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1. Introduction

Big data generated and processed from recent state-of-the-art imaging techniques are

often utilized in computational modeling and analysis. With the explosive progress in

computing resources, computational materials modeling for guiding materials design has

become an important topic in the materials research and engineering communities.

Development of these multiscale computational tools and high-resolution characterization

techniques is regarded as one of the most significant transformational trends of the last

25 years in metal plasticity [1]. Furthermore, recent high-performance computing (HPC)

combined with computationally expensive, high-fidelity computational materials models

informed from high resolution imaging techniques has become a viable option to model

various phenomena in large materials systems. However, as pointed out by Kalinin [2],

two major issues in using big data in imaging techniques and computational modeling are

(1) a need for closer coupling of experiments and simulations to improve the fidelity of the

model and (2) disparity in the length scale between atomic scale experiments and

engineering scale modeling techniques.

Figure 1 shows representative examples of different computational tools and imaging

techniques used in materials design from atomic to structural scales. These various

computational and imaging methods are used to characterize crystalline structural defects

across the wide range of time and length scales. For example, structural defects and

microstructural features are considered from individual vacancies and solute atoms

(atomistics), dislocation line segments (dislocation dynamics) and grain-level

heterogeneities (polycrystal plasticity). Computational models directly or indirectly use the

data generated from imaging techniques as an input (initial configuration) or validation

(final configuration) to investigate statistical distributions and evolutions of defects.

3



ECCI

High.Res.
TEM

SEM. TEM

Optical Microscopy

DIC

Molecular CAD:,

Dynamics

Mobecalm
Dyrstma,

Monle-Carlo

crystal

Discrete oortInuurn

Dislocation ct•Vocaborl

Dynamics wia 
theory

hekt modett

Continuum
Theories stratn

graocra
Meates

n rn ni rl

Figure 1. Computational methods and imaging techniques in various time and length scales.

From reference [3].

For example, computational quantum mechanical modeling methods, e.g., density

functional theory (DFT), are widely used to investigate the electronic structures using

functionals of electron density. The results of such simulations are often compared with

microscopy data to understand structural and chemical properties of interfaces in thin

films [4, 5] or surface structures of atoms and nanoparticles [6-8]. At the atomic/molecular

level (10-9 — 10-7 m), molecular dynamics (MD) is widely used to understand the physical

movement and relaxations of individual atoms and molecules from the potential energy

of the system and the forces on all the atoms. MD simulations are suitable for the study

of defects at the nanoscale and to directly compare with high resolution Transmission

Electron Microscopy (TEM) images, i.e. morphology and intrinsic structures in nanofibers

[9], grain boundaries and twin boundaries [10], deformation mechanisms [11], irradiation

damage [12], strain/slip transfer at interfaces [13] and fracture and failure [14, 15].

Discrete dislocation dynamics (DDD) techniques explicitly model dislocation lines as an

elastic inclusion embedded in an elastic medium. Dislocation dynamics are directly

compared with TEM and SEM measurements to compare evolution of dislocation

densities [16] and dislocation substructures [17]. Meso-scale or grain-scale plasticity

models consider aggregate behaviors of defects in continuum framework (10-3 — 10-1 m).
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Recent grain-scale plasticity models consider microstructural features, such as grain

sizes and shapes as well as crystal structures and orientations, and their defect densities

are either explicitly modeled (i.e. voids and precipitates) or treated as evolving internal

state variables (i.e. dislocation densities). Volume-averaged defect densities can be

directly compared with various electron and optic-based microscopy techniques in

realistic length and time scales.

This direct use of big data generated from high resolution imaging techniques and

computational models outlined above is beneficial to both fields and enabled further

advancements. In the following sections, we review recent advances in electron

microscopy techniques used to characterize crystalline structural defects and discuss the

use of big data in imaging and characterization techniques. Also, we discuss the coupling

of microscopy and modeling techniques and the limitations and future directions using the

big data to advance fundamental materials understanding.

2. Atomic resolution imaging of defects

Tremendous advances in instrumentation and methods for atomic-resolution

Transmission Electron Microscopy (TEM) over the past three decades have broadly

expanded the possibilities for investigators to directly interrogate the atomic-scale

structure and composition of crystal defects. Increasingly these analyses are moving

beyond simple, qualitative images of atomically resolved structures and more toward

quantitative structural and chemical measurements of atomic columns that can be directly

related to and compared against theoretical predictions. Important information regarding

crystal defects drawing on atomically resolved information include the structure and

composition at the defect core, the arrangement and topological character of defect

arrays, and the near and intermediate scale strain field distribution.

Atomic resolution techniques for investigating crystal defects include high resolution

transmission electron microscopy (HRTEM or HREM) and high-resolution scanning

transmission electron microscopy (HRSTEM). These microscopies have been greatly
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advanced by the development of aberration correctors for the electron lenses [18-21],

enabling sub-Angstrom spatial resolution and improved image contrast. In HRTEM, a

relatively large area of the specimen (-100 nm2) is illuminated simultaneously by the

nominally columnar electron beam. The electron wave function exiting the specimen is

focused using the objective lens, and the image is collected on an area detector.

Conversely, in HRSTEM, a highly convergent electron beam, focused by the condenser

lens, is rastered across the specimen and the signals from the electron interactions with

the specimen are collected in series, pixel-by-pixel, on various detectors. For instance,

in high angle annular dark field (HAADF) STEM imaging, an annular detector is used to

collect electrons scattered to high angles beyond the low-order Bragg reflections. Since

the signal in this angular regime depends strongly on atomic number, the technique

provides not only atomic resolution but also compositional sensitivity. A wide variety of

other signals can also be detected in STEM imaging. For instance, annular bright field

(ABF) imaging provides good sensitivity for light elements [22], such as oxygen and

nitrogen, providing complementary information to the high atomic number information that

is more readily obtained via HAADF-STEM. The emergence of multi-channel, segmented

STEM detectors [23, 24] and fast and robust pixelated electron detectors [25, 26] is

allowing for increasingly sophisticated treatments of the angularly resolved scattered

electron distribution, to the level of collecting and analyzing full diffraction patterns for

each pixel of the real-space image. Furthermore, by coupling the scan signal to

spectroscopic detectors, such as an electron energy loss spectrometer (EELS) or,

increasingly, a large area energy dispersive x-ray spectrometers (EDS), atomically

resolved compositional and electronic structure information can be obtained to

complement the structural imaging providing great insight into the structure and chemistry

vicinal to defects and interfaces. Finally, the emergence of atomically resolved electron

tomography techniques [27] are opening up the possibility of extending crystal defect

analyses from two-dimensional projections to more complex, three-dimensional

configurations.

In this section, we provide an overview of atomic resolution electron microscopy applied

to the analysis of crystal defects. Our emphasis is not on the imaging physics, as this
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topic is well addressed elsewhere (e.g. [28-30]). Rather, our intent is to outline some of

the important data handling and analysis aspects of atomic resolution defect imaging. As

we will see, the requirements for accurate quantification and the demands for acquiring

and analyzing the large data sets, which are often multi-dimensional, is motivating

growing application of data science both to the data analysis as well as to understanding

how best to optimize the data acquisition itself.

2.1 Data acquisition

In order to ensure high fidelity and accuracy in the subsequent analysis of atomic

resolution images of crystal defects, it is critical that imaging artifacts be accounted for

and, ideally, corrected. For instance, in HRTEM imaging, aberrations in the intermediate

and projector lenses can introduce long-range distortions, such as pincushion, barrel, and

spiral distortions [31], that can strongly affect the results of strain mapping. Since these

distortions can be stable over time, they can be measured and corrected by obtaining a

lattice image from a single crystal reference material under identical imaging conditions

to the image of interest. Another issue is to ensure that there are no reversals of image

contrast with the image region. Such contrast reversals will impact the efficacy and

interpretation of any peak finding approaches. Furthermore, in strain measurements

using the Geometric Phase Analysis (GPA) method, discussed below, the change of

image phase associated with the reversal of contrast will yield an unphysical strain

measurement. This is a particular challenge for HRTEM imaging where small variations

in local thickness or specimen tilt can lead to contrast reversals. HAADF-STEM

techniques are much more robust in this regard, although as we discuss next, STEM

techniques present other challenges related to probe and drift stability.

