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ABSTRACT

We developed a computational strategy to correlate bulk combustion metrics of novel fuels
and blends in the low-temperature autoignition regime with measurements of key
combustion intermediates in a small-volume, dilute, high-pressure reactor. We used neural
net analysis of a large simulation dataset to obtain an approximate correlation and proposed
experimental and computational steps needed to refine such a predictive correlation. We
also designed and constructed a high-pressure laboratory apparatus to conduct the proposed
measurements and demonstrated its performance on three canonical fuels: n-heptane, i-
octane, and dimethyl ether.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
RH Hydrocarbon
R Alkyl radical
ROO Peroxy radical
QOOH Hydroperoxyalky! radical
T Temperature
P Pressure
IDT Ignition delay time
LLNL Lawrence Livermore National Laboratory
NUIG National University of Ireland, Galway
LPR Laser photolysis reactor
FR Flow reactor
CNN Convolutional neural net
DNN Dense neural net
cv Cross-validation
RMS Root-mean-square
FAGE Fluorescence Assay by Gas Expansion
HPFR High-pressure flow reactor
MFC Mass flow controller
PID Proportional-integral-derivative (control loop)
SS Stainless steel
oD Outer diameter
ID Inner diameter
LIF Laser-induced fluorescence
RGA Residual gas analyzer
Nd:YAG Neodymium-doped yttrium aluminum garnet
FWHM Full width at half max
PMT Photomultiplier tube
DME Dimethyl ether




1. INTRODUCTION

Autoignition is important in spark and compression ignition engines,[1, 2] and susceptibility to
autoignition is a key factor in fuel performance. Given the diversity of emerging fuel candidates,
[3] considerable efforts are underway to classify fuels using high-throughput measurements [4-6]
or structure-property relationships. [7-9] The purpose of this project is to design a simple, rapid,
low-volume laboratory experiment to assess the autoignition propensity of candidate fuels using
measurements of chemical intermediates during dilute fuel oxidation reactions.

Autoignition occurs at low temperatures (7 < 900 K) and is sensitive mainly to oxidation
reactions, rather than to fuel decomposition. [10, 11] Figure 1 shows schematically the initial
steps in autoignition. Hydroxyl radicals, OH, abstract H atoms from the fuel, RH, to form
carbon-centered radicals, R, which can undergo a series of oxygen additions, isomerizations and
bond scissions to potentially yield more than one OH per each initiating OH (radical chain
branching), thereby contributing to even faster fuel consumption. Radical intermediates,
including alkylperoxy, ROO, and hydroperoxyalkyl, QOOH, can divert flux from the
autoignition cycle to form relatively unreactive HO,, inhibiting fuel consumption. However, at
some conditions the reactions of HO, with the fuel can become the dominant route to radical
products

chain propagation.
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Figure 1: Key elementary reactions in autoignition. Radical chain branching steps are shown as
red arrows, chain propagating steps in black, and chain inhibition steps in blue.

Although the rates and product branching of the individual steps shown in Figure 1 depend on
the chemical structure of the fuel, OH and HO, are always key intermediates, and the propensity
of a fuel to form OH versus HO, may be a universally good predictor of its overall reactivity.
Formaldehyde, CH,O, is a ubiquitous intermediate in autoignition, and CO, is the product of
combustion of all hydrocarbon fuels. The present report is divided into two major sections. In
section 2 we shows by computational means that measurements of OH, HO,, CH,0, or CO, from
low-T oxidation of very dilute fuel/air mixtures (~1000 times less fuel than in typical engines)
can predict reactivity at engine-relevant conditions without detailed knowledge of a complete
chemical mechanism. Section 3 describes the design and construction of an experimental
apparatus to perform such measurements and the results of preliminary experiments on three

10



canonical hydrocarbon fuels: n-heptane, i-octane, and dimethyl ether.

2. PREDICTION OF 1ST-STAGE IGNITION DELAYS BASED ON CHEMICAL
KINETICS MODELING

As proof of principle, our goal was to demonstrate that reactivity measurements in a dilute
laboratory reactor can be used to predict 1%-stage ignition delay times (IDTs) — common metrics
of fuel reactivity at engine conditions. To accomplish this, we used automated chemical
modeling and sensitivity analysis to simulate extensive datasets of dilute reactivity
measurements and IDTs. We then applied statistical analysis methods to search for a predictive
correlation between the simulated measurements and simulated 1%-stage IDTs. This
computational approach enabled us to explore different types of hypothetical measurements (e.g.
target species, reactor configurations), as described below. Our strategy and results were also
published as a peer-reviewed paper in the journal Combustion and Flame in 2020.[12]

2.1. Computational strategy
2.1.1. Generation of simulation dataset

We sought to generate a sufficiently diverse simulation dataset of hypothetical fuels to reveal
complex trends that are independent of fuel molecular structure. This dataset had to represent a
range of fuel structures and functional groups that lead to different reactivities. Unfortunately,
there are few literature fuel oxidation mechanisms that are validated at autoignition conditions.
Although these mechanisms fall into diverse fuel classes (alkanes, alkenes/aromatics, oxygenates
and blends), there are not enough of them to constitute a large dataset on which to base chemical
kinetics simulations. To address this challenge, we created synthetic (“clone”) mechanisms,
based on a subset of “baseline” mechanisms, which we considered to be well validated at 7 <
900 K. These baseline mechanisms, including 18 pure compounds and 5 reference fuel blends,
are listed in

Table 1. Whenever possible, we employed widely-used mechanisms from Lawrence Livermore
National Laboratory (LLNL) [13] and National University of Ireland Galway (NUIG) [14].

