the initial OH concentration, yet no adjustment to the 
model parameters was needed to reproduce the experimental results. Thus, Figure 12 
demonstrates that we can reproducibly create well-known initial populations of OH, which is 
required for the next step of calibration.
In the second step, we flow a mixture with variable partial pressure of water vapor in 5 Torr total 
pressure (air) through the FAGE and photolyze this mixture at 193 nm as in step 1. A typical OH 
time trace at these conditions is shown in Figure 13A as time-integrated PMT signal vs. time 
after photolysis. At total P = 5 Torr OH diffusion is so rapid that it dominates the observed 
decays even at high [OH]. Nonetheless, the signal, extrapolated back to t = 0 provides the desired 
calibration of observed PMT signal vs. known initial [OH]. Figure 13B shows the combined 
result of all calibration measurements at temperatures 300 – 600 K, which enables quantitative 
determination of absolute concentration of OH in the FAGE.
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Figure 13. Panel A: Typical OH time profile, measured using the Photolysis/LIF mode at total P = 5 
Torr (air) in the FAGE. Initial OH concentration is 3.6·109 cm-3. Panel B: Summary of all OH 
calibration measurements at T = 300 – 600 K.

In the third step, we investigate the transfer efficiency of OH from the HPFR into the FAGE. 
This is required to account for any possible losses of OH in the sampling process from the 
HPFR. We replace the gas mixer in the HPFR with an optical window, flow a H2O/air mixture of 
known composition through the HPFR, photolyze this mixture directly in the HPFR to produce 
known [OH], and detect the OH in the FAGE using LIF as before. Figure 14 shows the measured 
survival probability of OH from the HPFR to the FAGE as a function of the total gas flow rate in 
the FAGE (sampling + co-flow, at constant P = 5 Torr). At the lowest total flow rate, only ~10% 
of OH from the HPFR survives into the probe volume of the FAGE. At total flow rate of 600 
sccm the residence time in the FAGE is reduced to ~100 s and co-flow effectively shields the 𝜇
sampled flow from the FAGE walls, resulting in ~100% survival of OH.

Figure 14. OH survival probability during sampling from HPFR as a function of total gas flow in the 
FAGE (sampling + co-flow). The survival probability is defined as the percentage of OH radicals, 
created by laser photolysis in the HPFR, that survive and are detected in the FAGE. Shown for 
comparison are models of OH transport through the FAGE cell with two values of the sticking 
coefficient for OH loss on the walls.
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The calibration of OH sensitivity is critical to quantitative measurements. The measurements of 
survival probability of OH in Figure 14 are preliminary and must be repeated. At present, we 
consider the calibration of total OH sensitivity of the HPFR/FAGE to have uncertainty of a 
factor of 2. However, with improved measurements we expect this uncertainty to be much 
smaller.

3.2.3. Subtracting interference in OH measurements at operating 
conditions

Preliminary experiments in the HPFR revealed OH signals at long residence times (i.e. long after 
all OH, formed via fuel oxidation, should have decayed). We measured the dependence of these 
signals on probe laser power to be linear, meaning that these signals were not due to multi-
photon OH formation from stable reaction products. Evidently, another process was responsible 
to conversion of some long-lived reaction products into OH.
Chemical modeling revealed that the only plausible candidate for such process was wall-
mediated conversion of H2O2 (an abundant, ubiquitous, long-lived, combustion intermediate) 
into OH. To check for this possibility, we employed the Photolysis/LIF mode, where photolysis 
laser pulses at 248 nm from an excimer laser were introduced into the bottom off-axis optical 
port of the FAGE. The absorption cross-section of H2O2 at 248 nm is 9·10-19 cm2, and the OH 
yield is 2.[56] OH, produced from H2O2 photolysis, was quantified by LIF. From this 
measurement, both the absolute concentration of H2O2 and the interfering OH signals due to 
H2O2 were quantified as a function of residence time in the HPFR. The total OH measurements 
were then corrected for the interfering signals due to H2O2.
We note that H2O2 is an important combustion intermediate that is challenging to measure 
experimentally. The capability of our apparatus to quantify H2O2 highlights the flexibility of 
HPFR/FAGE as an experimental platform. Measurements of H2O2 will be used in the future as 
benchmark comparisons with combustion models, on par with OH, HO2, and other species.

4. FIRST MEASUREMENTS OF REACTIVITY OF REPRESENTATIVE FUELS
For proof-of-principle experimental measurements in HPFR/FAGE, we chose 3 canonical fuels: 
n-heptane, i-octane (typical reactive and non-reactive alkanes and primary reference 
compounds), and dimethyl ether (prototypical oxygenated additive). For each fuel we measured 
the profiles of 3 species as a function of HPFR residence time: OH via LIF-only mode, H2O2 via 
Photolysis/LIF mode, and the fuel itself via RGA. In the case of n-heptane, we also measured 
HO2 via Chemical titration/LIF mode. All measurements are compared to model predictions 
using CHEMKIN that rely on the 2D entrance region model for gas transport and two different 
chemical mechanisms for the detailed chemistry. 

4.1.n-heptane
As a prototypical reactive reference fuel (Octane Number 0), n-heptane is a key benchmark for 
the HPFR/FAGE. Figure 15 shows measured profiles of n-heptane, OH, HO2, and H2O2 using T 
= 650 K, P = 13 bar, and maximum residence time τmax = 0.2 s, along with model predictions 
using the Co-Optima [26] and NUIG [20] mechanisms. Qualitatively, all measured species 
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exhibit the predicted behavior: OH is a short-lived intermediate as manifested by its sharply-
peaked profile, HO2 is a longer-lived intermediate, H2O2 is long-lived, and the fuel is rapidly and 
completely consumed. Furthermore, the injector position (i.e., residence time) at which most of 
the oxidation occurs is in excellent agreement with the Co-Optima model. 

