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ABSTRACT

Deep convolutional neural networks (DCNNs) currently provide state-of-the-art performance on
image classification and object detection tasks, and there are many global security mission areas
where such models could be extremely useful. Crucially, the success of these models is driven in
large part by the widespread availability of high-quality open source data sets such as Image Net,
Common Objects in Context (COCO), and KITTI, which contain millions of images with
thousands of unique labels. However, global security relevant objects-of-interest can be difficult to
obtain: relevant events are low frequency and high consequence; the content of relevant images is
sensitive; and adversaries and proliferators seek to obscure their activities. For these cases where
exemplar data is hard to come-by, even fine-tuning an existing model with available data can be
effectively impossible.

Recent work demonstrated that models can be trained using a combination of real-world and
synthetic images generated from 3D representations; that such models can exceed the performance
of models trained using real-world data alone; and that the generated images need not be perfectly
realistic (Tremblay, et al., 2018). However, this approach still required hundreds to thousands of
real-world images for training and fine tuning, which for sparse, global security-relevant datasets can
be an unrealistic hurdle.

In this research, we validate the performance and behavior of DCNN models as we drive the
number of real-world images used for training object detection tasks down to a minimal set. We
perform multiple experiments to identify the best approach to train DCNNs from an extremely
small set of real-world images. In doing so, we:
e Develop state-of-the-art, parameterized 3D models based on real-world images and sample
from their parameters to increase the variance in synthetic image training data;
e Use machine learning explainability techniques to highlight — and correct through targeted
training — the biases that result from training using completely synthetic images; and
e Validate our results by comparing the performance of the models trained on synthetic data
to one another, and to a control model created by fine-tuning an existing ImageNet-trained
model with a limited number (hundreds) of real-world images.
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ACRONYMS AND DEFINITIONS

Abbreviation

Definition

COCO

Common Objects in Context

CRL Central Research Laboratory
HDR high-dynamic-range
IAEA International Atomic Energy Agency




1. INTRODUCTION

For an introduction to computer vision — including the image classification and object detection
tasks we will describe here — see our paper from the Institute of Nuclear Materials Management
Annual Meeting (Gastelum, Shead, & Higgins, 2020).

The International Atomic Energy Agency (IAEA) Department of Safeguards is tasked with
independently verifying that “nuclear facilities are not misuse and nuclear material not diverted from
peaceful uses” using a set of technical measures applied according to each state’s safeguards
agreement (International Atomic Energy Agency, n.d.). The verification of IAEA safeguards
involves the collection, integration, and analysis of multiple data streams, including data declared by
state regulatory authorities, data collected in the field during on-site inspections or other technical
visits, and other sources of information including that from open sources and satellite imagery.
Many safeguards activities that require visual information inspection are facing an increase in data
availability that out-paces human ability to review. Consequently, the IAEA is currently considering
the application of DCNNSs to support initial processing of several of its image-based data streams
including open source information analysis, satellite imagery analysis, and analysis of surveillance
camera data.

While the IAEA has a rich historical dataset from decades of safeguards implementation activities,
they face training data challenges similar to many global security domains:

1) Relevant events are low frequency and high consequence. There have been historically few
examples of nuclear proliferation, and we cannot presume that future cases of nuclear
proliferation will follow similar patterns or use identical equipment to past examples.

2) Content of relevant images is sensitive. Some fuel cycle technologies or related equipment
can be commercially proprietary, so there are limited photographic examples available in
open sources.

3) Adversaries and proliferators seek to obscure their activities. Most nuclear proliferators try
to obscure their activities until they reach a point where they determine that it is within their
interest to expose their capabilities. In some historical cases, this was achieved only at the
time of a nuclear test, or via an announcement once a program was dismantled.

4) Labelling data is expensive. Even in cases when sufficient imagery data is available to train
DCNNS, the required human labelling of the data is time consuming, expensive, and prone
to human error or disagreement among experts.

For these reasons, we are exploring the use of synthetic images to train computer vision models.
Our synthetic images are computer-generated two-dimensional images that are rendered from three-
dimensional CAD models of an object of interest. The images can be rendered with many different
settings such as material type and lighting conditions. We are investigating how synthetic images can
be used to reduce the number of real-world images required to train computer vision models. There
has been recent research in this field, focusing on the level of realism needed in the synthetic images
(Tremblay, et al., 2018), the integration of large real-world data set with synthetic data (Ekbatani,
Pujol, & Segui, 2017) or the use of synthetic images for classes which approximate common objects
already in pre-trained models such as tomatoes (Rahnemoonfar & Sheppard, 2017).