For atomic resolution STEM imaging, two common sources of imaging artifact are

instabilities in the positioning of the scanning probe itself and overall drift of the specimen.

Conventionally, STEM images are acquired by scanning one row of pixels at a time, then

advancing to the next row. Electronic instabilities in returning the probe to the beginning

of the row for each sequential scan line can lead to local image distortions known as "fly-

back errors", which can be exacerbated at fast scan rates. More generally, local
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instabilities in the probe positioning throughout the scan acquisition produce local image

registration errors that depend on the directionality with respect to the fast and slow scan

directions. One approach to compensate for such local instabilities is simply to collect a

series of images which are then aligned and averaged together. Furthermore, if the

images are acquired at orthogonal scan rotations, then the asymmetry in the local

distortions between the fast and slow scan directions can be cancelled [32].

Reconstruction algorithms to correct for these local instabilities in single images have also

been proposed and demonstrated. These approaches draw on the inherent redundancy

of oversampled atomic resolution to compare and shift adjacent rows of pixels to minimize

phase discontinuities [33], in the case of Fourier-based methods, or to maximize local

correlations, in the case of real-space methods [34].

Specimen drift poses a further challenge. Because HRTEM is a parallel acquisition

process, specimen drift during image acquisition produces a directional blurring of the

image, and so is generally immediately obvious. In contrast, STEM images are acquired

serially, with probe dwell times on the order of milliseconds per pixel. Thus, moderate

specimen drift results not in blurring, but rather a geometrical distortion of the acquired

image. This distortion can be corrected by application of a compensating affine

transformation. If the image contains regions of perfect crystal, the affine transformation

is that needed to restore the reference regions to the known, undistorted configuration

(and can be determined, for instance, by measurement of the observed interplanar angles

in comparison to the known crystal structures). In the context of strain mapping, the

assumption, of course, is that these reference regions are suitably far from

crystallographic defects to be unaffected by their strain fields.

Alternatively, in the absence of this a priori crystallographic information, the required

correction can be established from a measurement of the direction and rate of the drift

[34, 35]. Of particular note, Sang and Le Beau [35] have developed an approach in which

a series of images are collected at different scan rotations, over the full range of 0° to

360°. Since the drift distortion is a function of its rate and direction with respect to the

8



scan direction, the drift parameters can be directly measured from the image series.

Moreover, once corrected, the images can be aligned and summed together, improving

the signal-to-noise by averaging out shot noise and the random distortions resulting from

local probe instabilities.

Finally, the potential for beam induced artifacts, whether by knock-on displacement

damage or ionization damage, is always a significant concern at the high electron dose

rates typical of atomic resolution imaging. Here, quantitative data analysis methods are

also providing benefit. One approach is to acquire a series of low-dose images that can

be subsequently registered and analyzed to reveal systematic image changes over time

that would be indicative of beam damage [36]. In this way, the optimal tradeoff between

signal-to-noise and beam-induced artifacts can be directly assessed. Image registration

can be done through standard FFT-based cross-correlation algorithms, although this

approach can fail in very noisy images, as is the case for low-dose imaging. More robust

image registration approaches, based on non-local means analyses, have been

established and applied with success to low-dose atomic-resolution STEM imaging [36].

In addition to challenges with image registration, images acquired with fast scanning can

suffer from exacerbated "fly-back errors". Alternative raster patterns, such as spiral

scanning, offer a route to avoid this difficulty [37]. Alternative scan patterns also form the

basis for emerging, compressed sensing methodologies for low-dose atomic resolution

STEM imaging [38]. In these techniques, a sparse and randomized sampling pattern is

used to collect the data, which is then reconstructed using an in-painting algorithm [39-

42]. An example from atomic resolution observations of NiTiO3 [40] is shown in Figure 2.
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and modeling efforts. For instance, experimental measurements of grain boundary

structures have provided important test cases for validating the efficacy of different

atomistic modeling approaches [43-48]. An example showing a comparison between

atomistic models and peak positions from HAADF-STEM images for two grain boundaries

in Fe is shown in Figure 3. They have also helped to challenge and advance our current

theoretical frameworks for interpreting grain boundary structure [49-54], our notions of

interfacial line defects and their relaxations [55-58], and our fundamental knowledge

concerning the structure and relaxation of grain boundary junctions [48, 59].
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Figure 3. Atomic resolution microscopy techniques can be used to validate the predictions of

atomistic modeling. Here, the predictions of atomistic simulations for the /=5 {310} (a) and /=5

{210} (b) grain boundary in Fe (red and blue), computed using the Mendelev potential [60], are

compared with intensity peak positions (yellow) observed by HAADF-STEM in an experimental

grain boundary. From reference [48].

The most basic level of comparison between experimentally observed and modeled

structures is often to relate the positions of the intensity peaks (or minima) to the predicted

atomic positions for the defect. The simplest approach to determine the peak positions

is to search for local maxima in the image. However, to improve robustness with respect

to noise, the starting image is typically pre-processed. Approaches to pre-processing for
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peak finding include simple real-space smoothing operations (such as median filtering or

Gaussian smoothing), Fourier filtering to suppress high spatial frequency components

[61], and Wiener filtering [62, 63]. Another approach is to cross-correlate a template

function (e.g., of an atomically resolved peak or structural motif) and then perform a

search for the maxima in the cross-correlation function [64, 65]. Following this initial

determination of the peak positions, approaches to improving the peak localization

include filtering to eliminate superfluous peaks within an exclusion radius, performing a

local intensity of mass refinement [66, 67], or fitting the local signal to a model for the

peak (such as a Gaussian function) [32].

Although this approach serves as good first cut at determining the atomic structure, in

general the image intensity peak positions may differ from the actual atomic column

positions, particularly at defects, and other contrast features may arise due to dynamical

scattering that have no one-to-one intuitive relationship to the atomic structure. Hence, it

is often necessary to simulate images for postulated atomic structures, accounting for the

various parameters associated with the instrument (e.g., focus, convergence angle, lens

aberrations) and specimen (e.g., thickness and crystal tilt) in order to meaningfully

interpret and quantify the observations. A number of software packages for HRTEM and

HRSTEM image simulation are available (e.g., Dr. Probe [68], JEMS [69], QSTEM [70],

[71], COMPUTEM [30, 72]).

Once simulated, and appropriately scaled in size and intensity, the images can be

compared by evaluating the deviations between simulated and observed peak (or

minima) positions or in a more sophisticated manner, by comparing the intensity

distributions on a pixel-by-pixel basis. Metrics for comparing the simulated and

experimental images include the Normalized Euclidean Distance (NED) [64], the Chi2

statistic [73], and the R-value [74]. For periodic images, it is often useful to average

multiple identical unit cells to increase the signal to noise [64, 65]. Several iterative

refinement approaches, which compare the observed and simulated images and then

adjust the structure until convergence, have been implemented [64, 73, 74]. The

precision of atomic site location depends both on the nature of the image simulation model
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and the accuracy of the determination of its parameters as well on the noise and statistical

variability in the image itself. Through careful consideration of these factors, rigorous

statistical methodologies for establishing the uncertainty bounds for the atom site location

have been developed [74-78].

With the increasing possibility of collecting large area sets of atomically resolved data,

there comes the challenge of efficiently segmenting this data to identify the location of

crystal defects and to assess or classify the defect type or local atomic configuration.

Here, microscopy is beginning to draw on visualization and segmentation approaches

originally developed in the atomistic modeling community for large atomic simulation data

sets. For instance, the centrosymmetry parameter [79], which is widely used for

visualization of large-scale atomic simulation, has also been adapted and applied to the

analysis of atomic resolution TEM images of crystal defects and interfaces [58, 80-82]. A

more quantitative approach for visualizing and characterizing the core structure

dissociated dislocations is to compute the local components of the Nye Tensor [83]. This

approach has also been extended to atomic resolution TEM observations [84, 85]. Figure

4 provides an example of an experimentally observed dissociated dislocation analyzed

using both the center of symmetry and Nye Tensor methods [85].
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Figure 4. Visualization approaches originally developed for atomistic simulations can also help

in visualizing and segmenting atomically resolved experimental images. This example shows an

HAADF-STEM image of a dissociated 1/2<110> dislocation in a high-entropy alloy (a). The defect

is analyzed using (b) the center of symmetry parameter [79], showing the position of the stacking

fault, and (c) the Nye Tensor [83], showing the separation of the partial dislocations. From

reference [85].