To generate clone mechanisms, we first simulated the proposed dilute oxidation experiments as
well as 1%-stage IDTs of each baseline fuel or blend using the CHEMKIN-Pro version 17.2
program package. [15] Next, we identified sensitive reactions and ranked them by their impact
on the desired experimental observables. Finally, we systematically perturbed the most sensitive
reaction rate coefficients of the baseline mechanisms by factors of two individually or in random
pairs. All chemical modeling, sensitivity analysis, and mechanism perturbation was performed
via automated workflow that makes use of PyChemkin, [16] a set of scripts that serve as a
Python interface to CHEMKIN. The resulting clone mechanisms can be thought of either as
entirely new mechanisms that simulate new hypothetical fuels, or simply as perturbations of the
original mechanisms within their likely uncertainties. In machine learning analysis, this approach
to building large datasets is a form of data augmentation, wherein a small yet reliable dataset is
expanded to a larger one by making well-chosen perturbations to the original data. [17] A total of
5296 clone mechanisms was created, from which thousands of unique simulation pairs of dilute
reactivity measurements and IDTs could be run. The 7" and P range of simulations is included in
Table 1.
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Table 1: Baseline fuel oxidation mechanisms, simulation conditions, and the number of clone

mechanisms.

Class Baseline Fuel T (K) P (Bar) # Clones Ref.
n-Pentane 650 — 700 10 29 [18]
i-Pentane 650 — 700 10 59 [18]
neo-Pentane 650 - 700 10 22 [18]

Alkanes n-Heptane 650 - 700 13.5-40 421 [19, 20]
i-Octane 700 40 53 [21]
Cyclohexane 650 — 700 12.5 75 [22]
Methylcyclohexane (MCH) 650 — 700 15 228 [23]
1-Butene 700 30 62 [24]

Alkenes/ i-Butene 700 30 43 [25]

Aromatics 1-Hexene 650 — 700 10 104 [26]
2-Hexene 650 — 700 10 51 [26]
Butylbenzene 700 30 51 [27]
1-Butanol 700 20 12 [28]
i-Pentanol 650 — 700 20 67 [29]
Dimethyl Ether (DME) 650 — 700 13-40 183 [30]

Oxygenates
Dimethoxy Methane (DMM) 600 — 700 10 — 40 87 [31]
Tetrahydrofuran (THF) 650 — 700 7 71 [32]
Methyl Decanoate 650 - 700 12 215 [33]
PRF 650 — 700 15 778
TRF 650 — 700 15 313

Blends TPRF 650 — 700 15 1515 [26]
EPRF 650 — 700 15 448
ETPRF 650 — 700 15 409

Total 5296

2.1.2. Choosing an experimental platform for dilute oxidation
measurements

We first employed our modeling approach to choose the best experimental platform for the
proposed dilute reactor. Using CHEMKIN-Pro, [15] we simulated measurements in two common
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reactors in chemical kinetics research: a laser photolysis reactor (LPR) and a flow reactor (FR).

In an LPR, [34] a dilute homogeneous gas sample flows through a constant-7 and P vessel.
Reactions are initiated by laser photolysis of a radical precursor, added in small concentrations to
the fuel/air mixture, and the chemical composition is measured as a function of time elapsed after
the initiating laser pulse. We modeled the LPR as a constant 7 and P, homogeneous batch
reactor, containing O,, dilute fuel, and CIl, in a balance of N,. We simulate photolysis of Cl, by
introducing a known concentration of Cl atoms at time ¢ = 0. Cl atoms rapidly abstract H atoms
from the fuel and create radicals, which are subsequently oxidized. The simulations output the
concentration profiles for all chemical species as a function of post-photolysis time delay.
However, we found that unanticipated reactions of Cl with O, interfered with fuel oxidation
chemistry, which resulted in poor correlations with 1%%-stage IDTs, as described in more detail in
[12]. Because of this, we consider the LPR to be unsuitable for the proposed measurements of
dilute fuel reactivity.

In an FR, a plug of a radially homogeneous gas mixture reacts as it flows in the axial direction
for a set residence time, 7, after which the chemical composition is analyzed. [35-42] Different
residence times can be obtained either by varying the physical length between the point where
reagents are introduced and the probing/sampling position, or by adjusting the total flow velocity
through the reactor. We model the FR as a constant 7 and P, homogeneous plug flow reactor
with a maximum residence time, max, The modeled gas mixture consists of air (21% O, and 79%
N,) and a fixed small amount of fuel (typically 3.2-10'> molecules-cm, equal to 0.1 Torr at 300
K). The output of the simulations are the concentrations of each chemical species in the reacting
mixture as a function of 1. FR simulations produced good correlations with 1%t-stage IDTs, and
for the remainder of this project we focused on the FR as the appropriate experimental platform.

2.1.3. Simulations of 1st-stage IDT

We modeled IDTs from simulated air/fuel mixtures (equivalence ratio ¢ = 1) in a homogeneous,
adiabatic, constant volume batch reactor, which approximates typical conditions in shock tube
and rapid compression machine experiments. [43] Such IDTs can also be used to create “maps”
of fuel reactivity as a function of 7 and P, from which the fuel’s overall performance can be
predicted for different 7 and P trajectories during an engine cycle. [44, 45] Fuel concentrations
in the IDT simulations were ~3 orders of magnitude higher than in the FR/LPR simulations. The
energy released by the oxidation reactions of stoichiometric fuel/air mixtures results in ignition,
which is manifested as a large increase in the sample temperature and pressure. The output of
this simulation is a pressure trace as a function of time, as well as species profiles. We extracted
Ist-stage IDT values from the simulation outputs using the first peak in [OH], which is equivalent
to using the inflection point in the pressure profiles prior to the main ignition event [11, 46].

2.1.4. Statistical analysis of correlations

To search for a predictive correlation between simulated reactivity measurements and simulated
IDTs we explored a progression of increasingly complex methods: linear regression models,
principal component analysis, compressed sensing, and neural net fitting. Overall, convolutional
neural net (CNN) fitting produced the best results.

CNN’s are used to connect a structured input of high dimensionality (e.g. a 2-D image) with an
output of lower dimensionality (e.g. a label of what is contained in the image). [47] At each
convolution layer, filters containing a small number of fitted weights are applied to localized
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regions of the input data and scanned across the input to generate new images/profiles that are
called feature maps, which indicate in what regions of the input data certain features appear. The
feature maps are then input to the next convolution layer. After the last convolution layer, the
final feature maps are combined with scalar values (e.g. 7' and P of the simulation) and converted
to a single output value using a dense neural net (DNN).

