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CHAPTER
ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VI K-m: the visualization
toolkit for multi-/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although VTK-m provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementation for the Marching Cubes algorithm in VTK-m with
the equivalent reference implementation in the CUDA software development kit. Because VTK-m internally
manages the parallel distribution of work and data, the VTK-m implementation is shorter and easier to maintain.
Additionally, VTK-m provides data abstractions not provided by other libraries that make code written in VTK-
m more versatile.

VTK-m is written in C++ and makes extensive use of templates. The toolkit is implemented as a header
library, meaning that all the code is implemented in header files (with extension .h) and completely included
in any code that uses it. This allows the compiler to inline and specialize code for better performance.

1.1 How to Use This Guide

This user’s guide is organized into four parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides everything needed to get up and running with VI K-m. In this part
we learn the basics of reading and writing data files, using filters to process data, and performing basic rendering
to view the results.

Part II, Using VTK-m, dives deeper into the VT K-m library and provides all the information needed to customize
VTK-m’s data structures and support multiple devices.



1.2. Conventions Used in This Guide

CUDA SDK
431 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and the reference implementation in the
CUDA SDK. Implementations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of
code (LOC) measurements come from cloc.)

Part ITI, Developing with VTK-m, documents how to use VIK-m’s framework to develop new or custom visu-
alization algorithms. This part describes the concept of a worklet, how they are used to implement and execute
algorithms, and how to use worklets to implement new filters.

Part IV, Advanced Development, exposes the inner workings of VIK-m. These concepts allow you to design
new algorithmic structures not already available in VTK-m.

1.2 Conventions Used in This Guide

When documenting the VITK-m API, the following conventions are used.

e Filenames are printed in a sans serif font.

e C++ code is printed in a monospace font.

4 Chapter 1. Introduction
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e Macros and namespaces from VTK-m are printed in red.
e Identifiers from VTK-m are printed in blue.
e Signatures, described in Chapter 12, and the tags used in them are printed in green.
This guide provides actual code samples throughout its discussions to demonstrate their use. These examples

are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

g In this guide we periodically use these Did you know? bozes to provide additional information related to
the topic at hand.

Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

¢
;
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CHAPTER
TWO

BUILD AND INSTALL VTK-M

Before we begin describing how to develop with VITK-m, we have a brief overview of how to build VTK-m,
optionally install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released
version of VTK-m, go to the VTK-m releases page:

http://m.vtk.org/index.php/VTK-m_Releases

For access to the most recent work, the VI'K-m development team provides public anonymous read access to
their main source code repository. The main VT K-m repository on a gitlab instance hosted at Kitware, Inc. The
repository can be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

The source code in the VT K-m repository is access through the git version control tool. If you have not used
git before, there are several resources available to help you get familiar with it. Github has a nice setup guide
(https://help.github.com/articles/set-up-git) to help you get up and running quickly. For more complete
documentation, we recommend the Pro Git book (https://git-scm.com/book).

To get a copy of the VT K-m repository, issue a git clone command.

Example 2.1: Cloning the main VITK-m git repository.
1 | git clone https://gitlab.kitware.com/vtk/vtk-m.git

The git clone command will create a copy of all the source code to your local machine. As time passes and you
want to get an update of changes in the repository, you can do that with the git pull command.

Example 2.2: Updating a git repository with the pull command.
1 |git pull



2.2. Configure VTK-m

The proceeding examples for using git are based on the git command line tool, which is particularly prevalent
on Uniz-based and Mac systems. There also exist several GUI tools for accessing git repositories. These
tools each have their own interface and they can be quite different. However, they all should have roughly
equivalent commands named “clone” to download a repository given a url and “pull” to update an existing
repository.

2.2 Configure VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across
many supported platforms. CMake is available from many package distribution systems and can also be down-
loaded for many platforms from http://cmake.org.

Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse
all of the available configuration variables and run the configuration. Many distributions also come with an
alternative terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI
windows is difficult.

One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory,
and the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set
the build directory to a new empty directory and the source to the downloaded or cloned files. The following
example shows the steps for the case where the VTK-m source is cloned from the git repository. (If you extracted
files from an archive downloaded from the VTK-m web page, the instructions are the same from the second line
down.)

Example 2.3: Running CMake on a cloned VTK-m repository.
git clone https://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m

W N

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 2.1. Verify that the
source and build directories are correct (located at the top of the GUI) and then click the “Configure” button
near the bottom. The first time you run configure, CMake brings up a dialog box asking what generator you
want for the project. This allows you to select what build system or IDE to use (e.g. make, ninja, Visual Studio).
Once you click “Finish,” CMake will perform its first configuration. Don’t worry if CMake gives an error about
an error in this first configuration process.

¢

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These
must be set the first time configure is run and cannot be subsequently changed. If you want to change the
compiler or the project file types, you will need to delete everything in the build directory and start over.

After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 2.1
on the right. You now have a chance to modify the configuration of VTK-m, which allows you to modify both
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CMake 3.6.2 - C:/Users/kmorel/src/builds/vtk-m

File Tools Options Help File Tools Options

Where is the source code: |C:/Users kmoreljsrc/vticm| | |Browse Source...| | | Where s the source code:  [c:/Users/kmorel/src/vtk-m ] |
Where to buid the binaries: | C:A V]| | | | Where to buid the binaries: [c:1 | | Browse uid... |
Search: | Oorowped [Advanced |4 addEntry | |08 Remove Eniry Search: | | Oerowped [JAdvanced |4 AddEntry | |38 Remave Entry

Name Value | Name Value

N

L]
(]
(]
]
(]
]
[ ]

Press Configure to update and display new values in red, then press Generate to generate selected buid fles. Press Configure to update and display new values i red, then press Generate to generate selected buid fles.
Configre | | Generate | Current Generator: None | configure | | Generate | Current Generator: Ninia

The C compiler identification is MSVC 18.0.40629.0 A
id

C:/Program Files (x86)/Microso £t Visual Studio 12.0/VC/bin/amd64/cl.exe

C:/Program Files (x86)/Microsoft Visual Studio 12.0/VC/bin/amdé4/cl.exe

Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working CXX compiler: C:/Program Files (x86)/Microso: £t Visual Studio 12.0/VC/bin/amd64/cl.ex

Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studic 12.0/VC/bin/amdé4/cl.ex

Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features v

< >

Figure 2.1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right
is the state after a configure pass.

the behavior of the compiled VTK-m code as well as find components on your system. Using the CMake GUI is
usually an iterative process where you set configuration options and re-run “Configure.” Each time you configure,
CMake might find new options, which are shown in red in the GUL

It is often the case during this iterative configuration process that configuration errors occur. This can occur
after a new option is enabled but CMake does not automatically find the necessary libraries to make that feature
possible. For example, to enable TBB support, you may have to first enable building TBB, configure for TBB
support, and then tell CMake where the TBB include directories and libraries are.

Once you have set all desired configuration variables and resolved any CMake errors, click the “Generate”
button. This will create the build files (such as makefiles or project files depending on the generator chosen at
the beginning). You can then close the CMake GUIL

There are a great number of configuration parameters available when running CMake on VTK-m. The following
list contains the most common configuration parameters.

BUILD_SHARED_LIBS Determines whether static or shared libraries are built.

CMAKE_BUILD_TYPE Selects groups of compiler options from categories like Debug and Release. Debug
builds are, obviously, easier to debug, but they run much slower than Release builds. Use Release builds
whenever releasing production software or doing performance tests.

CMAKE_INSTALL_PREFIX The root directory to place files when building the install target.

VTKm_ENABLE_EXAMPLES The VTK-m repository comes with an examples directory. This macro deter-
mines whether they are built.

VTKm_ENABLE_BENCHMARKS If on, the VTK-m build includes several benchmark programs. The bench-
marks are regression tests for performance.

Chapter 2. Build and Install VTK-m 9
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VTKm_ENABLE_CUDA Determines whether VITK-m is built to run on CUDA GPU devices.

VTKm_CUDA_Architecture Specifies what GPU architecture(s) to build CUDA for. The options include
native, fermi, kepler, maxwell, pascal, and volta.

VTKm_ENABLE_OPENMP Determines whether VI'K-m is built to run on multi-core devices using OpenMP
pragmas provided by the C++ compiler.

VTKm_ENABLE_RENDERING Determines whether to build the rendering library.

VTKm_ENABLE_TBB Determines whether VIK-m is built to run on multi-core x86 devices using the Intel
Threading Building Blocks library.

VTKm_ENABLE_TESTING If on, the VIK-m build includes building many test programs. The VTK-m
source includes hundreds of regression tests to ensure quality during development.

VTKm_USE_64BIT_IDS If on, then VITK-m will be compiled to use 64-bit integers to index arrays and other
lists. If off, then VTK-m will use 32-bit integers. 32-bit integers take less memory but could cause failures
on larger data.

VTKm_USE_DOUBLE_PRECISION If on, then VTK-m will use double precision (64-bit) floating point num-
bers for calculations where the precision type is not otherwise specified. If off, then single precision (32-bit)
floating point numbers are used. Regardless of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VI K-m and generates the files for the build system, you are ready to build
VTK-m. As stated earlier, CMake supports generating configuration files for several different types of build tools.
Make and ninja are common build tools, but CMake also supports building project files for several different types
of integrated development environments such as Microsoft Visual Studio and Apple XCode.

The VTK-m libraries and test files are compiled when the default build is invoked. For example, if Makefiles
were generated, the build is invoked by calling make in the build directory. Expanding on Example 2.3

Example 2.4: Using make to build VITK-m.
git clone https://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m
make -j
make test
make install

N O Ut R WN

The Makefiles and other project files generated by CMake support parallel builds, which run multiple com-
pile steps simultaneously. On computers that have multiple processing cores (as do almost all modern
computers), this can significantly speed up the overall compile. Some build systems require a special flag to
engage parallel compiles. For example, make requires the -j flag to start parallel builds as demonstrated in
Ezxample 2.4.
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CMake allows you to switch between several types of builds including default, Debug, and Release. Programs
and libraries compiled as release builds can run much faster than those from other types of builds. Thus,
it is itmportant to perform Release builds of all software released for production or where runtime is a
concern. Some integrated development environments such as Microsoft Visual Studio allow you to specify
the different build types within the build system. But for other build programs, like make, you have to
specify the build type in the CMAKE_BUILD_TYPE CMake configuration variable, which is described in
Section 2.2.

CMake creates several build “targets” that specify the group of things to build. The default target builds all
of VIK-m’s libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of
the VTK-m regression tests and verifies they complete successfully on the system. The install target copies the
subset of files required to use VITK-m to a common installation directory. The install target may need to be run
as an administrator user if the installation directory is a system directory.

A good portion of VTK-m is a header-only library, which does not need to be built in a traditional sense.
However, VTK-m contains a significant amount of tests to ensure that the header code does compile and
run correctly on a given system. If you are not concerned with testing a build on a given system, you can
turn off building the testing, benchmarks, and examples using the CMake configuration variables described
in Section 2.2. This can shorten the VT K-m compile time.

2.4 Linking to VTK-m

Ultimately, the value of VTK-m is the ability to link it into external projects that you write. The header files and
libraries installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type
of build system. However, VITK-m comes with several CMake configuration files that simplify linking VTK-m
into another project that is also managed by CMake. Thus, the documentation in this section is specifically for
finding and configuring VI'K-m for CMake projects.

VTK-m can be configured from an external project using the find_package CMake function. The behavior and
use of this function is well described in the CMake documentation. The first argument to find_package is the
name of the package, which in this case is VTKm. CMake configures this package by looking for a file named
VTKmConfig.cmake, which will be located in the lib/cmake/vtkm-X. X directory of the install or build of VTK-m.
The configurable CMake variable VTKm_DIR can be set to the directory that contains this file.

Example 2.5: Loading VTK-m configuration from an external CMake project.
1 | find_package (VTKm REQUIRED)
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The CMake find package function also supports several features not discussed here including specifying
a minimum or exact version of VIK-m and turning off some of the status messages. See the CMake
documentation for more details.

When you load the VI'K-m package in CMake, several libraries are defined. Projects building with VITK-m
components should link against one or more of these libraries as appropriate, typically with the target_link_-
libraries command.

Example 2.6: Linking VTK-m code into an external program.
find_package (VTKm REQUIRED)

1

2

3 | add_executable (myprog myprog.cxx)

4 | target_link_libraries (myprog vtkm_filter)

Several library targets are provided, but most projects will need to link in one or more of the following.

vtkm_cont  Contains the base objects used to control VITK-m. This library should always be linked in.
vtkm_filter Contains VTK-m’s filtering code. Most applications will need to link this library in.

vtkm_rendering Contains VTK-m’s rendering components. This library is only available if VTKm_EN-
ABLE_RENDERING is set to true.

The “libraries” made available in the VTK-m do more than add a library to the linker line. These libraries
are actually defined as external targets that establish several compiler flags, like include file directories.
Many CMake packages require you to set up other target options to compile correctly, but for VT K-m it is
sufficient to simply link against the library.

Because the VTK-m CMake libraries do more than set the link line, correcting the link libraries can do more
than fiz link problems. For example, if you are getting compile errors about not finding VTK-m header
files, then you probably need to link to one of VTK-m’s libraries to fix the problem rather than try to add
the include directories yourself.

The following is a list of all the CMake variables defined when the find_package function completes.

VTKm_FOUND Set to true if the VIK-m CMake package is successfully loaded. If find_package was not
called with the REQUIRED option, then this variable should be checked before attempting to use VI K-m.

VTKm_VERSION The version number of the loaded VITK-m package. The package also sets VTKm_VER-
SION_MAJOR, VTKm_VERSION_MINOR, and VTKm_VERSION_PATCH to get the individual compo-
nents of the version. There is also a VTKm_VERSION_FULL that is augmented with a partial git SHA to
identify snapshots in between releases.
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Linking to VTK-m

VTKm_ENABLE_CUDA Set to true if VITK-m was compiled for CUDA.
VTKm_ENABLE_OPENMP Set to true if VITK-m was compiled for OpenMP.
VTKm_ENABLE_TBB Set to true if VITK-m was compiled for TBB.

VTKm_ENABLE_RENDERING Set to true if the VT K-m rendering library was compiled.

VTKm_ENABLE_MPI Set to true if VITK-m was compiled with MPI support.

These package variables can be used to query whether optional components are supported before they are used

in your CMake configuration.

Example 2.7: Using an optional component of VTK-m.
find_package (VTKm REQUIRED)

if (NOT VTKm_ENABLE_RENDERING)
message (SEND_ERROR "VTK-m must be built with rendering omn.")
endif ()

add_executable (myprog myprog.cxx)
target_link_libraries (myprog vtkm_cont vtkm_rendering)

0~ Uk WN
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CHAPTER
THREE

FILE 1/0

Before VI'K-m can be used to process data, data need to be loaded into the system. VITK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm: :io
namespace.

Files are just one of many ways to get data in and out of VI'K-m. In Part II we explore efficient ways to
define VT K-m data structures. In particular, Section 11.1 describes how to build VTK-m data set objects
and Section 18.8 documents how to adapt data structures defined in other libraries to be used directly in
VTK-m.

3.1 Readers

All reader classes provided by VIK-m are located in the vtkm: :io::reader namespace. The general interface
for each reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load
the data from disk.

The data in the file are returned in a vtkm::cont: :DataSet object. Chapter 11 provides much more details
about the contents of a data set object, but for now we treat DataSet as an opaque object that can be passed
around readers, writers, filters, and rendering units.

3.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide'. Legacy VTK files can also be read and written with tools like ParaView and Vislt.

Legacy VTK files can be read using the vtkm::io::reader::VIKDataSetReader class. The constructor for
this class takes a string containing the filename. The ReadDataSet method reads the data from the previously
indicated file and returns a vtkm: :cont: :DataSet object, which can be used with filters and rendering.

LA free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.



3.2. Writers

Example 3.1: Reading a legacy VTK file.
#include <vtkm/io/reader/VTKDataSetReader .h>

vtkm::cont::DataSet OpenDataFromVTKFile ()
{
vtkm::io::reader:: VTKDataSetReader reader ("data.vtk");

return reader.ReadDataSet ();

}

0~ Uk WN -

3.2  Writers

All writer classes provided by VTK-m are located in the vtkm: :io: :writer namespace. The general interface for
each writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data
to the disk. The WriteDataSet method takes a vtkm::cont: :DataSet object as an argument, which contains
the data to write to the file.

3.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm: :io::writer::VTKDataSetWriter class. The constructor for
this class takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet
object and writes its data to the previously indicated file.

Example 3.2: Writing a legacy VTK file.
#include <vtkm/io/writer/VTKDataSetWriter.h>

void SaveDataAsVTKFile(vtkm::cont::DataSet data)
{
vtkm::io::writer::VTKDataSetWriter writer ("data.vtk");

writer.WriteDataSet (data);

b

O~ O Ut W

16 Chapter 3. File I/O



CHAPTER
FOUR

RUNNING FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on vtkm: :-
cont: :DataSet objects, which are introduced with the file I/O operations in Chapter 3 and are described in
more detail in Chapter 11. For now we treat DataSet mostly as an opaque object that can be passed around
readers, writers, filters, and rendering units.

The structure of filters in VTK-m is significantly simpler than their counterparts in VI'K. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VI'K-m filters are simple imperative units, which are simply called with input
data and return output data.

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
All VTK-m filters are currently defined in the vtkm: :filter namespace. We group filters based on the type of
operation that they do and the shared interfaces that they have. Later Part III describes the necessary steps in
creating new filters in VTK-m.

4.1 Field Filters

Every vtkm: :cont: :DataSet object contains a list of fields. A field describes some numerical value associated
with different parts of the data set in space. Fields often represent physical properties such as temperature,
pressure, or velocity. Field filters are a class of filters that generate a new field. These new fields are typically
derived from one or more existing fields or point coordinates on the data set. For example, mass, volume, and
density are interrelated, and any one can be derived from the other two.

Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all field filters share
is the “active” field for the operation. The active field is set with a call to the SetActiveField method. The
argument to SetActiveField is a string that names this input field. Alternatively, you can call the SetUseCo-
ordinateSystemAsField with an argument of true to use the point coordinates as the input field rather than
a specified field. See Sections 11.3 and 11.4 for more information on fields and coordinate systems, respectively.
Finally, SetOutputFieldName, specifies the name assigned to the generated field. If not specified, then the filter
will use a default name.

All field filters contain an Execute method. When calling Execute a vtkm: :cont: :DataSet or vtkm: :cont::-
MultiBlock object with the input data is provided as an argument. The Execute method returns a DataSet or
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MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a field filter. It specifically uses the point
elevation filter, which is one of the field filters.

Example 4.1: Using PointElevation, which is a field filter.

1 | VTKM_CONT

2 |vtkm::cont::DataSet ComputeAirPressure(vtkm::cont::DataSet dataSet)

34

4 vtkm::filter::PointElevation elevationFilter;

5

6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates. Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter.

9 elevationFilter.SetOutputFieldName ("pressure");

10 elevationFilter.SetLowPoint (0.0, 0.0, 0.0);

11 elevationFilter.SetHighPoint (0.0, 0.0, 2000.0);

12 elevationFilter.SetRange (101325.0, 77325.0);

13

14 elevationFilter.SetUseCoordinateSystemAsField (true);

15

16 vtkm::cont::DataSet result = elevationFilter.Execute(dataSet);

17

18 return result;

19 |}

4.1.1 Cell Average

vtkm: :filter: :CellAverage is the cell average filter. It will take a data set with a collection of cells and a field
defined on the points of the data set and create a new field defined on the cells. The values of this new derived
field are computed by averaging the values of the input field at all the incident points. This is a simple way to
convert a point field to a cell field.

The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.

CellAverage provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.1.2 Coordinate System Transforms

VTK-m provides multiple filters to translate between different coordiante systems.

Cylindrical Coordinate System Transform

vtkm: :filter: :CylindricalCoordinateSystemTransform is a coordinate system transformation filter. The
filter will take a data set and transform the points of the coordinate system. By default, the filter will transform
the coordinates from a cartesian coordinate system to a cylindrical coordinate system. The order for cylindrical
coordinates is (R,6,72)

The default name for the output field is “cylindricalCoordinateSystemTransform”, but that can be overridden
as always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CylindricalCoordinateSystemTrans-
form provides the following methods.

SetCartesianToCylindrical This method specifies a transformation from cartesian to cylindrical coordinates.
SetCylindricalToCartesian This method specifies a transformation from cylindrical to cartesian coordinates.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Spherical Coordinate System Transform

vtkm: :filter: :SphericalCoordinateSystemTransform is a coordinate system transformation filter. The filter
will take a data set and transform the points of the coordinate system. By default, the filter will transform
the coordinates from a cartesian coordinate system to a spherical coordinate system. The order for spherical
coordinates is (R, 6, )

The default name for the output field is “sphericalCoordinateSystemTransform”, but that can be overridden as
always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CylindricalCoordinateSystemTrans-
form provides the following methods.

SetCartesianToSpherical This method specifies a transformation from cartesian to spherical coordinates.
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SetSphericalToCartesian This method specifies a transformation from spherical to cartesian coordinates.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.3 Cross Product

vtkm: :filter: :CrossProduct computes the cross product of two vector fields for every element in the input
data set. The cross product filter computes (PrimaryField x SecondaryField), where both the primary and
secondary field are specified using methods on the CrossProduct class. The cross product computation works
for both point and cell centered vector fields.

CrossProduct provides the following methods.
SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the cross product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the cross product.

SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.1.4 Dot Product

vtkm: :filter: :DotProduct computes the dot product of two vector fields for every element in the input data
set. The dot product filter computes (PrimaryField - SecondaryField), where both the primary and secondary
field are specified using methods on the DotProduct class. The dot product computation works for both point
and cell centered vector fields.

DotProduct provides the following methods.

SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the dot product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the dot product.

SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.5 Connected Components

Connected components in a mesh are groups of mesh elements that are connected together in some way. For
example, if two cells are neighbors, then they are in the same component. Likewise, a cell is also in the same
component as its neighbor’s neighbors as well as their neighbors and so on. Connected components help identify
when features in a simulation fragment or meld.

VTK-m provides two types of connected components filters. The first filter follows topological connections to
find cells that are literally connected together. The second filter takes a structured cell set and a field that
classifies each cell and finds connected components where all the cells have the same field value.

Cell Connectivity

The vtkm: :filter: :CellSetConnectivity filter finds groups of cells that are connected together through their
topology. Two cells are considered connected if they share an edge. CellSetConnectivity identifies some
number of components and assigns each component a unique integer.
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The result of the filter is a cell field of type vtkm: : Id. Each entry in the cell field will be a number that identifies
to which component the cell belongs. By default, this output cell field is named “component”. Although an
input field can be specified, it is ignored.

CellSetConnectivity provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Image Field

The vtkm::filter: :ImageConnectivity filter finds groups of points that have the same field value and are
connected together through their topology. Any point is considered to be connected to its Moore neighborhood:
8 neighboring points for 2D and 27 neighboring points for 3D. As the name implies, ImageConnectivity only
works on data with a structured cell set. You will get an error if you use any other type of cell set.

The active field passed to the filter must be associated with the points.

The result of the filter is a point field of type vtkm: :Id. Each entry in the point field will be a number that
identifies to which component the cell belongs. By default, this output point field is named “component”.

ImageConnectivity provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.1.6 Field to Colors

vtkm::filter: :FieldToColors takes a field in a data set, looks up each value in a color table, and writes the
resulting colors to a new field. The color to be used for each field value is specified using a vtkm::cont::-
ColorTable object. ColorTable objects are also used with VTK-m’s rendering module and are described in
Section 5.8.

FieldToColors has three modes it can use to select how it should treat the input field.

FieldToColors: :SCALAR Treat the field as a scalar field. It is an error to a field of any type that cannot be
directly converted to a basic floating point number (such as a vector).

FieldToColors: :MAGNITUDE Given a vector field, take the magnitude of each field value before looking it up in
the color table.

FieldToColors: : COMPONENT Select a particular component of the vectors in a field to map to colors.
Additionally, FieldToColors has different modes in which it can represent colors in its output.

FieldToColors: :RGB Output colors are represented as RGB values with each component represented by an
unsigned byte. Specifically, these are vtkm: :Vec <vtkm: :UInt8, 3> values.

FieldToColors: :RGBA Output colors are represented as RGBA values with each component represented by an
unsigned byte. Specifically, these are vtkm: :Vec <vtkm: :UInt8,4> values.

FieldToColors provides the following methods.
SetColorTable/GetColorTable Specifies the vtkm: :cont::ColorTable object to use to map field values to
colors.

SetMappingMode/GetMappingMode Specifies the input mapping mode. The value is one of the FieldToCol-
ors: :SCALAR, FieldToColors: :MAGNITUDE, or FieldToColors: : COMPONENT selectors described previously.

SetMappingToScalar Sets the input mapping mode to scalar. Shortcut for SetMappingMode (vtkm: :filter::-
FieldToColors: :SCALAR ).

SetMappingToMagnitude Sets the input mapping mode to vector. Shortcut for SetMappingMode (vtkm: :fil-
ter::FieldToColors: :MAGNITUDE ).

SetMappingToComponent Sets the input mapping mode to component. Shortcut for SetMappingMode (vtkm: : -
filter::FieldToColors: :COMPONENT ).

IsMappingScalar Returns true if the input mapping mode is scalar (FieldToColorsSCALAR).
IsMappingMagnitude Returns true if the input mapping mode is magnitude (FieldToColors: :MAGNITUDE).
IsMappingComponent Returns true if the input mapping mode is component (FieldToColors: : COMPONENT).

SetMappingComponent /GetMappingComponent Specifies the component of the vector to use in the mapping.
This only has an effect if the input mapping mode is set to FieldToColors: : COMPONENT.

SetOutputMode/GetOutputMode Specifies the output representation of colors. The value is one of the Field-
ToColors: :RGB or FieldToColors: :RGBA selectors described previously.

SetOutputToRGB Sets the output representation to 8-bit RGB. Shortcut for SetOutputMode (vtkm: :filter: :-
FieldToColors: :RGB ).
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SetOutputToRGBA Sets the output representation to 8-bit RGBA. Shortcut for SetOutputMode (vtkm::fil-
ter::FieldToColors::RGBA ).

IsOutputRGB Returns true if the output representation is 8-bit RGB (FieldToColors: :RGB).
IsOutputRGBA Returns true if the output representation is 8-bit RGBA (FieldToColors: :RGBA).

SetNumber0fSamplingPoints/GetNumberOfSamplingPoints Specifies how many samples to use when looking
up color values. The implementation of FieldToColors first builds an array of color samples to quickly
look up colors for particular values. The size of this lookup array can be adjusted with this parameter. By
default, an array of 256 colors is used.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.7 Gradients

vtkm: :filter: :Gradients computes the gradient of a point based input field for every element in the input data
set. The gradient computation can either generate cell center based gradients, which are fast but less accurate,
or more accurate but slower point based gradients. The default for the filter is output as cell centered gradients,
but can be changed by using the SetComputePointGradient method. The default name for the output fields is
“Gradients”, but that can be overriden as always using the SetOutputFieldName method.

Gradients provides the following methods.

SetComputePointGradient /GetComputePointGradient Specifies whether we are computing point or cell based
gradients. The output field(s) of this filter will be point based if this is enabled.

SetComputeDivergence/GetComputeDivergence Specifies whether the divergence field will be generated. By
default the name of the array will be “Divergence” but can be changed by using SetDivergenceName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

SetComputeVorticity/GetComputeVorticity Specifies whether the vorticity field will be generated. By default
the name of the array will be “Vorticity” but can be changed by using SetVorticityName. The field will
be a cell field unless ComputePointGradient is enabled. The input array must have 3 components in order
to compute this. The default is off.