The limitations of atomic-scale crystal defect analyses in conventional two dimensional

projections are being overcome by the emergence of electron tomographic methods with

atomic resolution [27]. One approach to extracting atomic resolution 3D information is

through electron optical depth-sectioning [86, 87]. In this technique, a highly convergent

electron beam, which has a narrow depth of focus, is adjusted to sample different depths

of the specimen. This approach has been applied to measuring three-dimensional atomic

displacements associated with the screw component of dislocations both aligned with the

beam [88] and transverse to the beam [89] and to image buried grain boundary facets

[21]. Atomic resolution electron tomography can also be conducted by collecting a series
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of images over multiple tilt angles and then reconstructing a three-dimensional atomic

representation from the suitable aligned data set. This approach overcomes the

limitations resulting from finite depth-of-field optical sectioning approaches but does

require specimens stable to the large electron dose obtained under multiple electron

image exposures. Examples include analysis of nanoparticle morphology [90, 91], grain

boundaries [92], dislocations [93], and measurement of three-dimensional lattice strain

[94, 95].

2.3 Strain Mapping from Atomic Resolution images

The ability to resolve the atomic-scale crystal lattice in advanced microscopy affords the

opportunity to directly measure distortions and strain around crystallographic defects.

There are two major approaches to such strain measurements. Real space methods for

strain mapping most commonly rely on some sort of peak fitting of the atomically resolved

lattice and then a comparison of these peak positions with a reference lattice, often fitted

to a nominally unstrained region of the image [61, 66, 67]. Alternatively, in Fourier-space

methods one computes the Fourier components of the real-space image and then

determines the displacements and strain from an analysis of the spatially resolved phase

shifts of these components. For either approach, it is critical that the starting image be

free of distortions resulting from the imaging process itself as discussed above.

Fourier space methods for strain mapping are useful because they avoid the need for

peak fitting while still drawing on the full set of image data. The predominant Fourier-

based approach to strain mapping is the GPA method [96]. This approach has been

widely applied to the analysis of crystal defects. Examples include work on strains and

rotations at twin and domain boundaries [97-99], crystal lattice dislocations in bulk [100]

and 2-D [101] materials, grain boundary dislocations [100, 102] and misfit dislocations

[103-108]. An example showing displacement fields measured near a dislocation in

Silicon is shown in Figure 5.
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Figure 5. Atomic resolution images can be analyzed to quantitatively measure strain fields in the

vicinity of crystal defects. The example here shows displacement fields measured using the GPA

method [96] from a HRTEM image of a 1/2<110> dislocation in silicon (a, b). The experimental

measurements are compared against the predictions of anisotropic elasticity (c, d). From

reference [109].

The basis of the GPA method is to extract spatially resolved Fourier components from an

atomically resolved image and to determine displacements and strain from the phase

shifts of these components. Specifically, a real-space image, with intensity, I, at position

r, can be represented by [96]:

1(r) = Eg Hg(r)exp{2mig • r} (1)

where Hg(r) are the local values of the Fourier components associated with the reciprocal

lattice vectors, g. To compute the phase image for a specific g, the image is Fourier

transformed, a mask is constructed around the selected g, and then the inverse Fourier

transform is computed, giving the complex image that can be expressed as:

I-1g (r) = Ag(r)exp{2mig • r + iPg(r)} (2)
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Here, A9 is the position resolved amplitude and P9 is the position resolved phase. The

two-dimensional displacement field, resolved into components along directions x and y,

is determined from the phase images computed from two independent reciprocal lattice

vectors, gi and g2:

x giy) 1 (PO
'1,131) - 27r g2x g2y ) Pg2) (3)

The two-dimensional strain field is then determined by differentiation of the displacement

field.

In practice, there are several important considerations for how the data are treated in

order to obtain reliable and physically meaningful results from the GPA method. One

issue is the potential for artifacts such as spectral leakage since the Fourier transforms

are operating on data set of finite extent. This issue is typically mitigated by employing a

window function, such as a Hann function, to smoothly attenuate the data at the edges of

the image. Another critical issue is the selection of the mask for selecting g in the

computation of the phase image. With decreasing mask size (in reciprocal space), there

is a tradeoff between decreased sensitivity to noise and reduced spatial resolution. An

optimal mask diameter (typically chosen with a Gaussian profile) has been recommended

at —0.25g (at FWHM) [110]. The selection of g can also be critical. For instance, Peters

et al. have shown that large artifacts in the strain measured by GPA analyses of

compounds possessing compositionally distinct sublattices due to additional contributions

to the phase term [110].

3. Mesoscale Defect Characterization

In addition to better understanding the atomic scale interpretation of HRTEM images and

HRSTEM and maps, large data processing also has the potential to greatly enhance the

interpretation of defect structures captured by Select Area Electron Diffraction (SAED)

patterns and conventional TEM characterization techniques. This section reviews three

research areas with great potential for rapid advancements in the coming years. They
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include: 1) diffraction pattern simulations from MD simulations, 2)structural defect

analysis with a focus on nanometer size defects, and 3) electron holography and

tomography to gain a fuller understanding of defect type and location in a TEM foil.

3.1 Electron Diffraction Simulations

Similar to the extensive progress made in coupling atomistic modeling to MD simulations,

a similar effort has occurred in coupling MD simulations with electron diffraction

characterization. From the modeling perspective, there have been great strides in

coupling the SAED and NanoBeam Electron Diffraction (NBED), [111, 112] as well as

potentially Precession Electron Diffraction (PED) and BF/DF (Bright Field/Dark

Field)STEM maps. This analysis is already incorporated into the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [113] and as such provides a

direct coupling between any MD simulations and diffraction based characterization. This

is similar in nature to the phase contrast simulations that have existed and been refined

over the last three decades. [114] An example of the MD and simulated diffraction pattern

directly resulting from the LAMMPS diffraction code is seen in Figure 6 for a grain

boundary in a simulated Ni sample. [115] The production of such data from the MD code

permits rapid and direct comparison to electron diffraction data collected during a TEM

study.
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Figure 6. The structure of minimum energy Ni [010] STGBs in MD simulations with tilt angles of

(a) 10.39° and (b) 12.68° each created by an array of dislocation cores separated a distance dp.

Simulated SAED patterns aligned on the tilt axis show (c, d) the corresponding misorientation of

and (d, e) subsidiary peaks associated with the desolation array near the (002) reflections. From

Reference [115].

The ability to created and characterize simulated diffraction data has the potential to simulate

experimental conditions during in-situ experiments, as well as directly compare to Precession

Electron Diffraction (PED)/ Transmission Kikuchi Diffraction (TKD)/ Electron BackScatter

Diffraction (EBSD) (discussed further in section 5) and many other electron diffraction-based

techniques. The ideal condition would be if the analysis could be done during the electron

microscopy session, so that defect structures in the TEM sample can be characterized on the fly.

3.2 Mesoscale Defect Analytics

Since the original development of TEM, [116] it has been used to characterize the type,

density and interactions of structural defects in the TEM foils. These studies have required
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not only meticulous Scanning Transmission Electron Microscopy, (S)TEM, alignment, but

also often very tedious analysis. In addition, more often than not this detailed analysis

cannot be directly inputted into a model and is only loosely compared to the predictive

models in the same system. However, the recent emergence of improved control systems

during the TEM study and advanced codes for data analytics, this paradigm is rapidly

changing. This section in particular will focus on nanometer scale defects located in a

microstructure. For atomistic defects see section 2 and for grain and grain boundary

characterizations see section 5.

In contrast to optical microscopy and to a lesser extent SEM at their respective length

scales, the trusted automation of defect analysis during a TEM study has been extremely

elusive. This is in part due to the drastic change in contrast that occurs due to small

variations in the deviation parameter that can occur due to small tilting or local bending

of the sample [117]. This has been significantly decreased recently due to the

development of precession electron diffraction techniques and BF/DF STEM techniques

discussed in section 3.1. An extremely difficult experiment is the characterization of

dislocation loop type and density in a TEM sample [117]. A recent example of such work

that utilized meticulous TEM tilting experiments coupled with image analysis software was

completed by Yi et al. in self-ion irradiated tungsten [118-120]. The large amount of

dislocation loops characterized in these studies demonstrated the importance of such

techniques in understanding the role of processing and environmental conditions on the

distribution of defects created. In order to have any level of confidence in the defect

density reported, careful attention must not only be paid to the image conditions, but also

to the thresholding done during the image analysis. An example of such a threshold in

the self-ion irradiated tungsten study can be seen in Figure 7. Such detailed analysis is

needed to delineate the contrast due to defects present in the TEM foil from the plethora

of other contrast producing artifacts [117]. Currently, this detail is best done by hand and

is very much reliant on the expertise and skill of the microscopist performing the

thresholding, although work is currently underway on the same data set by Daniel R.