The CNN fitting approach is shown schematically in Figure 2 for an example case, in which
simulated OH and HO, radical measurement in a flow reactor are used as neural net inputs. The
CNN output is a predicted 15*-stage IDT value for a given clone fuel. This output is compared to
the explicitly simulated 1%-stage ignition delays for the same clone fuel. The baseline
mechanisms from which we generated clone mechanisms were primarily validated against IDT
measurements. Hence, we expect the simulated IDT results for the clone fuels to be realistic
representations of the autoignition of hypothetical fuels, in which key reactions are either faster
or slower than in the baseline fuels. The CNN parameters were varied to minimize the difference
between the predicted and simulated IDT, and the final goodness of fit was evaluated by its root-
mean-square cross-validation (CV) error.

Simulated PFR Profiles Convolution Dense NN Output Target
(Repeat for nConv,Iayers) (Repeat for nDNN,Iayers)

o |Simulated[™]
Compressed 3| 1s-Stage
Processed Feature Maps gl IDT

4_Images Scalar - —

HO- = Inputs Time 1
"""" P Predicted - A
Q- -1 1st-Stage- - ]

Residence Time Time Dimension IDT
2 profiles X 102 time points 2X 1000 Pheurons

Figure 2: Schematic of CNN architecture used to find correlations between simulated flow reactor
profiles and 1st-Stage IDT. The example simulations are for n-heptane at 600 K, 13.5 Bar.

2.2.Results

Typical outputs of our simulations of the FR and IDT measurements are illustrated in Figure 3.
The left side presents results for n-heptane at P = 13.5 bar and T = 600 K, whereas the right side
shows results for i-pentanol at 20 bar and 700 K. The top two rows show modeled concentrations
of fuel, OH, HO,, CH,O, and CO, in the FR. The vertical dotted line shows a reactor residence
time 15 at which the fuel begins to spontaneously oxidize, and reaction intermediates begin to
appear. The third row plots the rate of production of OH, HO,, CH,0, and CO, in the FR. The
bottom rows depict the fuel concentration and pressure time trace at stoichiometric conditions (¢
= 1) in air, from which IDT values are obtained.

2.2.1. Sorted cross-validation error test

Our first approach to neural net fitting involved training and test sets that were randomly chosen
from all PFR/IDT simulations. This random CV test produced good agreement of predicted vs.
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simulated IDTs. However, we were concerned that random test sets may result in overfitting of
the simulations and may appear accurate yet produce no useful correlation.

To guard against overfitting, we employed a 10-fold sorted CV test. Briefly, we ran 13004
unique PFR/IDT simulations and sorted them into 10 equal batches in the order of increasing 1%'-
stage IDT. We then trained the CNN 10 times (folds). Each fold used one of the batches as test
data and the other nine batches as training data. In other words, fold 1 trained the CNN on the
least reactive 90% of the simulations (i.e. with largest IDT values) and tested the IDT predictions
for the most reactive 10% of the simulations. Fold 2 trained the CNN on the least reactive 80%
and most reactive 10% the of the simulations, with the test set falling between 10% and 20% in
the order of decreasing reactivity, and so on. This approach evaluates the transferability of the
correlation to IDT ranges that were not included in CNN training and is less prone to overfitting.
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Figure 3. Simulated profiles for oxidation of n-heptane at 600 K and 13.5 bar (left) and i-pentanol at
700 K and 20 bar (right) under flow reactor (top) and ignition delay time (bottom) conditions.
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The 10-fold sorted CV test results are shown in Figure 4 as a plot of all predicted vs. explicitly
simulated 1%t-stage IDTs. The CNN in Figure 4 was trained on OH and HO, profiles (CNN’s
trained on other species profiles are discussed below). The predicted IDTs match the simulated
IDTs well, although the agreement varies slightly among the different folds. The overall error
distribution is centered on 0% with root-mean-square (RMS) error of only 10.2%, which is
comparable to typical reported uncertainties for measured IDTs. [25] Thus, these results suggest
that a meaningful correlation exists between the proposed OH/HO, measurements in FR and 15%-
stage IDT.

0
10 E T T T TTTTT I2I IIIIIII T I/I/'IIII:
w F x| 1"RMS = .- 3
= -2 ’ :
o . § 7
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Figure 4: Predicted 1st-stage IDT (from OH/HO, FR training data) vs. explicitly simulated 1st-stage
IDT. Combined results are shown for the sorted 10-fold CV test, in which the test data consisted of
consecutive 10%-wide subsets of all simulations, in order of increasing 1st-stage IDT values (i.e.
0-10%, 10-20%, ... 90-100%). Dashed lines represent factor of two errors.

2.2.2. Leave-one-fuel-out test

A key question for our project was whether the correlation, described in Section 2.2.1, is general
(i.e. independent of fuel structure). This is difficult to answer because our dataset consists of 23
baseline fuel mechanisms that were each perturbed many times. Therefore, instead of thousands
of independent samples, our dataset might instead be 23 distinct clusters of samples, with each
cluster subject to its own unique correlation between simulated OH/HO, production and IDT. To
guard against this possibility, we conducted further tests of CNN fitting, in which all simulations
derived from a single baseline mechanism formed a test dataset, with all other simulations used
as training data. We repeated these leave-one-fuel-out tests for each baseline mechanism. The
summary statistics for each of these tests are shown in Figure 5 for CNN fits using simulated OH
and HO, profiles (fits to other species are described briefly below). In nearly every case, the
leave-one-fuel-out tests predicted 1%-stage IDTs with median errors of a factor of two or less,
with THF and 1-butene being the exceptions. Although the agreement is fair overall, it is worse
than in the case where all 23 mechanisms are represented in the training and test datasets.

