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1. Introduction

Big data generated and processed from recent state-of-the-art imaging techniques are
often utilized in computational modeling and analysis. With the explosive progress in
computing resources, computational materials modeling for guiding materials design has
become an important topic in the materials research and engineering communities.
Development of these multiscale computational tools and high-resolution characterization
techniques is regarded as one of the most significant transformational trends of the last
25 years in metal plasticity [1]. Furthermore, recent high-performance computing (HPC)
combined with computationally expensive, high-fidelity computational materials models
informed from high resolution imaging techniques has become a viable option to model
various phenomena in large materials systems. However, as pointed out by Kalinin [2],
two major issues in using big data in imaging techniques and computational modeling are
(1) a need for closer coupling of experiments and simulations to improve the fidelity of the
model and (2) disparity in the length scale between atomic scale experiments and

engineering scale modeling techniques.

Figure 1 shows representative examples of different computational tools and imaging
techniques used in materials design from atomic to structural scales. These various
computational and imaging methods are used to characterize crystalline structural defects
across the wide range of time and length scales. For example, structural defects and
microstructural features are considered from individual vacancies and solute atoms
(atomistics), dislocation line segments (dislocation dynamics) and grain-level
heterogeneities (polycrystal plasticity). Computational models directly or indirectly use the
data generated from imaging techniques as an input (initial configuration) or validation
(final configuration) to investigate statistical distributions and evolutions of defects.
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Figure 1. Computational methods and imaging techniques in various time and length scales.

From reference [3].

For example, computational quantum mechanical modeling methods, e.g., density
functional theory (DFT), are widely used to investigate the electronic structures using
functionals of electron density. The results of such simulations are often compared with
microscopy data to understand structural and chemical properties of interfaces in thin
films [4, 5] or surface structures of atoms and nanoparticles [6-8]. At the atomic/molecular
level (10"° — 10" m), molecular dynamics (MD) is widely used to understand the physical
movement and relaxations of individual atoms and molecules from the potential energy
of the system and the forces on all the atoms. MD simulations are suitable for the study
of defects at the nanoscale and to directly compare with high resolution Transmission
Electron Microscopy (TEM) images, i.e. morphology and intrinsic structures in nanofibers
[9], grain boundaries and twin boundaries [10], deformation mechanisms [11], irradiation
damage [12], strain/slip transfer at interfaces [13] and fracture and failure [14, 15].
Discrete dislocation dynamics (DDD) techniques explicitly model dislocation lines as an
elastic inclusion embedded in an elastic medium. Dislocation dynamics are directly
compared with TEM and SEM measurements to compare evolution of dislocation
densities [16] and dislocation substructures [17]. Meso-scale or grain-scale plasticity

models consider aggregate behaviors of defects in continuum framework (102 — 10" m).



Recent grain-scale plasticity models consider microstructural features, such as grain
sizes and shapes as well as crystal structures and orientations, and their defect densities
are either explicitly modeled (i.e. voids and precipitates) or treated as evolving internal
state variables (i.e. dislocation densities). Volume-averaged defect densities can be
directly compared with various electron and optic-based microscopy techniques in
realistic length and time scales.

This direct use of big data generated from high resolution imaging techniques and
computational models outlined above is beneficial to both fields and enabled further
advancements. In the following sections, we review recent advances in electron
microscopy techniques used to characterize crystalline structural defects and discuss the
use of big data in imaging and characterization techniques. Also, we discuss the coupling
of microscopy and modeling techniques and the limitations and future directions using the
big data to advance fundamental materials understanding.

2. Atomic resolution imaging of defects

Tremendous advances in instrumentation and methods for atomic-resolution
Transmission Electron Microscopy (TEM) over the past three decades have broadly
expanded the possibilities for investigators to directly interrogate the atomic-scale
structure and composition of crystal defects. Increasingly these analyses are moving
beyond simple, qualitative images of atomically resolved structures and more toward
quantitative structural and chemical measurements of atomic columns that can be directly
related to and compared against theoretical predictions. Important information regarding
crystal defects drawing on atomically resolved information include the structure and
composition at the defect core, the arrangement and topological character of defect

arrays, and the near and intermediate scale strain field distribution.

Atomic resolution techniques for investigating crystal defects include high resolution
transmission electron microscopy (HRTEM or HREM) and high-resolution scanning

transmission electron microscopy (HRSTEM). These microscopies have been greatly



advanced by the development of aberration correctors for the electron lenses [18-21],
enabling sub-Angstrom spatial resolution and improved image contrast. In HRTEM, a
relatively large area of the specimen (~100 nm?) is illuminated simultaneously by the
nominally columnar electron beam. The electron wave function exiting the specimen is
focused using the objective lens, and the image is collected on an area detector.
Conversely, in HRSTEM, a highly convergent electron beam, focused by the condenser
lens, is rastered across the specimen and the signals from the electron interactions with
the specimen are collected in series, pixel-by-pixel, on various detectors. For instance,
in high angle annular dark field (HAADF) STEM imaging, an annular detector is used to
collect electrons scattered to high angles beyond the low-order Bragg reflections. Since
the signal in this angular regime depends strongly on atomic number, the technique
provides not only atomic resolution but also compositional sensitivity. A wide variety of
other signals can also be detected in STEM imaging. For instance, annular bright field
(ABF) imaging provides good sensitivity for light elements [22], such as oxygen and
nitrogen, providing complementary information to the high atomic number information that
is more readily obtained via HAADF-STEM. The emergence of multi-channel, segmented
STEM detectors [23, 24] and fast and robust pixelated electron detectors [25, 26] is
allowing for increasingly sophisticated treatments of the angularly resolved scattered
electron distribution, to the level of collecting and analyzing full diffraction patterns for
each pixel of the real-space image. Furthermore, by coupling the scan signal to
spectroscopic detectors, such as an electron energy loss spectrometer (EELS) or,
increasingly, a large area energy dispersive x-ray spectrometers (EDS), atomically
resolved compositional and electronic structure information can be obtained to
complement the structural imaging providing great insight into the structure and chemistry
vicinal to defects and interfaces. Finally, the emergence of atomically resolved electron
tomography techniques [27] are opening up the possibility of extending crystal defect
analyses from two-dimensional projections to more complex, three-dimensional

configurations.

In this section, we provide an overview of atomic resolution electron microscopy applied

to the analysis of crystal defects. Our emphasis is not on the imaging physics, as this



topic is well addressed elsewhere (e.g. [28-30]). Rather, our intent is to outline some of
the important data handling and analysis aspects of atomic resolution defectimaging. As
we will see, the requirements for accurate quantification and the demands for acquiring
and analyzing the large data sets, which are often multi-dimensional, is motivating
growing application of data science both to the data analysis as well as to understanding
how best to optimize the data acquisition itself.

2.1 Data acquisition

In order to ensure high fidelity and accuracy in the subsequent analysis of atomic
resolution images of crystal defects, it is critical that imaging artifacts be accounted for
and, ideally, corrected. For instance, in HRTEM imaging, aberrations in the intermediate
and projector lenses can introduce long-range distortions, such as pincushion, barrel, and
spiral distortions [31], that can strongly affect the results of strain mapping. Since these
distortions can be stable over time, they can be measured and corrected by obtaining a
lattice image from a single crystal reference material under identical imaging conditions
to the image of interest. Another issue is to ensure that there are no reversals of image
contrast with the image region. Such contrast reversals will impact the efficacy and
interpretation of any peak finding approaches. Furthermore, in strain measurements
using the Geometric Phase Analysis (GPA) method, discussed below, the change of
image phase associated with the reversal of contrast will yield an unphysical strain
measurement. This is a particular challenge for HRTEM imaging where small variations
in local thickness or specimen tilt can lead to contrast reversals. HAADF-STEM
techniques are much more robust in this regard, although as we discuss next, STEM

techniques present other challenges related to probe and drift stability.