Mason and others to automate the analysis utilizing adaptive learning algorithms. Many

controversies have arisen in the microscopy community due to unintentional human
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errors during the characterization of structural defects from multiple micrographs (e.g.

interstitial stacking fault tetrahedra [121, 122]). Many groups across disciplines are

implementing various forms of machine learning and other algorithms to improve the

thresholding and interpretation of electron micrograph analytics for a wide range of TEM

samples and imaging conditions [123-125].

(a)

(b)

(d)
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0

0 Small/faint loop

El Largeobright Limp
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2 ti

(0

Figure 7. Demonstration of loop sizing in an irradiated pure W specimen with 3D surface plots

constructed on the same intensity scale (viewed in the x—z "intensity" plane) [65]: (a) the original

grey scale image; 3D surface plots profiles of a large/bright loop in (b) grey scale and (c) binary

format respectively; 3D surface plots profiles of a small/faint loop in (d) grey scale and (e) binary

format respectively. From Reference [120].
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In addition to the direct defect counting, the rapidly improving data analytics that can be

obtained provide the ability to better couple TEM experimental observations with atomic

and mesoscale models. This chapter will only highlight some of the recent advancements

in this coupling. Readers are encouraged to explore the recent review by J. Marian et al.

for a deeper exploration of modeling and experimental coupling at the nanoscale. [126]

This coupling has been driven by both the modeling and experimental efforts. There has

been an exciting effort led by De Graef et al., at Carnegie Mellon University to directly

simulate BF/DF TEM micrographs from strain maps that can be produced from most

mesoscale simulations. [127-129] The combinations of these modeling approaches

should permit direct coupling between atomistic and mesoscale modeling to a large range

of (S)TEM based techniques. The current barrier limiting the further coupling of (S)TEM

experiments and atomistic and mesoscale modeling is the extensive resources needed

to complete any of the coupling described above. We predict with increasing microscope

control, improved algorithms, and better transfer of variables that such coupling will

become increasingly more commonplace.

3.3 Electron Holography and Tomography

The improved automation of TEM controls and the efficiency of handling large data sets

in a smart fashion over the next few decades should provide the ability for uncommon

TEM techniques to be automatically incorporated into the alignment of the TEM or

implemented upon request. Two such techniques that can be integrated into normal TEM

characterization are in-line electron holography and electron tomography. In-line electron

holography entails the collection of a through-focal series that is then processed to map

out the phase shift present in the region observed. An example of electron holography of

cavities in an aluminum TEM foil can be seen in Figure 8. [130] The phase shift map can

then be associated with a range in local structure and property variations present in the

sample. Such through focus series required to produce in-line electron holography maps

are collected manually or automatically every time the TEM focus is aligned. Presently,

these through focus sets are rarely converted to in-line electron holography maps due to

the complexity and computational resources for such an undertaking.

22



I
(b)"';V,i7:6''''''.1::',:;: 1̀251P1.;

5.„.. . otA.k...f.,i•='-..7.:-;:e.4. P45,
p-4-5,,,e,:.`:,,.. :;3;st4:!-1:;,%-(...?-) '''-:-";'•
7, TV: il.:,.t1 eye  ♦.f.,,,,..7-:,--t.,.?),..:...i. ..,
t,-i /,,,.. ,fp,,;-.-A-:i,-41...ifir;•t / t
'frliir-sk,ri,41'i,fi.,-;,--zetT-..7).e.,--.,4,,,...',-, ,s: .4f. i:i .4 e ....• K" kfT'14' • - 1'4;4 • ,•
t;',%t t'":fi4 I.:. -• • .t•Si. R;Yx, ' • 0 . I
!at ,1/Cfe.,`, 

, • . _ ,* I I i - v,• ; . .,„,

• 41,1,•••• , 't :..1.:04`11‘,,.'
0 it .it r r ,' IP!' ' , t• .-,'"- ',.. • . f

l9+;. 

,
r. terk:ol

-..1.;',.., i.'" 4. 1".-, ...
- 1,...t., _ . ... .-..q;=i- 4i •
1.47i!.,:. , • -,, :ii:',.t:;';'' '

A• 1 ,4;' ;;C-e"ii et- ..51 %':;-r.:
:1':: 4,.!Pi•iFt' ,2!4:. .1 eaAt. :14 ' 11

•Pti4114.',',..- -?.): . ' 11"ciA
,94,4„,

:6: rlri-ii: -1,,I,v.v. . 7'
1....41.1 V41' ' . :Si Vi !.

I . Viii2...11N tr! t, ,

Figure 8. Phase map of cavities in al TEM foil retrieved from the focal series using the in-line

holography method, in (a) grey level, and (b) color displays. The scale in Figure 8 (b) refers to the

phase shift measured in radians. On the right side, high magnification on phase image details:

(top) a cavity of about 13 nm formed at the precipitate/matrix interface, the associated phase shift

is -1rd (green on the color scale), (bottom) nanoscale cavities in the matrix (negative phase shift)

and domain with positive phase shift (violet on the color scale) further interpreted as interstitial

cluster. From Reference [130].

Similarly, one of the methods already utilized to set the eucentric height of the TEM

sample in modern TEMs is small angle calibrated tilting of the goniometer. If during this

procedure calibrations images were taken at multiple tilts, an image set required for

electron tomography reconstruction would be possible. The ability to do automated

electron tomography is significantly more advanced than many other electron microscopy

techniques due to the high demand to understand the three-dimensional aspect of the

inherently projection image. This development in amorphous materials is significantly

further along than for crystalline samples due to the large and concentrated effort from

the cryoTEM and biological community [131, 132]. However, some very nice examples of

thorough and painstaking electron tomography results in crystalline samples have been

achieved. Figure 9 is an example of radiation damage present in a wedge shaped Mo

sample taken in WBDF by Li et al. [133]. A full tilting experiment of this sample was

completed. This clearly demonstrates the defect denuded zone near the top and bottom

surface of the sample, as can be seen in Figure 10, which can also be directly correlated
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to the defect distribution predicted by MD simulations of a virtual TEM sample exposed

to equivalent Primary Knock-on Atom (PKA) damage [133-135]. Efforts like these

demonstrate the potential impact to understand the factors governing microstructural

evolution, as well as overcome some of the traditional limitations of TEM characterization

but are rarely completed due to the time and effort required to properly analyze the data.

Expected advancement and applications of machine learning and similar algorithms

should greatly assist in the handling and smart processing of such micrographs.

Figure 9. Weak beam dark field (WBDF; g, 5 g) images of the same specimen area showing

defect cluster accumulation as a function of dose for Mo in situ irradiated up to 5 x 1012 ions/cm2

(-0.015 dpa) with 1 MeV Kr ions with a flux of 1.6 x 1011 ions/cm2/s (-5 x 10-4 dpa/s) and at 80°C.

From Reference [133].

24



40

35

cu
"0 15

o
6 10

5

o
o

Mo ion-irradiated at 80°C

  0
10 20 30 40 50 60 70 80 90 100 110

Depth (nm)

Figure 10. Size distribution of defect clusters as a function of foil depth in Mo irradiated to

5 x 1012 ions/cm2 (-0.015 dpa) at an ion flux of 1.6 x 1011 ions/cm2/s (-5 x 10' dpa/s) and 80°C

with 1 MeV Kr ions (a) foil depth of 0-40 nm, (b) foil depth of 40-70 nm, and (c) foil depth of 70-

110 nm. From Reference [133].

As we hope is evident in this section, the recent advancements in mesoscale defect

characterization is just the beginning of a much deeper understanding of the defect type,

density, and 3D distribution in a sample due to the rapidly advancing capability to

characterize and process large data sets. The sub-fields of 1) diffraction pattern

simulations from MD simulations, 2) structural defect analysis with a focus on nanometer

size defects, and 3) electron holography and tomography are all posed to have rapid

growth in the coming years to increased data processing and automation.