SetComputeQCriterion/GetComputeQCriterion Specifies whether the Q-Criterion field will be generated. By
default the name of the array will be “QCriterion” but can be changed by using SetQCriterionName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

24 Chapter 4. Running Filters



4.1. Field Filters

SetComputeGradient /GetComputeGradient Specifies whether the actual gradient field is written to the output.
When processing fields that have 3 components it is desirable to compute information such as Divergence,
Vorticity, or Q-Criterion without incurring the cost of also having to write out the 3x3 gradient result. The
default is on.

SetColumnMajorOrdering/SetRowMajorOrdering When processing input fields that have 3 components, the
output will be a a 3x3 gradient. By default VIK-m outputs all matrix like arrays in Row Major ordering
(C-Ordering). The ordering can be changed when integrating with libraries like VTK or with FORTRAN
codes that use Column Major ordering. The default is Row Major. This setting is only relevant for 3
component input fields when SetComputeGradient is enabled.

SetDivergenceName/GetDivergenceName Specifies the output cell normals field name. The default is “Diver-
gence”.

SetVorticityName/GetVorticityName Specifies the output Vorticity field name. The default is “Vorticity”

SetQCriterionName/GetQCriterionName Specifies the output Q-Criterion field name. The default is “QCrite-
rion”.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.8 Histogram

vtkm: :filter: :Histogram computes a histogram of a given field.

The default number of bins in the output histogram is 10, but that can be overridden using the SetNumber0fBins
method.

The default name for the output fields is “histogram”. The name can be overridden as always using the SetOut-
putFieldName method.

Histogram provides the following methods.

SetRange/GetRange Specifies an explicit range to use to generate the histogram. If no range is set the fields
global range is used.

GetBinDelta Get the size of each bin from the last computed field.

GetComputedRange Get the computed local range of the histogram from the last computed field.
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SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.9 Point Average

vtkm: :filter: :PointAverage is the point average filter. It will take a data set with a collection of cells and
a field defined on the cells of the data set and create a new field defined on the points. The values of this new
derived field are computed by averaging the values of the input field at all the incident cells. This is a simple
way to convert a cell field to a point field.

The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, PointAverage provides the following
methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.1.10 Point Elevation

vtkm::filter: :PointElevation computes the “elevation” of a field of point coordinates in space. The filter
will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined by a low
point and a high point. Any point in the plane touching the low point and perpendicular to the line is set to the
minimum range value in the elevation whereas any point in the plane touching the high point and perpendicular
to the line is set to the maximum range value. All other values are interpolated linearly between these two
planes. This filter is commonly used to compute the elevation of points in some direction, but can be repurposed
for a variety of measures. Example 4.1 gives a demonstration of the elevation filter.

The default name for the output field is “elevation”, but that can be overridden as always using the SetOutput-
FieldName method.

PointElevation provides the following methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the z, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.11 Point Transform

vtkm: :filter: :PointTransform is the point transform filter. The filter will take a data set and a field of 3
dimensional vectors and perform the specified point transform operation. Multiple point transformations can be

accomplished by subsequent calls to the filter and specifying the result of the previous transform as the input
field.

The default name for the output field is “transform”, but that can be overridden as always using the SetOut-
putFieldName method.

In addition the standard SetOutputFieldName and Execute methods, PointTransform provides the following
methods.

SetTranslation This method translates, or moves, each point in the input field by a given direction. This
method takes either a three component vector of floats, or the x, y, z translation values separately.
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SetRotation This method is used to rotate the input field about a given axis. This method takes a single
floating point number to specify the degrees of rotation and either a vector representing the rotation axis,
or the z, y, z axis components separately.

SetRotationX This method is used to rotate the input field about the X axis. This method takes a single
floating point number to specify the degrees of rotation.

SetRotationY This method is used to rotate the input field about the Y axis. This method takes a single
floating point number to specify the degrees of rotation.

SetRotationZ This method is used to rotate the input field about the Z axis. This method takes a single floating
point number to specify the degrees of rotation.

SetScale This method is used to scale the input field. This method takes either a single float to scale each
vector component of the field equally, or the x, y, z scaling values as separate floats, or a three component
vector.

SetTransform This is a generic transform method. This method takes a 4x4 matrix and applies this to the
input field.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.12 Surface Normals

vtkm::filter::SurfaceNormals computes the surface normals of a polygonal data set at its points and/or cells.
The filter takes a data set as input and by default, uses the active coordinate system to compute the normals.
Optionally, a coordinate system or a point field of 3d vectors can be explicitly provided to the Execute method.
The cell normals are computed based on each cell’s winding order using vector cross-product. For non-polygonal
cells, a zeroed vector is assigned. The point normals are computed by averaging the cell normals of the incident
cells of each point.

The default name for the output fields is “Normals”, but that can be overridden using the SetCellNormalsName
and SetPointNormalsName methods. The filter will also respect the name in SetOutputFieldName if neither of
the others are set.

SurfaceNormals provides the following methods.

SetGenerateCellNormals/GetGenerateCellNormals Specifies whether the cell normals should be generated.
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SetGeneratePointNormals/GetGeneratePointNormals Specifies whether the point normals should be gener-
ated.

SetNormalizeCellNormals/GetNormalizeCellNormals Specifies whether cell normals should be normalized
(made unit length). Default value is true. The intended use case of this flag is for faster, approximate
point normals generation by skipping the normalization of the face normals. Note that when set to false,
the result cell normals will not be unit length normals and the point normals will be different.

SetCellNormalsName/GetCellNormalsName Specifies the output cell normals field name.
SetPointNormalsName/GetPointNormalsName Specifies the output point normals field name.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.13 Vector Magnitude

vtkm: :filter: :VectorMagnitude takes a field comprising vectors and computes the magnitude for each vector.
The vector field is selected as usual with the SetActiveField method. The default name for the output field is
“magnitude”, but that can be overridden as always using the SetOutputFieldName method.

VectorMagnitude provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.1.14 Warp Scalar

vtkm: :filter: :WarpScalar is a specialized point transformation filter. The filter transforms points by moving
them based on a scalar field and a constant scale factor. This filter is useful for creating carpet plots.

The WarpScalar filter will take a data set, a normal field, a scalar field, and a constant scale factor. The
coordinates will be scaled based on the scalar field and the scale factor. If no explicit normal field is provided
the filter will search for a field named “normal”. If no explicit scalar field is provided the filter will search for a
field named “scalarfactor”.

The default name for the output field is “warpscalar”, but that can be overridden as always using the SetOut-
putFieldName method.

In addition to the standard SetOutputFieldName and Execute methods, WarpScalar provides the following
methods.

SetNormalField This method allows the user to select the name of the normal field. The normal field is the B
field in the warp equation of A+ B X scaleAmount x scalar Factor (where A is the original position of the
point).

SetScalarFactorField This method allows the user to select the name of the scale factor field. The scale factor
field is the scalarFactor field in the warp equation of A+ B X scaleAmount x scalar Factor (where A is
the original position of the point).

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.15 Warp Vector

vtkm: :filter: :WarpVector is a specialized point transformation filter. The filter transforms points by moving
them based on a vector field and a constant scale factor. This filter can be used to highlight interesting features
such as flow or deformations.

The WarpScalar filter will take a data set, a vector field, and a constant scale factor. The coordinates will be
scaled based on the vector field and the scale factor. If no explicit vector field is provided the filter will search
for a field named “normal”.

The default name for the output field is “warpvector”, but that can be overridden as always using the SetOut-
putFieldName method.
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In addition the standard SetOutputFieldName and Execute methods, WarpVector provides the following meth-
ods.

SetVectorField This method allows the user to select the name of the vector field. The vector field is the B
field in the warp equation of A+ B (where A is the original position of the point).

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.16 ZFP Compression

vtkm: :filter: : ZFPCompressor takes a 1D, 2D, or 3D field and compresses the values using the compression
algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate of compression is set
using SetRate. The default name for the output field is “compressed”

ZFPCompressor provides the following methods:

SetRate/GetRate Specifies the rate of compression.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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vtkm: :filter: : ZFPDecompressor takes a field of compressed values and decompresses into scalar values using
the compression algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate of
compression is set using SetRate. The default name for the output field is “decompressed”

ZFPDecompressor provides the following methods:

SetRate Specifies the rate of compression.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2 Data Set Filters

Data set filters are a class of filters that generate a new data set with a new topology. This new topology is
typically derived from an existing data set. For example, a data set can be significantly altered by adding,
removing, or replacing cells.

Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all data set filters share
is the “active” cell set for the operation. The active cell set is set with a call to the SetActiveCellSetIndex.
Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on. By default, the filter will
operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for more information about cell
sets and coordinate systems, respectively.)

All data set filters contain an Execute method. When calling Execute a vtkm::cont::DataSet or vtkm::-
cont::MultiBlock object with the input data is provided as an argument. The Execute method returns a
DataSet or MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a data set filter. It specifically uses the vertex
clustering filter, which is one of the data set filters.

Example 4.2: Using VertexClustering, which is a data set filter.

vtkm::filter::VertexClustering vertexClustering;

vertexClustering.SetNumberOfDivisions (vtkm::Id3(128, 128, 128));

Tk W N+

vtkm::cont::DataSet simplifiedSurface = vertexClustering.Execute(originalSurface);
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4.2.1 Clean Grid

vtkm: :filter: :CleanGrid is a filter that converts a cell set to an explicit representation and potentially removes
redundant or unused data. It does this by iterating over all cells in the data set, and for each one creating the
explicit cell representation that is stored in the output. (Explicit cell sets are described in Section 11.2.2.)
One benefit of using CleanGrid is that it can optionally remove unused points and combine coincident points.
Another benefit is that the resulting cell set will be of a known specific type.

The result of vtkm::filter::CleanGrid is not necessarily smaller, memory-wise, than its input. For
ezample, “cleaning” a data set with a structured topology will actually result in a data set that requires
much more memory to store an explicit topology.

CleanGrid provides the following methods.

SetCompactPointFields/GetCompactPointFields Sets a Boolean flag that determines whether unused points
are removed from the output. If true (the default), then the output data set will have a new coordinate
system containing only those points being used by the cell set, and the indices of the cells will be adjusted
to the new ordering of points.

SetMergePoints/GetMergePoints Sets a Boolean flag that determines whether points coincident in space are
merged into a single point. If true (the default), then the output data set will have a new coordinate system
containing containing only points that are unique in space, and the indices of the cells will be adjusted to
the new set of points. The tolerance parameters control the proximity used for points to be considered
coincident.

SetTolerance/GetTolerance Defines the tolerance used when determining whether two points are considered
coincident. Because floating point parameters have limited precision, point coordinates that are essentially
the same might not be bit-wise exactly the same. Thus, the CleanGrid filter has the ability to find and
merge points that are close but perhaps not exact. The default tolerance is 1076.

SetToleranceIsAbsolute/GetToleranceIsAbsolute Setsa Boolean flag that determines whether the tolerance
parameter should be considered relative to the size of the data set. If false (the default), then the tolerance
is multiplied by the length of the diagonal of the bounds of the data being processed. If true, then the
tolerance value is used as is.

SetRemoveDegenerateCellsGetRemoveDegenerateCells Sets a Boolean flag that determines whether degener-
ate cells should be removed. If true (the default), then the CleanGrid filter will look for repeated points
in cells and, if the repeated points cause the cell to drop dimensionality, the cell is removed. This is
particularly useful when point merging is on as this operation can create degenerate cells.

SetFastMerge/GetFastMerge Sets a Boolean flag that determines whether to use a faster but less accurate
method for finding coincident points. If true (the default), some corners are cut when computing coincident
points. This will make the point merge step go faster but the tolerance will not be strictly followed. If
false, then extra steps will be taken to ensure that all points within tolerance are merged and that only
points within tolerance are merged. This flag has no effect if point merging is off.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.
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SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.2 Clip with Implicit Function

Clipping is an operation that removes regions from the data set based on a user-provided value or function.
The vtkm: :filter::ClipWithImplicitFunction takes an implicit function as an argument. VI'K-m’s implicit
functions are simple objects that take 3D spatial coordinates and return a field value that often describes a
shape. ClipWithImplicitFunction discards regions of the original data set according to the values of the
implicit function. (A companion filter that discards a region of the data based on the value of a scalar field is
described in Section 4.3.1.)

The result of ClipWithImplicitFunction is a volume. If a cell has its vertices positioned all outside the implicit
function, then it will be discarded entirely. Likewise, if a cell its vertices all inside the implicit function, then
it will be retained in its entirety. If a cell has some vertices inside the implicit function and some outside, then
the cell will be split into the portions inside (which will be retained) and the portions outside (which will be
discarded).

ClipWithImplicitFunction provides the following methods.

SetImplicitFunctionGetImplicitFunction Specifies the implicit function to be used to perform the clip op-
eration. The filter does not directly take a vtkm::ImplicitFunction but rather an ImplicitFunction
wrapped inside of a vtkm::cont::ImplicitFunctionHandle. The ImplicitFunctionHandle manages
the use of the virtual methods in ImplicitFunction on different devices, which may be using different
memory spaces or require different processor instructions. An ImplicitFunctionHandle is easily created
with the vtkm: :cont: :make ImplicitFunctionHandle function.

SetInvertClip Specifies whether the result of the clip filter should be inverted. If set to false (the default), all
regions where the implicit function is negative will be removed. If set to true, all regions where the implicit
function is positive will be removed.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.
SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields

are passed. See Section 4.4.2 for more details.

In the example provided below the vtkm: : Sphere implicit function is used. This function evaluates to a negative
value if points from the original dataset occur within the sphere, evaluates to 0 if the points occur on the surface
of the sphere, and evaluates to a positive value if the points occur outside the sphere.
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Example 4.3: Using ClipWithImplicitFunction.

1 // Parameters needed for implicit function

2 vtkm::Sphere implicitFunction(vtkm::make_Vec(1, 0, 1), 0.5);

3

4 // Create an instance of a clip filter with this implicit function.

5 vtkm::filter::ClipWithImplicitFunction clip;

6 clip.SetImplicitFunction(

7 vtkm::cont::make_ImplicitFunctionHandle (implicitFunction));

8

9 // By default, ClipWithImplicitFunction will remove everything inside the sphere.
10 // Set the invert clip flag to keep the inside of the sphere and remove everything
11 // else.

12 clip.SetInvertClip(true);

13

14 // Execute the clip filter

15 vtkm::cont::DataSet outData = clip.Execute(inData);

4.2.3 External Faces

vtkm::filter: :ExternalFaces is a filter that extracts all the external faces from a polyhedral data set. An
external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the boundary
of that hole will be considered external. More formally, an external face is one that belongs to only one cell in a
mesh.

ExternalFaces provides the following methods.

SetCompactPoints/GetCompactPoints Specifies whether point fields should be compacted. If on, the filter will
remove from the output all points that are not used in the resulting surface. If off (the default), unused
points will remain listed in the topology, but point fields and coordinate systems will be shallow-copied to
the output.

SetPassPolyData/GetPassPolyData Specifies how polygonal data (polygons, lines, and vertices) will be han-
dled. If on (the default), these cells will be passed to the output. If off, these cells will be removed from
the output. (Because they have less than 3 topological dimensions, they are not considered to have any
“faces.)

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.4 Ghost Cell Classification

vtkm: :filter: :GhostCellClassify adds a cell centered field to the input data set that marks each cell as
either vtkm: :CellClassification: :NORMAL or vtkm::CellClassification: :GHOST. The outer layer of cells
are marked as GHOST, and the remainder are marked as *CellClassificationNORMAL. This filter only supports
uniform and rectilinear data sets. The default field is “vtkmGhostCells”.
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GhostCellClassify provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.
Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.5 Vertex Clustering

vtkm: :filter: :VertexClustering is a filter that simplifies a polygonal mesh. It does so by dividing space into
a uniform grid of bin and then merges together all points located in the same bin. The smaller the dimensions of
this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This surface
simplification is an important operation to support level of detail (LOD) rendering in visualization applications.
Example 4.2 provides a demonstration of the vertex clustering filter.

VertexClustering provides the following methods.

SetNumber0fDivisions/GetNumberOfDimensions Specifies the dimensions of the uniform grid that establishes
the bins used for clustering. Setting smaller numbers of dimensions produces a smaller output, but with a
coarser representation of the surface. The dimensions are provided as a vtkm: : Id3.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.3 Data Set with Field Filters

Data set with field filters are a class of filters that generate a new data set with a new topology. This new
topology is derived from an existing data set and at least one of the fields in the data set. For example, a field
might determine how each cell is culled, clipped, or sliced.
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Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all data set with field
filters share is the “active” field for the operation. The active field is set with a call to the SetActiveField
method. The argument to SetActiveField is a string that names this input field. Another state parameters all
data set with field filters share is the “active” cell set for the operation. The active cell set is set with a call to the
SetActiveCellSetIndex. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate
on. By default, the filter will operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for
more information about cell sets and coordinate systems, respectively.) Finally, SetOutputFieldName, specifies
the name assigned to the generated field. If not specified, then the filter will use a default name.

All data set with field filters contain an Execute method. When calling Execute a vtkm::cont: :DataSet or
vtkm: :cont: :MultiBlock object with the input data is provided as an argument. The Execute method returns
a DataSet or MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a data set with field filter. It specifically uses
the Marching Cubes filter, which is one of the data set with field filters.

Example 4.4: Using MarchingCubes, which is a data set with field filter.

vtkm::filter::MarchingCubes marchingCubes;

marchingCubes.SetActiveField ("pointvar");
marchingCubes.SetIsoValue (10.0);
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vtkm::cont::DataSet isosurface = marchingCubes.Execute (inData);

4.3.1 Clip with Field

Clipping is an operation that removes regions from the data set based on a user-provided value or function. The
vtkm: :filter: :ClipWithField filter takes a clip value as an argument and removes regions where a named
scalar field is below (or above) that value. (A companion filter that discards a region of the data based on an
implicit function is described in Section 4.2.2.)

The result of ClipWithField is a volume. If a cell has field values at its vertices that are all below the specified
value, then it will be discarded entirely. Likewise, if a cell has field values at its vertices that are all above
the specified value, then it will be retained in its entirety. If a cell has some vertices with field values below
the specified value and some above, then the cell will be split into the portions above the value (which will be
retained) and the portions below the value (which will be discarded).

This operation is sometimes called an isovolume because it extracts the volume of a mesh that is inside the
iso-region of a scalar. This is in contrast to an isosurface (also known as a contour), which extracts only the
surface of that iso-value. (See Section 4.3.3 for extracting an isosurface.) ClipWithField is also similar to a
threshold operation, which extracts cells based on the value of field. The difference is that threshold will either
keep or remove entire cells based on the field values whereas clip with carve cells that straddle the valid regions.
(See section 4.3.4 for threshold extraction.)

ClipWithField provides the following methods.
SetClipValue/GetClipValue Specifies the field value for the clip operation. Regions where the active field is
less than this value are clipped away from each input cell.

SetInvertClip Specifies if the result for the clip filter should be inverted. If set to false (the default), regions
where the active field is less than the specified clip value are removed. If set to true, regions where the
active field is more than the specified clip value are removed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.
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SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Example 4.5: Using ClipWithField.
// Create an instance of a clip filter that discards all regions with scalar
// value less than 25.
vtkm::filter::ClipWithField clip;
clip.SetClipValue (25.0);
clip.SetActiveField ("pointvar");

// Execute the clip filter
vtkm::cont::DataSet outData = clip.Execute (inData);
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4.3.2 Ghost Cell Removal

vtkm: :filter: :GhostCellRemove is a filter that is used to remove cells from a data set according to a cell
centered field that is provided to the filter. The default field used for removal is “vtkmGhostCells”. The field is
of type vtkm: : UInt8, and represents a bit-field to classify each cell. By default, if the input is a structured data
set the filter will attempt to output a structured data set. If this is not possible, an explict data set is produced.
The field specified for cell removal is not passed to the output.

GhostCellRemove provides the following methods.

RemoveAllGhost Remove all cells where the value is a ghost cell (i.e. vtkm::CellClassification: :GHOST).

RemoveByType Remove cells specified by the vtkm: :UInt8 using a bitwise “and” operation with the type field.
The values in vtkm: :CellClassification can be combined with a logical “or” operation to specify the
type. Current values of vtkm: :CellClassification include: NORMAL, GHOST, and INVALID.

ConvertOutputToUnstructured Return an explict data set.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.
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4.3.3 Marching Cubes

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field is
equal to a particular value. A topographic map showing curves of various elevations often used when hiking in hilly
regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour gives
a surface. Thus, a contour is often called an isosurface. Marching Cubes is a well know algorithm for computing
contours and is implemented by vtkm: :filter: :MarchingCubes. Example 4.4 provides a demonstration of the
Marching Cubes filter.

MarchingCubes provides the following methods.

SetIsoValue/GetIsoValue Specifies the value on which to extract the contour. The contour will be the surface
where the field (provided to Execute) is equal to this value.

SetMergeDuplicatePoints/GetMergeDuplicatePoints Specifies whether coincident points in the data set
should be merged. Because the Marching Cubes filter (like all filters in VTK-m) runs in parallel, parallel
threads can (and often do) create duplicate versions of points. When this flag is set to true, a secondary
operation will find all duplicated points and combine them together.

SetGenerateNormals/GetGenerateNormals Specifies whether to generate normal vectors for the surface. Nor-
mals are used in shading calculations during rendering and can make the surface appear more smooth. By
default, the generated normals are based on the gradient of the field being contoured and can be quite
expensive to compute. A faster method is available that computes the normals based on the faces of the
isosurface mesh, but the normals do not look as good as the gradient based normals. Fast normals can be
enabled using the flags described bellow.

SetComputeFastNormalsForStructured/GetComputeFastNormalsForStructured Specifies whether to use the
fast method of normals computation for Structured data sets. This is only valid if the generate normals
flag is set.

SetComputeFastNormalsForUnstructured/GetComputeFastNormalsForUnstructured Specifies whether to
use the fast method of normals computation for unstructured data sets. This is only valid if the gen-
erate normals flag is set.

SetNormalArrayName/GetNormalArrayName Specifies the name used for the normals field if it is being created.
SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Chapter 4. Running Filters 39



4.3. Data Set with Field Filters

4.3.4 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::Threshold filter removes all cells where the field (provided to Execute) is not between a range
of values.

Note that Threshold either passes an entire cell or discards an entire cell. This can consequently lead to jagged
surfaces at the interface of the threshold caused by the shape of cells that jut inside or outside the removed
region. See Section 4.3.1 for a clipping filter that will clip off a smooth region of the mesh.

Threshold provides the following methods.

SetLowerThreshold/GetLowerThreshold Specifies the lower scalar value. Any cells where the scalar field is
less than this value are removed.

SetUpperThresholdGetUpperThreshold Specifies the upper scalar value. Any cells where the scalar field is
more than this value are removed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.3.5 Streamlines

Streamlines are a powerful technique for the visualization of flow fields. A streamline is a curve that is parallel
to the velocity vector of the flow field. Individual streamlines are computed from an initial point location (seed)
using a numerical method to integrate the point through the flow field.

vtkm: :filter: :Streamline provides the following methods.

SetSeeds Specifies the seed locations for the streamlines. Each seed is advected in the vector field to generate
one streamline for each seed.

SetStepSize Specifies the step size used for the numerical integrator (4"

grate the seed locations through the flow field.

order Runge-Kutta method) to inte-

SetNumber0fSteps Specifies the number of integration steps to be performed on each streamline.
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Example 4.6: Using Streamline, which is a data set with field filter.

1 vtkm::filter::Streamline streamlines;

2

3 // Specify the seeds.

4 vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> seedArray;

5 seedArray.Allocate (2);

6 seedArray.GetPortalControl ().Set (0, vtkm::Vec<vtkm::FloatDefault, 3>(0, 0, 0));
7 seedArray.GetPortalControl ().Set (1, vtkm::Vec<vtkm::FloatDefault, 3>(1, 1, 1));
8

9 streamlines.SetActiveField ("vectorvar");

10 streamlines.SetStepSize (0.1f);

11 streamlines.SetNumber0fSteps (100);

12 streamlines.SetSeeds (seedArray);

13

14 vtkm::cont::DataSet streamlineCurves = streamlines.Execute(inData);

4.3.6 Pathlines

Pathlines are the analog to Streamlines for time varying vector fields. Individual pathlines are computed from
an initial point location (seed) using a numerical method to integrate the point through the flow field. This filter
requires two data sets as input. The data set passed into the filter is termed “Previous” and the “Next” data set
is specified to the filter using a method.

vtkm: :filter: :Pathline provides the following methods.

SetPreviousTime Specifies time value for the input data set.
SetNextTime Specifies time value for the next data set.
SetNextDataSet Specifies the data set for the next time step.

SetSeeds Specifies the seed locations for the pathlines. Each seed is advected in the vector field to generate one
streamline for each seed.

SetStepSize Specifies the step size used for the numerical integrator (4th

grate the seed locations through the flow field.

order Runge-Kutta method) to inte-

SetNumber0fSteps Specifies the number of integration steps to be performed on each pathline.

Example 4.7: Using Pathline, which is a data set with field filter.

1 vtkm::filter::Pathline pathlines;

2

3 // Specify the seeds.

4 vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> seedArray;

5 seedArray.Allocate (2);

6 seedArray.GetPortalControl ().Set (0, vtkm::Vec<vtkm::FloatDefault, 3>(0, 0, 0));
7 seedArray.GetPortalControl().Set (1, vtkm::Vec<vtkm::FloatDefault, 3>(1, 1, 1));
8

9 pathlines.SetActiveField ("vectorvar");

10 pathlines.SetStepSize (0.1f);

11 pathlines.SetNumber0fSteps (100);

12 pathlines.SetSeeds (seedArray);

13 pathlines.SetPreviousTime (0.0f);

14 pathlines.SetNextTime (1.0f);

15 pathlines.SetNextDataSet (inData2);

16

17 vtkm::cont::DataSet pathlineCurves = pathlines.Execute(inDatal);

Chapter 4. Running Filters 41



4.4. Advanced Field Management

4.4 Advanced Field Management

Most filters work with fields as inputs and outputs to their algorithms. Although in the previous discussions of
the filters we have seen examples of specifying fields, these examples have been kept brief in the interest of clarity.
In this section we revisit how filters manage fields and provide more detailed documentation of the controls.

Note that not all of the discussion in this section applies to all the aforementioned filters. For example, not all
filters have a specified input field. But where possible, the interface to the filter objects is kept consistent.

4.4.1 Input Fields

Many of VIK-m’s filters have a method named SetActiveField, which selects a field in the input data to use
as the data for the filter’s algorithm. We have already seen how SetActiveField takes the name of the field as
an argument. However, SetActiveField also takes an optional second argument that specifies which topological
elements the field is associated with (such as points or cells). If specified, this argument is one of the following.

vtkm: :cont::Field: :ASSOC_ANY Any field regardless of the association. (This is the default if no association
is given.)

vtkm: :cont: :Field: :ASSOC_POINTS A field that applies to points. There is a separate field value attached to
each point. Point fields usually represent samples of continuous data that can be reinterpolated through
cells. Physical properties such as temperature, pressure, density, velocity, etc. are usually best represented
in point fields. Data that deals with the points of the topology, such as displacement vectors, are also
appropriate for point data.

vtkm: :cont::Field::ASSOC_CELL_SET A field that applies to cells. There is a separate field value attached
to each cell in a cell set. Cell fields usually represent values from an integration over the finite cells of the
mesh. Integrated values like mass or volume are best represented in cell fields. Statistics about each cell
like strain or cell quality are also appropriate for cell data.

vtkm: :cont: :Field: :ASSOC_WHOLE_MESH A “global” field that applies to the whole mesh. These often contain
summary or annotation information. An example of a whole mesh field could be the volume that the mesh
Covers.