For atomic resolution STEM imaging, two common sources of imaging artifact are
instabilities in the positioning of the scanning probe itself and overall drift of the specimen.
Conventionally, STEM images are acquired by scanning one row of pixels at a time, then
advancing to the next row. Electronic instabilities in returning the probe to the beginning
of the row for each sequential scan line can lead to local image distortions known as "fly-
back errors", which can be exacerbated at fast scan rates. More generally, local



instabilities in the probe positioning throughout the scan acquisition produce local image
registration errors that depend on the directionality with respect to the fast and slow scan
directions. One approach to compensate for such local instabilities is simply to collect a
series of images which are then aligned and averaged together. Furthermore, if the
images are acquired at orthogonal scan rotations, then the asymmetry in the local
distortions between the fast and slow scan directions can be cancelled [32].

Reconstruction algorithms to correct for these local instabilities in single images have also
been proposed and demonstrated. These approaches draw on the inherent redundancy
of oversampled atomic resolution to compare and shift adjacent rows of pixels to minimize
phase discontinuities [33], in the case of Fourier-based methods, or to maximize local

correlations, in the case of real-space methods [34].

Specimen drift poses a further challenge. Because HRTEM is a parallel acquisition
process, specimen drift during image acquisition produces a directional blurring of the
image, and so is generally immediately obvious. In contrast, STEM images are acquired
serially, with probe dwell times on the order of milliseconds per pixel. Thus, moderate
specimen drift results not in blurring, but rather a geometrical distortion of the acquired
image. This distortion can be corrected by application of a compensating affine
transformation. If the image contains regions of perfect crystal, the affine transformation
is that needed to restore the reference regions to the known, undistorted configuration
(and can be determined, for instance, by measurement of the observed interplanar angles
in comparison to the known crystal structures). In the context of strain mapping, the
assumption, of course, is that these reference regions are suitably far from
crystallographic defects to be unaffected by their strain fields.

Alternatively, in the absence of this a priori crystallographic information, the required
correction can be established from a measurement of the direction and rate of the drift
[34, 35]. Of particular note, Sang and Le Beau [35] have developed an approach in which
a series of images are collected at different scan rotations, over the full range of 0° to

360°. Since the drift distortion is a function of its rate and direction with respect to the



scan direction, the drift parameters can be directly measured from the image series.
Moreover, once corrected, the images can be aligned and summed together, improving
the signal-to-noise by averaging out shot noise and the random distortions resulting from

local probe instabilities.

Finally, the potential for beam induced artifacts, whether by knock-on displacement
damage or ionization damage, is always a significant concern at the high electron dose
rates typical of atomic resolution imaging. Here, quantitative data analysis methods are
also providing benefit. One approach is to acquire a series of low-dose images that can
be subsequently registered and analyzed to reveal systematic image changes over time
that would be indicative of beam damage [36]. In this way, the optimal tradeoff between
signal-to-noise and beam-induced artifacts can be directly assessed. Image registration
can be done through standard FFT-based cross-correlation algorithms, although this
approach can fail in very noisy images, as is the case for low-dose imaging. More robust
image registration approaches, based on non-local means analyses, have been
established and applied with success to low-dose atomic-resolution STEM imaging [36].
In addition to challenges with image registration, images acquired with fast scanning can
suffer from exacerbated “fly-back errors”. Alternative raster patterns, such as spiral
scanning, offer a route to avoid this difficulty [37]. Alternative scan patterns also form the
basis for emerging, compressed sensing methodologies for low-dose atomic resolution
STEM imaging [38]. In these techniques, a sparse and randomized sampling pattern is
used to collect the data, which is then reconstructed using an in-painting algorithm [39-
42]. An example from atomic resolution observations of NiTiO3 [40] is shown in Figure 2.
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and modeling efforts. For instance, experimental measurements of grain boundary
structures have provided important test cases for validating the efficacy of different
atomistic modeling approaches [43-48]. An example showing a comparison between
atomistic models and peak positions from HAADF-STEM images for two grain boundaries
in Fe is shown in Figure 3. They have also helped to challenge and advance our current
theoretical frameworks for interpreting grain boundary structure [49-54], our notions of
interfacial line defects and their relaxations [55-58], and our fundamental knowledge

concerning the structure and relaxation of grain boundary junctions [48, 59].
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Figure 3. Atomic resolution microscopy techniques can be used to validate the predictions of
atomistic modeling. Here, the predictions of atomistic simulations for the =5 {310} (a) and £=5
{210} (b) grain boundary in Fe (red and blue), computed using the Mendelev potential [60], are
compared with intensity peak positions (yellow) observed by HAADF-STEM in an experimental

grain boundary. From reference [48].

The most basic level of comparison between experimentally observed and modeled
structures is often to relate the positions of the intensity peaks (or minima) to the predicted
atomic positions for the defect. The simplest approach to determine the peak positions
is to search for local maxima in the image. However, to improve robustness with respect

to noise, the starting image is typically pre-processed. Approaches to pre-processing for
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peak finding include simple real-space smoothing operations (such as median filtering or
Gaussian smoothing), Fourier filtering to suppress high spatial frequency components
[61], and Wiener filtering [62, 63]. Another approach is to cross-correlate a template
function (e.g., of an atomically resolved peak or structural motif) and then perform a
search for the maxima in the cross-correlation function [64, 65]. Following this initial
determination of the peak positions, approaches to improving the peak localization
include filtering to eliminate superfluous peaks within an exclusion radius, performing a
local intensity of mass refinement [66, 67], or fitting the local signal to a model for the
peak (such as a Gaussian function) [32].

Although this approach serves as good first cut at determining the atomic structure, in
general the image intensity peak positions may differ from the actual atomic column
positions, particularly at defects, and other contrast features may arise due to dynamical
scattering that have no one-to-one intuitive relationship to the atomic structure. Hence, it
is often necessary to simulate images for postulated atomic structures, accounting for the
various parameters associated with the instrument (e.g., focus, convergence angle, lens
aberrations) and specimen (e.g., thickness and crystal tilt) in order to meaningfully
interpret and quantify the observations. A number of software packages for HRTEM and
HRSTEM image simulation are available (e.g., Dr. Probe [68], JEMS [69], QSTEM [70],
[71], COMPUTEM [30, 72]).

Once simulated, and appropriately scaled in size and intensity, the images can be
compared by evaluating the deviations between simulated and observed peak (or
minima) positions or in a more sophisticated manner, by comparing the intensity
distributions on a pixel-by-pixel basis. Metrics for comparing the simulated and
experimental images include the Normalized Euclidean Distance (NED) [64], the Chi?
statistic [73], and the R-value [74]. For periodic images, it is often useful to average
multiple identical unit cells to increase the signal to noise [64, 65]. Several iterative
refinement approaches, which compare the observed and simulated images and then
adjust the structure until convergence, have been implemented [64, 73, 74]. The
precision of atomic site location depends both on the nature of the image simulation model

12



and the accuracy of the determination of its parameters as well on the noise and statistical
variability in the image itself. Through careful consideration of these factors, rigorous
statistical methodologies for establishing the uncertainty bounds for the atom site location

have been developed [74-78].

With the increasing possibility of collecting large area sets of atomically resolved data,
there comes the challenge of efficiently segmenting this data to identify the location of
crystal defects and to assess or classify the defect type or local atomic configuration.
Here, microscopy is beginning to draw on visualization and segmentation approaches
originally developed in the atomistic modeling community for large atomic simulation data
sets. For instance, the centrosymmetry parameter [79], which is widely used for
visualization of large-scale atomic simulation, has also been adapted and applied to the
analysis of atomic resolution TEM images of crystal defects and interfaces [58, 80-82]. A
more quantitative approach for visualizing and characterizing the core structure
dissociated dislocations is to compute the local components of the Nye Tensor [83]. This
approach has also been extended to atomic resolution TEM observations [84, 85]. Figure
4 provides an example of an experimentally observed dissociated dislocation analyzed
using both the center of symmetry and Nye Tensor methods [85].