2. SYNTHETIC IMAGE DEVELOPMENT

In this work, we developed several synthetic image datasets to support our experimentation and
collected a dataset of real-world imagery for testing. Our datasets were designed around two 3D
computer models of remote manipulator arms: one using a visually simple design consisting of a
single tube which contained most instrumentation, with a single pivot point attachment to the hot
cell; and one using a mode advanced design of manipulator arm based on that developed by Central
Research Laboratories (CRL).! See Gastelum, Shead & Higgins (2020) for examples of real-world an
synthetic images of the single-tube manipulator design, and Figure 1 for an example synthetic image
using the CRL design.

Figure 1 2D Rendering of Synthetic CRL-type Manipulator Arm

Our INMM paper (Gastelum, Shead, & Higgins, 2020) provides a detailed description of:
e Our development environment and capabilities of the SideFX Houdini software?
e The development of our synthetic imagery dataset of the single-tube manipulator arm
design, including:
o The single-tube design with backgrounds from 33 high-dynamic-range (HDR)
panorama images
o The single-tube design with backgrounds from our 191 2D distractor images
e Design decisions regarding background selection for our synthetic images, specifically as it
pertains to avoiding the iconic yellow glow from hot cells.

We also collected 220 images of remote manipulator arms from open sources, and 191 distractor
images of related environments such as spent fuel pools, lab space, and industrial equipment. A
subset of the images was graciously provided by colleagues at Lawrence Livermore National
Laboratory working on a nonproliferation and deep learning strategic initiative. 3

! https://ctlsolutions.com/products/telemanipulators/
2 https://www.sidefx.com/products/houdini
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In Table 1, we provide an overview of our final experimental datasets used in this research, not
including our 411 real-world images described above. Each dataset contains 1000 images with
targets, and 1000 distractors.

Table 1 Synthetic Datasets Rendered for this Research

Dataset Name Manipulator Design Unique Qualities

Single Tube HDR Single tube Our original single tube dataset, using

Background random selections from 33 3D HDR images
as background and distractors

Single Tube 2D Single tube Uses the same 1000 target manipulators used

Background in Single Tube HDR Background, but places
them on a random selection of real-world
distractor images

Single Tube Black Single tube Uses the same 1000 target manipulators used

Background in Single Tube HDR Background, but placed
on a fully black background

Single Tube Neutral Single tube Uses the same 1000 target manipulators used

Background in Single Tube HDR Background, but placed
on a background that represents the mean
color from the ImageNet dataset

CRL Design HDR CRL Our newest manipulator design dataset based

Background on the CRL manipulator design, rendered on

random selections from 33 3D HDR images
as background and distractors

3 https:

www.lInl.gov/news/researchers-developing-deep-learning-system-advance-nuclear-nonproliferation-analysis
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3. EXPERIMENTAL PLAN

To determine how to reduce the number of real-world images needed to train deep learning
computer vision models, we planned three experimental approaches: synthetic image parameter
variance, real-world to synthetic image ratios, and machine learning explainability to identify biases.
Each experimental focus is explained below. Results from these experiments are described in
Sections 4 and 5. All experiments where the training and test data were drawn from a single dataset
(such as experiments where we trained and tested on real-world data) used 5x2 cross validation.
Since normal cross validation was meaningless where the training and test data were drawn from
separate datasets (such as experiments where we trained on synthetic data and tested on real-world
data), in those cases we repeated the training process ten times with training and validation data
randomly drawn from the test set, and the results were averaged.

3.1. Parameter Variance Experiments

Obur first set of experiments examined parameter variance. Parameter variance refers to the
manipulations we created in the 2D images rendered from our 3D Houdini model. Our 3D model
allowed us to manipulate background, size, position, lighting, and camera features in our 2D
renderings. For our parameter variance experiments we compared results using a variety of image
backgrounds, including panoramic HDR images, 2D industrial and laboratory environments from
our test data, black backgrounds, backgrounds based on the mean color of the entire ImageNet
dataset, and frequency-limited noise patterns (Figure 2).

\ ¥ 4

= S WATEN T ER
Figure 2 Synthetic remote manipulator arm against real-world industrial, black, ImageNet mean
color, and noise backgrounds. Industrial background image credit: TerraPower.