Example 4.8: Setting a field’s active filter with an association.
1| filter.SetActiveField("pointvar", vtkm::cont::Field::Association::POINTS);

¢

It is possible to have two fields with the same name that are only differentiatable by the association. That
is, you could have a point field and a cell field with different data but the same name. Thus, it is best
practice to specify the field association when possible. Likewise, it is poor practice to have two fields with
the same name, particularly if the data are not equivalent in some way. It is often the case that fields are
selected without an association.
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It is also possible to set the active scalar field as a coordinate system of the data. A coordinate system essentially
provides the spatial location of the points of the data and they have a special place in the vtkm: : cont: :DataSet
structure. (See Section 11.4 for details on coordinate systems.) You can use a coordinate system as the active
scalars by calling the SetUseCoordinateSystemAsField method with a true flag. Since a DataSet can have
multiple coordinate systems, you can select the desired coordinate system with SetActiveCoordinateSystem.
(By default, the first coordinate system will be used.)

4.4.2 Passing Fields from Input to Output

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. By default, the filter will automatically pass all fields from input to output (performing whatever
transformations are necessary). You can control which fields are passed (and equivalently which are not) with
the SetFieldsToPass methods of vtkm::filter::Filter.

There are multiple ways to to use Filter: :SetFieldsToPass to control what fields are passed. If you want
to turn off all fields so that none are passed, call SetFieldsToPass with vtkm::filter::FieldSelection::-
MODE_NONE.

Example 4.9: Turning off the passing of all fields when executing a filter.
1 | filter.SetFieldsToPass (vtkm::filter::FieldSelection::MODE_NONE);

If you want to pass one specific field, you can pass that field’s name to SetFieldsToPass.

Example 4.10: Setting one field to pass by name.
1 | filter.SetFieldsToPass ("pointvar");

Or you can provide a list of fields to pass by giving SetFieldsToPass an initializer list of names.

Example 4.11: Using a list of fields for a filter to pass.
1 | filter.SetFieldsToPass ({ "pointvar", "cellvar" 1});

If you want to instead select a list of fields to not pass, you can add vtkm: :filter: :FieldSelection: :MODE_-
EXCLUDE as an argument to SetFieldsToPass.

Example 4.12: Excluding a list of fields for a filter to pass.

1 filter.SetFieldsToPass ({ "pointvar", "cellvar" },
2 vtkm::filter::FieldSelection:: MODE_EXCLUDE);

Ultimately, Filter: :SetFieldsToPass takes a vtkm::filter::FieldSelection object. You can create one
directly to select (or exclude) specific fields and their associations.

Example 4.13: Using vtkm: :filter::FieldSelection.
vtkm::filter::FieldSelection fieldSelection;
fieldSelection.AddField ("scalars");
fieldSelection.AddField("cellvar", vtkm::cont::Field::Association::CELL_SET);
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filter.SetFieldsToPass(fieldSelection);

It is also possible to specify field attributions directly to Filter: :SetFieldsToPass. If you only have one field,
you can just specify both the name and attribution. If you have multiple fields, you can provide an initializer
list of std::pair or vtkm::Pair containing a std::string and a vtkm::cont::Field::AssociationEnum.
In either case, you can add an optional last argument of vtkm::filter::FieldSelection: :MODE_EXCLUDE to
exclude the specified filters instead of selecting them.

Chapter 4. Running Filters 43



4.4. Advanced Field Management

Example 4.14: Selecting one field and its association for a filter to pass.
1 filter.SetFieldsToPass ("pointvar", vtkm::cont::Field::Association::POINTS);

Example 4.15: Selecting a list of fields and their associations for a filter to pass.
filter.SetFieldsToPass(
{ vtkm::make_Pair ("pointvar", vtkm::cont::Field::Association::POINTS),
vtkm::make_Pair("cellvar", vtkm::cont::Field::Association::CELL_SET),
vtkm::make_Pair ("scalars", vtkm::cont::Field::Association::ANY) });
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CHAPTER
FIVE

RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering,
VTK-m provides a rendering package to produce imagery from data, which is located in the vtkm: :rendering
namespace.

The rendering package in VITK-m is not intended to be a fully featured rendering system or library. Rather, it
is a lightweight rendering package with two primary use cases:

1. New users getting started with VI'K-m need a “quick and dirty” render method to see their visualization
results.

2. In situ visualization that integrates VIK-m with a simulation or other data-generation system might need
a lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VITK-m is designed to be integrated
into larger systems, it does not aspire to have a fully featured rendering system.

; VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering
system. If you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

5.1 Scenes and Actors

The primary intent of the rendering package in VI'K-m is to visually display the data that is loaded and
processed. Data are represented in VI'K-m by vtkm: : cont: :DataSet objects. DataSet is presented in Chapters
3 and 4. For now we treat DataSet mostly as an opaque object that can be passed around readers, writers,
filters, and rendering units. Detailed documentation for DataSet is provided in Chapter 11.

To render a DataSet, the data are wrapped in a vtkm: :rendering: : Actor class. The Actor holds the compo-
nents of the DataSet to render (a cell set, a coordinate system, and a field). A color table can also be optionally
be specified, but a default color table will be specified otherwise.

Actors are collected together in an object called vtkm: :rendering: :Scene. An Actor is added to a Scene with
the AddActor method. The following example demonstrates creating a Scene with one Actor.



5.2. Canvas

Example 5.1: Creating an Actor and adding it to a Scene.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),
2 surfaceData.GetCoordinateSystem(),
3 surfaceData.GetField ("RandomPointScalars"));
4
5 vtkm::rendering::Scene scene;
6 scene.AddActor (actor);
5.2 Canvas

A canvas is a unit that represents the image space that is the target of the rendering. The canvas’ primary
function is to manage the buffers that hold the working image data during the rendering. The canvas also
manages the context and state of the rendering subsystem.

vtkm: :rendering: :Canvas is the base class of all canvas objects. Each type of rendering system has its own
canvas subclass, but currently the only rendering system provided by VITK-m is the internal ray tracer. The
canvas for the ray tracer is vtkm: :rendering: :CanvasRayTracer. CanvasRayTracer is typically constructed
by giving the width and height of the image to render.

Example 5.2: Creating a canvas for rendering.
1 \ vtkm::rendering::CanvasRayTracer canvas (1920, 1080);

5.3 Mappers

A mapper is a unit that converts data (managed by an Actor) and issues commands to the rendering subsystem
to generate images. All mappers in VITK-m are a subclass of vtkm: :rendering: :Mapper. Different rendering
systems (as established by the Canvas) often require different mappers. Also, different mappers could render
different types of data in different ways. For example, one mapper might render polygonal surfaces whereas
another might render polyhedra as a translucent volume. Thus, a mapper should be picked to match both the
rendering system of the Canvas and the data in the Actor.

The following mappers are provided by VIK-m.
vtkm: :rendering: :MapperRayTracer Uses VIK-m’s built in ray tracing system to render the visible surface
of a mesh. MapperRayTracer only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperCylinder Uses VIK-m’s built in ray tracing system to render cylinders as lines of
a mesh. MapperCylinder only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperPoint Uses VIK-m’s built in ray tracing system to render the visible points/vertices
of a mesh. MapperPoint only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperQuad Uses VITK-m’s built in ray tracing system to render the visible quadrilaterals
of a mesh. MapperQuad only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperVolume Uses VIK-m’s built in ray tracing system to render polyhedra as a translu-
cent volume. MapperVolume only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperWireframer Uses VIK-m’s built in ray tracing system to render the cell edges (i.e.
the “wireframe”) of a mesh. MapperWireframer only works in conjunction with CanvasRayTracer.
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5.4 Views

A wiew is a unit that collects all the structures needed to perform rendering. It contains everything needed to
take a Scene (Section 5.1) and use a Mapper (Section 5.3) to render it onto a Canvas (Section 5.2). The view
also annotates the image with spatial and scalar properties.

The base class for all views is vtkm: :rendering: :View. View is an abstract class, and you must choose one of the
three provided subclasses, vtkm: :rendering: :View3D, vtkm: :rendering: :View2D, and vtkm: :rendering: :-
View3D, depending on the type of data being presented. All three view classes take a Scene, a Mapper, and a
Canvas as arguments to their constructor.

Example 5.3: Constructing a View.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),

2 surfaceData.GetCoordinateSystem (),
3 surfaceData.GetField ("RandomPointScalars"));
4

5 vtkm::rendering::Scene scene;

6 scene.AddActor (actor);

7

8 vtkm::rendering:: MapperRayTracer mapper;

9 vtkm::rendering::CanvasRayTracer canvas (1920, 1080);

10

11 vtkm::rendering::View3D view(scene, mapper, canvas);

12 view.Initialize ();

Once the View is created but before it is used to render, the Initialize method should be called. This is
demonstrated in Example 5.3.

The View also maintains a background color (the color used in areas where nothing is drawn) and a foreground
color (the color used for annotation elements). By default, the View has a black background and a white
foreground. These can be set in the view’s constructor, but it is a bit more readable to set them using the
View: :SetBackground and View::SetForeground methods. In either case, the colors are specified using the
vtkm: :rendering: :Color helper class, which manages the red, green, and blue color channels as well as an
optional alpha channel. These channel values are given as floating point values between 0 and 1.

Example 5.4: Changing the background and foreground colors of a View.

1 view.SetBackgroundColor (vtkm::rendering::Color(1.0f, 1.0f, 1.0f));
2 view.SetForegroundColor (vtkm::rendering::Color (0.0f, 0.0f, 0.0f));

Although the background and foreground colors are set independently, it will be difficult or impossible to see
the annotation if there is not enough contrast between the background and foreground colors. Thus, when
changing a View’s background color, it is always good practice to also change the foreground color.

Once the View is constructed, intialized, and set up, it is ready to render. This is done by calling the View: :Paint
method.

Example 5.5: Using Canvas: :Paint in a display callback.

1 | view.Paint ();

Putting together Examples 5.3, 5.4, and 5.5, the final render of a view looks like that in Figure 5.1.
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RandomPointScalars

1
0.214735 0.346581 0.478427 0.610273 0.742119

Figure 5.1: Example output of VI'K-m’s rendering system.

Of course, the vtkm: :rendering: : CanvasRayTracer created in 5.3 is an offscreen rendering buffer, so you cannot
immediately see the image. When doing batch visualization, an easy way to output the image to a file for later
viewing is with the View: :SaveAs method. This method saves the file in the portable pixelmap (PPM) format.

Example 5.6: Saving the result of a render as an image file.

1 I view.SaveAs ("BasicRendering.ppm");

We visit doing interactive rendering in a GUI later in Section 5.7.

5.5 Changing Rendering Modes

Example 5.3 constructs the default mapper for ray tracing, which renders the data as an opaque solid. However,
you can change the rendering mode by using one of the other mappers listed in Section 5.3. For example, say you
just wanted to see a wireframe representation of your data. You can achieve this by using vtkm: :rendering: : -
MapperWireframer.

Example 5.7: Creating a mapper for a wireframe representation.

1 vtkm::rendering::MapperWireframer mapper;
2 vtkm::rendering::View3D view(scene, mapper, canvas);

Alternatively, perhaps you wish to render just the points of mesh. vtkm: :rendering: :MapperPoint renders the
points as spheres and also optionally can scale the spheres based on field values.

Example 5.8: Creating a mapper for point representation.
vtkm::rendering::MapperPoint mapper;

mapper .UseVariableRadius (true);
mapper.SetRadiusDelta (10.0f);
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vtkm::rendering::View3D view(scene, mapper, canvas);
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These mappers respectively render the images shown in Figure 5.2. Other mappers, such as those that can
render translucent volumes, are also available.

Figure 5.2: Examples of alternate rendering modes using different mappers. The left image is rendered with
MapperWireframer. The right image is rendered with MapperPoint.

5.6 Manipulating the Camera

The vtkm: :rendering: :View uses an object called vtkm: :rendering: :Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the View::GetCamera method. That
retrieved camera can be directly manipulated or a new camera can be provided by calling View: : SetCamera. In
this section we discuss camera setups typical during view set up. Camera movement during interactive rendering
is revisited in Section 5.7.2.

A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space. The different modes can be set with SetModeTo2D and SetModeTo3D, respectively.
The interaction with the camera in these two modes is very different.

5.6.1 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This
region is specified by calling Camera: :SetViewRange2D. This method takes the left, right, bottom, and top of
the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 5.3.

There are 3 overloaded versions of the SetViewRange2D method. The first version takes the 4 range values, left,
right, bottom, and top, as separate arguments in that order. The second version takes two vtkm: :Range objects
specifying the range in the x and y directions, respectively. The third version trakes a single vtkm: :Bounds
object, which completely specifies the spatial range. (The range in z is ignored.) The Range and Bounds objects
are documented later in Sections 6.5.4 and 6.5.5, respectively.
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Figure 5.3: The view range bounds to give a Camera.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera: : -
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of —1 in the x direction moves the camera to focus on the left edge
of the image.

Example 5.9: Panning the camera.
1 [ view.GetCamera () .Pan(deltaX, deltaY);

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera: : Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.

Example 5.10: Zooming the camera.

1 [ view.GetCamera () .Zoom(zoomFactor) ;

5.6.2 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction.
The projection of the 3D camera is based on the pinhole camera model in which all viewing rays intersect a
single point. This single point is the camera’s position.
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Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
Camera: :SetPosition method. The direction the camera is facing is specified by giving a position to focus on.
This is called either the “look at” point or the focal point and is specified with the Camera: : SetLookAt method.
Figure 5.4 shows the relationship between the position and look at points.

Clipping
Range

Clipping
Range
Far

Figure 5.4: The position and orientation parameters for a Camera.

In addition to specifying the direction to point the camera, the camera must also know which direction is
considered “up.” This is specified with the view up vector using the Camera: :SetViewUp method. The view up
vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 5.4.

Another important parameter for the camera is its field of view. The field of view specifies how wide of a region
the camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from
the pinhole of the camera to the Camera: :SetField0fView method. The field of view angle in relation to the
camera orientation is shown in Figure 5.4. A field of view angle of 60° usually works well.

Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is
a pair of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply
by their distance to the camera position. The near clip plane is closer to the camera and must be in front of
all geometry. The far clip plane is further from the camera and must be behind all geometry. The distance to
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both the near and far planes are specified with the Camera: :SetClippingRange method. Figure 5.4 shows the
clipping planes in relationship to the camera position and orientation.

Example 5.11: Directly setting vtkm: :rendering: : Camera position and orientation.

1 camera.SetPosition(vtkm:: make_Vec(10.0, 6.0, 6.0));
2 camera.SetLookAt (vtkm::make_Vec (0.0, 0.0, 0.0));
3 camera.SetViewUp(vtkm::make_Vec (0.0, 1.0, 0.0));
4 camera.SetField0fView (60.0);
5 camera.SetClippingRange (0.1, 100.0);
Movement

In addition to specifically setting the position and orientation of the camera, vtkm: :rendering: : Camera contains
several convenience methods that move the camera relative to its position and look at point.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the look
at point. Camera: :Elevation raises or lowers the camera. Positive values raise the camera up (in the direction
of the view up vector) whereas negative values lower the camera down. Camera::Azimuth moves the camera
around the look at point to the left or right. Positive values move the camera to the right whereas negative
values move the camera to the left. Both Elevation and Azimuth specify the amount of rotation in terms of
degrees. Figure 5.5 shows the relative movements of Elevation and Azimuth.

Elevation

Azimuth

Figure 5.5: Camera movement functions relative to position and orientation.

Example 5.12: Moving the camera around the look at point.

1 view.GetCamera () .Azimuth (45.0);
2 view.GetCamera().Elevation(45.0);
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The Camera: :Elevation and Camera::Azimuth methods change the position of the camera, but not the
view up vector. This can cause some wild camera orientation changes when the direction of the camera
view is near parallel to the view up vector, which often happens when the elevation is raised or lowered by
about 90 degrees.

In addition to rotating the camera around the look at point, you can move the camera closer or further from the
look at point. This is done with the Camera: :Dolly method. The Dolly method takes a single value that is the
factor to scale the distance between camera and look at point. Values greater than one move the camera away,
values less than one move the camera closer. The direction of dolly movement is shown in Figure 5.5.

Finally, the Camera: :Roll method rotates the camera around the viewing direction. It has the effect of rotating
the rendered image. The Roll method takes a single value that is the angle to rotate in degrees. The direction
of roll movement is shown in Figure 5.5.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera: : -
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of —1 in the x direction moves the camera to focus on the left edge
of the image.

Example 5.13: Panning the camera.
1 | view.GetCamera () .Pan(deltaX, deltaY);

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera: : Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.

Example 5.14: Zooming the camera.

1 | view.GetCamera ().Zoom(zoomFactor) ;

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and
location of the geometry is not known a priori. Typically this involves querying the data and finding a good
camera orientation.

To make this process simpler, vtkm: :rendering: : Camera has a convenience method named Camera: :ResetTo-
Bounds that automatically positions the camera based on the spatial bounds of the geometry. The most expedient
method to find the spatial bounds of the geometry being rendered is to get the vtkm: :rendering: : Scene object
and call GetSpatialBounds. The Scene object can be retrieved from the vtkm::rendering: :View, which, as
described in Section 5.4, is the central object for managing rendering.
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Example 5.15: Resetting a Camera to view geometry.

1 | void ResetCamera(vtkm::rendering::View& view)

2 | {

3 vtkm::Bounds bounds = view.GetScene().GetSpatialBounds ();
4 view.GetCamera () .ResetToBounds (bounds);

5%

The ResetToBounds method operates by placing the look at point in the center of the bounds and then placing
the position of the camera relative to that look at point. The position is such that the view direction is the
same as before the call to ResetToBounds and the distance between the camera position and look at point has
the bounds roughly fill the rendered image. This behavior is a convenient way to update the camera to make
the geometry most visible while still preserving the viewing position. If you want to reset the camera to a new
viewing angle, it is best to set the camera to be pointing in the right direction and then calling ResetToBounds
to adjust the position.

Example 5.16: Resetting a Camera to be axis aligned.
view.GetCamera (). SetPosition(vtkm::make_Vec (0.0, 0.0, 0.0));
view.GetCamera ().SetLookAt (vtkm::make_Vec (0.0, 0.0, -1.0));
view.GetCamera ().SetViewUp (vtkm: :make_Vec (0.0, 1.0, 0.0));
vtkm::Bounds bounds = view.GetScene().GetSpatialBounds();
view.GetCamera () .ResetToBounds (bounds) ;
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5.7 Interactive Rendering

So far in our description of VI'K-m’s rendering capabilities we have talked about doing rendering of fixed scenes.
However, an important use case of scientific visualization is to provide an interactive rendering system to explore
data. In this case, you want to render into a GUI application that lets the user interact manipulate the view.
The full design of a 3D visualization application is well outside the scope of this book, but we discuss in general
terms what you need to plug VITK-m’s rendering into such a system.

In this section we discuss two important concepts regarding interactive rendering. First, we need to write images
into a GUI while they are being rendered. Second, we want to translate user interaction to camera movement.

5.7.1 Rendering Into a GUI

Before being able to show rendering to a user, we need a system rendering context in which to push the images.
In this section we demonstrate the display of images using the OpenGL rendering system, which is common for
scientific visualization applications. That said, you could also use other rendering systems like DirectX or even
paste images into a blank widget.

Creating an OpenGL context varies depending on the OS platform you are using. If you do not already have
an application you want to integrate with VI K-m’s rendering, you may wish to start with graphics utility API
such as GLUT or GLFW. The process of initializing an OpenGL context is not discussed here.

The process of rendering into an OpenGL context is straightforward. First call Paint on the View object to
do the actual rendering. Second, get the image color data out of the View’s Canvas object. This is done by
calling Canvas: :GetColorBuffer. This will return a vtkm: :cont: :ArrayHandle object containing the image’s
pixel color data. (ArrayHandles are discussed in detail in Chapter 7.) A raw pointer can be pulled out of
this ArrayHandle by calling GetStorage () .GetBasePointer (). Third, the pixel color data are pasted into the
OpenGL render context. There are multiple ways to do so, but the most straightforward way is to use the
glDrawPixels function provided by OpenGL. Fourth, swap the OpenGL buffers. The method to swap OpenGL
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buffers varies by OS platform. The aforementioned graphics libraries GLUT and GLFW each provide a function
for doing so.

Example 5.17: Rendering a View and pasting the result to an active OpenGL context.

1 view.Paint ();

2

3 // Get the color buffer containing the rendered image.

4 vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float32, 4>> colorBuffer =
5 view.GetCanvas () .GetColorBuffer ();

6

7 // Pull the C array out of the arrayhandle.

8 void* colorArray = colorBuffer.GetStorage().GetBasePointer ();
9

10 // Write the C array to an OpenGL buffer.

11 glDrawPixels ((GLint)view.GetCanvas ().GetWidth (),

12 (GLint)view.GetCanvas ().GetHeight (),

13 GL_RGBA,

14 GL_FLOAT,

15 colorArray);

16

17 // Swap the OpenGL buffers (system dependent).

5.7.2 Camera Movement

When interactively manipulating the camera in a windowing system, the camera is usually moved in response
to mouse movements. Typically, mouse movements are detected through callbacks from the windowing system
back to your application. Once again, the details on how this works depend on your windowing system. The
assumption made in this section is that through the windowing system you will be able to track the x-y pixel
location of the mouse cursor at the beginning of the movement and the end of the movement. Using these two
pixel coordinates, as well as the current width and height of the render space, we can make several typical camera
movements.

¢

Pizel coordinates in VTK-m’s rendering system originate in the lower-left corner of the image. However,
windowing systems generally report mouse coordinates with the origin in the upper-left corner. The upshot
is that the y coordinates will have to be reversed when translating mouse coordinates to VTK-m image
coordinates. This inverting is present in all the following examples.

Rotate

A common and important mode of interaction with 3D views is to allow the user to rotate the object under
inspection by dragging the mouse. To facilitate this type of interactive rotation, vtkm: :rendering: :Camera
provides a convenience method named TrackballRotate. The TrackballRotate method takes a start and end
position of the mouse on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in
the image at the start position and moved under the end position.

The TrackballRotate method is typically called from within a mouse movement callback. The callback must
record the pixel position from the last event and the new pixel position of the mouse. Those pixel positions must
be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the image and (1,1) refers
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to the upper right of the image. The following example demonstrates the typical operations used to establish
rotations when dragging the mouse.

0~ Uk WN -

Pan

Example 5.18: Interactive rotations through mouse dragging with Camera: :TrackballRotate.

view

// width/height,

:Float32
:Float32
1Float32
:Float32

void DoMouseRotate (vtkm:
vtkm:
vtkm:
vtkm:
vtkm:

vtkm::Id screenWidth
vtkm::Id screenHeight

startX
startY
endX =
endY =

:rendering::View& view,
:Id mouseStartX,

:Id mouseStarty,

:Id mouseEndX,

:Id mouseEndY)

= view.GetCanvas ().GetWidth () ;
= view.GetCanvas ().GetHeight ();

// Convert the mouse position coordinates, given in pixels from 0 to

to normalized screen coordinates from -1 to 1. Note that y
// screen coordinates are usually given from the top down whereas our

// geometry transforms are given from bottom up, so you have to reverse the y
// coordiantes.
vtkm:
vtkm:
vtkm:
vtkm:

= (2.0f * mouseStartX) / screenWidth - 1.0f;

= -((2.0f * mouseStartY) / screenHeight - 1.0f);
(2.0f * mouseEndX) / screenWidth - 1.0f;

-((2.0f * mouseEndY) / screenHeight - 1.0f);

.GetCamera (). TrackballRotate (startX, startY, endX, endY);

Panning can be performed by calling Camera: :Pan with the translation relative to the width and height of the
canvas. For the translation to track the movement of the mouse cursor, simply scale the pixels the mouse has
traveled by the width and height of the image.

Example 5.19: Pan the view based on mouse movements.

1 | void DoMousePan(vtkm::rendering::View& view,
2 vtkm::Id mouseStartX,
3 vtkm::Id mouseStartY,
4 vtkm::Id mouseEndX,
5 vtkm::Id mouseEndY)
6 |{
7 vtkm::Id screenWidth = view.GetCanvas ().GetWidth ();
8 vtkm::Id screenHeight = view.GetCanvas().GetHeight ();
9
10 // Convert the mouse position coordinates, given in pixels from 0 to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.
15 vtkm::Float32 startX = (2.0f * mouseStartX) / screenWidth - 1.0f;
16 vtkm::Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
17 vtkm::Float32 endX = (2.0f * mouseEndX) / screenWidth - 1.0f;
18 vtkm::Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
19
20 vtkm::Float32 deltaX endX - startX;
21 vtkm::Float32 deltaY = endY - startV;
22
23 view.GetCamera () .Pan(deltaX, deltaY);
24 |}
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Zoom

Zooming can be performed by calling Camera: : Zoom with a positive or negative zoom factor. When using Zoom
to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse pointer by the
width or height of the screen as demonstrated in the following example.

Example 5.20: Zoom the view based on mouse movements.

1 | void DoMouseZoom(vtkm::rendering::View& view,

2 vtkm::Id mouseStarty,

3 vtkm::Id mouseEndY)

414

5 vtkm::Id screenHeight = view.GetCanvas().GetHeight ();

6

i // Convert the mouse position coordinates, given in pixels from O to height,
8 // to normalized screen coordinates from -1 to 1. Note that y screen

9 // coordinates are usually given from the top down whereas our geometry
10 // transforms are given from bottom up, so you have to reverse the y

11 // coordiantes.

12 vtkm::Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
13 vtkm::Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);

14

15 vtkm::Float32 zoomFactor = endY - startY;

16

17 view.GetCamera () .Zoom(zoomFactor) ;

18 | ¥

5.8 Color Tables

An important feature of VI'K-m’s rendering units is the ability to pseudocolor objects based on scalar data.
This technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined by
a vtkm: :cont::ColorTable object. A ColorTable can be specified as an optional argument when constructing
a vtkm: :rendering: :Actor. (Use of Actors is discussed in Section 5.1.)

Example 5.21: Specifying a ColorTable for an Actor.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),

2 surfaceData.GetCoordinateSystem(),

3 surfaceData.GetField ("RandomPointScalars"),
4 vtkm::cont::ColorTable("inferno"));

The easiest way to create a ColorTable is to provide the name of one of the many predefined sets of color
provided by VTK-m. A list of all available predefined color tables is provided below.

B Viridis Matplotlib Virdis, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good con-
version to black and white. This is the default color map.

| Ml Cool to Warm A color table designed to be perceptually even, to work well
on shaded 3D surfaces, and to generally perform well across
many uses.

B Bl Cool to Warm Extended This colormap is an expansion on cool to warm that moves

through a wider range of hue and saturation. Useful if you
are looking for a greater level of detail, but the darker colors

at the end might interfere with 3D surfaces.
B Inferno Matplotlib Inferno, which is designed to have perceptual uni-

formity, accessibility to color blind viewers, and good conver-
sion to black and white
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Plasma

Black-Body Radiation

X Ray

Green
Black - Blue - White
Blue to Orange

Gray to Red

Cold and Hot

Blue - Green - Orange
Yellow - Gray - Blue

Rainbow Uniform

Jet

Rainbow Desaturated

Matplotlib Plasma, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good conver-

sion to black and white.
The colors are inspired by the wavelengths of light from black

body radiation. The actual colors used are designed to be

perceptually uniform.
Greyscale colormap useful for making volume renderings sim-

ilar to what you would expect in an x-ray.
A sequential color map of green varied by saturation.

A sequential color map from black to blue to white.
A double-ended (diverging) color table that goes from dark
blues to a neutral white and then a dark orange at the other

%C(li.ouble—ended (diverging) color table with black/gray at
the low end and orange/red at the high end.