4. Time Resolution

To date, there have been three major advancements to enhance the temporal resolution

of electron micrograph acquisition. These include, in order of significance: 1) development

of direct detection CMOS based cameras, 2) the development of the Dynamic

Transmission Electron Microscope (DTEM), and 3) the development of the Ultra-Fast

SEM and TEM (UF-SEM or UF-TEM). These three options were envisioned, designed,

and developed over the last few decades to decrease the electron dose that beam
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sensitive samples are exposed to during imaging, increase the maximum temporal

resolution possible during an in-situ electron microscope experiment, or both

simultaneously. The remainder of this section will describe the historical evolution and

details of each design concluding each subsection with a discussion on the potential for

increased capabilities through enhanced data processing routes.

4.1 Solid State Cameras

It was only a little over a decade ago that the debate in electron detectors resolution and

general capabilities was between film and CCD imaging. [136] During this time period,

the CCD camera expanded to become the system of choice due to the ease of use, ability

to check image quality quickly, improved safety, and decreased environmental costs

compared to film for most applications. However, at the same time that CCD cameras

were dominating, CMOS-based monolithic active pixel sensor (MAPS) detectors were

being developed for space applications [137] and then for ionizing radiation applications

[138]. This trend continued with a paper that's title included 'new eyes for science'. [139]

This was the turning point as shortly thereafter the options and capabilities of direct detect

cameras rapidly grew for transmission electron microscopy. [140]

This disruptive evolution in detector hardware technology has created both a crisis and

opportunity in the field. The crisis arises from being able to quantify the quality of the data

produced by the new cameras, as well as properly handling and processing all of the data

produced per experiment. The concerns about detector quality as a function of time was

best described by G. McMullan et al. who said "performance of these new detectors needs

to be carefully monitored in order to optimize imaging conditions and check for

degradation over time. We have developed an easy-to-use software tool, FindDQE, to

measure MTF [Modulation Transfer Function] and DQE [Detective Quantum Efficiency]

of electron detectors using images". [141] However, if the new artifacts are properly

understood and accounted for, similar to the dark field correction to remove the

honeycomb overlay present in all CCD images, the direct detect technology has many

significant opportunities. These include drastically increasing the spatial resolution
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possible under low electron flux imaging conditions (DQE up to 80%), while also

decreasing the temporal resolution in the range of 400 frames per second (fps).

Many state-of-the-art research advancements have been possible due to the expanded

opportunities provide by the direct detection systems. An example of direct observation

of nanoparticle evolution during high resolution observation at a 2.5 ms frame rate can be

seen in recent work done by E.A. Stach et al. (Figure 11) [142]. In a similar manner, the

state-of-the art has been advanced in many applications with the low electron dose

environment and rapid imaging sequence provided by the direct detect systems. These

range from near-atomic-resolution single-particle cryo-EM studies [143] to rapid image

sequencing of the deterioration of the metal/oxide interface that is the core of corrosion

and many other fields [144].

Figure 11. Phase contrast images of the sintering of Au/Cu nanoparticles. The images were

obtained at a 2.5 millisecond frame rate in a continuous video stream. Individual images that

capture the dynamic changes occurring at the interface during sintering are shown. From

Reference [142].
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The large amount of data produced by the advancements in TEM camera systems

requires the implementation of smart data processing. This development of proper

protocols and programs to handle the data is still very much in its infancy but has great

potential. As opposed to the continuous collection of data, the current software permits

the temporary storage of data with key recent past segments (—seconds) pushed to long

term storage on the user's command. This is just one of many data issues and possible

tricks to automate around the large quantity of data produced by this transformative TEM

camera technology. [145] However, the development of strategies focused on how to best

handle the data is not taking full advantage of the possible new areas of research

permitted by this hardware advancement. An example of such development of new

techniques utilizing direct detection systems is the rapid development of in-situ STEM

based techniques spearheaded by scientists at the National Center for Electron

Microscopy (NCEM). [146] The core concept with this approach is to minimize the use of

post samples apertures and fast detectors; thus, collecting as many electrons leaving the

TEM foil as possible during a STEM scan. This provides virtual BF, virtual DF, and HAADF

images among other potential data simultaneously. An example of such work exploring

the local strain mapping of a GaAs/GaAsP system can be seen in Figure 12 [147].

Increased capabilities through enhanced data processing routes provide the ability to

characterize nanoscale changes in strain maps like those in Figure 12 during complex in-

situ experiments. [148] The ability to apply this to a range of in-situ (S)TEM goes

significantly beyond these initial studies, and as a result, opens a range of new

connections between experiments and modeling efforts.

28



(d)
2

1.5
1

0.5
o 0 ,11 I MI,up -0 5 111111111 11' II I 1111111111111111[117111.1,

-1.5
-2

irj-1111(0111111,10401dfiblinhoillAilholifillhoi,hili 

Pll'i
0 100 200 300 400 500

y-posItIon (nm)
600 700 800

Figure 12. NBED analysis of a GaAs/GaAsP multilayer device cross-section across a large 1 pm

FOV. (a) HAADF image of the analyzed section. Insets are CBED patterns taken from areas 1

and 2 showing the misorientation possible to analyze with the technique. Inset labeled 3 is a short-

range stacking fault. (b) NBED strain map of Eyy strain where y is the [002] direction. (c) NBED

strain map of Exx strain where x is the [220] direction. (d) a Eyy profile scan across the entire device

as indicated by the vertical box in (b). From Reference [147].

4.2 DTEM and UFTEM

The effort to advance the temporal resolution of TEM experiments does not stop at the

400 fps range, but advances down into the nanosecond and picosecond regime through

the development of dynamic TEM (DTEM) and ultra-fast TEM (UFTEM), respectively.

Both of these techniques have greatly evolved over the last two decades through rapid

advancement in the coupling of laser innovations and TEM optics. Both types of system

utilize a laser to excite the cathode and control the release of electrons and a pump-probe

design to explore the properties of the sample. The two technologies provide different but

complementary capabilities. The DTEM is designed for non-reversible processes and as

a result an adequate number of electrons must be produced from every burst of electrons.

In contrast, the UFTEM is designed for reversible processes and the images can be
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added to provide suitable image resolution with improved signal-to-noise. Over the last

decade the DTEM system has evolved from the collection of simple single diffraction

patterns or bright field images [149, 150] to a complex "movie mode" design where a

small set of images (9, 16, etc.) is collected on a single large CCD detector by deflecting

the electron at the bottom of the projector system [151]. In a similar manner, the ultra-fast

electron microscopy field developed from the Noble prize winning work by the Zewail

group in ultra-fast electron diffraction [152] through a range of UFTEM design and

strategies [152-154] to current versions of an UF-Field emitter TEM design[155] and UF

SEM capabilities [156, 157]. Both DTEM and UF-TEM system hardware development has

been impressive. However, both demonstrate the need for smart data processing to

improve data integration, deconvolution, as well as timing determination and control. If

improvements can be made to improve the integration and automation of the control

system, along the lines of that underway for AC-TEM systems, significant opportunity for

main stream introduction of DTEM and UFTEM will be possible. Similarly, a direct and

efficient way to handle and process the large and convoluted data sets produced by these

techniques would greatly advance the applications with picosecond reversible and

nanosecond irreversible dynamics.

5. SEM and X-Ray Mapping Techniques

In recent years, several advances have been made in SEM, optical microscopy, and X-

Ray techniques. These include: (1) faster imaging and larger images through montages,

(2) Strain measurements through digital image correlation (DIC), (3) orientation imaging

such as Electron Backscatter Diffraction (EBSD) and Transmission Kikuchi Diffraction

(TKD), and (4) Improvements in speed and resolution of X-Ray Computed Tomography

(XCT) and the use of XCT for Digital Volume Correlation (DVC).
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5.1 Electron Microscopy

5.1.1 SEM

At the microscale, a single electron microscope image is often the size of a single grain.