3.2. Image Ratio Experiments

Our second set of experiments focused on the ratio of real-world to synthetic images, with our
research goal being to reduce the number of real-world images needed to the smallest possible
number without sacrificing accuracy. We collected approximately 200 images from open sources,
including the Lawrence Livermore dataset previously mentioned. Reserving 40 of those images for
test, we trained a model with 160 real-world images using both transfer learning techniques and
training from scratch. While 160 images represent a very small dataset for the deep learning
community, it could be a significant image set for the international safeguards world. This model
served as our baseline, to which we compared results of any model that incorporated synthetic
training images. Our metric for success was that a model trained with some combination of real-
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wortld and synthetic data had to perform better than a model trained on real-world data alone. Our
training sets for the image ratio experiments included:
o A/ real-world images. This model was trained on 160 real-world images and tested on 40 real-
world images that were kept apart from the training set. This is the baseline to which all
other model results would be compared.

o Mixed data sets. These datasets used all our synthetic data (because in data science, more data
is always better!) and reducing numbers of real-world images. We halved the number of real-
wortld data in a series of experiments, starting with 80 real-world images, then 40, then 20,
then 10. Then we trained with just one real-world image along with the full synthetic image
training set and tested against the 40 real-world images that were kept aside.

o A/ synthetic images. This model was trained on all 1000 of our synthetic images and tested on
the 40 real-world test images. This model represents our most optimistic scenario, in which a
model could be trained to recognize real-world manipulator arms without ever having “seen”
one during training and validation.

3.3, Machine Learning Explainability Experiments

Our third set of experiments focused on using machine learning explainability techniques to
visualize potential biases in our image data, then render new 2D images to counter those biases and
re-train the models in an iterative approach to reducing incorrect classification and localizations in
our models. Machine learning explainability techniques come in many forms, but our experiments
used the Class Activation Mapping (CAM (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016))
algorithm that highlights pixels in an image that are highly correlated with the classification of an
object. In a prior project that was developing a classification algorithm for nuclear cooling towers,
we used CAM to identify what aspects of an image of a guitar player were causing incorrect
classification of the image, shown in Figure 3. If we had sought to correct for this apparent bias in
our model, we could have included more images of human necks approximating the curve of a
hyperboloid cooling tower. For this work on manipulator arms, we intended to use a similar
technique to identify these biases. Our intent was to use the findings from the explainability
visualizations to identify biases in our training data, render new 2D images from our 3D model to
counter those biases, and re-train our models with the updated data to improve performance.

13



p cooling tower = 1.00000

p cooling tower = 0.96455

Figure 3 CAM visualizations of two images classified as cooling towers. The image on the left is a
correct classification, showing that the model has "learned" to look for the hyperboloid curve to
classify a cooling tower. The image on the right s an incorrect classification, indicating that the

curve of the guitar player’s neck and strap were incorrectly used to classify the image as a
cooling tower. (Image credit: (L) Ken Davis via Flickr, November 23, 2009.
https://www.flickr.com/photos/ken davis archive/5351748461/in/photostream/; (R) johnny anguish
via Flickr, April 1, 2012.
https://www.flickr.com/photos/johnnyanquish/7037904109/in/photostream/)
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4. OBJECT DETECTION

We implemented two object detection models in the course of our research. The first object
detection model was Detectron (Girschick, Radosavovic, Gkioxari, & Doll, 2018) which was
developed by researchers at Facebook. Detectron is a multi-model architecture that includes object
detection, background detection, and various types of image segmentation and masking. We
conducted parameter variance and image ratio experiments using Detectron but saw little variance in
results (see Results section below), and therefore switched to a simpler object detection model, You
Only Look Once v3 (YOLO, (Redmon & Farhadi, 2018).

YOLO is an object detection model that is known for its quick processing times based on what the
developers term a “unified architecture”. It is pre-trained on the ImageNet dataset.

As mentioned above, we encountered significant difficulty in getting our object detection models to
perform. The object detection models either failed to train, trained for long periods without ever
reaching a turning point to over-training, or trained successfully but did not yield results that can be
meaningfully differentiated.

Due to the unpredictable performance of the models, we are not highly confident in the results
below. However, for the purpose of transparency and the documentation of challenges that we hope
will lead to others starting from where we left off in this research, we tentatively and with significant
caveats share our initial results below.

4.1. Parameter Variance in Object Detection Results

We first performed two parameter variance experiments: one comparing backgrounds to no-
backgrounds, and one comparing existing backgrounds to an extended set of backgrounds that were
intended to further train the models to recognize distractor objects. The experiments failed to yield
distinguishable results.

4.2, Image Ratio for Object Detection Results

We observed an early trend that models trained solely on real-world images performed better than
our models trained with a mix of real-world and synthetic, or just on synthetic, images. However,
these results were not consistent among training trials and multiple failures to complete model
training ultimately led to our abandoning object detection approaches.