A double-ended color map with a black middle color and
diverging values to either side. Colors go from red to yellow

on the positive side and through blue on the negative side.
A three-part color map with blue at the low end, green in

the middle, and orange at the high end.
A three-part color map with yellow at the low end, gray in

the middle, and blue at the high end.
A color table that spans the hues of a rainbow. There have

been many scientific perceptual studies on the effectiveness
of rainbow colors, and they uniformly found them to be in-
effective. This color table modifies the hues to make them
more perceptually uniform, which should improve the effec-
tiveness of the colors. However, we still recommend the other

color tables over this one.
A rainbow color table that adds some darkness for greater

perceptual resolution. The ends of the jet color table might

be too dark for 3D surfaces.
All the badness of the rainbow color table with periodic dark

points added, which can help identify rate of change.
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CHAPTER
SIX

BASIC PROVISIONS

This section describes the core facilities provided by VITK-m. These include macros, types, and classes that
define the environment in which code is run, the core types of data stored, and template introspection. We also
start with a description of package structure used by VI'K-m.

6.1 General Approach

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that
the algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-
m provides this pervasive parallelism by providing a programming construct called a worklet, which operates on
a very fine granularity of data. The worklets are designed as serial components, and VI'K-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.

A worklet is essentially a small functor or kernel designed to operate on a small element of data. (The name
“worklet” means a small amount of work. We mean small in this sense to be the amount of data, not necessarily
the amount of instructions performed.) The worklet is constrained to contain a serial and stateless function.
These constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule
worklet invocations on a great many independent concurrent threads and thereby making the algorithm per-
vasively parallel. Second, the constraints allow VIK-m to provide thread safety. By controlling the memory
access the toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel pro-
gramming pitfalls. Third, the constraints encourage good programming practices. The worklet model provides
a natural approach to visualization algorithm design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VIK-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.

Consequently, VIT'K-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.
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Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VI'K-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The

control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.

Control Execution |
- __» Environment Environment W&
Data Model Device Cell Operations l
Array Handle Field Operations
Invoke Adapter Basic Math =
Allocate Make Cells o
Transfer =~
Schedule o
Sort
Scan

-

Figure 6.1: Diagram of the VI'K-m framework.

Figure 6.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Uid you know?
Are you only planning to use filters in VI'K-m that already exist? If so, then everything you work with will

be in the control environment. The execution environment is only used when implementing algorithms for
filters.

6.2 Package Structure

VTK-m is organized in a hierarchy of nested packages. VI K-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm . All classes within VTK-m are placed either directly in the vtkm package or
in a package beneath it. This helps prevent name collisions between VI'K-m and any other library.

As described in Section 6.1, the VITK-m API is divided into two distinct environments: the control environment
and the execution environment. The API for these two environments are located in the vtkm: : cont and vtkm: : -
exec packages, respectively. Items located in the base vtkm namespace are available in both environments.
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Although it is conventional to spell out names in identifiers,! there is an exception to abbreviate control and
execution to cont and exec, respectively. This is because it is also part of the coding convention to declare
the entire namespace when using an identifier that is part of the corresponding package. The shorter names
make the identifiers easier to read, faster to type, and more feasible to pack lines in 80 column displays. These
abbreviations are also used instead of more common abbreviations (e.g. ctrl for control) because, as part of
actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm , vtkm::cont , and vtkm::exec packages.
Support classes for building worklets, described in Chapter 12, are contained in the vtkm::worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm::io , vtkm: :filter , and vtkm::-
rendering . These packages are described in Part I.

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm: : cont namespace: vtkm: :cont::cuda and vtkm: :cont: :tbb .

VTK-m contains OpenGL interoperability that allows data generated with VI'K-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm: : opengl package.

Figure 6.2 provides a diagram of the VT K-m package hierarchy.

vt‘km
\ \ \ \ \ \
exec co‘nt worklet filter io rendering
\ \ \ !
cuda openmp  serial tbb reader writer

Figure 6.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm: : cont: : ArrayHandle class is
found in the vtkm/cont/ArrayHandle.h header. There are, however, exceptions to this rule. Some smaller classes
and types are grouped together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

6.3 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments
the function may be run. These modifiers are C macros that VITK-m uses to instruct the compiler for which
architectures to compile each method. Most user code outside of VITK-m need not use these macros with the
important exception of any classes passed to VIK-m. This occurs when defining new worklets, array storage,
and device adapters.

VTK-m provides three modifier macros, VTKM_CONT, VTKM_EXEC, and VTKM_EXEC_CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments,

LVTK-m coding conventions are outlined in the doc/CodingConventions.md file in the VTK-m source code and at https://gitlab.
kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md
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respectively. These macros get defined by including just about any VTK-m header file, but including vtkm/-
Types.h will ensure they are defined.

The modifier macro is placed after the template declaration, if there is one, and before the return type for the
function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is declared for both
places.

Example 6.1: Usage of an environment modifier macro on a function.

1 | template<typename ValueType>

2 | VTKM_EXEC_CONT ValueType Square(const ValueType& inValue)
34

4 return inValue * inValue;

5

}

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have __host__ in them
and execution modifiers have __device__ in them.

It is sometimes the case that a function declared as VTKM_EXEC_CONT has to call a method declared as VTKM_-
EXEC or VTKM_CONT. Generally functions should not call other functions with incompatible control/execution
modifiers, but sometimes a generic VTKM_EXEC_CONT function calls another function determined by the template
parameters, and the valid environments of this subfunction may be inconsistent. For cases like this, you can
use the VTKM_SUPPRESS_EXEC_WARNINGS to tell the compiler to ignore the inconsistency when resolving the
template. When applied to a templated function or method, VTKM_SUPPRESS_EXEC_WARNINGS is placed before
the template keyword. When applied to a non-templated method in a templated class, VTKM_SUPPRESS_EXEC_-
WARNINGS is placed before the environment modifier macro.

Example 6.2: Suppressing warnings about functions from mixed environments.

1 | VTKM_SUPPRESS_EXEC_WARNINGS

2 | template<typename Functor>

3 | VTKM_EXEC_CONT void OverlyComplicatedForLoop (Functor& functor,

4 vtkm::Id numInterations)
5 | {

6 for (vtkm::Id index = 0; index < numInterations; index++)

7 {

8 functor () ;

9 }

10 |}

6.4 Initialization

When it comes to running VTK-m code, there are a few ways in which various facilities, such as logging and
device connections, can be initialized. The preferred method of initializing these features is to run the vtkm: : -
cont::Initialize function. Although it is not strictly necessary to call Initialize, it is recommended to set
up state and check for available devices.

Initialize can be called without any arguments, in which case VIK-m will be initialized with defaults. But it
can also optionally take the argc and argv arguments to the main function to parse some options that control the
state of VIK-m. VTK-m accepts arguments that, for example, configure the compute device to use or establish
logging levels. Any arguments that are handled by VITK-m are removed from the argc/argv list so that your
program can then respond to the remaining arguments.

Initialize takes an optional third argument that specifies some options on the behavior of the argument
parsing. The options are specified as a bit-wise “or” of fields specified in the vtkm: :cont::InitializeOptions
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enum. The available initialize options are

None Placeholder used when no options are enabled. This is the value used when the third argument to Ini-
tialize is not provided.

RequireDevice Issue an error if the device argument is not specified.

DefaultAnyDevice If no device is specified, treat it as if the user gave “~device=Any”. This means that De-
viceAdapterTagUndefined will never be return in the result.

AddHelp Add a help option. If “-h” or “~help” is provided, prints a usage statement. Of course, the usage
statement will only print out arguments processed by VITK-m, which is why help is not given by default.
A string with usage help is returned from Initialize so that the calling program can provide VTK-m’s
help in its own usage statement.

ErrorOnBadOption If an unknown option is encountered, the program terminates with an error. If this option
is not provided, any unknown options are returned in argv. If this option is used, it is a good idea to use
AddHelp as well.

ErrorOnBadArgument If an extra argument is encountered, the program terminates with an error. If this option
is not provided, any unknown arguments are returned in argv.

Strict If supplied, Initialize treats its own arguments as the only ones supported by the application and provides
an error if not followed exactly. This is a convenience option that is a combination of ErrorOnBadOption,
ErrorOnBadArgument, and AddHelp.

As stated earlier, vtkm: :cont::Initialize removes parsed options from the argc/argv passed to it so that
the calling program can further respond to command line arguments. Additionally, Initialize returns an
vtkm: :cont::InitializeResult object that contains the following information.

Device A vtkm::cont::DeviceAdapterId that represents the device specified by the command line arguments.
(See Chapter 8 for details on how VTK-m represents devices.) If no device is specified in the command line
options, vtkm: : cont: :DeviceAdapterTagUndefined is returned (unless the DefaultAnyDevice option is
given, in which case vtkm: :cont: :DeviceAdapterTaghAny is returned).

Example 6.3: Calling Initialize.

1 |#include <vtkm/cont/Initialize.h>

2

3 |int main(int argc, char** argv)

414

5 vtkm::cont::InitializeOptions options =

6 vtkm::cont::InitializeOptions::ErrorOnBadArgument |

7 vtkm::cont::InitializeOptions::DefaultAnyDevice;

8 vtkm::cont::InitializeResult config = vtkm::cont::Initialize(argc, argv, options);
9

10 if (argc !'= 2)

11 {

12 std::cerr << "USAGE: " << argv[0] << " [options] filename" << std::endl;
13 std::cerr << "Available options are:" << std::endl;

14 std::cerr << config.Usage << std::endl;

15 return 1;

16 }

17 std::string filename = argv[1];

18
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19 // Do something cool with VTK-m

20 //

21

22 return O0;
23 |}

6.5 Core Data Types

Except in rare circumstances where precision is not a concern, VIK-m does not directly use the core C types
like int, float, and double. Instead, VTK-m provides its own core types, which are declared in vtkm/Types.h.

6.5.1 Single Number Types

To ensure portability across different compilers and architectures, VI K-m provides type aliases for the following
basic types with explicit precision: vtkm: :Float32, vtkm: :Float64, vtkm: :Int8, vtkm: :Int16, vtkm: : Int32,
vtkm: :Int64, vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64. Under most circumstances
when using VTK-m (and performing visualization in general) the type of data is determined by the source of the
data or resolved through templates. In the case where a specific type of data is required, these VTK-m—defined
types should be preferred over basic C types like int or float.

Many of the structures in VTK-m require indices to identify elements like points and cells. All indices for arrays
and other lists use the type vtkm::Id. By default this type is a 32-bit wide integer but can be easily changed
by compile options. The CMake configuration option VTKM_USE_64BIT_IDS can be used to change vtkm: : Id
to be 64 bits wide. This configuration can be overridden by defining the C macro VTKM_USE_64BIT_IDS or
VTKM_NO_64BIT_IDS to force vtkm::Id to be either 64 or 32 bits. These macros must be defined before any
VTK-m header files are included to take effect.

There is also a secondary index type named vtkm::IdComponent that is used to index components of short
vectors (discussed in Section 6.5.2). This type is an integer that might be a shorter width than vtkm: : Id.

There is also the rare circumstance in which an algorithm in VITK-m computes data values for which there is
no indication what the precision should be. For these circumstances, the type vtkm: :FloatDefault is provided.
By default this type is a 32-bit wide floating point number but can be easily changed by compile options. The
CMake configuration option VTKM_USE_DOUBLE_PRECISION can be used to change vtkm: :FloatDefault to
be 64 bits wide. This configuration can be overridden by defining the C macro VTKM_USE_DOUBLE_PRECISION
or VTKM_NO_DOUBLE_PRECISION to force vtkm: :FloatDefault to be either 64 or 32 bits. These macros must
be defined before any VTK-m header files are included to take effect.

For convenience, you can include either vtkm /internal /ConfigureFor32.h or vtkm /internal /ConfigureFor64.h to force
both vtkm: :Id and vtkm: :FloatDefault to be 32 or 64 bits.

6.5.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VIK-m provides the vtkm: :Vec <T,Size>
templated type, which is essentially a fixed length array of a given type.

The default constructor of vtkm: : Vec objects leaves the values uninitialized. All vectors have a constructor with
one argument that is used to initialize all components. All vtkm: :Vec objects also have a constructor that allows
you to set the individual components (one per argument). All vtkm: : Vec objects with a size that is greater than
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4 are constructed at run time and support an arbitrary number of initial values. Likewise, there is a vtkm: :-
make_Vec convenience function that builds initialized vector types with an arbitrary number of components.
Once created, you can use the bracket operator to get and set component values with the same syntax as an
array.

Example 6.4: Creating vector types.

1 vtkm::Vec<vtkm::Float32, 3> A{ 1 }; // A is (1, 1, 1)

2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm::Vec<vtkm::Float32, 3> B{ 1, 2, 3 }; // B is (1, 2, 3)

4 vtkm::Vec<vtkm::Float32, 3> C = vtkm::make_Vec(3, 4, 5); // C is (3, 4, 5)

5 // creation with initializer lists

6 vtkm::Vec<vtkm::Float32, 5> D{ 1 }; {f D is 1, 1, 1, 1; 1)

7 vtkm::Vec<vtkm::Float32, 5> E{ 1, 2, 3, 4, 5 }; [/ E is (1, 2, 3, 4, 5)

8 vtkm::Vec<vtkm::Float32, 5> F = { 6, 7, 8, 9, 10 }; // F is (6, 7, 8, 9, 10)

9 auto G = vtkm::make_Vec(1, 3, 5, 7, 9); [/0G dis (1, 3, B, 7, 9)

The types vtkm: :Id2 and vtkm::Id3 are type aliases of vtkm::Vec <vtkm::Id,2> and vtkm::Vec <vtkm::-
Id,2>. These are used to index arrays of 2 and 3 dimensions, which is common.

vtkm: : Vec supports component-wise arithmetic using the operators for plus (+), minus (=), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm: :Dot function is overloaded to provide a dot product for every type of vector.

Example 6.5: Vector operations.

1 vtkm::Vec<vtkm::Float32, 3> A{ 1, 2, 3 };

2 vtkm::Vec<vtkm::Float32, 3> B{ 4, 5, 6.5 };

3 vtkm::Vec<vtkm::Float32, 3> C = A + B; // C is (5, 7, 9.5)

4 vtkm::Vec<vtkm::Float32, 3> D = 2.0f * C; // D is (10, 14, 19)

5 vtkm::Float32 s = vtkm::Dot(A, B); // s is 33.5

6 bool bl = (A == B); // bl is false

7 bool b2 = (A == vtkm::make_Vec(1l, 2, 3)); // b2 is true

8

9 vtkm::Vec<vtkm::Float32, 5> E{ 1, 2.5, 3, 4, 5 }; // E is (1, 2, 3, 4, b5)
10 vtkm::Vec<vtkm::Float32, 5> F{ 6, 7, 8.5, 9, 10.5 }; // F is (6, 7, 8, 9, 10)
11 vtkm::Vec<vtkm::Float32, 5> G = E + F; // G is (7, 9.5, 11.5, 13, 15.5)

12 bool b3 = (E == F); // b3 is false

13 bool b4 = (G == vtkm::make_Vec(7.f, 9.5f, 11.5f, 13.f, 15.5f)); // b4 is true

These operators, of course, only work if they are also defined for the component type of the vtkm: :Vec. For
example, the multiply operator will work fine on objects of type vtkm: :Vec <char, 3>, but the multiply operator
will not work on objects of type vtkm::Vec <std::string,3> because you cannot multiply objects of type
std: :string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm: :Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm: :Vec to hold the
state of a polygon.

Example 6.6: Repurposing a vtkm: :Vec.
1 vtkm::Vec<vtkm::Vec<vtkm::Float32, 2>, 3> equilateralTriangle(
2 vtkm::make_Vec (0.0, 0.0),
3 vtkm::make_Vec (1.0, 0.0),
4 vtkm::make_Vec (0.5, 0.8660254));

The vtkm: :Vec class provides a convenient structure for holding and passing small vectors of data. However,
there are times when using Vec is inconvenient or inappropriate. For example, the size of vtkm: :Vec must be
known at compile time, but there may be need for a vector whose size is unknown until compile time. Also, the
data populating a vtkm: : Vec might come from a source that makes it inconvenient or less efficient to construct
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a vtkm: :Vec. For this reason, VIK-m also provides several Vec-like objects that behave much like vtkm: : Vec
but are a different class. These Vec-like objects have the same interface as vtkm: :Vec except that the NUM_-
COMPONENTS constant is not available on those that are sized at run time. Vec-like objects also come with a
CopyInto method that will take their contents and copy them into a standard Vec class. (The standard Vec
class also has a CopyInto method for consistency.)

The first Vec-like object is vtkm: : VecC, which exposes a C-type array as a Vec. The constructor for vtkm: : VecC
takes a C array and a size of that array. There is also a constant version of VecC named vtkm: : VecCConst, which
takes a constant array and cannot be mutated. The vtkm/Types.h header defines both VecC and VecCConst as
well as multiple versions of vtkm: :make_ VecC to easily convert a C array to either a VecC or VecCConst.

The following example demonstrates converting values from a constant table into a vtkm: : VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 6.7: Using vtkm: : VecCConst with a constant array.

1 | VTKM_EXEC

2 | vtkm::VecCConst <vtkm::IdComponent > HexagonIndexToIJK(vtkm::IdComponent index)
3|4

4 static const vtkm::IdComponent HexagonIndexToIJKTable [8][3] = {
5 40, 0,000k, {1, 0,00 b {10 k{0, 1, 00,

6 0,0, ¢} {1,0, 1% 11,1, 1% {0,171, 1F

7 };

8

9 return vtkm::make_VecC(HexagonIndexToIJKTable [index], 3);

10 | ¥

11

12 | VTKM_EXEC

13 | vtkm:: IdComponent HexagonIJKToIndex (vtkm::VecCConst<vtkm::IdComponent> ijk)
14 | {

15 static const vtkm::IdComponent HexagonIJKToIndexTable [2][2][2] = {

28 return HexagonIJKToIndexTable[ijk[0]1]1[ijk[111[ijk[2]1];
29 |}

The vtkm: :VecC and vtkm: :VecCConst classes only hold a pointer to a buffer that contains the data. They
do not manage the memory holding the data. Thus, if the pointer given to vtkm: :VecC or vtkm: : VecCConst
becomes invalid, then using the object becomes invalid. Make sure that the scope of the vtkm: :VecC or
vtkm: : VecCConst does not outlive the scope of the data it points to.

The next Vec-like object is vtkm: : VecVariable, which provides a Vec-like object that can be resized at run time
to a maximum value. Unlike VecC, VecVariable holds its own memory, which makes it a bit safer to use. But
also unlike VecC, you must define the maximum size of VecVariable at compile time. Thus, VecVariable is
really only appropriate to use when there is a predetermined limit to the vector size that is fairly small.
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The following example uses a vtkm: : VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 6.7.

Example 6.8: Using vtkm: :VecVariable.

1 |vtkm::VecVariable<vtkm::IdComponent , 4> HexagonShortestPath (

2 vtkm:: IdComponent startPoint,

3 vtkm::IdComponent endPoint)

4|4

5 vtkm::VecCConst<vtkm::IdComponent > startIJK = HexagonIndexToIJK(startPoint);
6 vtkm::VecCConst<vtkm::IdComponent > endIJK = HexagonIndexToIJK(endPoint);
7

8 vtkm::Vec<vtkm::IdComponent, 3> currentIJK;

9 startIJK.CopyInto(currentIJK);

10

11 vtkm::VecVariable<vtkm::IdComponent, 4> path;

12 path.Append (startPoint);

13 for (vtkm::IdComponent dimension = 0; dimension < 3; dimension++)
14 {

15 if (currentIJK[dimension] != endIJK[dimension])

16 {

17 currentIJK[dimension] = endIJK[dimension];

18 path.Append (HexagonIJKToIndex (currentIJK));

19 }

20 1

21

22 return path;

23 |}

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm: :VecFromPortal and
vtkm: : VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a Vec.
These objects work by attaching to array portals, which are described in Section 7.2. Another example of a
Vec-like object is vtkm: :VecRectilinearPointCoordinates, which efficiently represents the point coordinates
in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other data sets are
described in Chapter 11.

6.5.3 Pair

VTK-m defines a vtkm: :Pair <T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm: :Pair will work in both the execution and control environment,
whereas the STL std: :pair does not always work in the execution environment.

The VTK-m version of vtkm: :Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm: :make_Pair function for convenience.

6.5.4 Range

VTK-m provides a convenience structure named vtkm::Range to help manage a range of values. The Range
struct contains two data members, Min and Max, which represent the ends of the range of numbers. Min and
Max are both of type vtkm::Float64. Min and Max can be directly accessed, but Range also comes with the
following helper functions to make it easier to build and use ranges. Note that all of these functions treat the
minimum and maximum value as inclusive to the range.

IsNonEmpty Returns true if the range covers at least one value.

Contains Takes a single number and returns true if that number is contained within the range.
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Length Returns the distance between Min and Max. Empty ranges return a length of 0. Note that if the range
is non-empty and the length is 0, then Min and Max must be equal, and the range contains exactly one
number.

Center Returns the number equidistant to Min and Max. If the range is empty, NaN is returned.

Include Takes either a single number or another range and modifies this range to include the given number or
range. If necessary, the range is grown just enough to encompass the given argument. If the argument is
already in the range, nothing changes.

Union A nondestructive version of Include, which builds a new Range that is the union of this range and the
argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm: :Range.

Example 6.9: Using vtkm: :Range.

1 vtkm::Range range; // default constructor is empty range
2 bool bl = range.IsNonEmpty(); // bl is false
3
4 range.Include (0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range.IsNonEmpty(); // b2 is true
6 bool b3 = range.Contains(0.5); // b3 is true

7 bool b4 = range.Contains(0.6); // b4 is false

8

9 range.Include (2.0); // range is mnow [0.5 .. 2]

10 bool b5 = range.Contains(0.5); // b3 is true
11 bool b6 = range.Contains(0.6); // b4 is true

12

13 range.Include (vtkm::Range (-1, 1)); // range is now [-1 .. 2]

14

15 range.Include(vtkm::Range (3, 4)); // range is now [-1 .. 4]

16

17 vtkm::Float64 lower = range.Min; // lower is -1

18 vtkm::Float64 upper = range.Max; // upper is 4

19 vtkm::Float64 length = range.Length(); // length is 5

20 vtkm::Float64 center = range.Center(); // center is 1.5
6.5.5 Bounds

VTK-m provides a convenience structure named vtkm: :Bounds to help manage an axis-aligned region in 3D
space. Among other things, this structure is often useful for representing a bounding box for geometry. The
Bounds struct contains three data members, X, Y, and Z, which represent the range of the bounds along each re-
spective axis. All three of these members are of type vtkm: :Range, which is discussed previously in Section 6.5.4.
X, Y, and Z can be directly accessed, but Bounds also comes with the following helper functions to make it easier
to build and use ranges.

IsNonEmpty Returns true if the bounds cover at least one value.
Contains Takes a vtkm: :Vec of size 3 and returns true if those point coordinates are contained within the range.

Center Returns the point at the center of the range as a vtkm: :Vec <vtkm::Float64,3>.

Include Takes either a vtkm: :Vec of size 3 or another bounds and modifies this bounds to include the given
point or bounds. If necessary, the bounds are grown just enough to encompass the given argument. If the
argument is already in the bounds, nothing changes.
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Union A nondestructive version of Include, which builds a new Bounds that is the union of this bounds and
the argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm: :Bounds.

Example 6.10: Using vtkm: :Bounds.

1 vtkm::Bounds bounds; // default constructor makes empty

2 bool bl = bounds.IsNonEmpty(); // bl is false

3

4 bounds.Include(vtkm::make_Vec (0.5, 2.0, 0.0)); // bounds contains only
5 // the point [0.5, 2, 0]
6 bool b2 = bounds.IsNonEmpty (); // b2 is true

7 bool b3 = bounds.Contains(vtkm::make_Vec (0.5, 2.0, 0.0)); // b3 is true

8 bool b4 = bounds.Contains(vtkm::make_Vec (1, 1, 1)); // b4 is false

9 bool b5 = bounds.Contains(vtkm::make_Vec (0, 0, 0)); // b5 is false

10

11 bounds.Include (vtkm::make_Vec(4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 [/ (=18 2 in Y
13 // and [0 .. 2] in Z

14 bool b6 = bounds.Contains(vtkm::make_Vec (0.5, 2.0, 0.0)); // b6 is true

15 bool b7 = bounds.Contains(vtkm::make_Vec (1, 1, 1)); // b7 is true

16 bool b8 = bounds.Contains(vtkm::make_Vec (0, 0, 0)); // b8 is false

17

18 vtkm: :Bounds otherBounds(vtkm::make_Vec(0, 0, 0), vtkm::make_Vec(3, 3, 3));

19 // otherBounds is region [0 .. 3] in X, Y, and Z

20 bounds.Include (otherBounds); // bounds is now region [0 .. 4] in X,

21 // [-1 .. 3] in Y,

22 // and [0 .. 3] in Z

23

24 vtkm::Vec<vtkm::Float64, 3> lower (bounds.X.Min, bounds.Y.Min, bounds.Z.Min);

25 // lower is [0, -1, 0]
26 vtkm::Vec<vtkm::Float64, 3> upper (bounds.X.Max, bounds.Y.Max, bounds.Z.Max);
27 // upper is [4, 3, 3]

29 vtkm::Vec<vtkm::Float64, 3> center = bounds.Center(); // center is [2, 1, 1.5]

6.6 Traits

When using templated types, it is often necessary to get information about the type or specialize code based on
general properties of the type. VIK-m uses traits classes to publish and retrieve information about types. A
traits class is simply a templated structure that provides type aliases for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Mayers for a description of traits classes and their uses.

6.6.1 Type Traits

The vtkm: : TypeTraits <T> templated class provides basic information about a core type. These type traits
are available for all the basic C++ types as well as the core VTK-m types described in Section 6.5. vtkm: :-
TypeTraits contains the following elements.

NumericTag This type is set to either vtkm: :TypeTraitsRealTag or vtkm: :TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm: :TypeTraitsScalarTag or vtkm: :TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.
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ZeroInitialization A static member function that takes no arguments and returns 0 (or the closest equivalent
to it) cast to the type.

The definition of vtkm: : TypeTraits for vtkm: :Float32 could like something like this.

Example 6.11: Definition of vtkm: :TypeTraits <vtkm::Float32 >.

1 | namespace vtkm {

2

3 | template <>

4 | struct TypeTraits<vtkm::Float32>

5|1

6 using NumericTag = vtkm::TypeTraitsRealTag;

7 using DimensionalityTag = vtkm::TypeTraitsScalarTag;
8

9 VTKM_EXEC_CONT

10 static vtkm::Float32 ZeroImitialization() { return vtkm::Float32(0); }
11 | };

12

13 |}

Here is a simple example of using vtkm: :TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.

Example 6.12: Using TypeTraits for a generic remainder.

1 |#include <vtkm/TypeTraits.h>

2

3 |#include <vtkm/Math.h>

4

5 | template<typename T>

6 |T AnyRemainder (const T& numerator, const T& denominator);
7

8 | namespace detail

9|1

10

11 | template<typename T>

12 |T AnyRemainderImpl (const T& numerator,

13 const T& denominator,

14 vtkm::TypeTraitsIntegerTag,

15 vtkm::TypeTraitsScalarTag)

16 | {

17 return numerator % denominator;

18 |}

19

20 | template<typename T>

21 |T AnyRemainderImpl(const T& numerator,

22 const T& denominator,

23 vtkm::TypeTraitsRealTag,

24 vtkm:: TypeTraitsScalarTag)

25 | {

26 // The VTK-m math library contains a Remainder function that operates on
27 // floating point numbers.