To take advantage of the high-resolution imaging capabilities, yet still obtain statistically-

significant regions of interest, image montaging (combining multiple images into a single

large image) is often employed. In some cases, a large pixel-count camera would largely

address the problem; however, such large sensors are often unavailable. Furthermore,

researchers with a large sensor would likely still stitch together images and data sets

because the demand for large data sets vastly outscales the current sensor pixel counts

by several orders of magnitude. Most scanning electron microscopes have software to

perform such image stitching but they typically do not have stitching accuracy sufficient

for DIC. Stitching images can also take considerable time if large regions are to be imaged

successively (e.g. at each load level for in situ testing). One area in which data processing

of SEM image montages is making an impact is in fracture surface analysis. Large

montages can be used to characterize void fractions on fracture surfaces in high-porosity

additively manufactured samples. Each fracture surface can be completely covered with

high enough resolution to discern important details such as fracture origin, pores, or

inclusions. The ability to examine of dozens of specimens like this in an automated way

will likely impact statistics of tensile tests.

5.1.2 Multiple Beam SEMs

One solution to obtaining very high resolution images over large regions is a multibeam

SEM system [158]. These systems currently integrate up to 61 or even 91 electron beams

into a single microscope. Each beam is used to image a tile, and tiles are montaged into

larger images (Figure 13). In a typical scan, a pixel size of 4 nm can be used to image an

area of a square centimeter in a matter of a few hours. A single square centimeter at this

resolution corresponds to a 625,000 Megapixel image! Consequently, data transfer,

storage, and analysis become significant undertakings. Fiber optic connections with
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dedicated servers are necessary. Due to the slow speed of long distance data transfer, it

is often faster to physically ship hard drives with data than to transfer data electronically.
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Figure 13. (Left) An image pattern from a multi-beam SEM. In this case, 61 rectangular images

are tiled to form an approximate hexagon shape. (Right) Many of those hexagons (same region

outlined) are then tiled to image large regions. (Courtesy of Joseph Michael, Sandia National

Laboratories)

The potential of multibeam SEM systems is promising. However, harnessing this potential

requires significant effort. Processing such large datasets necessitates the need for

algorithms and parallel computing rather than individual analysis by researchers as has

been done throughout the history of materials science. Thus far, this data has only been

analyzed with simple algorithms such as searching integrated circuits for flaws. [158]

Early work has been done in using multibeam SEMs to search for pores in cross sections

of additive manufactured materials (Figure 14). The advantage of this system is apparent;

all flaws larger than —400 nm can be identified within regions encompassing several

square millimeters.
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Figure 14. Multi-beam SEM imaging of a broken additive manufactured specimen with

widespread porosity. These images can be used to characterize porosity distributions from sub-

micrometer voids and larger. (Courtesy of Joseph Michael, Sandia National Laboratories)

In addition to flaw detection, these microscopes have great potential for characterizing

microstructural phenomena over large scales for statistical analysis. One such technique

is microscale high resolution digital image correlation (discussed in a subsequent

section). At this time, sufficiently fine speckle patterns cannot be generated to take

advantage of this imaging system, but they certainly will be in the coming years.

Multibeam SEM systems do have some drawbacks that should be noted. Artifacts such

as ghosting from nearby tiles and contrast variability are common. Furthermore, these

currently only work with secondary imaging on flat specimens. This limits the types of

experiments that can be performed since secondary imaging often brings out surface

topography.
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5.2 DIC

5.2.1 Full-field implications for modeling

The development of digital image correlation (DIC) in the 1980's [159] was a major driver

towards digital full-field data in the materials science community (along with EBSD and

grid techniques). Digital image correlation began to replace its full-field predecessors

such as moiré interferometry and photoelasticity due to its wider applicability and relative

ease of use [160]. DIC has a particular advantage for microstructural scale experiments

over preceding techniques due to its lack of an inherent length scale; it can be used on

images from nanometer to kilometer scales.

Several different approaches can be taken to work with these large, full-field data sets.

The simplest and most common approach is to plot the fields for display purposes; this

approach is useful, but is rarely the most effective use of large data sets. The goal of data

science is to leverage rich data sets (combinations of multiple sets of data, for example)

to better understand the phenomena being observed. A micromechanics example of this

is the alignment of EBSD measurements of crystallographic orientation with full-field

strain measurements from digital image correlation [161, 162] in Figure 15. Aligning fields

of data from separate techniques is a powerful approach that will be necessary for making

progress in materials science going forward. This method is quickly becoming one of the

dominant methods for informing and validating crystal plasticity models.
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Figure 15. An example of aligning multiple data sets (taken from [173]). (top) A speckle pattern

on a fracture specimen was imaged to observe a fatigue crack's growth relative to the

microstructure. A small region around the crack tip was imaged using (left to right) backscatter

electron imaging, EBSD, and DIC strain fields (in the vertical direction). In the DIC map, grain

boundaries from the other two maps are overlaid.

A more involved data-science approach to these full-field data sets is to perform

collocation (least squares regression) analysis to extract parameters that describe the

displacement field such as a stress intensity factor near a crack [174, 175]. This has been

done using DIC data [174, 175] and using data obtained from other approaches such as

moiré interferometry, photoelasticity, and holography [176, 177]. An example of

35



collocation of DIC data around a crack tip with the analytical solution is shown in Figure

16.
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Figure 16. Example of the collocation technique on a vertical displacement field around a crack

tip. Parameters such as the stress intensity factor, T-stress, rigid translation, and rigid rotation are

chosen to minimize the error between experimental measurements and the model displacement

field. Taken from [174].

Yet another approach to handling full-field data sets has been to exploit the varying nature

of stress and strain fields in complicated geometries to provide rich data sets for model

development. One approach to this has been the virtual fields method championed by

Pierron and Grediac [178]. The virtual fields method employs specimen geometries that

have a wide variety of stress and strain states throughout the specimen. By using the

principle of virtual work, the model fits these multiple stress/strain states to extract

material parameters. This technique is currently in the early stages and is being used for

macroscopic material models [179] currently; however, it shows promise for application

at the microscale. Undoubtedly, more complex approaches will be developed towards

understanding microscale behavior by applying machine learning techniques such as

data science or neural networks to large experimental and simulation data sets.
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In addition to various plasticity models that predict material's physical properties,

computational models to accurately reproduce microstructural features and their defects

in polycrystalline materials are being developed and coupled to multi-scale experiments.

For example, kinetic Monte Carlo [163] or phase field [164, 165] based techniques are

used in grain growth simulations to reproduce realistic RVEs of polycrystalline

microstructures. It has been shown that accurate representations of polycrystals are

required for high fidelity polycrystalline simulations in both atomistic and continuum scale

simulations [166, 167]. More recently, concepts and toolsets from data science are being

adopted in computational materials science. For example, reduced-order models [168,

169] or database-driven approaches [170-172] are developed to avoid computationally

expensive simulations or to establish efficient process-structure-property relationships.

5.2.2 HR-DIC

The incessant drive for images with larger pixel counts is acutely felt in the DIC

community, in which each pixel directly represents more data. Due to the nature of DIC,

increasing pixel count, even without any direct improvement in measured resolution (i.e.

limited by the speckle size) will provide improved accuracy due to the fact that the

technique averages over large numbers of pixels for each subset. However, a more

typical use of increasing pixel count is to shrink the speckle size to obtain finer resolutions

and improved accuracy over larger areas. DIC derives its subpixel accuracy (typically less

than 1/100th of a pixel) [180] from averaging the motion within square subset regions of

many pixels. A typical subset size for small scale DIC might be 51 x 51 pixels, meaning

that 2601 pixels are analyzed to obtain the strain value at a single data point. If the pixel

count is doubled without modifying the speckle pattern, an equivalent subset size would

be approximately 101 x 101 pixels. Therefore, the same subset region would be analyzed

with four times as many pixels, 10,201, resulting in better averaging of pixel positions and

more accurate DIC displacement and strain values. Of course, this improvement comes

at a cost—four times as many pixels need to be captured at the increased magnification

to cover the same area. Additionally, extra processing time and storage are required to

analyze the considerably larger pixel counts.
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In many cases, the extra resources required to analyze large pixel count images

(-40MPix) with DIC are worth it. Performing DIC on high pixel count images has been

termed "High Resolution Digital Image Correlation" (HR-DIC). [181] The tradeoffs and

techniques for performing HR-DIC were outlined in. [161] Performing DIC on stitched

images has been shown to leave noticeable strain localizations (or discontinuous

displacement) at the stitching boundaries. There appears to be no solution other than

modifying the greyscale values in the tiles themselves or performing DIC on each tile

before stitching. The latter would be easily accomplished with parallel processing, which

is starting to be introduced into standard DIC software packages.