13
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Figure 4. Visualization approaches originally developed for atomistic simulations can also help
in visualizing and segmenting atomically resolved experimental images. This example shows an
HAADF-STEM image of a dissociated 1/2<110> dislocation in a high-entropy alloy (a). The defect
is analyzed using (b) the center of symmetry parameter [79], showing the position of the stacking
fault, and (c) the Nye Tensor [83], showing the separation of the partial dislocations. From

reference [85].

The limitations of atomic-scale crystal defect analyses in conventional two dimensional
projections are being overcome by the emergence of electron tomographic methods with
atomic resolution [27]. One approach to extracting atomic resolution 3D information is
through electron optical depth-sectioning [86, 87]. In this technique, a highly convergent
electron beam, which has a narrow depth of focus, is adjusted to sample different depths
of the specimen. This approach has been applied to measuring three-dimensional atomic
displacements associated with the screw component of dislocations both aligned with the
beam [88] and transverse to the beam [89] and to image buried grain boundary facets
[21]. Atomic resolution electron tomography can also be conducted by collecting a series

14



of images over multiple tilt angles and then reconstructing a three-dimensional atomic
representation from the suitable aligned data set. This approach overcomes the
limitations resulting from finite depth-of-field optical sectioning approaches but does
require specimens stable to the large electron dose obtained under multiple electron
image exposures. Examples include analysis of nanoparticle morphology [90, 91], grain
boundaries [92], dislocations [93], and measurement of three-dimensional lattice strain
[94, 95].

2.3 Strain Mapping from Atomic Resolution Images

The ability to resolve the atomic-scale crystal lattice in advanced microscopy affords the
opportunity to directly measure distortions and strain around crystallographic defects.
There are two major approaches to such strain measurements. Real space methods for
strain mapping most commonly rely on some sort of peak fitting of the atomically resolved
lattice and then a comparison of these peak positions with a reference lattice, often fitted
to a nominally unstrained region of the image [61, 66, 67]. Alternatively, in Fourier-space
methods one computes the Fourier components of the real-space image and then
determines the displacements and strain from an analysis of the spatially resolved phase
shifts of these components. For either approach, it is critical that the starting image be
free of distortions resulting from the imaging process itself as discussed above.

Fourier space methods for strain mapping are useful because they avoid the need for
peak fitting while still drawing on the full set of image data. The predominant Fourier-
based approach to strain mapping is the GPA method [96]. This approach has been
widely applied to the analysis of crystal defects. Examples include work on strains and
rotations at twin and domain boundaries [97-99], crystal lattice dislocations in bulk [100]
and 2-D [101] materials, grain boundary dislocations [100, 102] and misfit dislocations
[103-108]. An example showing displacement fields measured near a dislocation in

Silicon is shown in Figure 5.
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Experiment Theory

Figure 5. Atomic resolution images can be analyzed to quantitatively measure strain fields in the
vicinity of crystal defects. The example here shows displacementfields measured using the GPA
method [96] from a HRTEM image of a 1/2<110> dislocation in silicon (a, b). The experimental
measurements are compared against the predictions of anisotropic elasticity (c, d). From

reference [109].

The basis of the GPA method is to extract spatially resolved Fourier components from an
atomically resolved image and to determine displacements and strain from the phase
shifts of these components. Specifically, a real-space image, with intensity, 7, at position
r, can be represented by [96]:

1(r) = £ Hy(r)exp{2mig - T} (1)
where H,(r) are the local values of the Fourier components associated with the reciprocal
lattice vectors, g. To compute the phase image for a specific g, the image is Fourier
transformed, a mask is constructed around the selected g, and then the inverse Fourier
transform is computed, giving the complex image that can be expressed as:

Hy(r) = Ag(r)exp{2mig  r + iF; (1)} (2)

16



Here, A, is the position resolved amplitude and P, is the position resolved phase. The
two-dimensional displacement field, resolved into components along directions x and y,
is determined from the phase images computed from two independent reciprocal lattice
vectors, gz and gz:
u -1/pP
() =20 o) () ®

The two-dimensional strain field is then determined by differentiation of the displacement
field.

In practice, there are several important considerations for how the data are treated in
order to obtain reliable and physically meaningful results from the GPA method. One
issue is the potential for artifacts such as spectral leakage since the Fourier transforms
are operating on data set of finite extent. This issue is typically mitigated by employing a
window function, such as a Hann function, to smoothly attenuate the data at the edges of
the image. Another critical issue is the selection of the mask for selecting g in the
computation of the phase image. With decreasing mask size (in reciprocal space), there
is a tradeoff between decreased sensitivity to noise and reduced spatial resolution. An
optimal mask diameter (typically chosen with a Gaussian profile) has been recommended
at ~0.25¢g (at FWHM) [110]. The selection of g can also be critical. For instance, Peters
et al. have shown that large artifacts in the strain measured by GPA analyses of
compounds possessing compositionally distinct sublattices due to additional contributions
to the phase term [110].

3. Mesoscale Defect Characterization

In addition to better understanding the atomic scale interpretation of HRTEM images and
HRSTEM and maps, large data processing also has the potential to greatly enhance the
interpretation of defect structures captured by Select Area Electron Diffraction (SAED)
patterns and conventional TEM characterization techniques. This section reviews three
research areas with great potential for rapid advancements in the coming years. They

17



include: 1) diffraction pattern simulations from MD simulations, 2)structural defect
analysis with a focus on nanometer size defects, and 3) electron holography and
tomography to gain a fuller understanding of defect type and location in a TEM foil.

3.1 Electron Diffraction Simulations

Similar to the extensive progress made in coupling atomistic modeling to MD simulations,
a similar effort has occurred in coupling MD simulations with electron diffraction
characterization. From the modeling perspective, there have been great strides in
coupling the SAED and NanoBeam Electron Diffraction (NBED), [111, 112] as well as
potentially Precession Electron Diffraction (PED) and BF/DF (Bright Field/Dark
Field)STEM maps. This analysis is already incorporated into the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [113] and as such provides a
direct coupling between any MD simulations and diffraction based characterization. This
is similar in nature to the phase contrast simulations that have existed and been refined
over the last three decades. [114] An example of the MD and simulated diffraction pattern
directly resulting from the LAMMPS diffraction code is seen in Figure 6 for a grain
boundary in a simulated Ni sample. [115] The production of such data from the MD code
permits rapid and direct comparison to electron diffraction data collected during a TEM

study.
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Figure 6. The structure of minimum energy Ni [010] STGBs in MD simulations with tilt angles of
(a) 10.39° and (b) 12.68° each created by an array of dislocation cores separated a distance dp.
Simulated SAED patterns aligned on the tilt axis show (c, d) the corresponding misorientation of
and (d, e) subsidiary peaks associated with the desolation array near the (002) reflections. From
Reference [115].

The ability to created and characterize simulated diffraction data has the potential to simulate
experimental conditions during in-situ experiments, as well as directly compare to Precession
Electron Diffraction (PED)/ Transmission Kikuchi Diffraction (TKD)/ Electron BackScatter
Diffraction (EBSD) (discussed further in section 5) and many other electron diffraction-based
techniques. The ideal condition would be if the analysis could be done during the electron

microscopy session, so that defect structures in the TEM sample can be characterized on the fly.
3.2 Mesoscale Defect Analytics

Since the original development of TEM, [116] it has been used to characterize the type,

density and interactions of structural defects in the TEM foils. These studies have required
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not only meticulous Scanning Transmission Electron Microscopy, (S)TEM, alignment, but
also often very tedious analysis. In addition, more often than not this detailed analysis
cannot be directly inputted into a model and is only loosely compared to the predictive
models in the same system. However, the recent emergence of improved control systems
during the TEM study and advanced codes for data analytics, this paradigm is rapidly
changing. This section in particular will focus on nanometer scale defects located in a
microstructure. For atomistic defects see section 2 and for grain and grain boundary

characterizations see section 5.