28 return vtkm::Remainder (numerator, denominator);
29 |}

30

31 | template<typename T, typename NumericTag>

32 | T AnyRemainderImpl (const T& numerator,

33 const T& denominator,

34 NumericTag,

35 vtkm:: TypeTraitsVectorTag)

36 | {

37 T result;

38 for (int componentIndex = 0O; componentIndex < T::NUM_COMPONENTS; componentIndex++)
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39 {

40 result [componentIndex] =

41 AnyRemainder (numerator [componentIndex], denominator [componentIndex]);
42 }

43 return result;

44 |}

46 |} // namespace detail

48 | template<typename T>
49 | T AnyRemainder (const T& numerator, const T& denominator)

50 | {

51 return detail::AnyRemainderImpl (numerator,

52 denominator,

53 typename vtkm::TypeTraits<T>::NumericTag(),

54 typename vtkm::TypeTraits<T>::DimensionalityTag());
55 | ¥

6.6.2 Vector Traits

The templated vtkm: :Vec class contains several items for introspection (such as the component type and its
size). However, there are other types that behave similarly to Vec objects but have different ways to perform
this introspection.

For example, VTK-m contains Vec-like objects that essentially behave the same but might have different features.
Also, there may be reason to interchangeably use basic scalar values, like an integer or floating point number, with
vectors. To provide a consistent interface to access these multiple types that represents vectors, the vtkm: :-
VecTraits <T> templated class provides information and accessors to vector types.It contains the following
elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm: :Id3 has
ComponentType defined as vtkm: : Id.

IsSizeStatic This type is set to either vtkm: :VecTraitsTagSizeStatic if the vector has a static number of
components that can be determined at compile time or set to vtkm: :VecTraitsTagSizeVariable if the
size of the vector is determined at run time. If IsSizeStatic is set to VecTraitsTagSizeVariable, then
VecTraits will be missing some information that cannot be determined at compile time.

HasMultipleComponents This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm: :VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating spe-
cialized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is VecTraitsTagSizeVariable), then HasMultipleComponents might be VecTraitsTag-
MultipleComponents even when at run time there is only one component.

NUM_COMPONENTS An integer specifying how many components are contained in the vector. NUM_COMPONENTS is
not available for vector types of variable size (that is, IsSizeStatic is VecTraitsTagSizeVariable).

GetNumber(OfComponents A static method that takes an instance of a vector and returns the number of compo-
nents the vector contains. The result of GetNumberOfComponents is the same value of NUM_COMPONENTS
for vector types that have a static size (that is, IsSizeStatic is VecTraitsTagSizeStatic). But unlike
NUM_COMPONENTS, GetNumberOfComponents works for vectors of any type.

GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.
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CopyInto A static method that copies the components of a vector to a vtkm: :Vec.

The definition of vtkm: :VecTraits for vtkm: : Id3 could look something like this.

Example 6.13: Definition of vtkm: :VecTraits <vtkm::Id3 >.

1 | namespace vtkm {

2

3 | template<>

4 | struct VecTraits<vtkm::Id3>

514

6 using ComponentType = vtkm::Id;

7 static const int NUM_COMPONENTS = 3;

8 using IsSizeStatic = vtkm::VecTraitsTagSizeStatic;

9 using HasMultipleComponents = vtkm::VecTraitsTagMultipleComponents;
10

11 VTKM_EXEC_CONT

12 static vtkm::IdComponent GetNumberOfComponents (const vtkm::Id3&)

13 {

14 return NUM_COMPONENTS;

15 }

16

17 VTKM_EXEC_CONT

18 static const vtkm::Id& GetComponent (const vtkm::Id3& vector, int component)
19 {

20 return vector [component];

21 }

22 VTKM_EXEC_CONT

23 static vtkm::Id& GetComponent (vtkm::Id3& vector, int component)

24 {

25 return vector [component];

26 }

27

28 VTKM_EXEC_CONT

29 static void SetComponent (vtkm::Id3& vector, int component, vtkm::Id value)
30 {

31 vector [component] = value;

32 }

33

34 template<vtkm::IdComponent DestSize>

35 VTKM_EXEC_CONT static void CopylInto(const vtkm::Id3& src,

36 vtkm::Vec<vtkm::Id, DestSize>& dest)
37 {

38 for (vtkm::IdComponent index = 0; (index < NUM_COMPONENTS) && (index < DestSize);
39 index++)

40 1

41 dest [index] = srcl[index];

42 }

43 ik

44 | };

45

46 |} // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.

W N

Example 6.14: Using VecTraits for less functors.

#include <vtkm/VecTraits.h>

// This functor provides a total ordering of vectors. Every compared vector
// will be either less, greater, or equal (assuming all the vector components
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5|// also have a total ordering).

6 | template<typename T>

7 | struct LessTotalOrder

8 | {

9 VTKM_EXEC_CONT

10 bool operator () (const T& left, const T& right)

11 i

12 for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
13 {

14 using ComponentType = typename vtkm::VecTraits<T>::ComponentType;
15 const ComponentType& leftValue = vtkm::VecTraits<T>::GetComponent (left, index);
16 const ComponentType& rightValue =

17 vtkm::VecTraits<T>::GetComponent (right, index);

18 if (leftValue < rightValue)

19 {

20 return true;

21 }

22 if (rightValue < leftValue)

23 {

24 return false;

25 }

26 }

27 // 1f we are here, the vectors are equal (or at least equivalent).
28 return false;

29 }

30 | };

31

32 | // This functor provides a partial ordering of vectors. It returns true if and
33 |// only if all components satisfy the less operation. It is possible for

34 |// vectors to be neither less, greater, nor equal, but the transitive closure
35 |// is still valid.

36 | template<typename T>

37 | struct LessPartialOrder

38 | {

39 VTKM_EXEC_CONT

40 bool operator()(const T& left, const T& right)

41 {

42 for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
43 {

44 using ComponentType = typename vtkm::VecTraits<T>::ComponentType;

45 const ComponentType& leftValue = vtkm::VecTraits<T>::GetComponent (left, index);
46 const ComponentType& rightValue =

47 vtkm::VecTraits<T>::GetComponent (right, index);

48 if (!(leftValue < rightValue))

49 {

50 return false;

51 ¥

52 }

53 // 1f we are here, all components satisfy less than relation.

54 return true;

55 k

56 | };

6.7 List Tags

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating
programs, to customize code to various data and compute platforms. Omne basic structure often uses with
template metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of
those names have different meanings in VIT'K-m).
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Many VTK-m users only need predefined lists, such as the type lists specified in Section 6.7.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

VTK-m uses a tag-based mechanism for defining lists, which differs significantly from lists in many other template
metaprogramming libraries such as with boost: :mpl::vector or boost: :vector. Rather than enumerating all
list entries as template arguments, the list is referenced by a single tag class with a descriptive name. The intention
is to make fully resolved types shorter and more readable. (Anyone experienced with template programming
knows how insanely long and unreadable types can get in compiler errors and warnings.)

6.7.1 Building List Tags

List tags are constructed in VTK-m by defining a struct that publicly inherits from another list tags. The base
list tags are defined in the vtkm/ListTag.h header.

The most basic list is defined with vtkm: :ListTagEmpty. This tag represents an empty list.

vtkm: :ListTagBase <T, ...> represents a list of the types given as template parameters. vtkm: :ListTagBase
supports a variable number of parameters with the maximum specified by VTKM_MAX_BASE_LIST.

Finally, lists can be combined together with vtkm::ListTagJoin <ListTagl,ListTag2>, which concatinates
two lists together.

The following example demonstrates how to build list tags using these base lists classes. Note first that all the
list tags are defined as struct rather than class. Although these are roughly synonymous in C++, struct
inheritance is by default public, and public inheritance is important for the list tags to work. Note second that
these tags are created by inheritance rather than using a type alias. Although a type alias defined with using
will work, it will lead to much uglier type names defined by the compiler.

Example 6.15: Creating list tags.
#include <vtkm/ListTag.h>

// Placeholder classes representing things that might be in a template
// metaprogram list.

class Foo;

class Bar;

class Baz;

class Qux;

class Xyzzy;

© 00~ U WN

11 | // The names of the following tags are indicative of the lists they contain.

13 | struct FooList : vtkm::ListTagBase<Foo>

14 | {

15 | };

16

17 | struct FooBarList : vtkm::ListTagBase<Foo, Bar>

18 | {

19 | };

20

21 | struct BazQuxXyzzyList : vtkm::ListTagBase<Baz, Qux, Xyzzy>
22 | {

23 |}

24

25 | struct QuxBazBarFoolList : vtkm::ListTagBase<Qux, Baz, Bar, Foo>
26 | {

27 | };

28

29 | struct FooBarBazQuxXyzzyList : vtkm::ListTagJoin<FooBarList, BazQuxXyzzyList>
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30 | {
31 | };

6.7.2 Type Lists

One of the major use cases for template metaprogramming lists in VT K-m is to identify a set of potential data
types for arrays. The vtkm/TypeListTag.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C4++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm: : TypeListTagId Contains the single item vtkm: : Id.
vtkm: : TypeListTagId2 Contains the single item vtkm: :Id2.

vtkm: :TypeListTagId3 Contains the single item vtkm: :Id3.

vtkm: : TypeListTagIndex A list of all types used to index arrays. Contains vtkm: : Id, vtkm: : Id2, and vtkm: : -
I4d3.

vtkm: : TypeListTagFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm: :Float32 and vtkm: :Float64).

vtkm: : TypeListTagFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagFieldVec4 A list containing types for values of fields with 4 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagField A list containing all the types generally used for fields. It is the combination of
vtkm: : TypeListTagFieldScalar, vtkm::TypeListTagFieldVec2, vtkm::TypeListTagFieldVec3, and
vtkm: :TypeListTagFieldVec4.

vtkm: :TypeListTagScalarAll A list of all scalar types. It contains signed and unsigned integers of widths
from 8 to 64 bits. It also contains floats of 32 and 64 bit widths.

vtkm: : TypeListTagVecCommon A list of the most common vector types. It contains all vtkm: : Vec class of size
2 through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

vtkm: : TypeListTagVecAll A list of all vtkm: :Vec classes with standard integers or floating points as compo-
nents and lengths between 2 and 4.

vtkm: : TypeListTagAll A list of all types included in vtkm/Types.h with vtkm: : Vec s with up to 4 components.

vtkm: : TypeListTagCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in variant arrays (described in Chapter 10).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 6.7.1 as demonstrated in the following example.
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Example 6.16: Defining new type lists.

1 |#define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes

2

3 |#include <vtkm/ListTag.h>

4 |#include <vtkm/TypeListTag.h>

5

6 |// A list of 2D vector types.

7 | struct Vec2List : vtkm::ListTagBase<vtkm::Id2,

8 vtkm::Vec<vtkm::Float32, 2>,

9 vtkm::Vec<vtkm::Float64, 2>>

10 | {

11 | };

12

13 |// An application that uses 2D geometry might commonly encounter this list of
14 | // types.

15 | struct MyCommonTypes : vtkm::ListTagJoin<Vec2List, vtkm::TypeListTagCommon >
16 | {

17 | };

The vtkm/TypeListTag.h header also defines a macro named VTKM_DEFAULT_TYPE_LIST_TAG that defines a de-
fault list of types to use in classes like vtkm::cont::VariantArrayHandle (Chapter 10). This list can be
overridden by defining the VTKM_DEFAULT_TYPE_LIST_TAG macro before any VTK-m headers are included. If
included after a VTK-m header, the list is not likely to take effect. Do not ignore compiler warnings about the
macro being redefined, which you will not get if defined correctly. Example 6.16 also contains an example of
overriding the VTKM_DEFAULT_TYPE_LIST_TAG macro.

6.7.3 Operating on Lists

VTK-m template metaprogramming lists are typically just passed to VI'K-m methods that internally operate
on the lists. Although not typically used outside of the VTK-m library, these operations are also available.

The vtkm/ListTag.h header comes with a vtkm: :ListForEach function that takes a functor object and a list tag.
It then calls the functor object with the default object of each type in the list. This is most typically used with
C++ run-time type information to convert a run-time polymorphic object to a statically typed (and possibly
inlined) call.

The following example shows a rudimentary version of coverting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm: : cont: : VariantArrayHandle (which is documented
in Chapter 10).

Example 6.17: Converting dynamic types to static types with ListForEach.

1 | struct MyArrayBase

2|4

3 // A virtual destructor makes sure C++ RTTI will be generated. It also helps
4 // ensure subclass destructors are called.
5 virtual ~“MyArrayBase () {}

6|3}

7

8 | template<typename T>

9 | struct MyArrayImpl : public MyArrayBase

10 | {

11 std::vector<T> Array;

12 | };

13

14 | template<typename T>
15 | void PrefixSum(std::vector<T>& array)

16 | {
17 T sum(typename vtkm::VecTraits<T>::ComponentType (0));
18 for (typename std::vector<T>::iterator iter = array.begin(); iter != array.end();
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6.8

6.8.
iter++)
{
sum = sum + *iter;
*iter = sum;
}
¥
struct PrefixSumFunctor
{
MyArrayBase* ArrayPointer;
PrefixSumFunctor (MyArrayBase* arrayPointer)
ArrayPointer (arrayPointer)
{
}
template<typename T>
void operator () (T)
{
using ConcreteArrayType = MyArrayImpl<T>;
ConcreteArrayType* concreteArray =
dynamic_cast <ConcreteArrayType*>(this->ArrayPointer);
if (concreteArray != NULL)
{
PrefixSum(concreteArray->Array);
}
}
};
void DoPrefixSum(MyArrayBase* array)
{
PrefixSumFunctor functor = PrefixSumFunctor (array);
vtkm::ListForEach(functor, vtkm::TypeListTagCommon ());
}

Error Handling

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm: :cont: :-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont: :Error and report the error
message string reported by the Error: :GetMessage method.

© 00~ U WN -~

10
11
12
13
14

Example 6.18: Simple error reporting.
int main(int argc, char*x argv)

{
try
{0
// Do something cool with VTK-m
//
i
catch (const vtkm::cont::Error& error)
{
std::cout << error.GetMessage() << std::endl;
return 1;
7
return O0;
iy

There are several subclasses to vtkm: :cont: :Error. The specific subclass gives an indication of the type of
error that occured when the exception was thrown. Catching one of these subclasses may help a program better
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recover from errors.

vtkm: :cont: :ErrorBadAllocation Thrown when there is a problem accessing or manipulating memory. Often
this is thrown when an allocation fails because there is insufficient memory, but other memory access errors
can cause this to be thrown as well.

vtkm: :cont: :ErrorBadType Thrown when VTK-m attempts to perform an operation on an object that is of
an incompatible type.

vtkm: :cont: :ErrorBadValue Thrown when a VIK-m function or method encounters an invalid value that
inhibits progress.

vtkm: :cont: :ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.

vtkm: :cont: :ErrorInternal Thrown when VTK-m detects an internal state that should never be reached.
This error usually indicates a bug in VT K-m or, at best, VITK-m failed to detect an invalid input it should
have.

vtkm: :io: :ErrorI0 Thrown by a reader or writer when a file error is encountered.

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM_-
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 6.19: Using VTKM_ASSERT.
template<typename T>
VTKM_CONT T GetArrayValue(vtkm::cont::ArrayHandle<T> arrayHandle, vtkm::Id index)
{
VTKM_ASSERT (index >= 0);
VTKM_ASSERT (index < arrayHandle.GetNumberOfValues());

Uk W N

Like the POSIX assert, if the NDEBUG macro is defined, then VTKM_ASSERT will become an empty expres-
sion. Typically NDEBUG is defined with a compiler flag (like ~-DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.

W B9

A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM_ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add
a statement to the function of the form (void)wariableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

?
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Because VTK-m makes heavy use of C++ templates, it is possible that these templates could be used with
inappropriate types in the arguments. Using an unexpected type in a template can lead to very confusing errors,
so it is better to catch such problems as early as possible. The VTKM_STATIC_ASSERT macro, defined in vtkm/-
StaticAssert.h makes this possible. This macro takes a constant expression that can be evaluated at compile time
and verifies that the result is true.

In the following example, VTKM_STATIC_ASSERT and its sister macro VTKM_STATIC_ASSERT_MSG, which allows
you to give a descriptive message for the failure, are used to implement checks on a templated function that is
designed to work on any scalar type that is represented by 32 or more bits.

Example 6.20: Using VTKM_STATIC_ASSERT.
template<typename T>
VTKM_EXEC_CONT void MyMathFunction(T& value)
{
VTKM_STATIC_ASSERT ((std::is_same<typename vtkm::TypeTraits<T>::DimensionalityTag,
vtkm:: TypeTraitsScalarTag>::value));

VTKM_STATIC_ASSERT_MSG(sizeof (T) >= 4,
"MyMathFunction needs types with at least 32 bits.");

0~ Utk WN K-

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++
standard type_traits header file contains several helpful templates for general queries on types. Example 6.20
demonstrates the use of one such template: std::is_same.

MWW B9

Many templates used to introspect types resolve to the tags std: :true_type and std::false_type rather
than the constant values true and false that VTKM_STATIC_ASSERT expects. The std::true_type and
std::false_type tags can be converted to the Boolean literal by adding ::value to the end of them.
Failing to do so will cause VTKM_STATIC_ASSERT to behave incorrectly. Fxample 6.20 demonstrates getting
the Boolean literal from the result of std::is_same.

|

6.9 VTK-m Version

As the VTK-m code evolves, changes to the interface and behavior will inevitably happen. Consequently, code
that links into VTK-m might need a specific version of VT K-m or changes its behavior based on what version of
VTK-m it is using. To facilitate this, VI K-m software is managed with a versioning system and advertises its
version in multiple ways. As with many software products, VT K-m has three version numbers: major, minor, and
patch. The major version represents significant changes in the VT K-m implementation and interface. Changes
in the major version include backward incompatible changes. The minor version represents added functionality.
Generally, changes in the minor version to not introduce changes to the APT (although the early 1.X versions of
VTK-m violate this). The patch version represents fixes provided after a release occurs. Patch versions represent
minimal change and do not add features.
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If you are writing a software package that is managed by CMake and load VITK-m with the find package
command as described in Section 2.4, then you can query the VI'K-m version directly in the CMake config-
uration. When you load VIK-m with find_package, CMake sets the variables VTKm_VERSION_MAJOR,
VTKm_VERSION_MINOR, and VTKm_VERSION_PATCH to the major, minor, and patch versions, respectively.
Additionally, VTKm_VERSION is set to the “major.minor” version number and VTKm_VERSION_FULL is set
to the “major.minor.patch” version number. If the current version of VI K-m is actually a development version
that is in between releases of VIK-m, then and abbreviated SHA of the git commit is also included as part of

VTKm_VERSION_FULL.

If you have a specific version of VTK-m required for your software, you can also use the version option to
the find_package CMake command. The find_package command takes an optional version argument
that causes the command to fail if the wrong version of the package is found.

It is also possible to query the VTK-m version directly in your code through preprocessor macros. The vtkm/-
Version.h header file defines the following preprocessor macros to identify the VIK-m version. VTKM_VERSION_-
MAJOR, VTKM_VERSION_MINOR, and VTKM_VERSION_PATCH are set to integer numbers representing the major,
minor, and patch versions, respectively. Additionally, VTKM_VERSION is set to the “major.minor” version number
as a string and VTKM_VERSION_FULL is set to the “major.minor.patch” version number (also as a string). If the
current version of VI'K-m is actually a development version that is in between releases of VIK-m, then and
abbreviated SHA of the git commit is also included as part of VTKM_VERSION_FULL.

¢

Note that the CMake variables all begin with VTKm_ (lowercase “m”) whereas the preprocessor macros begin
with VTKM_ (all uppercase). This follows the respective conventions of CMake variables and preprocessor
macros.

Note that vtkm/Version.h does not include any other VTK-m header files. This gives your code a chance to load,
query, and react to the VI K-m version before loading any VTK-m code proper.

6.10 Logging

VTK-m features a logging system that allows status updates and timing. VTK-m uses the loguru project to
provide runtime logging facilities.? Logging is enabled by setting the CMake variable VTKm_ENABLE_LOGGING.
When this flag is enabled, any messages logged to the Info, Warn, Error, and Fatal levels are printed to stderr
by default.

6.10.1 Initializing Logging

Additional logging features are enabled by calling vtkm: :cont: :Initialize as described in Section 6.4. Exam-
ple 6.21 in the following section provides an example of initializing the logging. Although calling Initialize is
not strictly necessary for output messages, initialization adds the following features.

2A sample of the log output can be found at https://gitlab.kitware.com/snippets/427.
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Set human-readable names for the log levels in the output.

Allow the stderr logging level to be set at runtime by passing a -v [level] argument to the executable
(if provided).

e Name the main thread.

Print a preamble with details of the program’s startup (args, etc).

Install signal handlers to automatically print stack traces and error contexts (Linux only) on crashes.

The logging implementation is thread-safe. When working in a multithreaded environment, each thread may
be assigned a human-readable name using vtkm::cont::SetThreadName (which can later be retrieved with
vtkm: :cont: :GetThreadName. This name will appear in the log output so that per-thread messages can be
easily tracked.

6.10.2 Logging Levels

The logging in VTK-m provides several “levels” of logging. Logging levels are ordered by precedence. When
selecting which log message to output, a single logging level is provided. Any logging message with that or a
higher precedence is output. For example, if warning messages are on, then error messages are also outputted
because errors are a higher precedence than warnings. Likewise, if information messages are on, then error and
warning messages are also outputted.

All logging levels are assigned a number, and logging levels with a higher precedence actually have a smaller
number.

All logging levels are listed in the vtkm::cont::LogLevel enum. The available logging levels, in order of
precedence, are as follows.

0ff A placeholder used to silence all logging.

Fatal Fatal errors that should abort execution.

Error Important but non-fatal errors, such as device fail-over.

Warn Less important user errors, such as out-of-bounds parameters.

Info Information messages (detected hardware, etc) and temporary debugging output.

UserFirst The first in a range of logging levels reserved for code that uses VIK-m. Internal VITK-m code will
not log on these levels but will report these logs.

UserLast The last in a range of logging levels reserved for code that uses VIK-m.

Perf General timing data and algorithm flow information, such as filter execution, worklet dispatches, and device
algorithm calls.

MemCont Host-side resource memory allocations and frees such as ArrayHandle control buffers.
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MemExec Device-side resource memory allocations and frees such as ArrayHandle device buffers)
MemTransfer Transferring of data between a host and device.
Cast Report when a dynamic object is (or is not) resolved via a CastAndCall or other casting method.

UserVerboseFirst The first in a range of logging levels reserved for code that uses VI K-m. Internal VTK-m
code will not log on these levels but will report these logs. These are used similarly to those in the
UserFirst range but are at a lower precedence that also includes more verbose reporting from VTK-m.

UserVerboseLast The last in a range of logging levels reserved for code that uses VIK-m.
When VTK-m outputs an entry in its log, it annotates the message with the logging level. VITK-m will auto-
matically provide descriptions for all log levels described in vtkm: : cont: :LogLevel. A custom log level can be

described by calling the vtkm: : cont: : SetLoglLevelName function. (The log name can likewise be retrieved with
vtkm: : cont: : GetLogLevelName.)

¢

¢ The SetLogLevelName function must be called before vtkm: :cont::Initialize to have an effect.

g The descriptions for each log level are only set up if vtkm::cont::Initialize is called. If it is not, then
all log levels will be represented with a numerical value.

If vtkm: :cont::Initialize is called with argc/argv, then the user can control the logging level with the “-v”
command line argument. Alternatively, you can control which logging levels are reported with the vtkm: :-
cont::SetStderrLoglevel.

Example 6.21: Initializing logging.

1 | static const vtkm::cont::Loglevel CustomLoglevel = vtkm::cont::Loglevel::UserFirst;
2

3 | int main(int argc, char** argv)

4 |4

5 vtkm::cont::SetLogLevelName (CustomLogLevel, "custom");

6

7 // For this example we will set the log level manually.

8 // The user can override this with the -v command line flag.
9 vtkm::cont::SetStderrLoglevel (CustomLogLevel);

10

11 vtkm::cont::Initialize (argc, argv);

12

13 // Do interesting stuff...

6.10.3 Log Entries

Log entries are created with a collection of macros provided in vtkm/cont/Logging.h. In addition to basic log
entries, VI'K-m logging can also provide conditional logging, scope levels of logs, and generate special logs on
crashes.
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Basic Log Entries

The main logging entry points are the macros VTKM_LOG_S and VTKM_LOG_F, which use C++ stream and printf
syntax, respectively. Both macros take a logging level as the first argument. The remaining arguments specify
the message printed to the log. VTKM_LOG_S takes a single argument with a C++ stream expression (so <<
operators can exist in the expression). VTKM_LOG_F takes a C string as its second argument that has printf-style
formatting codes. The remaining arguments fulfill those codes.

Example 6.22: Basic logging.
VTKM_LOG_F (vtkm::cont::LogLevel::Info,
"Base VTK-m version: %d.%d",
VTKM_VERSION_MAJOR,
VTKM_VERSION_MINOR);
VTKM_LOG_S(vtkm::cont::LogLevel::Info,
"Full VTK-m version: " << VTKM_VERSION_FULL);

DU W N

Conditional Log Entries

The macros VIKM_LOG_IF_S VTKM_LOG_IF_F behave similarly to VTKM_L0OG_S and VTKM_LOG_F, respectively,
except they have an extra argument that contains the condition. If the condition is true, then the log entry is
created. If the condition is false, then the statement is ignored and nothing is recorded in the log.

Example 6.23: Conditional logging.

1 for (size_t i = 0; i < 5; i++)

2 {

3 VTKM_LOG_IF_S(

4 vtkm::cont::LogLevel::Info, i % 2 == 0, "Found an even number: " << i);
5 }

Scoped Log Entries

The logging back end supports the concept of scopes. Scopes allow the nesting of log messages, which allows a
complex operation to report when it starts, when it ends, and what log messages happen in the middle. Scoped
log entries are also timed so you can get an idea of how long operations take. Scoping can happen to arbitrary
depths.

¢

Although the timing reported in scoped log entries can give an idea of the time each operation takes, the
reported time should not be considered accurate in regards to timing parallel operations. If a parallel
algorithm is invoked inside a log scope, the program may return from that scope before the parallel algorithm
is complete. See Chapter 9 for information on more accurate timers.

Scoped log entries follow the same scoping of your C++ code. A scoped log can be created with the VTKM_-
LOG_SCOPE macro. This macro behaves similarly to VTKM_LOG_F except that it creates a scoped log that starts
when VTKM_L0OG_SCOPE and ends when the program leaves the given scope.

Example 6.24: Scoped logging.

1 | for (vtkm::IdComponent trial = 0; trial < numTrials; ++trial)
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2 {

3 VTKM_LOG_SCOPE(CustomLoglLevel, "Trial %d", trial);
4

5 VTKM_LOG_F (CustomLogLevel, "Do thing 1");

6

7 VTKM_LOG_F (CustomLogLevel, "Do thing 2");

8

9 Vidho o

10 }

It is also common, and typically good code structure, to structure scoped concepts around functions or methods.
Thus, VTK-m provides VTKM_LOG_SCOPE_FUNCTION. When placed at the beginning of a function or macro,
VTKM_LOG_SCOPE_FUNCTION will automatically create a scoped log around it.

Example 6.25: Scoped logging in a function.

1 |void TestFunc ()

2 {

3 VTKM_LOG_SCOPE_FUNCTION (vtkm::cont::LogLevel::Info);

4 VTKM_LOG_S(vtkm::cont::LogLevel::Info, "Showcasing function logging");
5%

Error Context

The VTK-m logging is capable of capturing some crashes and writing information to the log before the program
terminates. The VTKM_LOG_ERROR_CONTEXT can be used to record some information that should be reported if
an error occurs. If the program terminates successfully, then information is never recorded to the log.

Example 6.26: Providing an error context for logging.

1 // This message is only logged if a crash occurs
2 VTKM_LOG_ERROR_CONTEXT ("Some variable value", 42);

6.10.4 Helper Functions

The vtkm/cont/Logging.h header file also contains several helper functions that provide useful functions when
reporting information about the system.

g Although provided with the logging utilities, these functions can be useful in contexts outside of the logging
as well. These functions are available even if VT K-m is compiled with logging off.