5.2.3 Micro-Scale DIC

Performing DIC on SEM images (SEM-DIC) is particularly appealing for understanding

microscale behavior such as crystal plasticity. Although some research has been done

optically, [182, 183] many of the microstructural phenomena of interest (e.g. sub-grain-

scale deformation, twinning, slip bands, etc.) are near the limit of optical microscopy or

below it. SEM-DIC can be particularly challenging due to the multiple sources of image

distortion. At low magnification, many SEMs are designed in such a way that fisheye

distortions, pincushion, or other non-symmetrical distortions are present. This is typically

due to a non-uniform rastering speed of the electron beam as it traverses the image. At

higher magnifications (fields of view less than 30 pm assuming an image width of —1000

pixels), lens distortion effects decrease, but drift distortion increases in significance. [184]

With current hardware and software limitations, there tends to be a range of moderate

magnifications (fields of view around 30 pm to 500 pm) at which neither of these distortion

types appears to add much error to DIC measurements at moderate strain levels. While

avoiding SEM-DIC distortions may be the expedient approach, a formal approach to

correcting for the distortions was described by Kammers and Daly [184]. Lens distortions

can be corrected through a rigid motion test on the specimen. Drift distortions can be

corrected using a surrogate sample and taking images at successive times.
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HR-DIC techniques have proven particularly useful to understand grain-scale

phenomena, often through the development of crystal plasticity models. One example of

microstructure-aware plasticity models that is gaining momentum is the Crystal Plasticity

Finite Element Model (CP-FEM). CP-FEM models utilize crystal plasticity constitutive

equations that describe mechanical behaviors of single crystals, and their aggregate

behaviors are simulated within a finite element method (FEM) framework. In these

models, initial states of microstructural features such as grain morphology and crystal

orientations are often informed from EBSD data [166-169] to predict evolutions of textures

[167, 170-175], dislocation densities and cell structures [176-180], grain boundary effects

[176, 181, 182], and heterogeneous intra-grain surface strain fields [167, 174, 175, 183,

184]. An extensive overview of CP-FEM model can be found in [185]. Figure 17 shows

one example of direct comparisons of surface strain fields using CP-FEM predictions and

DIC measurements [167]. A conventional CP-FEM model accurately predicted

heterogeneous sub-grain scale strain fields, while more detailed microstructural features

such as slip lines and grain boundary were not captured.

▪ (a) HR-DIC measurements (b) CP-FEM predictions

7%0
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■ -5%

• 0%

• 2%

Figure 17: A comparison of measured and predicted surface strain fields of tantalum oligocrystals

after 3.4% deformation in tension. From Reference [185].
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5.3 Orientational Imaging

5.3.1 EBSD

Electron Backscatter Diffraction (EBSD) has dramatically changed the fields of

crystallography and crystal deformation. Traditionally, X-ray diffraction only provided

measurements of macrotexture. The full-field nature of EBSD allows for microtexture

analysis which is powerful for understanding grain-scale phenomena. As discussed

earlier, EBSD is being leveraged with DIC to develop improved crystal plasticity models.

The technique is finding increased utility with the need to characterize microtexture in

additive manufactured materials. At the moment, the exact influence of build parameters

on microstructure is not well understood. Consequently, the microtexture in additively

manufactured components can vary dramatically compared to conventionally processed

components. EBSD will be instrumental in relating the processing parameters to the

resulting microstructure. The large number of build conditions will make EBSD on additive

manufactured specimens a big-data problem. Each printed material has a different

pedigree, even if it is as slight as being at a different build plate location. Consequently,

tracked metadata will need to be linked to additive manufactured materials including their

crystallographic data. Efforts to this effect are currently underway by a large number of

organizations including the National Institute for Standards and Technology (NIST),

Granta Design Limited, ASM International, and a number of United States National

Laboratories among others. Saving raw EBSD data, metallography images, etc. on each

sample is currently difficult to choreograph, even if storage is available. Developing

metrics to succinctly represent such data will be necessary for storage, handling, analysis,

and archiving [186].

On top of these data challenges is an increase in the inherent size of the EBSD data.

Ultra-fast EBSD systems have recently been developed [187, 188] that can index up to

3000 points per second, several orders of magnitude faster than speeds available just a

few years ago. With this capability, it is now possible to measure the full microtexture

40



throughout the cross section of a component on the scale of inches. This data could help

decision making, particularly in the processing realm, again with the challenges of data

management. This approach will likely become more intensive as serial sectioning EBSD

approaches become more automated. Already, there are automated systems to serial

section and image through a specimen, but it is often limited to optical microscopy images.

Techniques that can provide high throughput serial sections of EBSD data via

conventional grinding, plasma-based Focused lon beam (FIB), and femtosecond laser

are in development. If made fast enough, these techniques would provide scientists and

engineers with a full, three-dimensional representation of a component with sub-grain

scale resolution.

5.3.2 HR-EBSD

As discussed previously, a significant amount of work is being done to improve the

amount of data that can be obtained from EBSD. Researchers are also working on

developing higher quality and richer EBSD data sets. Conventional EBSD is designed to

index many points in a short amount of time. As a consequence, the accuracy of

orientations is often sacrificed through tradeoffs in variables such as binning parameters

and processing time. These compromises result in a typical angular resolution of ±1°.

High-resolution electron backscatter diffraction (HR-EBSD) employs saving and offline

post-processing of the raw Kikuchi patterns to obtain far greater orientational accuracy

around 0.1° [189, 190]. This improved accuracy allows more information to be extracted

from EBSD data sets such as local measurements of stress and local geometrically

necessary dislocation content. As one example of the use of such data, HR-EBSD has

been used to measure geometrically necessary dislocations to investigate the interactions

between dislocation networks and grain boundaries.

Because each pixel of information in conventional EBSD scans requires an entire image

of Kikuchi bands to be saved in HR-EBSD [191], the data size increases by six orders of

magnitude, which is literally one million times as much data! When HR-EBSD is

combined with serial sectioning and/or faster speeds (typically, it was limited to —2

patterns per second, but now —1000 patterns per second), the data requirements will
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increase even faster. Data management and analysis techniques will need to adapt to

make use of these rich data sets.

5.3.3 TKD and PED

While HR-EBSD improves the angular resolution of EBSD, the technique is still limited to

a spatial resolution of around 50 nm. This resolution is quite small for determining

microtexture, but it becomes limited when analyzing small features such as grain

boundary details, cell block boundaries, nanostructured materials [192] and void initiation

in ductile metals [193]. Two techniques have been developed to improve the spatial

resolution possible for Automated Crystal Orientation Mapping (ACOM): Transmission

Kikuchi Diffraction (TKD) and Precession Electron Diffraction (PED). TKD [194] can

provide improved resolution below 10 nm for closer examination of thin foil samples in a

modified SEM-based technique similar to EBSD. This technique utilizes the forward

scattered Kikuchi diffraction patterns. In contrast, PED utilizes an angular precessed

electron beam in a STEM or TEM to produce a virtually kinematic diffraction pattern. [195]

The resolution of PED is determined as the spot size of the instrument and can approach

one nanometer. This technique has been utilized to create nanoscale resolution strain

maps [196]. Both TKD and PED require rapid data and thorough analysis to create ACOM

patterns and would greatly benefit from advancements in data handling and processing

algorithms. These improvements can include the development of processes to enhance

resolution and throughput by decreasing "fly-back errors" and other artifacts. Additionally,

the methodologies discussed in section 2, as well as providing in-line data processing are

areas in which the technology is advancing.

5.4 X-ray techniques

X-Ray Computed Tomography (XCT) is another area of microscopy that is dramatically

increasing in usage as higher resolution techniques (nano-XCT) become commonplace.

XCT has historically been used for non-destructive inspection of components. However,

with the advent of additional techniques, its use as a research tool is increasing.

Synchrotron radiation provides powerful capabilities for X-ray techniques including
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improved resolution, fast testing times, and the power to go through thicker materials.

Still, considerable progress has been made in lab-based XCT systems to allow easier

access to "synchrotron" capabilities, albeit on a more limited scale. The relatively powerful

lab-based XCT systems, with resolutions approaching one micron, are proving useful in

analyzing flaws in additively manufactured metals among numerous other applications.