In contrast to optical microscopy and to a lesser extent SEM at their respective length
scales, the trusted automation of defect analysis during a TEM study has been extremely
elusive. This is in part due to the drastic change in contrast that occurs due to small
variations in the deviation parameter that can occur due to small tilting or local bending
of the sample [117]. This has been significantly decreased recently due to the
development of precession electron diffraction techniques and BF/DF STEM techniques
discussed in section 3.1. An extremely difficult experiment is the characterization of
dislocation loop type and density in a TEM sample [117]. A recent example of such work
that utilized meticulous TEM tilting experiments coupled with image analysis software was
completed by Yi et al. in self-ion irradiated tungsten [118-120]. The large amount of
dislocation loops characterized in these studies demonstrated the importance of such
techniques in understanding the role of processing and environmental conditions on the
distribution of defects created. In order to have any level of confidence in the defect
density reported, careful attention must not only be paid to the image conditions, but also
to the thresholding done during the image analysis. An example of such a threshold in
the self-ion irradiated tungsten study can be seen in Figure 7. Such detailed analysis is
needed to delineate the contrast due to defects present in the TEM foil from the plethora
of other contrast producing artifacts [117]. Currently, this detail is best done by hand and
is very much reliant on the expertise and skill of the microscopist performing the
thresholding, although work is currently underway on the same data set by Daniel R.
Mason and others to automate the analysis utilizing adaptive learning algorithms. Many

controversies have arisen in the microscopy community due to unintentional human
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errors during the characterization of structural defects from multiple micrographs (e.g.
interstitial stacking fault tetrahedra [121, 122]). Many groups across disciplines are
implementing various forms of machine learning and other algorithms to improve the
thresholding and interpretation of electron micrograph analytics for a wide range of TEM

samples and imaging conditions [123-125].

O Small/faint loop

y D Large/bright loop

Figure 7. Demonstration of loop sizing in an irradiated pure W specimen with 3D surface plots
constructed on the same intensity scale (viewed in the x—z “intensity” plane) [65]: (a) the original
grey scale image; 3D surface plots profiles of a large/bright loop in (b) grey scale and (c) binary
format respectively; 3D surface plots profiles of a small/faint loop in (d) grey scale and (e) binary

format respectively. From Reference [120].
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In addition to the direct defect counting, the rapidly improving data analytics that can be
obtained provide the ability to better couple TEM experimental observations with atomic
and mesoscale models. This chapter will only highlight some of the recent advancements
in this coupling. Readers are encouraged to explore the recent review by J. Marian et al.
for a deeper exploration of modeling and experimental coupling at the nanoscale. [126]
This coupling has been driven by both the modeling and experimental efforts. There has
been an exciting effort led by De Graef et al., at Carnegie Mellon University to directly
simulate BF/DF TEM micrographs from strain maps that can be produced from most
mesoscale simulations. [127-129] The combinations of these modeling approaches
should permit direct coupling between atomistic and mesoscale modeling to a large range
of (S)TEM based techniques. The current barrier limiting the further coupling of (S)TEM
experiments and atomistic and mesoscale modeling is the extensive resources needed
to complete any of the coupling described above. We predict with increasing microscope
control, improved algorithms, and better transfer of variables that such coupling will

become increasingly more commonplace.
3.3 Electron Holography and Tomography

The improved automation of TEM controls and the efficiency of handling large data sets
in a smart fashion over the next few decades should provide the ability for uncommon
TEM techniques to be automatically incorporated into the alignment of the TEM or
implemented upon request. Two such techniques that can be integrated into normal TEM
characterization are in-line electron holography and electron tomography. In-line electron
holography entails the collection of a through-focal series that is then processed to map
out the phase shift present in the region observed. An example of electron holography of
cavities in an aluminum TEM foil can be seen in Figure 8. [130] The phase shift map can
then be associated with a range in local structure and property variations present in the
sample. Such through focus series required to produce in-line electron holography maps
are collected manually or automatically every time the TEM focus is aligned. Presently,
these through focus sets are rarely converted to in-line electron holography maps due to
the complexity and computational resources for such an undertaking.
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Figure 8. Phase map of cavities in al TEM foil retrieved from the focal series using the in-line
holography method, in (a) grey level, and (b) color displays. The scale in Figure 8 (b) refers to the
phase shift measured in radians. On the right side, high magnification on phase image details:
(top) a cavity of about 13 nm formed at the precipitate/matrix interface, the associated phase shift
is ~1rd (green on the color scale), (bottom) nanoscale cavities in the matrix (negative phase shift)
and domain with positive phase shift (violet on the color scale) further interpreted as interstitial

cluster. From Reference [130].

Similarly, one of the methods already utilized to set the eucentric height of the TEM
sample in modern TEMs is small angle calibrated tilting of the goniometer. If during this
procedure calibrations images were taken at multiple tilts, an image set required for
electron tomography reconstruction would be possible. The ability to do automated
electron tomography is significantly more advanced than many other electron microscopy
techniques due to the high demand to understand the three-dimensional aspect of the
inherently projection image. This development in amorphous materials is significantly
further along than for crystalline samples due to the large and concentrated effort from
the cryoTEM and biological community [131, 132]. However, some very nice examples of
thorough and painstaking electron tomography results in crystalline samples have been
achieved. Figure 9 is an example of radiation damage present in a wedge shaped Mo
sample taken in WBDF by Li et al. [133]. A full tilting experiment of this sample was
completed. This clearly demonstrates the defect denuded zone near the top and bottom
surface of the sample, as can be seen in Figure 10, which can also be directly correlated
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to the defect distribution predicted by MD simulations of a virtual TEM sample exposed
to equivalent Primary Knock-on Atom (PKA) damage [133-135]. Efforts like these
demonstrate the potential impact to understand the factors governing microstructural
evolution, as well as overcome some of the traditional limitations of TEM characterization
but are rarely completed due to the time and effort required to properly analyze the data.
Expected advancement and applications of machine learning and similar algorithms

should greatly assist in the handling and smart processing of such micrographs.
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Figure 9. Weak beam dark field (WBDF; g, 5g) images of the same specimen area showing
defect cluster accumulation as a function of dose for Mo in situ irradiated up to 5 x 10"2ions/cm?
(~0.015 dpa) with 1 MeV Kr ions with a flux of 1.6 x 10" ions/cm?/s (~5 x 10—4 dpa/s) and at 80°C.
From Reference [133].
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Figure 10. Size distribution of defect clusters as a function of foil depth in Mo irradiated to
5 x 102 jons/cm? (~0.015 dpa) at an ion flux of 1.6 x 10" ions/cm?/s (~5 x 10™* dpa/s) and 80°C

with 1 MeV Kr ions (a) foil depth of 0—-40 nm, (b) foil depth of 40—-70 nm, and (c) foil depth of 70—
110 nm. From Reference [133].

As we hope is evident in this section, the recent advancements in mesoscale defect
characterization is just the beginning of a much deeper understanding of the defect type,
density, and 3D distribution in a sample due to the rapidly advancing capability to
characterize and process large data sets. The sub-fields of 1) diffraction pattern
simulations from MD simulations, 2) structural defect analysis with a focus on nanometer
size defects, and 3) electron holography and tomography are all posed to have rapid
growth in the coming years to increased data processing and automation.

4. Time Resolution

To date, there have been three major advancements to enhance the temporal resolution
of electron micrograph acquisition. These include, in order of significance: 1) development
of direct detection CMOS based cameras, 2) the development of the Dynamic
Transmission Electron Microscope (DTEM), and 3) the development of the Ultra-Fast
SEM and TEM (UF-SEM or UF-TEM). These three options were envisioned, designed,
and developed over the last few decades to decrease the electron dose that beam
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sensitive samples are exposed to during imaging, increase the maximum temporal
resolution possible during an in-situ electron microscope experiment, or both
simultaneously. The remainder of this section will describe the historical evolution and
details of each design concluding each subsection with a discussion on the potential for
increased capabilities through enhanced data processing routes.