The vtkm::cont: :TypeToString function provides RTTI based type-name information. TypeToString is a
templated function for which you have to explicitly declare the type. TypeToString returns a std::string
containing a representation of the type provided. When logging is enabled, TypeToString uses the logging back
end to demangle symbol names on supported platforms.

The vtkm: : cont: : GetHumanReadableSize takes a size of memory in bytes and returns a human readable string
(for example 764 bytes”, ”1.44 MiB”, 7128 GiB”, etc). vtkm::cont::GetSizeString is a similar function that
returns the same thing as GetHumanReadableSize followed by “(# bytes)” (with # replaced with the number
passed to the function). Both GetHumanReadableSize and GetSizeString take an optional second argument
that is the number of digits of precision to display. By default, they display 2 digits of precision.
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The vtkm: : cont: :GetStackTrace function returns a string containing a trace of the stack, which can be helpful
for debugging. GetStackTrace takes an optional argument for the number of stack frames to skip. Reporting
the stack trace is not available on all platforms. On platforms that are not supported, a simple string reporting
that the stack trace is unavailable is returned.

Example 6.27: Helper log functions.

1 | template<typename T>

2 | void DoSomething (T&& x)

314

4 VTKM_LOG_S (CustomLogLevel,

5 "Doing something with type " << vtkm::cont::TypeToString<T>());

6

7 vtkm::Id arraySize = 100000 * sizeof (T);

8 VTKM_LOG_S (CustomLogLevel,

9 "Size of array is " << vtkm::cont::GetHumanReadableSize (arraySize));
10 VTKM_LOG_S (CustomLogLevel,

11 "More precisely it is " << vtkm::cont::GetSizeString(arraySize, 4));
12

13 VTKM_LOG_S (CustomLogLevel , "Stack location: " << vtkm::cont::GetStackTrace());
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CHAPTER
SEVEN

ARRAY HANDLES

An array handle, implemented with the vtkm: :cont: :ArrayHandle class, manages an array of data that can
be accessed or manipulated by VITK-m algorithms. It is typical to construct an array handle in the control
environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to allocate and populate an array handle, which can then be
read back in the control environment. It is also possible for an array handle to manage data created by one
VTK-m algorithm and passed to another, remaining in the execution environment the whole time and never
copied to the control environment.

The array handle may have up to two copies of the array, one for the control environment and one for
the execution environment. However, depending on the device and how the array is being used, the array
handle will only have one copy when possible. Copies between the environments are implicit and lazy. They
are copied only when an operation needs data in an environment where the data is not.

vtkm: :cont: :ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm: :cont: :ArrayHandle are destroyed, any allocated memory is released.

An ArrayHandle defines the following methods.

GetNumber0fValues Returns the number of entries in the array.

Allocate Resizes the array to include the number of entries given. Any previously stored data might be
discarded.

Shrink Resizes the array to the number of entries given. Any data stored in the array is preserved. The number
of entries must be less than those given in the last call to Allocate.

ReleaseResourcesExecution If the ArrayHandle is holding any data on a device (such as a GPU), that memory
is released to be used elsewhere. No data is lost from this call. Any data on the released resources is copied
to the control environment (the local CPU) before the memory is released.

ReleaseResources Releases all memory managed by this ArrayHandle. Any data in this memory is lost.

SyncControlArray Makes sure any data in the execution environment is also available in the control environ-
ment. This method is useful when timing parallel algorithms and you want to include the time to transfer
data between parallel devices and their hosts.
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GetPortalControl Returns an array portal that can be used to access the data in the array handle in the control
environment. Array portals are described in Section 7.2.

GetPortalConstControl Like ArrayHandle::GetPortalControl but returns a read-only array portal rather
than a read/write array portal.

PrepareForInput Readies the data as input to a parallel algorithm. See Section 7.8 for more details.
PrepareForOutput Readies the data as output to a parallel algorithm. See Section 7.8 for more details.

PrepareForInPlace Readies the data as input and output to a parallel algorithm. See Section 7.8 for more
details.

GetDeviceAdapterId Returns a vtkm::cont: :DeviceAdapterId describing on which device adapter, if any, the
array h andle’s data is available. Device adapter ids are described in Section 8.2.

GetStorage Returns the vtkm::cont::Storage object that manages the data. The type of the storage object
is defined by the storage tag template parameter of the ArrayHandle. Storage objects are described in
detail in Chapter 18.

7.1 Creating Array Handles

vtkm: :cont: :ArrayHandle is a templated class with two template parameters. The first template parameter
is the only one required and specifies the base type of the entries in the array. The second template parameter
specifies the storage used when storing data in the control environment. Storage objects are discussed later in
Chapter 18, and for now we will use the default value.

Example 7.1: Declaration of the vtkm: : cont: : ArrayHandle templated class.
template<
typename T,
typename StorageTag = VTKM_DEFAULT_STORAGE_TAG>
class ArrayHandle;

=W N =

There are multiple ways to create and populate an array handle. The default vtkm: :cont: : ArrayHandle con-
structor will create an empty array with nothing allocated in either the control or execution environment. This
is convenient for creating arrays used as the output for algorithms.

Example 7.2: Creating an ArrayHandle for output data.
1 [ vtkm::cont::ArrayHandle<vtkm::Float32> outputArray;

Constructing an ArrayHandle that points to a provided C array or std::vector is straightforward with the
vtkm: :cont: :make ArrayHandle functions. These functions will make an array handle that points to the array
data that you provide.

Example 7.3: Creating an ArrayHandle that points to a provided C array.

1 vtkm::Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
53 vtkm::cont::make_ArrayHandle (dataBuffer, 50);
Example 7.4: Creating an ArrayHandle that points to a provided std: :vector.
1 std::vector<vtkm::Float32> dataBuffer;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
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3
4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
5 vtkm::cont::make_ArrayHandle (dataBuffer);

Be aware that vtkm: : cont: :make_ArrayHandle makes a shallow pointer copy. This means that if you change or
delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior can ensue.
The most common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm: :cont: :ArrayHandle to point to an unallocated portion of the memory heap.
For example, if the code in Example 7.4 where to be placed within a callable function or method, it could cause
the vtkm: : cont: : ArrayHandle to become invalid.

Because ArrayHandle does not manage data provided by make_ArrayHandle, you should only use these as
temporary objects. Example 7.5 demonstrates a method of copying one of these temporary arrays into safe
managed memory, and Section 7.3 describes how to put data directly into an ArrayHandle object.

Example 7.5: Invalidating an ArrayHandle by letting the source std: :vector leave scope.

1 | VTKM_CONT

2 |vtkm::cont::ArrayHandle<vtkm::Float32> BadDataLoad ()

3| {

4 std::vector<vtkm::Float32> dataBuffer;

5 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
6

7 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =

8 vtkm::cont::make_ArrayHandle (dataBuffer);

9

10 return inputArray;

11 // THIS IS WRONG! At this point dataBuffer goes out of scope and deletes its
12 // memory. However, inputArray has a pointer to that memory, which becomes an
13 // invalid pointer in the returned object. Bad things will happen when the
14 // ArrayHandle is used.

15 |}

16

17 | VTKM_CONT
18 | vtkm::cont::ArrayHandle<vtkm::Float32> SafeDataLoad()

19 |{

20 std::vector<vtkm::Float32> dataBuffer;

21 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
22

23 vtkm::cont::ArrayHandle<vtkm::Float32> tmpArray =

24 vtkm::cont::make_ArrayHandle (dataBuffer);

25

26 // This copies the data from one ArrayHandle to another (in the execution
27 // environment). Although it is an extraneous copy, it is usually pretty fast
28 // on a parallel device. Another option is to make sure that the buffer in
29 // the std::vector never goes out of scope before all the ArrayHandle

30 // references, but this extra step allows the ArrayHandle to manage its own
31 // memory and ensure everything is valid.

32 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray;

33 vtkm::cont::ArrayCopy (tmpArray, inputArray);

34

35 return inputArray;

36 // This is safe.

37 | ¥
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7.2 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only (const) or read-write and they can be accessible from
either the control environment or the execution environment. All these variants have similar interfaces although
some features that are not applicable can be left out.

An array portal object contains each of the following:

ValueType The type for each item in the array.
GetNumberOfValues A method that returns the number of entries in the array.
Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only (const)
array portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm: :cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 7.6: A simple array portal implementation.

1 | template<typename T>

2 | class SimpleScalarArrayPortal

314

4 | public:

5 using ValueType = T;

6

7 // There is no specification for creating array portals, but they generally
8 // need a constructor like this to be practical.

9 VTKM_EXEC_CONT

10 SimpleScalarArrayPortal (ValueType* array, vtkm::Id numberOfValues)
11 : Array(array)

12 , NumberOfValues (numberOfValues)

13 {

14 }

15

16 VTKM_EXEC_CONT
17 SimpleScalarArrayPortal ()

18 : Array (NULL)

19 , NumberOfValues (0)

20 {

21 }

22

23 VTKM_EXEC_CONT

24 vtkm::Id GetNumberOfValues () const { return this->NumberOfValues; 1}
25

26 VTKM_EXEC_CONT

27 ValueType Get(vtkm::Id index) const { return this->Array[index]; 1}
28

29 VTKM_EXEC_CONT

30 void Set(vtkm::Id index, ValueType value) const { this->Array[index] = value; 1}
31

32 | private:

33 ValueType* Array;

34 vtkm::Id NumberOfValues;
35 | };
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Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convienient to interface with an
array through an iterator rather than an array portal. The vtkm::cont: :ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType The type of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 7.7: Using ArrayPortalToIterators.

1 | template<typename PortalType>

2 | VTKM_CONT std::vector<typename PortalType::ValueType> CopyArrayPortalToVector (
3 const PortalType& portal)

414

5 using ValueType = typename PortalType::ValueType;

6 std::vector<ValueType> result(

7 static_cast<std::size_t>(portal.GetNumberOfValues ()));

8

9 vtkm::cont::ArrayPortalTolterators <PortalType> iterators(portal);

10

11 std::copy(iterators.GetBegin(), iterators.GetEnd(), result.begin());
12

13 return result;

14 |}

As a convenience, vtkm/cont/ArrayPortalTolterators.h also defines a pair of functions named vtkm: :cont: :Ar-
rayPortalToIteratorBegin() and vtkm: :cont: :ArrayPortalToIteratorEnd() that each take an array portal
as an argument and return a begin and end iterator, respectively.

Example 7.8: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.

std::vector<vtkm::Float32> myContainer (
static_cast<std::size_t>(portal.GetNumberOfValues ()));

std::copy(vtkm::cont::ArrayPortalToIteratorBegin(portal),
vtkm::cont::ArrayPortalToIteratorEnd (portal),
myContainer.begin());

S UL W N

ArrayHandle contains two internal type definitions for array portal types that are capable of interfacing with the
underlying data in the control environment. These are PortalControl and PortalConstControl, which define
read-write and read-only (const) array portals, respectively.

ArrayHandle also contains similar type definitions for array portals in the execution environment. Because these
types are dependent on the device adapter used for execution, these type definitions are embedded in a tem-
plated class named ExecutionTypes. Within ExecutionTypes are the type definitions Portal and PortalConst
defining the read-write and read-only (const) array portals, respectively, for the execution environment for the
given device adapter tag.

Because vtkm: : cont: : ArrayHandle is control environment object, it provides the methods GetPortalControl
and GetPortalConstControl to get the associated array portal objects. These methods also have the side effect
of refreshing the control environment copy of the data as if you called SyncControlArray. Be aware that calling
GetPortalControl will invalidate any copy in the execution environment, meaning that any subsequent use will
cause the data to be copied back again.
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Example 7.9: Using portals from an ArrayHandle.

1 | template<typename T>

2 | void SortCheckArrayHandle (vtkm::cont::ArrayHandle<T> arrayHandle)

3|4

4 using PortalType = typename vtkm::cont::ArrayHandle<T>::PortalControl;

5 using PortalConstType = typename vtkm::cont::ArrayHandle<T>::PortalConstControl;
6

7 PortalType readwritePortal = arrayHandle.GetPortalControl ();

8 // This is actually pretty dumb. Sorting would be generally faster in

9 // parallel in the execution environment using the device adapter algorithms.
10 std::sort(vtkm::cont::ArrayPortalTolteratorBegin(readwritePortal),

11 vtkm::cont::ArrayPortalToIteratorEnd(readwritePortal));

12

13 PortalConstType readPortal = arrayHandle.GetPortalConstControl ();

14 for (vtkm::Id index = 1; index < readPortal.GetNumberOfValues (); index++)
15 {

16 if (readPortal.Get(index - 1) > readPortal.Get (index))

17 {

18 std::cout << "Sorting is wrong!" << std::emndl;

19 break;

20 }

21 }

22 |}

Most operations on arrays in VIK-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/0, make sense in the control environment.

7.3 Allocating and Populating Array Handles

vtkm: :cont: :ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the ArrayHandle: :Allocate method. The Allocate method takes a single argument, which
is the number of elements to make the array.

Example 7.10: Allocating an ArrayHandle.
vtkm::cont::ArrayHandle<vtkm::Float32> arrayHandle;

const vtkm::Id ARRAY_SIZE = 50;
arrayHandle.Allocate (ARRAY_SIZE);

=W N =

The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This can be particularly surprising when the
originally managed memory is empty. For example, older versions of std: :vector initialized all its values
by setting them to the same object. When a vector of ArrayHandles was created and one entry was
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allocated, all entries changed to the same allocation.

Once an ArrayHandle is allocated, it can be populated by using the portal returned from ArrayHandle::-
GetPortalControl, as described in Section 7.2. This is roughly the method used by the readers in the I/O
package (Chapter 3).

Example 7.11: Populating a newly allocated ArrayHandle.

1 vtkm::cont::ArrayHandle<vtkm::Float32> arrayHandle;

2

3 const vtkm::Id ARRAY_SIZE = 50;

4 arrayHandle.Allocate (ARRAY_SIZE);

5

6 using PortalType = vtkm::cont::ArrayHandle<vtkm::Float32>::PortalControl;
T PortalType portal = arrayHandle.GetPortalControl ();

8

9 for (vtkm::Id index = 0; index < ARRAY_SIZE; index++)
10 {

11 portal.Set (index, GetValueForArray(index));

12 }

7.4 Fancy Arrays

One of the features of using ArrayHandles is that they hide the implementation and layout of the array behind
a generic interface. This gives us the opportunity to replace a simple C array with some custom definition of the
data and the code using the ArrayHandle is none the wiser.

This gives us the opportunity to implement fancy arrays that do more than simply look up a value in an array. For
example, arrays can be augmented on the fly by mutating their indices or values. Or values could be computed
directly from the index so that no storage is required for the array at all.

VTK-m provides many of the fancy arrays, which we explore in this section. Later in Chapter 18 we explore
how to create custom arrays that adapt new memory layouts or augment other types of arrays.

One of the advantages of VTK-m’s implementation of fancy arrays is that they can define whole arrays
without actually storing and values. For example, ArrayHandleConstant, ArrayHandleCounting, and
ArrayHandleIndex do mot store data in any array in memory. Rather, they construct the value for an
index at runtime. Likewise, arrays like ArrayHandlePermute construct new arrays from the values of
other arrays without having to create a copy of the data.

7.4.1 Constant Arrays

A constant array is a fancy array handle that has the same value in all of its entries. The constant array provides
this array without actually using any memory.

Specifying a constant array in VI K-m is straightforward. VITK-m has a class named vtkm: : cont: : ArrayHan-
dleConstant. ArrayHandleConstant is a templated class with a single template argument that is the type of
value for each element in the array. The constructor for ArrayHandleConstant takes the value to provide by
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the array and the number of values the array should present. The following example is a simple demonstration
of the constant array handle.

Example 7.12: Using ArrayHandleConstant.
// Create an array of 50 entries, all containing the number 3. This could be
// used, for example, to represent the sizes of all the polygons in a set
// where we know all the polygons are triangles.
vtkm::cont::ArrayHandleConstant <vtkm::Id> constantArray (3, 50);

W N

The vtkm /cont/ArrayHandleConstant.h header also contains the templated convenience function vtkm: : cont: : =
make_ArrayHandleConstant that takes a value and a size for the array. This function can sometimes be used
to avoid having to declare the full array type.

Example 7.13: Using make_ArrayHandleConstant.
1 // Create an array of 50 entries, all containing the number 3.
vtkm::cont::make_ArrayHandleConstant (3, 50)

V)

7.4.2 ArrayHandleView

An array handle view is a fancy array handle that returns a subset of an already existing array handle. The
array handle view uses the same memory as the existing array handle the view was created from. This means
that changes to the data in the array handle view will also change the data in the original array handle.

To use the ArrayHandleView you must supply an ArrayHandle to the vtkm::cont::ArrayHandleView class
constructor. ArrayHandleView is a templated class with a single template argument that is the ArrayHandle
type of the array that the view is being created from. The constructor for ArrayHandleView takes a target array,
starting index, and length. The follwing example shows a simple usage of the array handle view.

Example 7.14: Using ArrayHandleView.
vtkm::cont::ArrayHandle<vtkm::Id> sourceArray;

vtkm::cont::ArrayCopy (vtkm::cont::ArrayHandleIndex (10), sourceArray);
// sourceArray has [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

vtkm::cont::ArrayHandleView<vtkm::cont::ArrayHandle<vtkm::Id>> viewArray(
sourceArray, 3, 5);
// viewArray has [3, 4, 5, 6, 7]

~NO Ut W

The vtkm/cont/ArrayHandleView.h header contains a templated convenience function vtkm::cont::make Ar-
rayHandleView that takes a target array, index, and length.

Example 7.15: Using make_ArrayHandleView.

1 [ vtkm::cont::make_ArrayHandleView (sourceArray, 3, 5)

7.4.3 Counting Arrays

A counting array is a fancy array handle that provides a sequence of numbers. These fancy arrays can represent
the data without actually using any memory.

VTK-m provides two versions of a counting array. The first version is an index array that provides a specialized
but common form of a counting array called an index array. An index array has values of type vtkm: :Id that
start at 0 and count up by 1 (i.e. 0,1,2,3,...). The index array mirrors the array’s index.

Specifying an index array in VTK-m is done with a class named vtkm: : cont: : ArrayHandleIndex. The construc-
tor for ArrayHandleIndex takes the size of the array to create. The following example is a simple demonstration
of the index array handle.

96 Chapter 7. Array Handles



7.4. Fancy Arrays

Example 7.16: Using ArrayHandleIndex.

1 // Create an array containing [0, 1, 2, 3, ..., 49].
2 vtkm::cont::ArrayHandleIndex indexArray (50);

The vtkm: : cont: : ArrayHandleCounting class provides a more general form of counting. ArrayHandleCounting
is a templated class with a single template argument that is the type of value for each element in the array.
The constructor for ArrayHandleCounting takes three arguments: the start value (used at index 0), the step
from one value to the next, and the length of the array. The following example is a simple demonstration of the
counting array handle.

Example 7.17: Using ArrayHandleCounting.

1 // Create an array containing [-1.0, -0.9, -0.8, ..., 0.9, 1.0]
2 vtkm::cont::ArrayHandleCounting<vtkm::Float32> sampleArray(-1.0f, 0.1f, 21);

§ In addition to being simpler to declare, ArrayHandleIndex is slightly faster than ArrayHandleCounting.
Thus, when applicable, you should prefer using ArrayHandleIndex.

The vtkm/cont/ArrayHandleCounting.h header also contains the templated convenience function vtkm: :cont: :-
make_ArrayHandleCounting that also takes the start value, step, and length as arguments. This function can
sometimes be used to avoid having to declare the full array type.

Example 7.18: Using make_ArrayHandleCounting.

1 // Create an array of 50 entries, all containing the number 3.
2 vtkm::cont::make_ArrayHandleCounting(-1.0f, 0.1f, 21)

There are no fundamental limits on how ArrayHandleCounting counts. For example, it is possible to count
backwards.

Example 7.19: Counting backwards with ArrayHandleCounting.

1 // Create an array containing [49, 48, 47, 46, ..., 0].
2 vtkm::cont::ArrayHandleCounting<vtkm::Id> backwardIndexArray (49, -1, 50);

It is also possible to use ArrayHandleCounting to make sequences of vtkm: :Vec values with piece-wise counting
in each of the components.

Example 7.20: Using ArrayHandleCounting with vtkm: : Vec objects.

// Create an array containg [(0,-3,75), (1,2,25), (3,7,-25)]
vtkm::cont::make_ArrayHandleCounting(
vtkm::make_Vec (0, -3, 75), vtkm::make_Vec(l, 5, -50), 3)

N

7.4.4 Cast Arrays

A cast array is a fancy array that changes the type of the elements in an array. The cast array provides this
re-typed array without actually copying or generating any data. Instead, casts are performed as the array is
accessed.

VTK-m has a class named vtkm: :cont: : ArrayHandleCast to perform this implicit casting. ArrayHandleCast
is a templated class with two template arguments. The first argument is the type to cast values to. The second
argument is the type of the original ArrayHandle. The constructor to ArrayHandleCast takes the ArrayHandle
to modify by casting.
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Example 7.21: Using ArrayHandleCast.

1 | template<typename T>

2 | VTKM_CONT void Foo(const std::vector<T>& inputData)

3|4

4 vtkm::cont::ArrayHandle<T> originalArray = vtkm::cont::make_ArrayHandle (inputData);
5

6 vtkm::cont::ArrayHandleCast <vtkm::Float64, vtkm::cont::ArrayHandle<T>> castArray(

7 originalArray);

The vtkm /cont/ArrayHandleCast.h header also contains the templated convenience function vtkm: : cont : :make -
ArrayHandleCast that constructs the cast array. The first argument is the original ArrayHandle original array
to cast. The optional second argument is of the type to cast to (or you can optionally specify the cast-to type
as a template argument.

Example 7.22: Using make_ArrayHandleCast.
1 l vtkm::cont::make_ArrayHandleCast<vtkm::Float64>(originalArray)

7.4.5 Discard Arrays

It is sometimes the case where you will want to run an operation in VIK-m that fills values in two (or more)
arrays, but you only want the values that are stored in one of the arrays. It is possible to allocate space for both
arrays and then throw away the values that you do not want, but that is a waste of memory. It is also possible
to rewrite the functionality to output only what you want, but that is a poor use of developer time.

To solve this problem easily, VITK-m provides vtkm: :cont: : ArrayHandleDiscard. This array behaves similar
to a regular ArrayHandle in that it can be “allocated” and has size, but any values that are written to it are
immediately discarded. ArrayHandleDiscard takes up no memory.

Example 7.23: Using ArrayHandleDiscard.
template<typename InputArrayType,
typename OutputArrayTypel,
typename OutputArrayType2>
VTKM_CONT void DoFoo(InputArrayType input,
OutputArrayTypel outputil,
OutputArrayType2 output2);

template<typename InputArrayType>
VTKM_CONT inline vtkm::cont::ArrayHandle<vtkm::FloatDefault> DoBar (
InputArrayType input)
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VTKM_IS_ARRAY_HANDLE (InputArrayType);
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vtkm::cont::ArrayHandle<vtkm::FloatDefault> keepOutput;
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vtkm::cont::ArrayHandleDiscard<vtkm::FloatDefault> discardOutput;

—
o

DoFoo (input, keepOutput, discardOutput);

N
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return keepOutput;
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7.4.6 Permuted Arrays

A permutation array is a fancy array handle that reorders the elements in an array. Elements in the array can
be skipped over or replicated. The permutation array provides this reordered array without actually coping any
data. Instead, indices are adjusted as the array is accessed.
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Specifying a permutation array in VIK-m is straightforward. VTK-m has a class named vtkm: : cont: : Array-
HandlePermutation that takes two arrays: an array of values and an array of indices that maps an index in the
permutation to an index of the original values. The index array is specified first. The following example is a
simple demonstration of the permutation array handle.

Example 7.24: Using ArrayHandlePermutation.

1 using IdArrayType = vtkm::cont::ArrayHandle<vtkm::Id>;

2 using IdPortalType = IdArrayType::PortalControl;

3

4 using ValueArrayType = vtkm::cont::ArrayHandle<vtkm::Float64>;

5 using ValuePortalType = ValueArrayType::PortalControl;

6

7 // Create array with values [0.0, 0.1, 0.2, 0.3]

8 ValueArrayType valueArray;

9 valueArray.Allocate (4);

10 ValuePortalType valuePortal = valueArray.GetPortalControl();

11 valuePortal.Set (0, 0.0);

12 valuePortal.Set (1, 0.1);

13 valuePortal.Set (2, 0.2);

14 valuePortal.Set (3, 0.3);

15

16 // Use ArrayHandlePermutation to make an array = [0.3, 0.0, 0.1].
17 IdArrayType idArrayil;

18 idArrayil.Allocate (3);

19 IdPortalType idPortall = idArrayl.GetPortalControl();

20 idPortall.Set (0, 3);

21 idPortall.Set (1, 0);

22 idPortall.Set (2, 1);

23 vtkm::cont::ArrayHandlePermutation<IdArrayType, ValueArrayType> permutedArrayl (
24 idArrayl, valueArray);

25

26 // Use ArrayHandlePermutation to make an array = [0.1, 0.2, 0.2, 0.3, 0.0]
27 IdArrayType idArray2;

28 idArray2.Allocate(5);

29 IdPortalType idPortal2 = idArray2.GetPortalControl ();

30 idPortal2.Set (0, 1);

31 idPortal2.Set (1, 2);

32 idPortal2.Set (2, 2);

33 idPortal2.Set (3, 3);

34 idPortal2.Set (4, 0);

35 vtkm::cont::ArrayHandlePermutation<IdArrayType, ValueArrayType> permutedArray2 (
36 idArray2, valueArray);

The vtkm/cont/ArrayHandlePermutation.h header also contains the templated convenience function vtkm::-
cont: :make_ArrayHandlePermutation that takes instances of the index and value array handles and returns a
permutation array. This function can sometimes be used to avoid having to declare the full array type.

Example 7.25: Using make_ArrayHandlePermutation.
1 | vtkm::cont::make_ArrayHandlePermutation(idArray, valueArray)

When using an ArrayHandlePermutation, take care that all the provided indices in the index array point
to wvalid locations in the values array. Bad indices can cause reading from or writing to invalid memory
locations, which can be difficult to debug.
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You can write to a ArrayHandlePermutation by, for example, using it as an output array. Writes to
the ArrayHandlePermutation will go to the respective location in the source array. However, ArrayHan-
dlePermutation cannot be resized.

7.4.7 Zipped Arrays

A zip array is a fancy array handle that combines two arrays of the same size to pair up the corresponding values.
Each element in the zipped array is a vtkm: :Pair containing the values of the two respective arrays. These pairs
are not stored in their own memory space. Rather, the pairs are generated as the array is used. Writing a pair
to the zipped array writes the values in the two source arrays.

Specifying a zipped array in VTK-m is straightforward. VTK-m has a class named vtkm: :cont: :ArrayHan-
dleZip that takes the two arrays providing values for the first and second entries in the pairs. The following
example is a simple demonstration of creating a zip array handle.