There are two perspectives from which to view these results. On one hand, if we assume that
every mechanism faithfully reflects reality, then our correlation may never fully capture some
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fuel-dependent details of autoignition. Even so, one can expect to predict 1%-stage IDT within
50% for most fuels, which is sufficient for fuel screening purposes. However, some fuels, like
THF and 1-butene, will not be predicted so accurately, and it will be difficult to know a priori
which fuels exhibit structure-dependent effects. On the other hand, most of our baseline
mechanisms are not extensively validated against detailed chemical speciation data and are
significantly under-constrained. [48] Because these mechanisms are imperfect, a correlation
based on real FR measurements may be better than Figure 5 implies.
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Figure 5: Error distributions of predicted 1st-stage IDTs in the leave-one-fuel-out tests of the
FR/IDT simulations. CNN was trained on FR profiles of OH/HO,.

2.2.3. Choosing an appropriate measurement target

In addition to the OH/HO, results discussed above, we optimized CNN fits using simulated
CH,0 and CO, profiles. Figure 6 plots the sorted CV error of the neural net fits as a function of
chemical species being detected. We consider various combinations of species as inputs into the
CNN, as well as a case in which no reaction products were detected, but fuel depletion was
measured, allowing a determination of t5o. The CV error ranges from roughly 10 to 14% if the
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profiles of any of the simulated species are input to the CNN. If only the fuel depletion is
monitored, the CV error is 19.4%.

The clearest conclusion from Figure 6 is that any direct measurement of the overall timescales of
spontaneous oxidation (tsp) of dilute fuel-air mixtures can likely be correlated with autoignition
timescales at stoichiometric conditions. If, in addition, residence time profiles of key radical or
closed-shell species produced during autoignition are known, the quality of the correlation
improves further. Nominally, the best correlation is obtained when OH profiles are the only input
(9.7% CV error). Leave-one-fuel-out tests for CH,O and CO, inputs are of similar quality to
those for OH and HO, inputs in Figure 5. Therefore, all four species are likely useful
experimental targets for the prediction of 15-stage IDT.
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Figure 6: Effect of different inputs to the CNN: markers are 10-fold averaged CV error and the
shaded area marks the minimum and maximum test errors of the folds. In the 150 case the DNN is
trained only on T, P and 15 values, without product profiles input into the CNN.

2.2.4. Optimizing the design of measurements

Finally, we used our modeling approach to estimate how the accuracy of the predicted 1%-stage
IDT depends on the design parameters for a hypothetical experiment that measures the
concentrations of key combustion intermediates in a flow reactor. Specifically, we considered
how the observation time range, fuel dilution, detection sensitivity, and temporal resolution
affect the predictive power of the derived correlation. These results are detailed in [12].

Briefly, we found that residence times at least two times larger than 1o are required. (tso 1S
defined as the point at which 1% of the fuel has been consumed, i.e. the start of spontaneous
oxidation.) This is an important parameter in designing a flow reactor, because it marks the
minimum residence time over which the reacting mixture must maintain well-defined transport
properties. Our simulations show that a flow reactor that accommodates residence times of 1 — 2
s should be appropriate for most fuels.

We also found that the perfect FR should operate with ~ 0.1 Torr partial pressure of fuel. Higher
fuel concentrations will result in too much heat release, violating the isothermal assumption for
the FR. On the other hand, lower fuel concentrations will decrease the predictive quality of the
correlation.
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The residence time resolution of ~1 ms is optimal. Lower time resolution results in the loss of
kinetic information in the detected chemical species profiles and in decreased predictive power
of the correlation. Achieving a 1 ms time resolution in a high-pressure FR is an ambitious goal,
and our solution to this challenge is discussed in detail in Section 3.1.1.

Lastly, minimum detection sensitivity of ~10!2 molecules-cm™ or better is required. This targeted
detection limit of 10'?> molecules-cm for OH/HO, in a high-pressure environment can be
achieved for OH using laser-induced fluorescence detection. [49, 50] Additionally, the related
technique of fluorescence assay by gas expansion (FAGE) has potential for measurements of OH
and HO, simultaneously and with similar sensitivity above ambient pressures. [51]

2.3.Summary

Our computational models suggest that a laboratory measurement of OH (and possibly HO,,
CH,0, or CO,) concentrations in a dilute flow reactor can be used to predict bulk autoignition
properties such as 15-stage ignition delay times. The following sections describe the design and
construction of an experimental apparatus using a high-pressure flow reactor and FAGE detector
and initial proof-of-principle attempts at detecting OH and HO,.
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3. CONSTRUCTION OF A HIGH-PRESSURE HPFR/FAGE APPARATUS.

The computations described above identified a promising experimental strategy to measure OH
radical concentrations during the oxidation of dilute fuel/air mixtures as a proxy for autoignition
propensity of a given fuel or fuel blend. The following section details the construction and
commissioning of a laboratory apparatus designed for fuel screening experiments, as shown
schematically in Figure 7. The apparatus consists of a heated high-pressure flow reactor (HPFR),
operating at engine-relevant conditions, and a Fluorescence Assay by Gas Expansion (FAGE)
detector. The FAGE quantifies the concentration of OH and other chemical species as a function
of residence time (i.e. reaction time) in the HPFR. Below we report the design, assembly, and
calibration of the HPFR/FAGE, along with proof-of-principle experimental measurements of the
oxidation of representative hydrocarbon fuels n-heptane, i-octane, and dimethyl ether.
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Figure 7. Overview schematic of the HPFR/FAGE apparatus. Top insert: cartoon of the rapid fuel
mixer in the HPFR. Right insert. cartoon of the sampled gas flow and laser-induced fluorescence
probing in the FAGE.

leactor

3.1.High-Pressure Flow Reactor.

The HPFR is a cylindrical reactor, in which a homogeneous gas mixture is allowed to react for a
well-defined time period (t) at 7= 300 — 1000 K and P =1 — 100 bar. It operates in the laminar
flow regime, which we chose because it is easily implemented in chemical kinetics simulation
codes. The simple gas transport physics of laminar flows are well understood and enable high-
fidelity modeling of the chemistry in the reactor. The HPFR is an Inconel chamber with a 4 cm-
long inner bore of 8 mm diameter. The inner bore is lined with an annular insert, ID = 6 mm, OD
= 8mm (see inset in Figure 7), that can be made of either Inconel or of Fused Silica, if a more
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chemically inert insert is needed. Fuel vapor (diluted in N;) and air enter the HPFR separately
through a custom-built gas mixer, mix together, and flow forward at constant temperature and
pressure. The construction of the gas mixer is detailed below. Most of the reacting fuel/air
mixture exits the HPFR through six openings, located symmetrically around the circumference
of the inner bore at the endwall. A small central portion of the mixture exits the HPFR through
an interchangeable laser-drilled orifice in the endwall and enters the FAGE section.