4.1 Solid State Cameras

It was only a little over a decade ago that the debate in electron detectors resolution and
general capabilities was between film and CCD imaging. [136] During this time period,
the CCD camera expanded to become the system of choice due to the ease of use, ability
to check image quality quickly, improved safety, and decreased environmental costs
compared to film for most applications. However, at the same time that CCD cameras
were dominating, CMOS-based monolithic active pixel sensor (MAPS) detectors were
being developed for space applications [137] and then for ionizing radiation applications
[138]. This trend continued with a paper that'’s title included ‘new eyes for science’. [139]
This was the turning point as shortly thereafter the options and capabilities of direct detect
cameras rapidly grew for transmission electron microscopy. [140]

This disruptive evolution in detector hardware technology has created both a crisis and
opportunity in the field. The crisis arises from being able to quantify the quality of the data
produced by the new cameras, as well as properly handling and processing all of the data
produced per experiment. The concerns about detector quality as a function of time was
best described by G. McMullan et al. who said “performance of these new detectors needs
to be carefully monitored in order to optimize imaging conditions and check for
degradation over time. We have developed an easy-to-use software tool, FindDQE, to
measure MTF [Modulation Transfer Function] and DQE [Detective Quantum Efficiency]
of electron detectors using images”. [141] However, if the new artifacts are properly
understood and accounted for, similar to the dark field correction to remove the
honeycomb overlay present in all CCD images, the direct detect technology has many

significant opportunities. These include drastically increasing the spatial resolution
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possible under low electron flux imaging conditions (DQE up to 80%), while also
decreasing the temporal resolution in the range of 400 frames per second (fps).

Many state-of-the-art research advancements have been possible due to the expanded
opportunities provide by the direct detection systems. An example of direct observation
of nanoparticle evolution during high resolution observation at a 2.5 ms frame rate can be
seen in recent work done by E.A. Stach et al. (Figure 11) [142]. In a similar manner, the
state-of-the art has been advanced in many applications with the low electron dose
environment and rapid imaging sequence provided by the direct detect systems. These
range from near-atomic-resolution single-particle cryo-EM studies [143] to rapid image
sequencing of the deterioration of the metal/oxide interface that is the core of corrosion
and many other fields [144].

Figure 11. Phase contrast images of the sintering of Au/Cu nanoparticles. The images were
obtained at a 2.5 millisecond frame rate in a continuous video stream. Individual images that
capture the dynamic changes occurring at the interface during sintering are shown. From
Reference [142].
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The large amount of data produced by the advancements in TEM camera systems
requires the implementation of smart data processing. This development of proper
protocols and programs to handle the data is still very much in its infancy but has great
potential. As opposed to the continuous collection of data, the current software permits
the temporary storage of data with key recent past segments (~seconds) pushed to long
term storage on the user's command. This is just one of many data issues and possible
tricks to automate around the large quantity of data produced by this transformative TEM
camera technology. [145] However, the development of strategies focused on how to best
handle the data is not taking full advantage of the possible new areas of research
permitted by this hardware advancement. An example of such development of new
techniques utilizing direct detection systems is the rapid development of in-situ STEM
based techniques spearheaded by scientists at the National Center for Electron
Microscopy (NCEM). [146] The core concept with this approach is to minimize the use of
post samples apertures and fast detectors; thus, collecting as many electrons leaving the
TEM foil as possible during a STEM scan. This provides virtual BF, virtual DF, and HAADF
images among other potential data simultaneously. An example of such work exploring
the local strain mapping of a GaAs/GaAsP system can be seen in Figure 12 [147].
Increased capabilities through enhanced data processing routes provide the ability to
characterize nanoscale changes in strain maps like those in Figure 12 during complex in-
situ experiments. [148] The ability to apply this to a range of in-situ (S)TEM goes
significantly beyond these initial studies, and as a result, opens a range of new

connections between experiments and modeling efforts.
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Figure 12. NBED analysis of a GaAs/GaAsP multilayer device cross-section across a large 1 ym
FOV. (a) HAADF image of the analyzed section. Insets are CBED patterns taken from areas 1
and 2 showing the misorientation possible to analyze with the technique. Inset labeled 3 is a short-
range stacking fault. (b) NBED strain map of €y, strain where y is the [002] direction. (c) NBED
strain map of €. strain where x is the [220] direction. (d) a €y profile scan across the entire device
as indicated by the vertical box in (b). From Reference [147].

4.2 DTEM and UFTEM

The effort to advance the temporal resolution of TEM experiments does not stop at the
400 fps range, but advances down into the nanosecond and picosecond regime through
the development of dynamic TEM (DTEM) and ultra-fast TEM (UFTEM), respectively.
Both of these techniques have greatly evolved over the last two decades through rapid
advancement in the coupling of laser innovations and TEM optics. Both types of system
utilize a laser to excite the cathode and control the release of electrons and a pump-probe
design to explore the properties of the sample. The two technologies provide different but
complementary capabilities. The DTEM is designed for non-reversible processes and as
a result an adequate number of electrons must be produced from every burst of electrons.
In contrast, the UFTEM is designed for reversible processes and the images can be
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added to provide suitable image resolution with improved signal-to-noise. Over the last
decade the DTEM system has evolved from the collection of simple single diffraction
patterns or bright field images [149, 150] to a complex “movie mode” design where a
small set of images (9, 16, etc.) is collected on a single large CCD detector by deflecting
the electron at the bottom of the projector system [151]. In a similar manner, the ultra-fast
electron microscopy field developed from the Noble prize winning work by the Zewail
group in ultra-fast electron diffraction [152] through a range of UFTEM design and
strategies [152-154] to current versions of an UF-Field emitter TEM design[155] and UF
SEM capabilities [156, 157]. Both DTEM and UF-TEM system hardware development has
been impressive. However, both demonstrate the need for smart data processing to
improve data integration, deconvolution, as well as timing determination and control. If
improvements can be made to improve the integration and automation of the control
system, along the lines of that underway for AC-TEM systems, significant opportunity for
main stream introduction of DTEM and UFTEM will be possible. Similarly, a direct and
efficient way to handle and process the large and convoluted data sets produced by these
techniques would greatly advance the applications with picosecond reversible and

nanosecond irreversible dynamics.

5. SEM and X-Ray Mapping Techniques

In recent years, several advances have been made in SEM, optical microscopy, and X-
Ray techniques. These include: (1) faster imaging and larger images through montages,
(2) Strain measurements through digital image correlation (DIC), (3) orientation imaging
such as Electron Backscatter Diffraction (EBSD) and Transmission Kikuchi Diffraction
(TKD), and (4) Improvements in speed and resolution of X-Ray Computed Tomography
(XCT) and the use of XCT for Digital Volume Correlation (DVC).
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5.1 Electron Microscopy

5.1.1 SEM

At the microscale, a single electron microscope image is often the size of a single grain.
To take advantage of the high-resolution imaging capabilities, yet still obtain statistically-
significant regions of interest, image montaging (combining multiple images into a single
large image) is often employed. In some cases, a large pixel-count camera would largely
address the problem; however, such large sensors are often unavailable. Furthermore,
researchers with a large sensor would likely still stitch together images and data sets
because the demand for large data sets vastly outscales the current sensor pixel counts
by several orders of magnitude. Most scanning electron microscopes have software to
perform such image stitching but they typically do not have stitching accuracy sufficient
for DIC. Stitching images can also take considerable time if large regions are to be imaged
successively (e.g. at each load level for in situ testing). One area in which data processing
of SEM image montages is making an impact is in fracture surface analysis. Large
montages can be used to characterize void fractions on fracture surfaces in high-porosity
additively manufactured samples. Each fracture surface can be completely covered with
high enough resolution to discern important details such as fracture origin, pores, or
inclusions. The ability to examine of dozens of specimens like this in an automated way

will likely impact statistics of tensile tests.