Example 7.26: Using ArrayHandleZip.

using ArrayTypel = vtkm::cont::ArrayHandle<vtkm::Id>;
using PortalTypel = ArrayTypel::PortalControl;

using ArrayType2 = vtkm::cont::ArrayHandle<vtkm::Float64>;
using PortalType2 = ArrayType2::PortalControl;

// Create an array of vtkm::Id with values [3, 0, 1]
ArrayTypel arrayl;

9 arrayl.Allocate (3);

10 PortalTypel portall = arrayl.GetPortalControl ();

11 portall.Set (0, 3);

12 portall.Set (1, 0);

13 portall.Set (2, 1);
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15 // Create a second array of vtkm::Float32 with values [0.0, 0.1, 0.2]
16 ArrayType2 array2;

17 array2.Allocate (3);

18 PortalType2 portal2 = array2.GetPortalControl ();

19 portal2.Set (0, 0.0);

20 portal2.Set (1, 0.1);

21 portal2.Set (2, 0.2);

22

23 // Zip the two arrays together to create an array of

24 // vtkm::Pair<vtkm::Id, vtkm::Float64> with values [(3,0.0), (0,0.1), (1,0.2)]
25 vtkm::cont::ArrayHandleZip<ArrayTypel, ArrayType2> zipArray(arrayl, array2);

The vtkm/cont/ArrayHandleZip.h header also contains the templated convenience function vtkm: : cont: :make_ -
ArrayHandleZip that takes instances of the two array handles and returns a zip array. This function can
sometimes be used to avoid having to declare the full array type.

Example 7.27: Using make_ArrayHandleZip.
1 [ vtkm::cont::make_ArrayHandleZip (arrayl, array2)
7.4.8 Coordinate System Arrays

Many of the data structures we use in VIK-m are described in a 3D coordinate system. Although, as we will
see in Chapter 11, we can use any ArrayHandle to store point coordinates, including a raw array of 3D vectors,
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there are some common patterns for point coordinates that we can use specialized arrays to better represent the
data.

There are two fancy array handles that each handle a special form of coordinate system. The first such array
handle is vtkm: : cont: : ArrayHandleUniformPointCoordinates, which represents a uniform sampling of space.
The constructor for ArrayHandleUniformPointCoordinates takes three arguments. The first argument is a
vtkm: : Id3 that specifies the number of samples in the x, y, and z directions. The second argument, which is
optional, specifies the origin (the location of the first point at the lower left corner). If not specified, the origin
is set to [0,0,0]. The third argument, which is also optional, specifies the distance between samples in the z, y,
and z directions. If not specified, the spacing is set to 1 in each direction.

Example 7.28: Using ArrayHandleUniformPointCoordinates.

// Create a set of point coordinates for a uniform grid in the space between
// -5 and 5 in the x direction and -3 and 3 in the y and z directions. The

// uniform sampling is spaced in 0.08 unit increments in the x direction (for
// 126 samples), 0.08 unit increments in the y direction (for 76 samples) and
// 0.24 unit increments in the z direction (for 26 samples). That makes
248,976 values in the array total.
vtkm::cont::ArrayHandleUniformPointCoordinates uniformCoordinates(
vtkm::Id3(126, 76, 26) ;

vtkm: : Vec<vtkm::FloatDefault, 3>{ -5.0f, -3.0f, -3.0f },
vtkm::Vec<vtkm::FloatDefault, 3>{ 0.08f, 0.08f, 0.24f });
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The second fancy array handle for special coordinate systems is vtkm: : cont: : ArrayHandleCartesianProduct,
which represents a rectilinear sampling of space where the samples are axis aligned but have variable spacing.
Sets of coordinates of this type are most efficiently represented by having a separate array for each component
of the axis, and then for each [i,j, k] index of the array take the value for each component from each array using
the respective index. This is equivalent to performing a Cartesian product on the arrays.

ArrayHandleCartesianProduct is a templated class. It has three template parameters, which are the types of
the arrays used for the z, y, and z axes. The constructor for ArrayHandleCartesianProduct takes the three
arrays.

Example 7.29: Using a ArrayHandleCartesianProduct.

1 using AxisArrayType = vtkm::cont::ArrayHandle<vtkm::Float32>;
2 using AxisPortalType = AxisArrayType::PortalControl;

3

4 // Create array for x axis coordinates with values [0.0, 1.1, 5.0]
5 AxisArrayType xAxisArray,;

6 xAxisArray.Allocate (3);

7 AxisPortalType xAxisPortal = xAxisArray.GetPortalControl();

8 xAxisPortal.Set (0, 0.0f);

9 xAxisPortal.Set (1, 1.1f);

10 xAxisPortal.Set (2, 5.0f);

11

12 // Create array for y axis coordinates with values [0.0, 2.0]

13 AxisArrayType yAxisArray;

14 yAxisArray.Allocate (2);

15 AxisPortalType yAxisPortal = yAxisArray.GetPortalControl ();
16 yAxisPortal.Set (0, 0.0f);

17 yAxisPortal.Set (1, 2.0f);

18

19 // Create array for z axis coordinates with values [0.0, 0.5]
20 AxisArrayType zAxisArray;

21 zAxisArray.Allocate (2);

22 AxisPortalType zAxisPortal = zAxisArray.GetPortalControl ();

23 zAxisPortal.Set (0, 0.0f);
24 zAxisPortal.Set (1, 0.5f);

26 // Create point coordinates for a "rectilinear grid" with axis-aligned points

Chapter 7. Array Handles 101



7.4. Fancy Arrays

// with variable spacing by taking the Cartesian product of the three

// previously defined arrays. This generates the following 3x2x2 =

// [0.0, 0.0, 0.0], [t.1, 0.0, 0.0], [5.0, 0.0, 0.0],
// [0.0, 2.0, 0.0], [1.1, 2.0, 0.0], [5.0, 2.0, 0.0],
// [0.0, 0.0, 0.5], [t.1, 0.0, O0.5], [5.0, 0.0, 0.5],
// [0.0, 2.0, 0.5], [1.1, 2.0, 0.5], [5.0, 2.0, 0.5]

vitkm sticonti::

12 values:

ArrayHandleCartesianProduct <AxisArrayType, AxisArrayType, AxisArrayType>

rectilinearCoordinates (xAxisArray, yAxisArray, zAxisArray);

The vtkm/cont/ArrayHandleCartesianProduct.h /header also contains the templated convenience function vtkm: : -
cont: :make ArrayHandleCartesianProduct that takes the three axis arrays and returns an array of the Carte-
sian product. This function can sometimes be used to avoid having to declare the full array type.

L]

Example 7.30: Using make_ArrayHandleCartesianProduct.

vtkm::cont::make_ArrayHandleCartesianProduct (xAxisArray, yAxisArray, zAxisArray)

These specialized arrays for coordinate systems greatly reduce the code duplication in VTK-m. Most sci-
entific visualization systems need separate implementations of algorithms for uniform, rectilinear, and un-
structured grids. But in VTK-m an algorithm can be written once and then applied to all these different
grid structures by using these specialized array handles and letting the compiler’s templates optimize the
code.

749 Composite Vector Arrays

A composite vector array is a fancy array handle that combines two to four arrays of the same size and value
type and combines their corresponding values to form a vtkm::Vec. A composite vector array is similar in
nature to a zipped array (described in Section 7.4.7) except that values are combined into vtkm: :Vec s instead
of vtkm: :Pair s. The created vtkm: :Vec s are not stored in their own memory space. Rather, the Vecs are
generated as the array is used. Writing Vecs to the composite vector array writes values into the components of
the source arrays.

A composite vector array can be created using the vtkm::cont::ArrayHandleCompositeVector class. This
class has a variadic template argument that is a “signature” for the arrays to be combined. The constructor for
ArrayHandleCompositeVector takes instances of the array handles to combine.
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Example 7.31: Using ArrayHandleCompositeVector.
// Create an array with [0, 1, 2, 3, 4]
using ArrayTypel = vtkm::cont::ArrayHandleIndex;
ArrayTypel arrayl (5);

// Create an array with [3, 1, 4, 1, 5]

using ArrayType2 = vtkm::cont::ArrayHandle<vtkm::Id>;

ArrayType2 array2;

array2.Allocate (5);

ArrayType2::PortalControl arrayPortal2 = array2.GetPortalControl();
arrayPortal2.Set (0, 3);

arrayPortal2.Set (1, 1);

arrayPortal2.Set (2, 4);

arrayPortal2.Set (3, 1);
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14 arrayPortal2.Set (4, 5);

15
16 // Create an array with [2, 7, 1, 8, 2]
17 using ArrayType3 = vtkm::cont::ArrayHandle<vtkm::Id>;

18 ArrayType3 array3;

19 array3.Allocate (5);

20 ArrayType2::PortalControl arrayPortal3 = array3.GetPortalControl();
21 arrayPortal3.Set (0, 2);

22 arrayPortal3.Set (1, 7);

23 arrayPortal3.Set (2, 1);

24 arrayPortal3.Set (3, 8);

25 arrayPortal3.Set (4, 2);

26

27 // Create an array with [0, O, 0, O]

28 using ArrayType4 = vtkm::cont::ArrayHandleConstant<vtkm::Id>;

29 ArrayType4 array4(0, 5);

30

31 // Use ArrayhandleCompositeVector to create the array

32 /0 160,3,2,0) 5 (1,157,000, (2,4 ,150), (3,1,8,0), (4,5,2,0)1.

33 using CompositeArrayType = vtkm::cont::

34 ArrayHandleCompositeVector <ArrayTypel, ArrayType2, ArrayType3, ArrayType4>;
35 CompositeArrayType compositeArray(arrayl, array2, array3, array4);

The vtkm/cont/ArrayHandleCompositeVector.h header also contains the templated convenience function vtkm: : -
cont: :make ArrayHandleCompositeVector which takes a variable number of array handles and returns an
ArrayHandleCompositeVector. This function can sometimes be used to avoid having to declare the full array
type. ArrayHandleCompositeVector is also often used to combine scalar arrays into vector arrays.

Example 7.32: Using make_ArrayHandleCompositeVector.
1 | vtkm::cont::make_ArrayHandleCompositeVector (arrayl, array2, array3, array4)

7.4.10 Extract Component Arrays

Component extraction allows access to a single component of an ArrayHandle with a vtkm::Vec ValueType.
vtkm: :cont: :ArrayHandleExtractComponent allows one component of a vector array to be extracted without
creating a copy of the data. ArrayHandleExtractComponent can also be combined with ArrayHandleCompos-
iteVector (described in Section 7.4.9) to arbitrarily stitch several components from multiple arrays together.

As a simple example, consider an ArrayHandle containing 3D coordinates for a collection of points and a filter
that only operates on the points’ elevations (Z, in this example). We can easily create the elevation array
on-the-fly without allocating a new array as in the following example.

Example 7.33: Extracting components of Vecs in an array with ArrayHandleExtractComponent.

1 using ValueArrayType = vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>>;

2

3 // Create array with values [ (0.0, 0.1, 0.2), (1.0, 1.1, 1.2), (2.0, 2.1, 2.2) ]
4 ValueArrayType valueArray;

5 valueArray.Allocate (3);

6 auto valuePortal = valueArray.GetPortalControl ();

i valuePortal.Set (0, vtkm::make_Vec (0.0, 0.1, 0.2));

8 valuePortal.Set (1, vtkm::make_Vec(1.0, 1.1, 1.2));

9 valuePortal.Set (2, vtkm::make_Vec (2.0, 2.1, 2.2));

10

11 // Use ArrayHandleExtractComponent to make an array = [1.3, 2.3, 3.3].

12 vtkm::cont::ArrayHandleExtractComponent <ValueArrayType> extractedComponentArray (
13 valueArray, 2);
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The vtkm/cont/ArrayHandleExtractComponent.h header also contains the templated convenience function
vtkm: :cont: :make_ ArrayHandleExtractComponent that takes an ArrayHandle of Vecs and vtkm: : IdCompo-
nent which returns an appropriately typed ArrayHandleExtractComponent containing the values for a specified
component. The index of the component to extract is provided as an argument to make_ArrayHandleExtract-
Component, which is required. The use of make ArrayHandleExtractComponent can be used to avoid having to
declare the full array type.

Example 7.34: Using make_ArrayHandleExtractComponent.
1 [ vtkm::cont::make_ArrayHandleExtractComponent (valueArray, 2)

7.4.11 Swizzle Arrays

It is often useful to reorder or remove specific components from an ArrayHandle with a vtkm: :Vec ValueType.
vtkm: :cont: :ArrayHandleSwizzle provides an easy way to accomplish this.

The template parameters of ArrayHandleSwizzle specify a “component map,” which defines the swizzle opera-
tion. This map consists of the components from the input ArrayHandle, which will be exposed in the ArrayHan-
dleSwizzle. For instance, vtkm: :cont: :ArrayHandleSwizzle <Some3DArrayType, 3> with Some3DArray and
vtkm: :Vec <vtkm: : IdComponent, 3>(0, 2, 1) as constructor arguments will allow access to a 3D array, but with
the Y and Z components exchanged. This rearrangement does not create a copy, and occurs on-the-fly as data
are accessed through the ArrayHandleSwizzle’s portal. This fancy array handle can also be used to eliminate
unnecessary components from an ArrayHandle’s data, as shown below.

Example 7.35: Swizzling components of Vecs in an array with ArrayHandleSwizzle.

1 using ValueArrayType = vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 4>>;
2

3 // Create array with values

4 // [ (0.0, 0.1, 0.2, 0.3), (1.0, 1.1, 1.2, 1.3), (2.0, 2.1, 2.2, 2.3) 1]

5 ValueArrayType valueArray;

6 valueArray.Allocate (3);

7 auto valuePortal = valueArray.GetPortalControl ();

8 valuePortal.Set (0, vtkm::make_Vec(0.0, 0.1, 0.2, 0.3));

9 valuePortal.Set (1, vtkm::make_Vec(1.0, 1.1, 1.2, 1.3));

10 valuePortal.Set (2, vtkm::make_Vec (2.0, 2.1, 2.2, 2.3));

11

12 // Use ArrayHandleSwizzle to make an array of Vec-3 with x,y,z,w swizzled to z,x,w
13 // [ (0.2, 0.0, 0.3), (1.2, 1.0, 1.3), (2.2, 2.0, 2.3) 1

14 vtkm::cont::ArrayHandleSwizzle<ValueArrayType, 3> swizzledArray(

15 valueArray, vtkm::Vec<vtkm::IdComponent, 3>(2, 0, 3));

The vtkm/cont/ArrayHandleSwizzle.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleSwizzle that takes an ArrayHandle of Vecs and returns an appropriately typed ArrayHan-
dleSwizzle containing swizzled vectors. The indices of the swizzled components are provided as arguments
to make_ArrayHandleSwizzle after the ArrayHandle. The use of make ArrayHandleSwizzle can be used to
avoid having to declare the full array type.

Example 7.36: Using make_ArrayHandleSwizzle.
1 [ vtkm::cont::make_ArrayHandleSwizzle (valueArray, 2, 0, 3)

7.4.12 Grouped Vector Arrays

A grouped vector array is a fancy array handle that groups consecutive values of an array together to form
a vtkm: :Vec. The source array must be of a length that is divisible by the requested Vec size. The created
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vtkm: :Vec s are not stored in their own memory space. Rather, the Vecs are generated as the array is used.
Writing Vecs to the grouped vector array writes values into the the source array.

A grouped vector array is created using the vtkm::cont: :ArrayHandleGroupVec class. This templated class
has two template arguments. The first argument is the type of array being grouped and the second argument is
an integer specifying the size of the Vecs to create (the number of values to group together).

Example 7.37: Using ArrayHandleGroupVec.
// Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
using ArrayType = vtkm::cont::ArrayHandleIndex;
ArrayType sourceArray(12);

// Create an array containing [(0,1), (2,3), (4,5), (6,7), (8,9), (10,11)]
vtkm::cont::ArrayHandleGroupVec <ArrayType, 2> vec2Array(sourceArray);

// Create an array containing [(0,1,2), (3,4,5), (6,7,8), (9,10,11)]
vtkm::cont::ArrayHandleGroupVec<ArrayType, 3> vec3Array(sourceArray);
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The vtkm/cont/ArrayHandleGroupVec.h header also contains the templated convenience function vtkm: :cont: : -
make_ArrayHandleGroupVec that takes an instance of the array to group into Vecs. You must specify the size
of the Vecs as a template parameter when using vtkm: : cont: :make ArrayHandleGroupVec.

Example 7.38: Using make_ArrayHandleGroupVec.

1 // Create an array containing [(0,1,2,3), (4,5,6,7), (8,9,10,11)]
2 vtkm::cont::make_ArrayHandleGroupVec<4>(sourceArray)

ArrayHandleGroupVec is handy when you need to build an array of vectors that are all of the same length, but
what about when you need an array of vectors of different lengths? One common use case for this is if you are
defining a collection of polygons of different sizes (triangles, quadrilaterals, pentagons, and so on). We would like
to define an array such that the data for each polygon were stored in its own Vec (or, rather, Vec-like) object.
vtkm: :cont: :ArrayHandleGroupVecVariable does just that.

ArrayHandleGroupVecVariable takes two arrays. The first array, identified as the “source” array, is a flat
representation of the values (much like the array used with ArrayHandleGroupVec). The second array, iden-
tified as the “offsets” array, provides for each vector the index into the source array where the start of the
vector is. The offsets array must be monotonically increasing. The first and second template parameters to
ArrayHandleGroupVecVariable are the types for the source and offset arrays, respectively.

It is often the case that you will start with a group of vector lengths rather than offsets into the source array.
If this is the case, then the vtkm::cont::ConvertNumComponentsToOffsets helper function can convert an
array of vector lengths to an array of offsets. The first argument to this function is always the array of vector
lengths. The second argument, which is optional, is a reference to a ArrayHandle into which the offsets should
be stored. If this offset array is not specified, an ArrayHandle will be returned from the function instead. The
third argument, which is also optional, is a reference to a vtkm: :Id into which the expected size of the source
array is put. Having the size of the source array is often helpful, as it can be used to allocate data for the source
array or check the source array’s size. It is also OK to give the expected size reference but not the offset array
reference.

Example 7.39: Using ArrayHandleGroupVecVariable.
// Create an array of counts containing [4, 2, 3, 3]
vtkm::IdComponent countBuffer[4] = { 4, 2, 3, 3 };
vtkm::cont::ArrayHandle<vtkm::IdComponent> countArray =
vtkm::cont::make_ArrayHandle (countBuffer, 4);

// Convert the count array to an offset array [0, 4, 6, 9]
// Returns the number of total components: 12
vtkm::Id sourceArraySize;
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9 using OffsetArrayType = vtkm::cont::ArrayHandle<vtkm::Id>;

10 OffsetArrayType offsetArray =

11 vtkm::cont::ConvertNumComponentsToOffsets (countArray, sourceArraySize);
12

13 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

14 using SourceArrayType = vtkm::cont::ArrayHandleIndex;

15 SourceArrayType sourceArray(sourceArraySize);

16

17 // Create an array containing [(0,1,2,3), (4,5), (6,7,8), (9,10,11)]

18 vtkm::cont::ArrayHandleGroupVecVariable<SourceArrayType, OffsetArrayType>
19 vecVariableArray (sourceArray, offsetArray);

The vtkm/cont/ArrayHandleGroupVecVariable.h header also contains the templated convenience function vtkm: : =
cont: :make_ArrayHandleGroupVecVariable that takes an instance of the source array to group into Vec-like
objects and the offset array.

Example 7.40: Using MakeArrayHandleGroupVecVariable.

1 // Create an array containing [(0,1,2,3), (4,5), (6,7,8), (9,10,11)]
vtkm::cont::make_ArrayHandleGroupVecVariable (sourceArray, offsetArray)

You can write to ArrayHandleGroupVec and ArrayHandleGroupVecVariable by, for example, using it as
an output array. Writes to these arrays will go to the respective location in the source array. ArrayHandle-
GroupVec can also be allocated and resized (which in turn causes the source array to be allocated). However,
ArrayHandleGroupVecVariable cannot be resized and the source array must be pre-allocated. You can use
the source array size value returned from ConvertNumComponentsToOffsets to allocate source arrays.

Keep in mind that the values stored in a ArrayHandleGroupVecVariable are not actually vtkm::Vec
objects. Rather, they are “Vec-like” objects, which has some subtle but important ramifications. First, the
type will not match the vtkm: :Vec template, and there is no automatic conversion to vtkm: :Vec objects.
Thus, many functions that accept vtkm::Vec objects as parameters will not accept the Vec-like object.
Second, the size of Vec-like objects are not known until runtime. See Sections 6.5.2 and 6.6.2 for more
information on the difference between vtkm: :Vec and Vec-like objects.

7.5 Virtual Arrays

One of the complications that all the variations to array handle described in Section 7.4 introduces is that the
actual type of the array might not be known. That can be problematic when writing functions or methods that
operate on arrays. Often this issue can be resolved by simply making a templated argument that accepts any
object that looks like an ArrayHandle. VTK-m provides the macro VTKM_IS_ARRAY_ HANDLE to verify that a
template type is in fact an array handle.

Example 7.41: Using templates for generic array handles.
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// NOTE: There are faster ways to sum large arrays in VTK-m.
template<typename ArrayHandleType>
VTKM_CONT vtkm::Float64 SumArrayHandle(const ArrayHandleType& arrayHandle)
{

VTKM_IS_ARRAY_HANDLE (ArrayHandleType) ;

typename ArrayHandleType::PortalConstControl portal =
arrayHandle.GetPortalConstControl ();

9 vtkm::Float64 sum = 0.0;

10 for (vtkm::Id index = 0; index < portal.GetNumberOfValues(); ++index)

11 {

12 sum += portal.Get (index);

13 }
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15 return sum;

However, in some cases using a template in this way is not feasible. For example, what if you are calling a virtual
method, which cannot be practically templated like this? Or what if you need to store the arrays in a secondary
object that cannot be practically templated on all possible array types? Or what if you need to return an array

handle, but you do not know the specific type of array handle until runtime?

Example 7.42: A problem that can occur when an array handle type is not known.
std::vector<vtkm::cont::ArrayHandle<vtkm::Float64>> vectorOfArrays;

// Make basic array.

vtkm::cont::ArrayHandle<vtkm::Float64> basicArray;

// Fill basicArray...

vectorOfArrays.push_back(basicArray); // Works fine

// The previous line works fine because you are passing a standard ArrayHandle
// to a method that expects a standard ArrayHandle of the same type.
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10 // Make fancy array.
11 vtkm::cont::ArrayHandleCounting<vtkm::Float64> fancyArray(-1.0, 0.1, ARRAY_SIZE);
12 vectorOfArrays.push_back(fancyArray); // ERROR!!!!

13 // The previous line fails to compile because it is passing an ArrayHandleCounting

14 // to a method that expects a standard ArrayHandle, and you cannot directly make
15 // this cast.

To get around this problem, VITK-m provides the vtkm: : cont: : ArrayHandleVirtual class. ArrayHandleVir-
tual is a special type of array handle that can be wrapped around a ArrayHandle, any of the fancy array handles

described in Section 7.4, or any other possible custom array that can be created.

ArrayHandleVirtual can be used like any other array handle.

Example 7.43: Using an ArrayHandleVirtual.

1 | VTKM_CONT std::vector<vtkm::Float64> SumSeveralArrayHandles (

2 const std::vector<vtkm::cont::ArrayHandleVirtual<vtkm::Float64>>& vectorOfArrays)
3| {

4 std::vector<vtkm::Float64> sums;

5 for (auto&& arrayHandle : vectorOfArrays)

6 {

7 sums . push_back (SumArrayHandle (arrayHandle));

8 }

9

10 return sums;

11 |}

12

13 | VTKM_CONT void DoStuff ()

14 | {

15 std::vector<vtkm::cont::ArrayHandleVirtual<vtkm::Float64>> vectorOfArrays;
16
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17 // Make basic array.

18 vtkm::cont::ArrayHandle<vtkm::Float64> basicArray;

19 // Fill basicArray...

20 vectorOfArrays.push_back(basicArray);

21

22 // Make fancy array.

23 vtkm::cont::ArrayHandleCounting<vtkm::Float64> fancyArray(-1.0, 0.1, ARRAY_SIZE);
24 vectorOfArrays.push_back(fancyArray);

25

26 std::vector<vtkm::Float64> sums = SumSeveralArrayHandles(vectorOfArrays);
27 | ¥

ArrayHandleVirtual can be used when you do not know what kind of array you are working with. However,
you still need to know the type of value stored in the array (floating point, integer, vector, ect.). vtkm: :-
cont::VariantArrayHandle, described in Chapter 10, can instead be used in the case where you do not
know the type of values in the array.

The ArrayHandleVirtual class also comes with some special methods to work with types that are not known
until runtime.
NewInstance Creates a new array of the same type.

IsType Given an array handle type, returns true if the array stored in the ArrayHandleVirtual is the same
type as the one given.

Cast Given an array handle type, casts the array to that type and returns it. If the stored array is of the wrong

type, and exception is thrown.

One common use case for querying the type stored in a ArrayHandleVirtual is to create “fast paths” for common
types. The following example demonstrates using casting to create a fast path for a basic ArrayHandle but also
providing a fallback using the virtual interface, which may be slower due to calling virtual methods to get values.

Example 7.44: Casting a ArrayHandleVirtual to a known type.

1 | VTKM_CONT vtkm::Float64 SumArrayHandleVirtual (

2 const vtkm::cont::ArrayHandleVirtual<vtkm::Float64>& virtualArray)
3|4

4 if (virtualArray.IsType<vtkm::cont::ArrayHandle<vtkm::Float64>>())
5 {

6 // Fast path for basic array storage (direct access to memory)

7 vtkm::cont::ArrayHandle<vtkm::Float64> basicArray =

8 virtualArray.Cast<vtkm::cont::ArrayHandle<vtkm::Float64>>();

9 return SumArrayHandle(basicArray);

10 }

11 else

12 {

13 // Slower path to go through general virtual interface

14 return SumArrayHandle(virtualArray);

15 }

16 |}
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7.6 Deep Array Copies

As stated previously, an ArrayHandle object behaves as a smart pointer that copies references to the data
without copying the data itself. This is clearly faster and more memory efficient than making copies of the data
itself and usually the behavior desired. However, it is sometimes the case that you need to make a separate copy
of the data.

To simplify copying the data, VI'K-m comes with the vtkm: :cont: : ArrayCopy convenience function defined in
vtkm/cont/ArrayCopy.h. ArrayCopy takes the array to copy from (the source) as its first argument and the array
to copy to (the destination) as its second argument. The destination array will be properly reallocated to the
correct size.

Example 7.45: Using ArrayCopy.
1 | vtkm::cont::ArrayCopy (tmpArray, inputArray);

ArrayCopy will copy data in parallel. If desired, you can specify the device as the third argument to
ArrayCopy using either a device adapter tag or a runtime device tracker. Both the tags and tracker are
described in Chapter 8.

7.7 Compute Array Range

It is common to need to know the minimum and/or maximum values in an array. To help find these values,
VTK-m provides the vtkm: : cont: : ArrayRangeCompute convenience function defined in vtkm/cont/ArrayRange-
Compute.h. ArrayRangeCompute simply takes an ArrayHandle on which to find the range of values.

If given an array with vtkm: :Vec values, ArrayRangeCompute computes the range separately for each component
of the Vec. The return value for ArrayRangeCompute is vtkm::cont::ArrayHandle <vtkm::Range >. This
returned array will have one value for each component of the input array’s type. So for example if you call
ArrayRangeCompute on a vtkm::cont::ArrayHandle <vtkm::Id3 >, the returned array of Ranges will have 3
values in it. Of course, when ArrayRangeCompute is run on an array of scalar types, you get an array with a
single value in it.

Each value of vtkm: :Range holds the minimum and maximum value for that component. The Range object is
documented in Section 6.5.4.

Example 7.46: Using ArrayRangeCompute.

vtkm::cont::ArrayHandle<vtkm::Range> rangeArray =

vtkm::cont::ArrayRangeCompute (arrayHandle) ;
auto rangePortal = rangeArray.GetPortalConstControl ();
for (vtkm::Id index = 0; index < rangePortal.GetNumberOfValues(); ++index)
{

vtkm::Range componentRange = rangePortal.Get(index);

std::cout << "Values for component " << index << " go from "

<< componentRange.Min << " to " << componentRange.Max << std::endl;
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ArrayRangeCompute will compute the minimum and mazimum values in parallel. If desired, you can specify
the parallel hardware device used for the computation as an optional second argument to ArrayRangeCom—
pute. You can specify the device using a runtime device tracker, which is documented in Section 8.3.