4.3. Machine Learning Explainability for Object Detection Results

Anecdotally, in our early object detection results we noticed a significant number of
misclassifications of people as remote manipulator arms. We posited that this could have been due
to the angle at which their arms and legs were positioned in the images, but also realized without the
use of machine learning explainability that we did not have any images of people in our synthetic
data. However, due to the poor performance and erratic performance of the object detection models
on prior experiments, we opted to forego the explainability experiments for object detection.
Instead, we pursued our full suite of experiments using image classification models, which was not
part of our original scope.
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5. IMAGE CLASSIFICATION

In this research, we fine-tuned the ResNet-50 image classification model (He, Zhang, Ren, & Sun,
2016), pretrained on the ImageNet dataset, provided by the torchvision.models package included
with PyTorch.*

we replaced the final 1000-output fully connected layer in each model, substituting a one-output
fully connected layer with sigmoid activation function, which would yield a score between zero
and one for a single class, manipulator. We used the value 0 for our ground truth for images
without manipulators, and 1 for our ground truth of images with manipulators.

We conducted several baseline experiments to determine:
1) If we had sufficient real-world data and synthetic data to train deep-learning modes
2) If our models were architecturally sound (i.e., working)
3) Identify a baseline for later results

Our baseline experiments and results are provided in our INMM paper (Gastelum, Shead, &
Higgins, 2020). While each model trained-and-tested on a single data type yielded reasonable
performance, the model trained exclusively on synthetic data and tested on real data yielded results
only slightly better than random performance, with a test accuracy around 55%. Loss while training
indicated that the synthetic data may provide some very early benefit in training, but the model
quickly becomes overfit.

5.1. Parameter Variance in Image Classification Results

5.1.1. Background Image Variance

Some of our parameter variance experiments focused on the background image variance. In one of
our baseline experiments, we trained on a dataset which used random samples from 33 industrial
looking HDR panoramic images as the background. We hypothesized that the low performance of
the model when tested on real-world data could be attributed to low variance in background. We
generated a new synthetic dataset of 1000 images in which the synthetic manipulators were placed
atop 2D images that we had collected as our distractor” or “negative examples” — these were 191
images that were industrial, and sometimes nuclear, but did not include manipulator arms.
Performance of this model was even lower than with the HDR backgrounds (approximately 50%, or
random chance), with the loss curve never decreasing. Additional details are provided in our INMM
paper (Gastelum, Shead, & Higgins, 2020).

We then opted to run the same experiment, but rather than using real-world backgrounds as in the
prior experiment, or black backgrounds as we did in the object detection experiment, we used a
shade of beige that represents the algebraic mean of all images from the ImageNet dataset. In this
experiment, we again observed the trend in which the loss function shows an early decline, but
quickly seems to be overfitting to the data. We found that the average accuracy using the neutral
background resulted in even worse performance than our previous background variance
experiments. Results are shown in Figure 4.

* https://pytorch.org/docs/stable/ torchvision/models.html# classification
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Loss while training Accuracy while training
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Figure 4 Loss and Accuracy for Neutral Background Experiments

5.1.2. Modelled Object Variance

The results of our background experiments indicated that we may need to have more realism in our
images than we originally thought. We decided to test each of our manipulator model arms against
only the real-world data that corresponded to that manipulator model, rather than the full dataset
which represented approximately eight distinct models.

For the single tube design, we used the model trained exclusively on our single tube design synthetic
dataset and tested it against only those real-world images that depicted single tube design
manipulator arms. The accuracy went up from approximately 55% when tested on the full dataset,
to 60% when using just the single tube images for test. As with previous experiments, this could
indicate that realism plays a larger factor in image performance than we originally thought. See
Figure 5.
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Figure 5 Loss and Accuracy for Single Tube Manipulators

For the CRL design, we used our model that was trained exclusively on our CRL design synthetic
images and tested it only against those real-world images that depicted the CRL design manipulators.
We observed that our test accuracy was as high as 70% for this experiment, perhaps due to the
visually distinct features of the CRL design arms, and the limited number of real-world testing
images that were available. Results are displayed in Figure 6.
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Figure 6 Loss and Accuracy for CRL Design Models
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5.2, Image Ratio for Image Classification Results

We documented the results of our image ratio experiments in our INMM paper. In summary, we
found that in using small numbers of real-world images (12, 51, and 205 real-world images,
respectively), increasing the number of synthetic images used to train models did not impact average
model performance but did result in a significant decrease of variance in model performance. That
is, though the accuracy was approximately the same, the uncertainty in the results was smaller. Thus,
the synthetic images do provide benefit, though not directly observable through accuracy.