5.1.2 Multiple Beam SEMs

One solution to obtaining very high resolution images over large regions is a multibeam
SEM system [158]. These systems currently integrate up to 61 or even 91 electron beams
into a single microscope. Each beam is used to image a tile, and tiles are montaged into
larger images (Figure 13). In a typical scan, a pixel size of 4 nm can be used to image an
area of a square centimeter in a matter of a few hours. A single square centimeter at this
resolution corresponds to a 625,000 Megapixel image! Consequently, data transfer,

storage, and analysis become significant undertakings. Fiber optic connections with
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dedicated servers are necessary. Due to the slow speed of long distance data transfer, it
is often faster to physically ship hard drives with data than to transfer data electronically.

Figure 13. (Left) An image pattern from a multi-beam SEM. In this case, 61 rectangular images
are tiled to form an approximate hexagon shape. (Right) Many of those hexagons (same region
outlined) are then tiled to image large regions. (Courtesy of Joseph Michael, Sandia National
Laboratories)

The potential of multibeam SEM systems is promising. However, harnessing this potential
requires significant effort. Processing such large datasets necessitates the need for
algorithms and parallel computing rather than individual analysis by researchers as has
been done throughout the history of materials science. Thus far, this data has only been
analyzed with simple algorithms such as searching integrated circuits for flaws. [158]
Early work has been done in using multibeam SEMs to search for pores in cross sections
of additive manufactured materials (Figure 14). The advantage of this system is apparent;
all flaws larger than ~400 nm can be identified within regions encompassing several

square millimeters.
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Fractured Edge

Figure 14. Multi-beam SEM imaging of a broken additive manufactured specimen with
widespread porosity. These images can be used to characterize porosity distributions from sub-
micrometer voids and larger. (Courtesy of Joseph Michael, Sandia National Laboratories)

In addition to flaw detection, these microscopes have great potential for characterizing
microstructural phenomena over large scales for statistical analysis. One such technique
is microscale high resolution digital image correlation (discussed in a subsequent
section). At this time, sufficiently fine speckle patterns cannot be generated to take
advantage of this imaging system, but they certainly will be in the coming years.

Multibeam SEM systems do have some drawbacks that should be noted. Artifacts such
as ghosting from nearby tiles and contrast variability are common. Furthermore, these
currently only work with secondary imaging on flat specimens. This limits the types of
experiments that can be performed since secondary imaging often brings out surface
topography.
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5.2DIC

5.2.1 Full-field implications for modeling

The development of digital image correlation (DIC) in the 1980’s [159] was a major driver
towards digital full-field data in the materials science community (along with EBSD and
grid techniques). Digital image correlation began to replace its full-field predecessors
such as moiré interferometry and photoelasticity due to its wider applicability and relative
ease of use [160]. DIC has a particular advantage for microstructural scale experiments
over preceding techniques due to its lack of an inherent length scale; it can be used on

images from nanometer to kilometer scales.

Several different approaches can be taken to work with these large, full-field data sets.
The simplest and most common approach is to plot the fields for display purposes; this
approach is useful, but is rarely the most effective use of large data sets. The goal of data
science is to leverage rich data sets (combinations of multiple sets of data, for example)
to better understand the phenomena being observed. A micromechanics example of this
is the alignment of EBSD measurements of crystallographic orientation with full-field
strain measurements from digital image correlation [161, 162] in Figure 15. Aligning fields
of data from separate techniques is a powerful approach that will be necessary for making
progress in materials science going forward. This method is quickly becoming one of the

dominant methods for informing and validating crystal plasticity models.
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Figure 15. An example of aligning multiple data sets (taken from [173]). (top) A speckle pattern
on a fracture specimen was imaged to observe a fatigue crack’s growth relative to the
microstructure. A small region around the crack tip was imaged using (left to right) backscatter
electron imaging, EBSD, and DIC strain fields (in the vertical direction). In the DIC map, grain
boundaries from the other two maps are overlaid.

A more involved data-science approach to these full-field data sets is to perform
collocation (least squares regression) analysis to extract parameters that describe the
displacement field such as a stress intensity factor near a crack [174, 175]. This has been
done using DIC data [174, 175] and using data obtained from other approaches such as

moiré interferometry, photoelasticity, and holography [176, 177]. An example of
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collocation of DIC data around a crack tip with the analytical solution is shown in Figure
16.

Experiment |

i Regression

X (mm)

Figure 16. Example of the collocation technique on a vertical displacement field around a crack
tip. Parameters such as the stress intensity factor, T-stress, rigid translation, and rigid rotation are
chosen to minimize the error between experimental measurements and the model displacement
field. Taken from [174].

Yet another approach to handling full-field data sets has been to exploit the varying nature
of stress and strain fields in complicated geometries to provide rich data sets for model
development. One approach to this has been the virtual fields method championed by
Pierron and Grediac [178]. The virtual fields method employs specimen geometries that
have a wide variety of stress and strain states throughout the specimen. By using the
principle of virtual work, the model fits these multiple stress/strain states to extract
material parameters. This technique is currently in the early stages and is being used for
macroscopic material models [179] currently; however, it shows promise for application
at the microscale. Undoubtedly, more complex approaches will be developed towards
understanding microscale behavior by applying machine learning techniques such as

data science or neural networks to large experimental and simulation data sets.
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In addition to various plasticity models that predict material’s physical properties,
computational models to accurately reproduce microstructural features and their defects
in polycrystalline materials are being developed and coupled to multi-scale experiments.
For example, kinetic Monte Carlo [163] or phase field [164, 165] based techniques are
used in grain growth simulations to reproduce realistic RVEs of polycrystalline
microstructures. It has been shown that accurate representations of polycrystals are
required for high fidelity polycrystalline simulations in both atomistic and continuum scale
simulations [166, 167]. More recently, concepts and toolsets from data science are being
adopted in computational materials science. For example, reduced-order models [168,
169] or database-driven approaches [170-172] are developed to avoid computationally
expensive simulations or to establish efficient process-structure-property relationships.

5.2.2 HR-DIC

The incessant drive for images with larger pixel counts is acutely felt in the DIC
community, in which each pixel directly represents more data. Due to the nature of DIC,
increasing pixel count, even without any direct improvement in measured resolution (i.e.
limited by the speckle size) will provide improved accuracy due to the fact that the
technique averages over large numbers of pixels for each subset. However, a more
typical use of increasing pixel count is to shrink the speckle size to obtain finer resolutions
and improved accuracy over larger areas. DIC derives its subpixel accuracy (typically less
than 1/100™ of a pixel) [180] from averaging the motion within square subset regions of
many pixels. A typical subset size for small scale DIC might be 51 x 51 pixels, meaning
that 2601 pixels are analyzed to obtain the strain value at a single data point. If the pixel
count is doubled without modifying the speckle pattern, an equivalent subset size would
be approximately 101 x 101 pixels. Therefore, the same subset region would be analyzed
with four times as many pixels, 10,201, resulting in better averaging of pixel positions and
more accurate DIC displacement and strain values. Of course, this improvement comes
at a cost—four times as many pixels need to be captured at the increased magnification
to cover the same area. Additionally, extra processing time and storage are required to

analyze the considerably larger pixel counts.
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In many cases, the extra resources required to analyze large pixel count images
(~40MPix) with DIC are worth it. Performing DIC on high pixel count images has been
termed “High Resolution Digital Image Correlation” (HR-DIC). [181] The tradeoffs and
techniques for performing HR-DIC were outlined in. [161] Performing DIC on stitched
images has been shown to leave noticeable strain localizations (or discontinuous
displacement) at the stitching boundaries. There appears to be no solution other than
modifying the greyscale values in the tiles themselves or performing DIC on each tile
before stitching. The latter would be easily accomplished with parallel processing, which

is starting to be introduced into standard DIC software packages.
5.2.3 Micro-Scale DIC