The speed of the fuel/air flows is set by precision mass flow controllers (MFCs, Bronkhorst) to
obtain a desired maximum sample residence time in the reactor, T,.x. The gas mixer moves
axially from fully withdrawn (at the reactor entrance, position x = 38 mm) to fully inserted (at
the sampling endwall, x = 0 mm). This translation at constant gas flow speed continuously varies
the effective reactor length and hence sample residence time 1: 0 < T < T,,. A computer-
controlled motorized stage moves the mixer without venting the HPFR, which is enabled by a
graphite mixer seal with a slip fit. The endwall sampling orifice diameter (typically 0.005 — 0.07
mm) is chosen such that ~10% of the total gas flow is sampled into the FAGE at the desired T
and P.

The HPFR is equipped with three independent resistive heaters: pre-heater located at the gas
inlet, main section heater, and front flange heater located at the interface with the FAGE section.
Thermocouples sense the gas temperature in three zones: just before the inner bore of the HPFR,
at the tip of the gas mixer, and at the exit of the reactor. PID-based current relays control the
power output of the heaters to maintain desired temperature throughout the reactor. The main
exhaust of the reactor flows to a roots pump, and a PID-controlled throttle valve in the exhaust
line maintains desired pressure. Initial fuel concentrations are always small enough that heat
released during the complete oxidation process raises the reactor 7 by <5 K.

3.1.1. Construction of the rapid laminar gas mixer

Our chemical kinetics simulations indicate that for the purposes of rapid fuel screening, the
HPFR must operate over a wide range or residence times, from 10s of ms to multiple seconds.
Achieving the low end of this range of t is challenging, because it requires reaction initiation
times much shorter than 1, i.e. <<10 ms. To address this challenge, we designed a rapid gas
mixer, which combines pre-heated fuel and air (unreactive when separate) into a homogeneous
reactive sample, while maintaining a laminar flow field. An alternative approach of rapidly
heating a pre-mixed fuel/air mixture was found to be not feasible. Fluid dynamics simulations
(see below) show that mixing times less than 10 ms are attainable even at high pressures, despite
diffusion being slow. To achieve short mixing times, the mixer is made up of many small
stainless steel (SS) injector tubes, spaced on a square grid inside a larger SS tube (OD = 6 mm,
ID = 5.54 mm). The fuel/N, gas flows through the tubes, and the air flows between the tubes.
The linear speed of the fuel and air flows are set to be approximately equal. When the two flows
combine at the exit of the tubes, complete fuel/air mixing requires diffusion on short length
scales of only ~0.1 mm (the ID of the injector tubes), resulting in rapid mixing.

We constructed the gas mixer by spot welding a square SS mesh to the front opening of a 30-cm
long SS tube, as shown schematically in Figure 8A. Commercially available hypodermic SS
tubes were inserted through the mesh in a checkerboard pattern, protruding by 2 mm out of the
mesh. The interstitial space between the needles was filled at the back of the mixer with an
epoxy seal. The epoxy plug is sufficiently strong to withstand typical pressure drops across the
mixer (< 1 psi), required to flow dilute fuel/N, through the hypodermic tubing. The front section
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of the mixer resides inside the HPFR and is heated, but the back section is at room temperature,
such that the epoxy plug is not damaged by heat. Air enters the mixer through holes, drilled
around the circumference of the outer tube. Air diffuses between the hypodermic tubing and
flows forward, mixing with the fuel/N, at the tip of the mixer. Figure 8B shows the front of the
mixer prototype (version 1), made up of 71 hypodermic tubes (ID = 0.15 mm, OD = 0.3 mm),
assembled in a 0.36 x 0.36 mm mesh. More recently, we have constructed an improved version 2
of the mixer, in which ~140 hypodermic tubes (ID = 0.11 mm, OD = 0.21 mm) are spaced
equally on a 0.28 x 0.28 mm mesh. The more numerous, smaller tubes of the second version
provide improved mixing performance.

cool section hot section
A. — B.
air in (high P)

A \ A

s )= D>

(high P) = . e
| / / /

epoxy hypodermic outer SS square SS
seal SS tubing tube mesh air  fuel/N,

Figure 8. A: schematic of the rapid laminar gas mixer. (Dimensions not to scale and only 7 needles
are shown for illustration purposes.) B: photograph of front of the 15t prototype version of the
mixer.

3.1.2. Temperature profile in the HPFR

Our chemical kinetics simulations show that the reactivity of many typical fuels depends
strongly on temperature in the autoignition regime, and constant 7' throughout the reactor is
critical to proper modeling of the HPFR results. Figure 9 shows measured centerline temperature
profiles in the HPFR for two different maximum residence times and four 7" setpoints. At each
T/tmax combination, we mapped out the temperature profile as a function of axial position at 5
different mixer positions, which correspond to 5 data points in a typical t scan. To measure these
profiles, we inserted an independent thermocouple through a large sampling orifice in the
endwall and translated it axially from the mixer (4, 12, 20, 28, and 36 mm) to the endwall (x =
0). These measurements show that the temperature profiles in the HPFR are constant to within
+5 K at slow sample flows (t,.x = 1 s) and £2 K at fast flows (t,.x = 0.1 s) and that the profiles
do not change appreciably during a t scan.
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Figure 9. Temperature profiles under typical operating conditions at P = 13 bar in the HPFR with
average residence times 1 =1 s (left) and 0.1 s (right).