5.3. Model Thresholds

All the image classification experiments above used 0.5 as a threshold sigmoid value at which to
classify an image as having a remote manipulator arm. This value is a standard starting point in
image classification algorithms but can be adjusted depending on the specific use case and
requirements.

To understand our model performance as a function of threshold, we mapped model accuracy,
precision, recall, and F1 scores across the full range of decision thresholds.? The performance map is
shown in Figure 7. We can observe that as the decision threshold moves towards 1, accuracy of
model increases. However, recall is a more significant factor for international safeguards, as missing
an item of interest could have high consequences and analysts are accustomed to dismissing high
numbers of false positives in the process of trying to identify relevant events.

10

Precision
Recall
F1
Accuracy

0o

0.0 0.5 1.0
Decision threshold

Figure 7 Performance Metrics across Decision Thresholds

5> Accuracy is defined as the total number of correct responses, divided by the total number of potential responses.
Precision refers to the ratio of selected items that are relevant and is calculated by dividing the number of true positives
by the sum of true positives and false positives. Note that precision does not account for false negatives, or “misses”
from the model. Recall refers to the ratio of relevant items that are selected and is calculated by diving the true positives
by the sum of true positives and false negatives. Note that recall does not account for false positives, sometimes referred
to as “false alarms.” The F1 score is the harmonic mean of precision and recall scores.
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Keeping recall as a priority, we can observe that from approximately 0.05 to 0.8, recall decreases
considerably without a corresponding gain in precision. That is to say, the false positive rate of the
model stays relatively constant while the false negative (i.e. misses) rate increases. As such, though
overall model accuracy would be considered lower, a very low threshold between 0.05 and 0.1 could
minimize the potential model misses (through maximizing on recall score) without significantly
increasing the irrelevant materials that would be presented to an analyst for review.

5.4. Machine Learning Explainability for Image Classification Results

Our final experimental area was in machine learning explainability. We had intended to use
explainability results to help identify biases in the synthetic data that could be negatively impacting
our results. Then, we would correct for the biases in the 3D computer model of the manipulators,
re-render images, and re-train the models in an iterative fashion.

Due to time limitations, we were unable to complete these experiments.
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6. DISCUSSION

In this work, we found that the use of synthetic data does provide value in instances where there is
low — or no — real world data. We found that for instances in which there are few real-world images,
synthetic data can be useful in decreasing variance in model performance which could lead to higher
confidence in model results by users. We found that when no real-world data is available, models
performed better when tested against datasets that focused on the specific manipulator design on
which they were trained. This could mean that our 3D computer models need more realism, and
that additional 3D models need to be built to account for the wide variety present in the market of
our selected technology. We also found that, for the CRL design model, very low thresholds led to
higher degrees of detection of manipulator arms within the broad dataset without significantly
increasing the number of false alarms that an analyst would have to review. How this finding will
propagate across our other experiments remains an open question. Below, we will describe a few
observations and recommendations for future work based on our findings and for the application of
this work to international nuclear safeguards.

6.1. Data Proportions

Most safeguards-relevant information available in open sources is rare, especially in comparison to
the volume of irrelevant information. Thus, image classification or object detection models deployed
for open source information analysis would be looking for rare events.

In this work, our training approach followed a balanced approach, with approximately even
numbers of positive and negative examples of manipulators used to train the model, and for testing.
The exception was for the experiments in which we tested models only against the design of
manipulator they represented and distractors, in which case there were 2-4 times the number of
distractors. Even in the exception experiments, the test data was significantly more balanced than a
potential stream of open source information for a model to classify. In future work, we would like to
explore the idea ratio of positive-to-negative examples for training models that will be used to find
rare events.

6.2. Larger Training Data Sets

For this research, we consistently used 1,000 images each of synthetic manipulators and distractors.
In future research, we would like to explore the impact of increasing the size of our training data to
determine its impacts on model performance, and hopefully decrease the impact of early overfitting.

6.3. Other object detection models

Our object detection model experiments were unsuccessful. Since this work began, new and refined
object detection models have become available, including an update of the YOLO algorithm that we
used in this research. We look forward to an opportunity to re-run some of our initial object
detection models using these updated algorithms.
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7. FUTURE RESEARCH

Significant research remains to be done on the use of synthetic images to train object detection and
image classification algorithms in general, and for international safeguards specifically. We have
received funding for a follow-on research project from the U.S. National Nuclear Security
Administration’s Defense Nuclear Nonproliferation Office to produce additional synthetic imagery
and validate its ability to generalize across multiple classes of computer vision models, as well as
between algorithms in a single class. As part of this follow-on research, we also intend to explore the
use of synthetic data to counter the potential effects from adversarial machine learning examples.
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