Performing DIC on SEM images (SEM-DIC) is particularly appealing for understanding
microscale behavior such as crystal plasticity. Although some research has been done
optically, [182, 183] many of the microstructural phenomena of interest (e.g. sub-grain-
scale deformation, twinning, slip bands, etc.) are near the limit of optical microscopy or
below it. SEM-DIC can be particularly challenging due to the multiple sources of image
distortion. At low magnification, many SEMs are designed in such a way that fisheye
distortions, pincushion, or other non-symmetrical distortions are present. This is typically
due to a non-uniform rastering speed of the electron beam as it traverses the image. At
higher magnifications (fields of view less than 30 ym assuming an image width of ~1000
pixels), lens distortion effects decrease, but drift distortion increases in significance. [184]
With current hardware and software limitations, there tends to be a range of moderate
magnifications (fields of view around 30 ym to 500 um) at which neither of these distortion
types appears to add much error to DIC measurements at moderate strain levels. While
avoiding SEM-DIC distortions may be the expedient approach, a formal approach to
correcting for the distortions was described by Kammers and Daly [184]. Lens distortions
can be corrected through a rigid motion test on the specimen. Drift distortions can be

corrected using a surrogate sample and taking images at successive times.
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HR-DIC techniques have proven particularly useful to understand grain-scale
phenomena, often through the development of crystal plasticity models. One example of
microstructure-aware plasticity models that is gaining momentum is the Crystal Plasticity
Finite Element Model (CP-FEM). CP-FEM models utilize crystal plasticity constitutive
equations that describe mechanical behaviors of single crystals, and their aggregate
behaviors are simulated within a finite element method (FEM) framework. In these
models, initial states of microstructural features such as grain morphology and crystal
orientations are often informed from EBSD data [166-169] to predict evolutions of textures
[167, 170-175], dislocation densities and cell structures [176-180], grain boundary effects
[176, 181, 182], and heterogeneous intra-grain surface strain fields [167, 174, 175, 183,
184]. An extensive overview of CP-FEM model can be found in [185]. Figure 17 shows
one example of direct comparisons of surface strain fields using CP-FEM predictions and
DIC measurements [167]. A conventional CP-FEM model accurately predicted
heterogeneous sub-grain scale strain fields, while more detailed microstructural features

such as slip lines and grain boundary were not captured.
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Figure 17: A comparison of measured and predicted surface strain fields of tantalum oligocrystals

after 3.4% deformation in tension. From Reference [185].
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5.3 Orientational Imaging

5.3.1 EBSD

Electron Backscatter Diffraction (EBSD) has dramatically changed the fields of
crystallography and crystal deformation. Traditionally, X-ray diffraction only provided
measurements of macrotexture. The full-field nature of EBSD allows for microtexture
analysis which is powerful for understanding grain-scale phenomena. As discussed
earlier, EBSD is being leveraged with DIC to develop improved crystal plasticity models.
The technique is finding increased utility with the need to characterize microtexture in
additive manufactured materials. At the moment, the exact influence of build parameters
on microstructure is not well understood. Consequently, the microtexture in additively
manufactured components can vary dramatically compared to conventionally processed
components. EBSD will be instrumental in relating the processing parameters to the
resulting microstructure. The large number of build conditions will make EBSD on additive
manufactured specimens a big-data problem. Each printed material has a different
pedigree, even if it is as slight as being at a different build plate location. Consequently,
tracked metadata will need to be linked to additive manufactured materials including their
crystallographic data. Efforts to this effect are currently underway by a large number of
organizations including the National Institute for Standards and Technology (NIST),
Granta Design Limited, ASM International, and a number of United States National
Laboratories among others. Saving raw EBSD data, metallography images, etc. on each
sample is currently difficult to choreograph, even if storage is available. Developing
metrics to succinctly represent such data will be necessary for storage, handling, analysis,
and archiving [186].

On top of these data challenges is an increase in the inherent size of the EBSD data.
Ultra-fast EBSD systems have recently been developed [187, 188] that can index up to
3000 points per second, several orders of magnitude faster than speeds available just a
few years ago. With this capability, it is now possible to measure the full microtexture
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throughout the cross section of a component on the scale of inches. This data could help
decision making, particularly in the processing realm, again with the challenges of data
management. This approach will likely become more intensive as serial sectioning EBSD
approaches become more automated. Already, there are automated systems to serial
section and image through a specimen, but it is often limited to optical microscopy images.
Techniques that can provide high throughput serial sections of EBSD data via
conventional grinding, plasma-based Focused lon beam (FIB), and femtosecond laser
are in development. If made fast enough, these techniques would provide scientists and
engineers with a full, three-dimensional representation of a component with sub-grain

scale resolution.
5.3.2 HR-EBSD

As discussed previously, a significant amount of work is being done to improve the
amount of data that can be obtained from EBSD. Researchers are also working on
developing higher quality and richer EBSD data sets. Conventional EBSD is designed to
index many points in a short amount of time. As a consequence, the accuracy of
orientations is often sacrificed through tradeoffs in variables such as binning parameters
and processing time. These compromises result in a typical angular resolution of £1°.
High-resolution electron backscatter diffraction (HR-EBSD) employs saving and offline
post-processing of the raw Kikuchi patterns to obtain far greater orientational accuracy
around 0.1° [189, 190]. This improved accuracy allows more information to be extracted
from EBSD data sets such as local measurements of stress and local geometrically
necessary dislocation content. As one example of the use of such data, HR-EBSD has
been used to measure geometrically necessary dislocations to investigate the interactions

between dislocation networks and grain boundaries.

Because each pixel of information in conventional EBSD scans requires an entire image
of Kikuchi bands to be saved in HR-EBSD [191], the data size increases by six orders of
magnitude, which is literally one million times as much data! When HR-EBSD is
combined with serial sectioning and/or faster speeds (typically, it was limited to ~2

patterns per second, but now ~1000 patterns per second), the data requirements will
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increase even faster. Data management and analysis techniques will need to adapt to
make use of these rich data sets.

5.3.3 TKD and PED

While HR-EBSD improves the angular resolution of EBSD, the technique is still limited to
a spatial resolution of around 50 nm. This resolution is quite small for determining
microtexture, but it becomes limited when analyzing small features such as grain
boundary details, cell block boundaries, nanostructured materials [192] and void initiation
in ductile metals [193]. Two techniques have been developed to improve the spatial
resolution possible for Automated Crystal Orientation Mapping (ACOM): Transmission
Kikuchi Diffraction (TKD) and Precession Electron Diffraction (PED). TKD [194] can
provide improved resolution below 10 nm for closer examination of thin foil samples in a
modified SEM-based technique similar to EBSD. This technique utilizes the forward
scattered Kikuchi diffraction patterns. In contrast, PED utilizes an angular precessed
electron beam in a STEM or TEM to produce a virtually kinematic diffraction pattern. [195]
The resolution of PED is determined as the spot size of the instrument and can approach
one nanometer. This technique has been utilized to create nanoscale resolution strain
maps [196]. Both TKD and PED require rapid data and thorough analysis to create ACOM
patterns and would greatly benefit from advancements in data handling and processing
algorithms. These improvements can include the development of processes to enhance
resolution and throughput by decreasing "fly-back errors" and other artifacts. Additionally,
the methodologies discussed in section 2, as well as providing in-line data processing are
areas in which the technology is advancing.

5.4 X-ray techniques

X-Ray Computed Tomography (XCT) is another area of microscopy that is dramatically
increasing in usage as higher resolution techniques (nano-XCT) become commonplace.
XCT has historically been used for non-destructive inspection of components. However,
with the advent of additional techniques, its use as a research tool is increasing.

Synchrotron radiation provides powerful capabilities for X-ray techniques including
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improved resolution, fast testing times, and the power to go through thicker materials.
Still, considerable progress has been made in lab-based XCT systems to allow easier
access to “synchrotron” capabilities, albeit on a more limited scale. The relatively powerful
lab-based XCT systems, with resolutions approaching one micron, are proving useful in
analyzing flaws in additively manufactured metals among numerous other applications.
Grain orientations can be measured through samples containing ~1000 grains [197] in a
synchrotron. Even lab-based XCT systems are now incorporating Diffraction Contrast

Tomography (DCT) systems to make similar measurements on a more limited scale.