3.1.3. Fluid dynamics simulations of the HPFR

We ran 3D simulations of the HPFR in COMSOL [52] to characterize both the expected flow
field and the mixing timescale. Figure 10 and Figure 11 show that the simulated flow field
strongly resembles a simple “entrance region” model, [53] wherein a flat velocity profile
develops into a radially symmetric parabolic profile over a well-known axial distance.
Conveniently, the reduced-dimension, 2D entrance region can be modeled in the advanced
chemical modeling software CHEMKIN, which enables accurate treatment of both physical
transport and complex, detailed chemistry. Figure 10 shows that the 2D CHEMKIN model is a
good approximation of the full 3D COMSOL model at two extreme values of T,,.x. Modeling
results shown in section 4 use the 2D CHEMKIN model of the flow field, which is implemented
via the Cylindrical Shear Flow module with a very thin boundary layer at the reactor entrance.
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Figure 10. Reduced velocity v, (defined as the ratio of gas velocity to the average velocity) as a
function of the spatial position in the HPFR at P = 13 bar and T = 600 K. The gas flow from the
mixer at x =40 mm to the sampling endwall at x = 0 mm is simulated for 1,,,x =1 and 0.1 s.
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Regarding the mixing timescale, 1,11, the 3D COMSOL simulations are consistent with back-of-
the-envelope estimates for diffusion: at 10 bar and 600 K a typical fuel like n-heptane will be
well-mixed in the bulk air flow within ~1 ms. This timescale depends on pressure and

=175
temperature through a simple analytical expression: i P - T . For the low-temperature

oxidation chemistry that we hope to observe, a 1 ms mixing time is sufficiently faster than the
reaction timescale (10 ms to seconds), such that our subsequent 2D CHEMKIN models assume
that the fuel/air streams are well-mixed at the entrance of the HPFR.

3.2.FAGE detector

FAGE instruments are routinely used to detect species, sampled from the atmosphere (i.e. near
room temperature, 1 bar pressure) by laser-induced fluorescence (LIF). [S1] Our FAGE differs
from other existing FAGE setups in two ways: it is 1) capable of analyzing gas, sampled from a
heated high-pressure reactor and 2) capable of operating in a time-resolved Photolysis/LIF mode,
as detailed below. The purpose of the FAGE here is to measure the concentration of OH and
other species of interest in the reacting gas, sampled from the HPFR. The FAGE is a SS chamber
(shown schematically in Figure 7) that attaches to the front flange of the HPFR. The sample
enters the FAGE through a 1.5 cm-long, 6.2 mm-diameter channel. Four thin channels, machined
into the front flange, allow for additional gas (labeled FAGE co-flow in Figure 7) to enter the
FAGE and mix with the effluent from HPFR immediately after the sampling orifice. The co-flow
inlets are located symmetrically around the sampling orifice, and the amount of co-flow is
metered by a dedicated MFC.

The sampled gas traverses the FAGE and exits through a centerline exhaust port. The pressure in
the FAGE is controlled by a downstream throttle valve and is typically 5 Torr. We do not
actively regulate the temperature in the FAGE. Typically, the front of the FAGE approaches the
HPFR temperature and the exhaust section is at room 7. The FAGE has 4 optical ports: two 4.6
mm-dia. horizontal ports (with Brewster angle windows) orthogonal to the HPFR/FAGE
centerline and two 25 mm-dia. off-axis ports directed at 57° up and down in a vertical symmetry
plane of the FAGE. The optical ports are used for spectroscopic detection of OH and other
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species. In addition, the exhaust port is equipped with a residual gas analyzer (RGA, MKS
Instruments), which can be used for the detection of high-concentration species such as the fuel.

3.2.1. FAGE operating modes

There are three operating modes of the FAGE detector:

The LIF-only mode is used to detect molecules that produce strong fluoresce signals and can be
efficiently detected by LIF. In the present report we use this mode to measure steady state OH
concentrations in the sampled gas. We have calibrated the OH detection efficiency of our
apparatus as described below, enabling absolute OH quantification. A probe laser pulse, directed
through the horizontal ports, intersects the sampled gas at 90° and excites the (0,1) band of A?X*
«— X211 transition of the OH radical. The probe pulses come from the frequency-doubled output
of a Nd:YAG-pumped dye laser at 281.9 nm with duration of 6 ns (FWHM). The LIF signal at
308 — 312 nm from the (1,1) and (0,0) bands of OH is collected through the upper off-axis port
using two focusing lenses and a 310-nm bandpass filter with 10-nm bandwidth. The signal is
detected with a photomultiplier tube (PMT, Thorlabs), conditioned with a pre-amplifier, and
recorded by a 1-GHz digital oscilloscope.

The Chemical titration/LIF mode detects molecules that do not produce strong LIF signals
themselves but can be chemically converted to good LIF targets. A reactant is introduced in the
FAGE co-flow and reacts with the effluent from the HPFR after the sampling orifice (without
affecting the chemistry in the HPFR). Here, we use this approach to quantify HO, radicals by
adding NO, diluted in N, to the co-flow, as is commonly done by FAGE apparatus. [51] The
reaction HO, + NO — NO, + OH titrates HO, (which cannot be detected by LIF) to OH, which
is then detected by LIF. We have not yet fully calibrated the HO, detection efficiency and
therefore do not use this mode extensively; however, a demonstration of this capability is
included below.

The Photolysis/LIF mode is used to detect chemical species that do not produce strong LIF
signals but can be converted to good LIF targets by laser photolysis. Here we use a “pump” laser
pulse with 10 ns duration from an excimer laser to photodissociate H,O at 193 nm or H,0, at
248 nm (as described in detail in sections 3.2.2 and 3.2.3), both of which produce known yields
of OH. A time-delayed, probe laser pulse then detects OH by LIF as described above. The OH
concentration is measured as a function of pump-probe delay with ~12-ns resolution.

3.2.2. Calibration of OH detection efficiency.

The A%X" electronic state of OH relaxes primarily by two competing processes: fluorescence and
collisional deactivation. Thus, fluorescence yield from excited OH(A?Z") — and hence our
detection efficiency — depends on the environment in the FAGE: specifically, on the frequency
of collisions and the collision partner. Practically, the best way to calibrate our OH sensitivity is
to measure LIF signals from known OH concentrations at the expected FAGE operating
conditions. The calibration protocol includes three steps, in which the FAGE operates in the
Photolysis/LIF mode.