Grain orientations can be measured through samples containing —1000 grains [197] in a

synchrotron. Even lab-based XCT systems are now incorporating Diffraction Contrast

Tomography (DCT) systems to make similar measurements on a more limited scale.

As an analog to DIC on microscopy images, XCT data sets have the ability to perform

three-dimensional measurements of strain using Digital Volume Correlation (DVC) [198,

199]. Like DIC, the DVC technique requires a speckle pattern. Creating three-dimensional

speckle patterns are more challenging because they require embedding particles inside

of the material to be studied. Often this results in a change in the bulk material properties,

but trends can still be established. A few materials include an inherent three-dimensional

speckle pattern, thereby allowing DVC to be performed directly on the material of interest

[200]. DVC can help identify flaws in material and in-situ experiments can identify damage

mechanisms. Furthermore, due to its sub-voxel resolution, DVC can often indicate where

damage is accumulating before the user can visually detect damage.

In measuring orientations, EBSD is overtaking X-ray diffraction (XRD) as the dominant

texture-characterization technique due to its superior resolution, but XRD is still quite

valuable in a number of circumstances. XRD can be fast, does not require specimen

polishing, and can performed under a less constrained range of conditions since it is not

limited to surface applications within an SEM. Another powerful method for measuring

orientations is neutron diffraction. Although the number of facilities is limited, this

technique can provide grain orientation measurements in large volumes of material. All

of these techniques are frequently combined with in situ loading and heating capabilities

[201].
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6. Potential Future Directions

The intersection of advanced electron microscopy and multi-scale modeling has greatly

benefitted from the recent advancements in large data storage and processing over the

last decade and are well suited to continue the same rapid growth rate over the next

decade. The incorporation of Abberation Corrected (S)TEM (AC-(S)TEM), Energy-

Filtered TEM (EF-TEM), Electron Tomography, Electron Holography, multi-beam SEM,

orientation mapping, and DIC into the average electron microscopist toolbox is a

testament to the advancements in large data processing that have occurred already.

Similarly, the recent advancement in both electron diffraction patterns generated from MD

simulations [112, 115] and the simulation of electron micrographs from strain maps [202,

203] indicates the growing coupling between multi-scale modeling and electron

microscopy. In this section, we will discuss the potential opportunity to further the

advancement of: 1) electron microscopy techniques, 2) validation and refinement of multi-

scale modeling techniques, and 3) the direct coupling of electron microscopy and

modeling efforts.

6.1. Future Directions of Electron Microscopy Techniques

The advancement in data collection, management, and interpretation can be directly tied

to almost all advancements seen in the electron microscopy field over the last two

decades. This is most drastically seen is the exponential increase in the amount of data

collected as electron micrographs have evolved from images taken on film through the

inclusion of CCD cameras to the recent commercialization of CMOS based direct electron

detection cameras. This exponential increase in data collected has not only increased the

amount of sample area imaged, but also greatly advanced in-situ electron microscopy,

electron tomography, electron holography, and aberration correction. The corrections that

made advances such as advanced aberration corrected, energy filtered, and to lesser

extent electron tomography systems possible have been taken a step further in that the

images collected during alignment are input into an automated or semi-automated script

that cycles through the alignment parameters and the images collected until the desired

alignments are complete. It is likely that this trend toward increasing automation of

44



alignments and related set-up procedure will continue to expand across the full range of

advanced microscopy operational modes, continuing to increase the ease of use of these

techniques for a broader set of experimental practitioners.

Utilizing advanced image recognition software and machine learning algorithms, it should

be possible for more precise and accurate imaging conditions (such as direct control of

the deviation parameter) to be achieved by an algorithm than by even the most well

trained microscopist. This advance would provide the opportunity for the full set of

imaging condition parameters (e.g., lens settings, tilts, temperature, vacuum conditions,

etc.) to be optimized and recorded for these self-aligning and imaging microscopes. Such

data would allow a much simpler interpretation of the data collected by a trained

microscopist at the time, and would allow the direct input of data into future models (see

sections 5.2 and 5.3). By collecting the metadata of imaging parameters with every image

collected, data linkages and analysis should become easier and more thorough. To

further extend this concept, this should be considered an iterative process and not a one

directional operation. If any imaging conditions changes due to sample drift, a controlled

in-situ stressor, or the like, then the microscope could be preprogramed to readjust at a

given iteration rate and take images at set sample conditions or time intervals.

We expect that these advancements in automation will significantly advance the

characterization of defect structures in the electron microscopy community in three ways.

1) The increased in resolution, stability, throughput, etc. will permit the development of

new and refined techniques. Some of which are not currently imagined by the community.

2) The refinement, optimization, and increased ease of use of current advanced

techniques will permit the application of these techniques to a broader and more

challenging material set. 3) Due to similar improvements in refinement, optimization,

miniaturization, and increased ease of use, the number of advanced techniques that can

be done simultaneously or in close succession will increase. These three routes of

advancement all require advances in large data processing and handling will provide a

faster and more thorough understanding of our material world.
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6.2. Future Directions of Modeling Validation and Refinement

One of the most difficult tasks in validating or refining an advanced model at any length

scale is finding well pedigreed experimental data with which to compare. This challenge

is typically overcome through close collaborations between theorist and experimentalist

throughout the course of a project to ensure that new experimental data being created

that informs the modeling effort. This approach often ignores the wealth of experimental

data in the literature because a subset of the necessary model parameters or outputs for

comparison are absent in the published manuscript. In the future, we anticipate increased

utilization of global interconnectivity and cloud storage, enabling complete raw data sets

and associated meta-data, such as from the experiments described in section 5.1, to be

stored and reanalyzed by future researchers, achieving much greater potential for mining

the wealth of experimental data collected across the community. Efforts along this

direction have been initiated for hosting raw data or supplementary information on web-

based hosting services like GitHuB. The access to raw data has permitted the reanalysis

of data produced previously utilizing recent advancements in analytical software. The

system we envision is the equivalent of a Google of Materials that is easy to access,

provides access to the original raw data and the associated interpretation, and

incorporates the material structure, property, and performance information over a range

of conditions. This globally accessible repository of materials data can be easily used to

guide, refine, and validate the development of predictive models at multiple length scales.

Several academic, non-profit, and corporations are actively developing aspects of such a

vision currently. If successful, this combination of data analytics, machine learning,

database-driven approaches in modeling will not only benefit the theorist attempting to

refine the models, but the experimentalist trying to determine where her data fits in the

history of the associated research.

6.3. Future Directions towards Coupling Electron Microscopy and

Modeling

The predicted big data impact on the advancement of electron microscopy and model

validation alone are impactful; however, we believe that the greatest impact may come
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from the direct, real time coupling of the two fields. If relevant models could run during an

electron microscopy session, then the model could inform the choice of experimental

parameters and interpretation in real time. The concept being that if a relevant model

could be started utilizing the initial geometry, crystal orientation, and chemistry collected

from the initial observation of the sample, then the model could be run in parallel to any

in-situ SEM, TEM, or STEM experiment. This Parallel Experimenting would provide real

time feedback between the model and the experimenting permitting both to be refined

and developed during the simultaneous experiment/model effort. One can envision this

effort being coupled both experimentally (OM, X-ray, SEM, dual-beam FIB to the TEM,

etc.) and computationally (FEM, Mesoscale, MD, DFT) over multiple scales with key real-

time observation made at the appropriate length and time scales. Such an effort has been

proposed and is in early stages with the group led by Jones et al. [179].

Despite state-of-the-art computational models and experimental techniques, the current

capabilities to characterize materials' structural defects are still limited by the extremely

large dimensional spaces of potential interest and incomplete and uncertain information

on available experimental and computational data. In particular, applying such advanced

techniques is typically extremely time consuming and computationally expensive, limiting

the possibility to conduct full analyses in the engineering-scale domain. To be applicable

in engineering-scale components, many studies focus on a specific process or

mechanism in a representative volume element (RVE), the smallest volume that would

represent the homogenized behavior of the polycrystals. These techniques, along with

practical capabilities in handling and integration of big data, will require ongoing

development to realize the full potential of combining experimental microscopy and

advanced modeling of structural defects. We expect rapid and sustained growth in the

coupled modeling and electron microscopy characterization of defect structures as big

data processing and handling is further developed.
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