As an analog to DIC on microscopy images, XCT data sets have the ability to perform
three-dimensional measurements of strain using Digital Volume Correlation (DVC) [198,
199]. Like DIC, the DVC technique requires a speckle pattern. Creating three-dimensional
speckle patterns are more challenging because they require embedding particles inside
of the material to be studied. Often this results in a change in the bulk material properties,
but trends can still be established. A few materials include an inherent three-dimensional
speckle pattern, thereby allowing DVC to be performed directly on the material of interest
[200]. DVC can help identify flaws in material and in-situ experiments can identify damage
mechanisms. Furthermore, due to its sub-voxel resolution, DVC can often indicate where
damage is accumulating before the user can visually detect damage.

In measuring orientations, EBSD is overtaking X-ray diffraction (XRD) as the dominant
texture-characterization technique due to its superior resolution, but XRD is still quite
valuable in a number of circumstances. XRD can be fast, does not require specimen
polishing, and can performed under a less constrained range of conditions since it is not
limited to surface applications within an SEM. Another powerful method for measuring
orientations is neutron diffraction. Although the number of facilities is limited, this
technique can provide grain orientation measurements in large volumes of material. All
of these techniques are frequently combined with in situ loading and heating capabilities
[201].
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6. Potential Future Directions

The intersection of advanced electron microscopy and multi-scale modeling has greatly
benefitted from the recent advancements in large data storage and processing over the
last decade and are well suited to continue the same rapid growth rate over the next
decade. The incorporation of Abberation Corrected (S)TEM (AC-(S)TEM), Energy-
Filtered TEM (EF-TEM), Electron Tomography, Electron Holography, multi-beam SEM,
orientation mapping, and DIC into the average electron microscopist toolbox is a
testament to the advancements in large data processing that have occurred already.
Similarly, the recent advancement in both electron diffraction patterns generated from MD
simulations [112, 115] and the simulation of electron micrographs from strain maps [202,
203] indicates the growing coupling between multi-scale modeling and electron
microscopy. In this section, we will discuss the potential opportunity to further the
advancement of: 1) electron microscopy techniques, 2) validation and refinement of multi-
scale modeling techniques, and 3) the direct coupling of electron microscopy and
modeling efforts.

6.1. Future Directions of Electron Microscopy Techniques

The advancement in data collection, management, and interpretation can be directly tied
to almost all advancements seen in the electron microscopy field over the last two
decades. This is most drastically seen is the exponential increase in the amount of data
collected as electron micrographs have evolved from images taken on film through the
inclusion of CCD cameras to the recent commercialization of CMOS based direct electron
detection cameras. This exponential increase in data collected has not only increased the
amount of sample area imaged, but also greatly advanced in-situ electron microscopy,
electron tomography, electron holography, and aberration correction. The corrections that
made advances such as advanced aberration corrected, energy filtered, and to lesser
extent electron tomography systems possible have been taken a step further in that the
images collected during alignment are input into an automated or semi-automated script
that cycles through the alignment parameters and the images collected until the desired
alignments are complete. It is likely that this trend toward increasing automation of
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alignments and related set-up procedure will continue to expand across the full range of
advanced microscopy operational modes, continuing to increase the ease of use of these

techniques for a broader set of experimental practitioners.

Utilizing advanced image recognition software and machine learning algorithms, it should
be possible for more precise and accurate imaging conditions (such as direct control of
the deviation parameter) to be achieved by an algorithm than by even the most well
trained microscopist. This advance would provide the opportunity for the full set of
imaging condition parameters (e.g., lens settings, tilts, temperature, vacuum conditions,
etc.) to be optimized and recorded for these self-aligning and imaging microscopes. Such
data would allow a much simpler interpretation of the data collected by a trained
microscopist at the time, and would allow the direct input of data into future models (see
sections 5.2 and 5.3). By collecting the metadata of imaging parameters with every image
collected, data linkages and analysis should become easier and more thorough. To
further extend this concept, this should be considered an iterative process and not a one
directional operation. If any imaging conditions changes due to sample drift, a controlled
in-situ stressor, or the like, then the microscope could be preprogramed to readjust at a

given iteration rate and take images at set sample conditions or time intervals.

We expect that these advancements in automation will significantly advance the
characterization of defect structures in the electron microscopy community in three ways.
1) The increased in resolution, stability, throughput, etc. will permit the development of
new and refined techniques. Some of which are not currently imagined by the community.
2) The refinement, optimization, and increased ease of use of current advanced
techniques will permit the application of these techniques to a broader and more
challenging material set. 3) Due to similar improvements in refinement, optimization,
miniaturization, and increased ease of use, the number of advanced techniques that can
be done simultaneously or in close succession will increase. These three routes of
advancement all require advances in large data processing and handling will provide a

faster and more thorough understanding of our material world.
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6.2. Future Directions of Modeling Validation and Refinement

One of the most difficult tasks in validating or refining an advanced model at any length
scale is finding well pedigreed experimental data with which to compare. This challenge
is typically overcome through close collaborations between theorist and experimentalist
throughout the course of a project to ensure that new experimental data being created
that informs the modeling effort. This approach often ignores the wealth of experimental
data in the literature because a subset of the necessary model parameters or outputs for
comparison are absent in the published manuscript. In the future, we anticipate increased
utilization of global interconnectivity and cloud storage, enabling complete raw data sets
and associated meta-data, such as from the experiments described in section 5.1, to be
stored and reanalyzed by future researchers, achieving much greater potential for mining
the wealth of experimental data collected across the community. Efforts along this
direction have been initiated for hosting raw data or supplementary information on web-
based hosting services like GitHuB. The access to raw data has permitted the reanalysis
of data produced previously utilizing recent advancements in analytical software. The
system we envision is the equivalent of a Google of Materials that is easy to access,
provides access to the original raw data and the associated interpretation, and
incorporates the material structure, property, and performance information over a range
of conditions. This globally accessible repository of materials data can be easily used to
guide, refine, and validate the development of predictive models at multiple length scales.
Several academic, non-profit, and corporations are actively developing aspects of such a
vision currently. If successful, this combination of data analytics, machine learning,
database-driven approaches in modeling will not only benefit the theorist attempting to
refine the models, but the experimentalist trying to determine where her data fits in the

history of the associated research.

6.3. Future Directions towards Coupling Electron Microscopy and

Modeling

The predicted big data impact on the advancement of electron microscopy and model
validation alone are impactful, however, we believe that the greatest impact may come
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from the direct, real time coupling of the two fields. If relevant models could run during an
electron microscopy session, then the model could inform the choice of experimental
parameters and interpretation in real time. The concept being that if a relevant model
could be started utilizing the initial geometry, crystal orientation, and chemistry collected
from the initial observation of the sample, then the model could be run in parallel to any
in-situ SEM, TEM, or STEM experiment. This Parallel Experimenting would provide real
time feedback between the model and the experimenting permitting both to be refined
and developed during the simultaneous experiment/model effort. One can envision this
effort being coupled both experimentally (OM, X-ray, SEM, dual-beam FIB to the TEM,
etc.) and computationally (FEM, Mesoscale, MD, DFT) over multiple scales with key real-
time observation made at the appropriate length and time scales. Such an effort has been

proposed and is in early stages with the group led by Jones et al. [179].

Despite state-of-the-art computational models and experimental techniques, the current
capabilities to characterize materials’ structural defects are still limited by the extremely
large dimensional spaces of potential interest and incomplete and uncertain information
on available experimental and computational data. In particular, applying such advanced
techniques is typically extremely time consuming and computationally expensive, limiting
the possibility to conduct full analyses in the engineering-scale domain. To be applicable
in engineering-scale components, many studies focus on a specific process or
mechanism in a representative volume element (RVE), the smallest volume that would
represent the homogenized behavior of the polycrystals. These techniques, along with
practical capabilities in handling and integration of big data, will require ongoing
development to realize the full potential of combining experimental microscopy and
advanced modeling of structural defects. We expect rapid and sustained growth in the
coupled modeling and electron microscopy characterization of defect structures as big
data processing and handling is further developed.
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