First, we flow a mixture of H,O vapor in N, (variable partial pressure of H,O, diluted in total P =
1 bar) through the FAGE chamber. A photolysis laser pulse at 193 nm enters the FAGE through
the bottom off-axis port and dissociates H,O into OH + H. We calculate the absolute
concentration of nascent OH immediately after the photolysis pulse using measured photon flux
at 193 nm and the known absorption cross section and OH yield of H,O. [54] A time-delayed
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probe laser pulse at 281.9 nm detects the OH concentration by LIF as a function of delay from
the photolysis.
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Figure 12. Representative OH time profiles measured using the Photolysis/LIF mode at total P = 1
bar (N) in the FAGE. Computed initial OH concentrations are 1.5-10"" and 2.5-10"% cm3. Solid lines
are fits using the chemical model of Zhang et al. [55]

Figure 12 shows two representative OH time profiles in 1 bar of N, bath gas, taken with
computed initial OH concentrations of 1.5-10'! and 2.5-10'3 cm. The figure includes fits using
the chemical model of Zhang et al., [55] shown as solid lines. According to this model, at low
[OH] (black symbols) the signal decays mainly due to OH diffusion out of the probe volume; the
fitted decay coefficient (which is the only adjustable model parameter) is 78 s™!. At high initial
[OH], the signal decays due to diffusion and to radical-radical reactions that consume OH: OH +
OH — products and OH + H — products. The model predicts that the observed decay timescale
in the high-OH regime is very sensitive to the initial OH concentration, yet no adjustment to the
model parameters was needed to reproduce the experimental results. Thus, Figure 12
demonstrates that we can reproducibly create well-known initial populations of OH, which is
required for the next step of calibration.

In the second step, we flow a mixture with variable partial pressure of water vapor in 5 Torr total
pressure (air) through the FAGE and photolyze this mixture at 193 nm as in step 1. A typical OH
time trace at these conditions is shown in Figure 13A as time-integrated PMT signal vs. time
after photolysis. At total P = 5 Torr OH diffusion is so rapid that it dominates the observed
decays even at high [OH]. Nonetheless, the signal, extrapolated back to # = 0 provides the desired
calibration of observed PMT signal vs. known initial [OH]. Figure 13B shows the combined
result of all calibration measurements at temperatures 300 — 600 K, which enables quantitative
determination of absolute concentration of OH in the FAGE.
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Figure 13. Panel A: Typical OH time profile, measured using the Photolysis/LIF mode at total P = 5
Torr (air) in the FAGE. Initial OH concentration is 3.6-10° cm3. Panel B: Summary of all OH
calibration measurements at T = 300 — 600 K.

In the third step, we investigate the transfer efficiency of OH from the HPFR into the FAGE.
This is required to account for any possible losses of OH in the sampling process from the
HPFR. We replace the gas mixer in the HPFR with an optical window, flow a H,O/air mixture of
known composition through the HPFR, photolyze this mixture directly in the HPFR to produce
known [OH], and detect the OH in the FAGE using LIF as before. Figure 14 shows the measured
survival probability of OH from the HPFR to the FAGE as a function of the total gas flow rate in
the FAGE (sampling + co-flow, at constant P = 5 Torr). At the lowest total flow rate, only ~10%
of OH from the HPFR survives into the probe volume of the FAGE. At total flow rate of 600
scem the residence time in the FAGE is reduced to ~100 #s and co-flow effectively shields the
sampled flow from the FAGE walls, resulting in ~100% survival of OH.
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Figure 14. OH survival probability during sampling from HPFR as a function of total gas flow in the
FAGE (sampling + co-flow). The survival probability is defined as the percentage of OH radicals,
created by laser photolysis in the HPFR, that survive and are detected in the FAGE. Shown for
comparison are models of OH transport through the FAGE cell with two values of the sticking
coefficient for OH loss on the walls.
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The calibration of OH sensitivity is critical to quantitative measurements. The measurements of
survival probability of OH in Figure 14 are preliminary and must be repeated. At present, we
consider the calibration of total OH sensitivity of the HPFR/FAGE to have uncertainty of a
factor of 2. However, with improved measurements we expect this uncertainty to be much
smaller.

3.2.3. Subtracting interference in OH measurements at operating
conditions

Preliminary experiments in the HPFR revealed OH signals at long residence times (i.e. long after
all OH, formed via fuel oxidation, should have decayed). We measured the dependence of these
signals on probe laser power to be linear, meaning that these signals were not due to multi-
photon OH formation from stable reaction products. Evidently, another process was responsible
to conversion of some long-lived reaction products into OH.

Chemical modeling revealed that the only plausible candidate for such process was wall-
mediated conversion of H,0O, (an abundant, ubiquitous, long-lived, combustion intermediate)
into OH. To check for this possibility, we employed the Photolysis/LIF mode, where photolysis
laser pulses at 248 nm from an excimer laser were introduced into the bottom off-axis optical
port of the FAGE. The absorption cross-section of H,O, at 248 nm is 9-10-'° cm?, and the OH
yield is 2.[56] OH, produced from H,O, photolysis, was quantified by LIF. From this
measurement, both the absolute concentration of H,O, and the interfering OH signals due to
H,0, were quantified as a function of residence time in the HPFR. The total OH measurements
were then corrected for the interfering signals due to H,0,.

We note that H,O, is an important combustion intermediate that is challenging to measure
experimentally. The capability of our apparatus to quantify H,O, highlights the flexibility of
HPFR/FAGE as an experimental platform. Measurements of H,O, will be used in the future as
benchmark comparisons with combustion models, on par with OH, HO,, and other species.

4. FIRST MEASUREMENTS OF REACTIVITY OF REPRESENTATIVE FUELS

For proof-of-principle experimental measurements in HPFR/FAGE, we chose 3 canonical fuels:
n-heptane, i-octane (typical reactive and non-reactive alkanes and primary reference
compounds), and dimethyl ether (prototypical oxygenated additive). For each fuel we measured
the profiles of 3 species as a function of HPFR residence time: OH via LIF-only mode, H,O, via
Photolysis/LIF mode, and the fuel itself via RGA. In the case of n-heptane, we also measured
HO, via Chemical titration/LIF mode. All measurements are compared to model predictions
using CHEMKIN that rely on the 2D entrance region model for gas transport and two different
chemical mechanisms for the detailed chemistry.