Figure 15. FR measurements in of n-heptane oxidation at T = 650 K, P = 13 bar, and τmax = 0.2 s. 
The measured profiles of OH, HO2, and H2O2 are plotted vs. axial injector position in units of 
absolute number density. The n-heptane profile is plotted relative to its initial concentration.

Quantitatively, the peak OH and HO2 values agree with the models within the factor of 2 
calibration uncertainty. However, HO2 has additional systematic uncertainty owing to its mode 
of detection. Although modeling indicates ~50% titration efficiency for HO2, more experimental 
characterization is needed and the current agreement with the model may be accidental. H2O2 
also has additional systematic uncertainty, because we cannot yet fully rule out the possibility of 
another product being detected via photolytic OH production at 248 nm. However, despite 
expected uncertainties, both models we employed clearly underpredict the observed [H2O2], 
highlighting possible model deficiencies. Overall, the results for n-heptane are highly 
encouraging and demonstrate the capability of the HPFR/FAGE to probe oxidation chemistry in 
detail on the relevant timescale.

4.2. i-octane
Isooctane is the prototypical non-reactive hydrocarbon and a reference fuel with Octane Number 
of 100. Therefore, it is another important benchmark for the HPFR. Figure 16 compares 
measurements of i-octane, OH, and H2O2 at T = 650 K, P = 13 bar, and τmax = 0.5 s with model 
predictions using Co-Optima and LLNL mechanisms. [21] Most of the comments made on the n-
heptane data also apply here: the timescale of oxidation agrees with the models as does the peak 
OH (within the factor of 2 calibration uncertainty), while H2O2 is strongly underpredicted by 
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both models. Unlike n-heptane, the fuel is not completely consumed, which is qualitatively 
predicted by both models and quantitatively matched by the Co-Optima model.
Importantly, the timescale of oxidation for i-octane is markedly slower than n-heptane (τmax is 
0.5 s for i-octane vs. 0.2 s for n-heptane, thus the observed injector position for peak [OH] 
corresponds to much longer residence time in i-octane experiments). Our results demonstrate that 
the HPFR/FAGE can clearly resolve the difference between the two fuels and is therefore a 
powerful potential tool for fuel screening.

Figure 16. FR measurements in of i-octane oxidation at T = 650 K, P = 13 bar, and τmax = 0.5 s. The 
measured profiles of OH and H2O2 are plotted vs. axial injector position in units of absolute 
number density. The i-octane profile is plotted relative to its initial concentration.

4.3.DME
Figure 17 shows the measurements of DME, OH, and H2O2 concentrations at T = 650 K, P = 13 
bar, and τmax = 0.1 s together with the predictions of the Co-Optima and LLNL [30] models. 
DME is considered a promising additive or replacement for diesel fuel. It is highly reactive and 
expected to behave more like n-heptane than i-octane. Indeed, as shown in Figure 17, a short 
residence time, τmax = 0.1 s, is needed to resolve the oxidation timescale. Peak OH is 
underpredicted by more than a factor of 2 by both models. This greater discrepancy, compared 
with n-heptane and i-octane, may result from greater uncertainty in the OH calibration: DME 
experiments were performed at total flow of 150 sccm in the FAGE and thus had to be corrected 
for the survival probability of OH as shown in Figure 14. (The measurements for n-heptane and 
i-octane were performed at  300 sccm total flow, where the survival probability is nearly ≥
100%.) H2O2 is underpredicted by a similar margin as for n-heptane and i-octane. Finally, the 
fuel is consumed more gradually than predicted by the model, which could indicate a transport 
effect at fast flows that is not adequately captured by our 2D physical model. Nonetheless, the 
measured fraction of leftover fuel (~20%) matches both models well.
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Figure 17. FR measurements in of DME oxidation at T = 650 K, P = 13 bar, and τmax = 0.1 s. The 
measured profiles of OH and H2O2 are plotted vs. axial injector position in units of absolute 
number density. The DME profile is plotted relative to its initial concentration.

5. CONCLUSION/OUTLOOK
The present report describes the development of an experimental apparatus (HPFR/FAGE), 
which enables quantitative measurements of important combustion reaction intermediates. These 
measurements can be compared to model predictions to benchmark theoretical chemical kinetics 
calculations and advance the frontiers of fundamental chemical science. Importantly, the species 
that can be measured by the HPFR/FAGE include OH and HO2, which are notoriously 
challenging to observe experimentally by conventional techniques, yet which provide potentially 
the most useful insight into complex reaction networks.
On a more practical level, the HPFR/FAGE experiments can be applied to small amounts of 
experimental fuel compounds or fuel blends to rapidly assess their autoignition timescale at low-
temperature combustion conditions. This report also describes a computational method to 
correlate these laboratory measurements of autoignition propensity with bulk combustion metrics 
at engine-relevant conditions. Although such predictive correlations are not yet fully developed, 
we have created the foundational knowledge base required to bring this computational strategy to 
fruition. In the future, we hope that the HPFR/FAGE instrument will contribute to both 
fundamental detailed chemical studies and practical fuel screening efforts.
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