4.1. n-heptane

As a prototypical reactive reference fuel (Octane Number 0), n-heptane is a key benchmark for
the HPFR/FAGE. Figure 15 shows measured profiles of n-heptane, OH, HO,, and H,O, using T
= 650 K, P = 13 bar, and maximum residence time T, = 0.2 s, along with model predictions
using the Co-Optima [26] and NUIG [20] mechanisms. Qualitatively, all measured species
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exhibit the predicted behavior: OH is a short-lived intermediate as manifested by its sharply-
peaked profile, HO, is a longer-lived intermediate, H,O, is long-lived, and the fuel is rapidly and
completely consumed. Furthermore, the injector position (i.e., residence time) at which most of
the oxidation occurs is in excellent agreement with the Co-Optima model.
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Figure 15. FR measurements in of n-heptane oxidation at T = 650 K, P = 13 bar, and 1,,,x = 0.2 s.
The measured profiles of OH, HO,, and H,0O, are plotted vs. axial injector position in units of
absolute number density. The n-heptane profile is plotted relative to its initial concentration.

Quantitatively, the peak OH and HO, values agree with the models within the factor of 2
calibration uncertainty. However, HO, has additional systematic uncertainty owing to its mode
of detection. Although modeling indicates ~50% titration efficiency for HO,, more experimental
characterization is needed and the current agreement with the model may be accidental. H,O,
also has additional systematic uncertainty, because we cannot yet fully rule out the possibility of
another product being detected via photolytic OH production at 248 nm. However, despite
expected uncertainties, both models we employed clearly underpredict the observed [H,0,],
highlighting possible model deficiencies. Overall, the results for n-heptane are highly
encouraging and demonstrate the capability of the HPFR/FAGE to probe oxidation chemistry in
detail on the relevant timescale.

4.2.j-octane

Isooctane is the prototypical non-reactive hydrocarbon and a reference fuel with Octane Number
of 100. Therefore, it is another important benchmark for the HPFR. Figure 16 compares
measurements of i-octane, OH, and H,0, at 7= 650 K, P = 13 bar, and T,,x = 0.5 s with model
predictions using Co-Optima and LLNL mechanisms. [21] Most of the comments made on the n-
heptane data also apply here: the timescale of oxidation agrees with the models as does the peak
OH (within the factor of 2 calibration uncertainty), while H,O, is strongly underpredicted by
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both models. Unlike n-heptane, the fuel is not completely consumed, which is qualitatively
predicted by both models and quantitatively matched by the Co-Optima model.

Importantly, the timescale of oxidation for i-octane is markedly slower than n-heptane (Tpay 1S
0.5 s for i-octane vs. 0.2 s for n-heptane, thus the observed injector position for peak [OH]
corresponds to much longer residence time in i-octane experiments). Our results demonstrate that
the HPFR/FAGE can clearly resolve the difference between the two fuels and is therefore a
powerful potential tool for fuel screening.
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Figure 16. FR measurements in of i-octane oxidation at T = 650 K, P = 13 bar, and T,.x = 0.5 s. The
measured profiles of OH and H,O, are plotted vs. axial injector position in units of absolute
number density. The i-octane profile is plotted relative to its initial concentration.

4.3.DME

Figure 17 shows the measurements of DME, OH, and H,0, concentrations at 7= 650 K, P =13
bar, and 1,,,x = 0.1 s together with the predictions of the Co-Optima and LLNL [30] models.
DME is considered a promising additive or replacement for diesel fuel. It is highly reactive and
expected to behave more like n-heptane than i-octane. Indeed, as shown in Figure 17, a short
residence time, Tp.x = 0.1 s, is needed to resolve the oxidation timescale. Peak OH is
underpredicted by more than a factor of 2 by both models. This greater discrepancy, compared
with n-heptane and i-octane, may result from greater uncertainty in the OH calibration: DME
experiments were performed at total flow of 150 sccm in the FAGE and thus had to be corrected
for the survival probability of OH as shown in Figure 14. (The measurements for n-heptane and
i-octane were performed at = 300 sccm total flow, where the survival probability is nearly
100%.) H,0, is underpredicted by a similar margin as for n-heptane and i-octane. Finally, the
fuel is consumed more gradually than predicted by the model, which could indicate a transport
effect at fast flows that is not adequately captured by our 2D physical model. Nonetheless, the
measured fraction of leftover fuel (~20%) matches both models well.
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Figure 17. FR measurements in of DME oxidation at T = 650 K, P = 13 bar, and T,.x = 0.1 s. The
measured profiles of OH and H,0O, are plotted vs. axial injector position in units of absolute
number density. The DME profile is plotted relative to its initial concentration.

5. CONCLUSION/OUTLOOK

The present report describes the development of an experimental apparatus (HPFR/FAGE),
which enables quantitative measurements of important combustion reaction intermediates. These
measurements can be compared to model predictions to benchmark theoretical chemical kinetics
calculations and advance the frontiers of fundamental chemical science. Importantly, the species
that can be measured by the HPFR/FAGE include OH and HO,, which are notoriously
challenging to observe experimentally by conventional techniques, yet which provide potentially
the most useful insight into complex reaction networks.

On a more practical level, the HPFR/FAGE experiments can be applied to small amounts of
experimental fuel compounds or fuel blends to rapidly assess their autoignition timescale at low-
temperature combustion conditions. This report also describes a computational method to
correlate these laboratory measurements of autoignition propensity with bulk combustion metrics
at engine-relevant conditions. Although such predictive correlations are not yet fully developed,
we have created the foundational knowledge base required to bring this computational strategy to
fruition. In the future, we hope that the HPFR/FAGE instrument will contribute to both
fundamental detailed chemical studies and practical fuel screening efforts.
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