7.8 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters or worklets, this transition
is handled automatically. However, it is also possible to invoke the transfer for use in your own scheduled
algorithms.

The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.

ArrayHandle: :PrepareForInput Copies data from the control to the execution environment, if necessary, and
readies the data for read-only access.

ArrayHandle: :PrepareForInPlace Copies the data from the control to the execution environment, if necessary,
and readies the data for both reading and writing.

ArrayHandle: :PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution
environment, if necessary, and readies the space for writing.

The PrepareForInput and PrepareForInPlace methods each take a single argument that is the device adapter
tag where execution will take place (see Section 8.1 for more information on device adapter tags). Prepare-
ForOutput takes two arguments: the size of the space to allocate and the device adapter tag. Each of these meth-
ods returns an array portal that can be used in the execution environment. PrepareForInput returns an object
of type ArrayHandle: :ExecutionTypes<DeviceAdapterTags: :PortalConst whereas PrepareForInPlace and
PrepareForQOutput each return an object of type ArrayHandle: :ExecutionTypes<DeviceAdapterTags: :Por-
tal.

Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment.

Most of the time, the passing of ArrayHandle data to the execution environment is handled automatically by
VTK-m. The most common need to call one of these Prepare methods is to build execution objects (Section
12.9) or to construct derived array types (Section 18.2.3). Examples of using these Prepare methods are in those
respective sections.

There are many operations on ArrayHandle that can invalidate the array portals, so do not keep them
around indefinitely. It is generally better to keep a reference to the ArrayHandle and use one of the
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Prepare methods each time the data are accessed in the execution environment.

Chapter 7. Array Handles 111






CHAPTER
EIGHT

DEVICE ADAPTERS

As multiple vendors vie to provide accelerator-type processors, a great variance in the computer architecture
exists. Likewise, there exist multiple compiler environments and libraries for these devices such as CUDA,
OpenMP, and various threading libraries. These compiler technologies also vary from system to system.

To make porting among these systems at all feasible, we require a base language support, and the language we
use is C++. The majority of the code in VITK-m is constrained to the standard C++ language constructs to
minimize the specialization from one system to the next.

Each device and device technology requires some level of code specialization, and that specialization is encapsu-
lated in a unit called a device adapter. Thus, porting VIK-m to a new architecture can be done by adding only
a device adapter.

The device adapter is shown diagrammatically as the connection between the control and execution environments
in Figure 6.1 on page 62. The functionality of the device adapter comprises two main parts: a collection of parallel
algorithms run in the execution environment and a module to transfer data between the control and execution
environments.

This chapter describes how tags are used to specify which devices to use for operations within VITK-m. The
chapter also outlines the features provided by a device adapter that allow you to directly control a device. Finally,
we document how to create a new device adapter to port or specialize VI K-m for a different device or system.

8.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device. The following device adapter tags are available in VITK-m.

vtkm: :cont: :DeviceAdapterTagSerial Performs all computation on the same single thread as the control
environment. This device is useful for debugging. This device is always available. This tag is defined in
vtkm/cont/DeviceAdapterSerial.h.

vtkm: :cont: :DeviceAdapterTagCuda Uses a CUDA capable GPU device. For this device to work, VTK-m
must be configured to use CUDA and the code must be compiled by the CUDA nvcc compiler. This tag is
defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

vtkm: :cont: :DeviceAdapterTagOpenMP Uses OpenMP compiler extensions to run algorithms on multiple
threads. For this device to work, VITK-m must be configured to use OpenMP and the code must be
compiled with a compiler that supports OpenMP pragmas. This tag is defined in vtkm/cont/openmp/De-
viceAdapterOpenMP.h.
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vtkm: :cont: :DeviceAdapterTagTBB Uses the Intel Threading Building Blocks library to run algorithms on
multiple threads. For this device to work, VTK-m must be configured to use TBB and the executable must
be linked to the TBB library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

The following example uses the tag for the Intel Threading Building blocks device adapter to prepare an output
array for that device. In this case, the device adapter tag is passed as a parameter for the ArrayHandle::-
PrepareForOutput method.

Example 8.1: Specifying a device using a device adapter tag.
1 [ arrayHandle .PrepareForOutput (50, vtkm::cont::DeviceAdapterTagTBB());

Functions, methods, and classes that directly use device adapter tags are usually templated on the device adapter
tag. This allows the function or class to be applied to any type of device specified at compile time.

Example 8.2: Specifying a device using template parameters.

1 | template<typename Device>

2 | struct SetPortalFunctor : vtkm::exec::FunctorBase

3|4

4 VTKM_IS_DEVICE_ADAPTER_TAG (Device);

5

6 using ExecPortalType =

7 typename vtkm::cont::ArrayHandle<vtkm::Id>::ExecutionTypes<Device>::Portal;
8 ExecPortalType Portal;

9

10 VTKM_CONT

11 SetPortalFunctor (vtkm::cont::ArrayHandle<vtkm::Id> array, vtkm::Id size)
12 Portal (array.PrepareForOutput (size, Device()))

13 {

14 }

15

16 VTKM_EXEC

17 void operator () (vtkm::Id index) const

18 {

19 using ValueType = typename ExecPortalType::ValueType;
20 this->Portal.Set(index, TestValue(index, ValueType()));
21 if

22 Bk

@

A device adapter tag is a class just like every other type in C++. Thus it is possible to accidently use a
type that is not a device adapter tag when one is expected as a template argument. This leads to unexpected
errors in strange parts of the code. To help identify these errors, it is good practice to use the VTKM_IS_-
DEVICE_ADAPTER_TAG macro to verify the type is a valid device adapter tag. Fxample 8.2 uses this macro
on line 4.

Using a device adapter tag directly means that the type of device needs to be known at compile time. To store
a device adapter type at run time, one can instead use vtkm::cont::DeviceAdapterId. DeviceAdapterId is
a superclass to all the device adapter tags, and any device adapter tag can be “stored” in a DeviceAdapterId.
Thus, it is more common for functions and classes to use DeviceAdapterId then to try to track a specific device
with templated code.

In addition to the provided device adapter tags listed previously, a DeviceAdapterId can store some special
device adapter tags that do not directly specify a specific device.
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vtkm: :cont: :DeviceAdapterTagAny Used to specify that any device may be used for an operation. In practice
this is limited to devices that are currently available.

vtkm: :cont: :DeviceAdapterTagUndefined Used to avoid specifying a device. Useful as a placeholder when a
device can be specified but none is given.

8.2 Device Adapter Traits

In Section 6.6 we see that VIK-m defines multiple traits classes to publish and retrieve information about types.
In addition to traits about basic data types, VI K-m also has instances of defining traits for other features. One
such traits class is vtkm: :cont: :DeviceAdapterTraits, which provides some basic information about a device
adapter tag. The DeviceAdapterTraits class provides the following features.

GetId A static method taking no arguments that returns a unique integer identifier for the device adapter.
The integer identifier is stored in a type named vtkm: : cont: :DeviceAdapterId, which is currently aliased
to vtkm: : Int8. The device adapter id is useful for storing run time information about a device without
directly compiling for the class.

GetName A static method that returns a string description for the device adapter. The string is stored in
a type named vtkm::cont: :DeviceAdapterNameType, which is currently aliased to std::string. The
device adapter name is useful for printing information about a device being used.

Valid A static const bool that is true if the implementation of the device is available. The valid flag is useful
for conditionally compiling code depending on whether a device is available.

The following example demonstrates using the vtkm: :cont: :DeviceAdapterId to check whether an array al-
ready has its data available on a particular device. Code like this can be used to attempt find a device on
which data is already available to avoid moving data across devices. For simplicity, this example just outputs a
message.

Example 8.3: Using DeviceAdapterTraits.

1 | template<typename ArrayHandleType, typename DeviceAdapterTag>

2 | void CheckArrayHandleDevice (const ArrayHandleType& array, DeviceAdapterTag)
314

4 VTKM_IS_ARRAY_HANDLE (ArrayHandleType) ;

5 VTKM_IS_DEVICE_ADAPTER_TAG (DeviceAdapterTag);

6

7 vtkm::cont::DeviceAdapterId currentDevice = array.GetDeviceAdapterId();

8 if (currentDevice == DeviceAdapterTag())

9 {

10 std::cout << "Array is already on device " << DeviceAdapterTag().GetName ()
11 << std::endl;

12 Iy

13 else

14 {

15 std::cout << "Copying array to device " << DeviceAdapterTag().GetName ()
16 << std::endl;

17 array.PrepareForInput (DeviceAdapterTag());

18 }

19 |}

VTK-m contains multiple devices that might not be available for a variety of reasons. For example, the CUDA
device is only available when code is being compiled with the special nvcc compiler. To make it easier to
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manage devices that may be available in some configurations but not others, VIK-m always defines the de-
vice adapter tag structure, but signals whether the device features are available through the DeviceAdapter-
Traits::Valid flag. For example, VTK-m always provides the vtkm/cont/cuda/DeviceAdapterCuda.h header file
and the vtkm: : cont: :DeviceAdapterTagCuda tag defined in it. However, vtkm: : cont: :DeviceAdapterTraits
<vtkm: :cont: :DeviceAdapterTagCuda >::Valid is true if and only if VIK-m was configured to use CUDA and
the code is being compiled with nvcc. The following example uses DeviceAdapterTraits to wrap the function
defined in Exampleex:DeviceAdapterTraits in a safer version of the function that checks whether the device is
valid and will compile correctly in either case.

Example 8.4: Managing invalid devices without compile time errors.

1 | namespace detail

2 | {

3

4 | template<typename ArrayHandleType, typename DeviceAdapterTag>
5 | void SafeCheckArrayHandleDeviceImpl (const ArrayHandleType& array,
6 DeviceAdapterTag,

7 std::true_type)

8 14

9 CheckArrayHandleDevice (array, DeviceAdapterTag());

10 |}

11

12 | template<typename ArrayHandleType, typename DeviceAdapterTag>

13 | void SafeCheckArrayHandleDeviceImpl (const ArrayHandleType&,

14 DeviceAdapterTag,

15 std::false_type)

16 | {

17 std::cout << "Device " << DeviceAdapterTag().GetName() << " is not available"
18 << std::endl;

19 |}

20
21 |} // namespace detail
22
23 | template<typename ArrayHandleType, typename DeviceAdapterTag>

24 | void SafeCheckArrayHandleDevice(const ArrayHandleType& array, DeviceAdapterTag)
25 | {

26 static const bool deviceValid = DeviceAdapterTag::IsEnabled;

27 detail::SafeCheckArrayHandleDeviceImpl (

28 array, DeviceAdapterTag(), std::integral_constant<bool, deviceValid>());
29 |}

Note that Example 8.4 makes use of std::integral_constant to make it easier to overload a function based
on a bool value. The example also makes use of std::true_type and std::false_type, which are aliases of
true and false Boolean integral constants. They save on typing and make the code more clear.

It is rare that you have to directly query whether a particular device is valid. If you wish to write functions
that support multiple devices, it is common to wrap them in a vtkm: :cont: : TryExecute, which takes care
of invalid devices for you. TryExecute is described in Chapter19.
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Be aware that even though supported VTK-m devices always have a tag and associated traits defined, the
rest of the implementation will likely be missing for devices that are mot valid. Thus, you are likely to
get errors in code that uses an invalid tag in any class that is not DeviceAdapterTraits. For ezample,
you might be tempted to implement the behavior of Example 8.4 by simply adding an if condition to the
function in Example 8.53. However, if you did that, then you would get compile errors in other if branches
that use the invalid device tag (even though they can never be reached). This is why Example 8.4 instead
uses function overloading to avoid compiling any code that attempts to use an invalid device adapter.

8.3 Runtime Device Tracker

It is often the case that you are agnostic about what device VI'K-m algorithms run so long as they complete
correctly and as fast as possible. Thus, rather than directly specify a device adapter, you would like VTK-m to
try using the best available device, and if that does not work try a different device. Because of this, there are
many features in VITK-m that behave this way. For example, you may have noticed that running filters, as in
the examples of Chapter 4, you do not need to specify a device; they choose a device for you.

However, even though we often would like VT K-m to choose a device for us, we still need a way to manage device
preferences. VTK-m also needs a mechanism to record runtime information about what devices are available so
that it does not have to continually try (and fail) to use devices that are not available at runtime. These needs
are met with the vtkm::cont: :RuntimeDeviceTracker class. RuntimeDeviceTracker maintains information
about which devices can and should be run on. RuntimeDeviceTracker has the following methods.

CanRunOn Takes a device adapter tag and returns true if VIK-m was configured for the device and it has not
yet been marked as disabled.

DisableDevice Takes a device adapter tag and marks that device to not be used. Future calls to CanRunOn for
this device will return false until that device is reset.

ResetDevice Takes a vtkm: :cont: :DeviceAdapterTag and resets the state for that device to its default value.
Each device defaults to on as long as VI K-m is configured to use that device and a basic runtime check
finds a viable device.

Reset Resets all devices. This equivocally calls ResetDevice for all devices supported by VITK-m.

ForceDevice Takes a device adapter tag and enables that device. All other devices are disabled. This method
throws a vtkm: :cont: :ErrorBadValue if the requested device cannot be enabled.

DeepCopy RuntimeDeviceTracker behaves like a smart pointer for its state. That is, if you copy a RuntimeDe-
viceTracker and then change the state of one (by, for example, calling DisableDevice on one), then the
state changes for both. If you want to copy the state of a RuntimeDeviceTracker but do not want future
changes to effect each other, then use DeepCopy. There are two versions of DeepCopy. The first version
takes no arguments and returns a new RuntimeDeviceTracker. The second version takes another instance
of a RuntimeDeviceTracker and copies its state into this class.

ReportAllocationFailure A device might have less working memory available than the main CPU. If this is
the case, memory allocation errors are more likely to happen. This method is used to report a vtkm::-
cont: :ErrorBadAllocation and disables the device for future execution.
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ReportBadDeviceFailure It is possible that a device may throw a vtkm: : cont: : ErrorBadDevice failure caused
by some erroneous device issue. If this occurs, it is possible to catch the vtkm::cont: :ErrorBadDevice
exception and pass it to ReportBadDeviceFailure along with the vtkm::cont::DeviceAdapterId to
forcefully disable a device.

A RuntimeDeviceTracker can be used to specify which devices to consider for a particular operation. For
example, let us say that we want to perform a deep copy of an array using the vtkm: : cont: : ArrayCopy method
(described in Section 7.6). However, we do not want to do the copy on a CUDA device because we happen
to know the data is not on that device and we do not want to spend the time to transfer the data to that
device. Since each thread maintains a RuntimeDeviceTracker, we can simply disable the device before calling
ArrayCopy to guarantee that data transfer does not occur on the CUDA device. This is best achieved using
a vtkm::cont: :ScopedRuntimeDeviceTracker so that the disabled device is automatically restored once the
program leaves its current scope.

Example 8.5: Disabling a device with RuntimeDeviceTracker.
vtkm::cont::ScopedRuntimeDeviceTracker tracker(
vtkm::cont::DeviceAdapterTagCuda(),
vtkm::cont::RuntimeDeviceTrackerMode::Disable);
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vtkm::cont::ArrayCopy(srcArray, destArray);

Section 8.2 warned that using device adapter tags for devices that are not available can cause compile time
errors when used with most features of VI'K-m. This is not the case for RuntimeDeviceTracker. You
may pass RuntimeDeviceTracker any device adapter tag regardless of whether VTK-m is configured for
that device or whether the current compiler supports that device. This allows you to set up a RuntimeDe-
viceTracker in a translation unit that does not support a particular device and pass it to function compiled
in a unit that does.

It can be tedious to maintain your own RuntimeDeviceTracker and pass it to every function that chooses a
device. To make this easier, VI'K-m maintains a per thread runtime device tracker, which can be retrieved with
the vtkm: :cont: :GetRuntimeDeviceTracker function. Specifying a RuntimeDeviceTracker is almost always
optional, and the per thread runtime device tracker is used if none is specified.

One of the nice features about having a per thread runtime device tracker is that when an algorithm encounters
a problem with a device, it can be marked as disabled and future algorithms can skip over that non-functioning
device. This information can be shared between various VI'K-m threads and helps minimize the time spent
checking for malfunctioning devices. That said, it may be the case where you want to re-enable a device
previously marked as disabled. For example, an algorithm may disable a device in the tracker because that
device ran out of memory. However, your code might want to re-enable such devices if moving on to a different
data set. This can be done by simply calling a reset method on the global runtime device tracker.

Example 8.6: Resetting the Thread Local RuntimeDeviceTracker.
1 [ vtkm::cont::GetRuntimeDeviceTracker ().Reset ();

It is also possible to restrict devices that are used through the global runtime device adapter. For example, if
you are debugging some code, you might find it useful to restrict VIK-m to use the serial device.

Example 8.7: Restricting which devices VTK-m uses per thread.

1 vtkm::cont::GetRuntimeDeviceTracker () .ForceDevice (
vtkm::cont::DeviceAdapterTagSerial ());

[\
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8.4 Predicates and Operators

VTK-m follows certain design philosophies consistent with the functional programming paradigm. This assists
in making implementations device agnostic and ensuring that various functions operate correctly and efficiently
in multiple environments. Many basic operations, such as binary and unary comparisons and predicates, are
implemented as templated functors. These are mostly re-implementations of basic C++ STL functors that can
be used in the VTK-m execution environment.

Strictly using a functor by itself adds little in the way of functionality to the code. Their use is demonstrated more
when used as parameters to one of the vtkm: :cont::Algorithm (discussed in detail in Section 8.5). Currenly,
VTK-m provides 3 categories of functors: Unary Predicates, Binary Predicates, and Binary Operators.

8.4.1 Unary Predicates

Unary Predicates are functors that take a single parameter and return a Boolean value. These types of functors
are useful in determining if values have been initialized or zeroed out correctly.

vtkm: :IsZeroInitialized Returns True if argument is the identity of its type.
vtkm: :NotZeroInitialized Returns True if the argument is not the identify of its type.

vtkm: :LogicalNot Returns True iff the argument is False. Requires that the argument type is convertible to
a Boolean or implements the ! operator.

Example 8.8: Basic Unary Predicate.
vtkm::IsZeroInitialized zero_initialized;
vtkm::NotZeroInitialized not_zero_initialized;
vtkm::LogicalNot logical_not;

bool zeroed = zero_initialized(vtkm::TypeTraits<vtkm::Id>::ZerolInitialization());
bool notZeroed = not_zero_initialized(vtkm::Id(1));
bool logicalNot = logical_not(false);
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8.4.2 Binary Predicates

Binary Predicates take two parameters and return a single Boolean value. These types of functors are used
when comparing two different parameters for some sort of condition.

vtkm: :Equal Returns True iff the first argument is equal to the second argument. Requires that the argument
type implements the == operator.

vtkm: :NotEqual Returns True iff the first argument is not equal to the second argument. Requires that the
argument type implements the != operator.

vtkm: :SortLess Returns True iff the first argument is less than the second argument. Requires that the
argument type implements the < operator.

vtkm: :SortGreater Returns True iff the first argument is greater than the second argument. Requires that
the argument type implements the < operator (the comparison is inverted internally).

vtkm: :LogicalAnd Returns True iff the first argument and the second argument are True. Requires that the
argument type is convertible to a Boolean or implements the && operator.
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vtkm: :LogicalOr Returns True iff the first argument or the second argument is True. Requires that the
argument type is convertible to a Boolean or implements the || operator.

Example 8.9: Basic Binary Predicate.

1 vtkm::Equal equal_;

2 vtkm::NotEqual not_equal;

3 vtkm::SortLess sort_less;

4 vtkm::SortGreater sort_greater;

5 vtkm::LogicalAnd logical_and;

6 vtkm::LogicalOr logical_or;

7

8 bool equal = equal_(vtkm::Id(1), vtkm::Id(1));

9 bool notEqual = not_equal(vtkm::Id (1), vtkm::Id(2));
10 bool sortLess = sort_less(vtkm::Id(1), vtkm::Id(2));
11 bool sortGreater = sort_greater (vtkm::Id(2), vtkm::Id(1));
12 bool logicalAnd = logical_and(true, true);

13 bool logicalOr = logical_or(true, false);

8.4.3 Binary Operators

Binary Operators take two parameters and return a single value (usually of the same type as the input argu-
ments). These types of functors are useful when performing reductions or transformations of a dataset.

vtkm: :Sum Returns the sum of two arguments. Requires that the argument type implements the + operator.

vtkm: :Product Returns the product (multiplication) of two arguments. Requires that the argument type
implements the * operator.

vtkm: :Maximum Returns the larger of two arguments. Requires that the argument type implements the <
operator.

vtkm: :Minimum Returns the smaller of two arguments. Requires that the argument type implements the <
operator.

vtkm: :MinAndMax Returns a vtkm: :Vector<T,2> that represents the minimum and maximum values. Requires
that the argument type implements the vtkm: :Min and vtkm: :Max functions.

vtkm: :BitwiseAnd Returns the bitwise and of two arguments. Requires that the argument type implements
the & operator.

vtkm: :BitwiseOr Returns the bitwise or of two arguments. Requires that the argument type implements the
| operator.

vtkm: :BitwiseXor Returns the bitwise xor of two arguments. Requires that the argument type implements
the ~ operator.

Example 8.10: Basic Binary Operator.

vtkm::Sum sum_;

vtkm::Product product_;

vtkm::Maximum maximum_ ;

vtkm::Minimum minimum_;
vtkm::MinAndMax<vtkm::Id> min_and_max;
vtkm::BitwiseAnd bitwise_and;
vtkm::BitwiseOr bitwise_or;
vtkm::BitwiseXor bitwise_xor;
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10 vtkm::Id sum = sum_(vtkm::Id (1), vtkm::Id(1));
11 vtkm::Id product = product_(vtkm::Id(2), vtkm::Id(2));
12 vtkm::Id max = maximum_(vtkm::Id (1), vtkm::Id(2));

13 vtkm::Id min = minimum_(vtkm::Id (1), vtkm::Id(2));

14 vtkm::Vec<vtkm::Id, 2> minAndMax = min_and_max(vtkm::Id(3), vtkm::Id(4));
15 vtkm::Id bitwiseAnd = bitwise_and(vtkm::Id (1), vtkm::Id(3));

16 vtkm::Id bitwiseOr = bitwise_or(vtkm::Id (1), vtkm::Id(2));

17 vtkm::Id bitwiseXor = bitwise_xor (vtkm::Id(7), vtkm::Id(4));

8.4.4 Creating Custom Comparators

In addition to using the built in operators and predicates, it is possible to create your own custom functors to
be used in one of the vtkm: :cont::Algorithm. Custom operator and predicate functors can be used to apply
specific logic used to manipulate your data. The following example creates a unary predicate that checks if the

input is a power of 2.

Example 8.11: Custom Unary Predicate Implementation.

1 | struct PowerOfTwo
2 | {
3 VTKM_EXEC_CONT bool operator () (const vtkm::Id& x) const
4 {
5 if (x <= 0)
6 {
i return false;
8 ¥
9 vtkm::BitwiseAnd bitwise_and;
10 return bitwise_and(x, vtkm::Id(x - 1)) == 0;
11 }
12 | };
Example 8.12: Custom Unary Predicate Usage.
I Power0fTwo power_of_two;
2
3 bool power0fTwo = power_of_two(vtkm::Id(4)); // returns true
4 power0fTwo = power_of_two(vtkm::Id(5)); // returns false

8.5 Device Adapter Algorithms

VTK-m comes with the templated class vtkm: :cont: :Algorithm that provides a set of algorithms that can be
invoked in the control environment and are run on the execution environment. All algorithms also accept an

optional device adapter argument.

Example 8.13: Prototype for vtkm: :cont: :Algorithm.

namespace vtkm
namespace cont

{

struct Algorithm;
}

} // namespace vtkm
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Algorithm contains no state. It only has a set of static methods that implement its algorithms. The following

methods are available.
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Many of the following device adapter algorithms take input and output ArrayHandles, and these functions
will handle their own memory management. This means that it is unnecessary to allocate output arrays. For
example, it is unnecessary to call ArrayHandle: :Allocate for the output array passed to the Algorithm: : -
Copy method.

8.5.1 Copy

The Algorithm: : Copy method copies data from an input array to an output array. The copy takes place in the
execution environment.

Example 8.14: Using the Copy algorithm.
std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
vtkm::cont::ArrayHandle<vtkm::Int32> input =

vtkm::cont::make_ArrayHandle (inputBuffer);

vtkm::cont::ArrayHandle<vtkm::Int32> output;

vtkm::cont::Algorithm::Copy (input, output);
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// output has { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 }

8.5.2 Copylf

The Algorithm: :CopyIf method selectively removes values from an array. The copy if algorithm is also some-
times referred to as stream compact. The first argument, the input, is an ArrayHandle to be compacted (by
removing elements). The second argument, the stencil, is an ArrayHandle of equal size with flags indicating
whether the corresponding input value is to be copied to the output. The third argument is an output Array-
Handle whose length is set to the number of true flags in the stencil and the passed values are put in order to
the output array.

Algorithm: :CopyIf also accepts an optional fourth argument that is a unary predicate to determine what
values in the stencil (second argument) should be considered true. See Section 8.4 for more information on
unary predicates. The unary predicate determines the true/false value of the stencil that determines whether a
given entry is copied. If no unary predicate is given, then CopyIf will copy all values whose stencil value is not
equal to 0 (or the closest equivalent to it). More specifically, it copies values not equal to vtkm: : TypeTraits:: -
ZeroInitialization.

Example 8.15: Using the CopyIf algorithm.

1 std::vector<vtkm::Int32> inputBuffer{ 7, O, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 std::vector<vtkm::UInt8> stencilBuffer{ 0, 1, 0, 0, 1, O, O, 1, 0, 1, 0, 1 };
3 vtkm::cont::ArrayHandle<vtkm::Int32> input =

4 vtkm::cont::make_ArrayHandle (inputBuffer);

5 vtkm::cont::ArrayHandle<vtkm::UInt8> stencil =

6 vtkm::cont::make_ArrayHandle (stencilBuffer);

7

8 vtkm::cont::ArrayHandle<vtkm::Int32> output;

9

10 vtkm::cont::Algorithm::CopyIf (input, stencil, output);

11

12

13 // output has { 0, 5, 3, 8, 3 }

122 Chapter 8. Device Adapters



8.5. Device Adapter Algorithms

14

15 struct LessThanb

16 {

17 VTKM_EXEC_CONT bool operator () (vtkm::Int32 x) const { return x < 5; }
18 15

19

20 vtkm::cont::Algorithm::CopyIf (input, input, output, LessThan5());

21

22 // output has { 0, 1, 1, 4, 3, 3 }

8.5.3 CopySubRange

The Algorithm: :CopySubRange method copies the contents of a section of one ArrayHandle to another. The
first argument is the input ArrayHandle. The second argument is the index from which to start copying data.
The third argument is the number of values to copy from the input to the output. The fourth argument is the
output ArrayHandle, which will be grown if it is not large enough. The fifth argument, which is optional, is the
index in the output array to start copying data to. If the output index is not specified, data are copied to the
beginning of the output array.
Example 8.16: Using the CopySubRange algorithm.

std::vector<vtkm::Int32> inputBuffer{ 7, O, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
vtkm::cont::ArrayHandle<vtkm::Int32> input =

vtkm::cont::make_ArrayHandle (inputBuffer);

vtkm::cont::ArrayHandle<vtkm::Int32> output;

vtkm::cont::Algorithm:: CopySubRange (input, 1, 7, output);
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// output has { 0, 1, 1, 5, 5, 4, 3 }

8.5.4 LowerBounds

The Algorithm: :LowerBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. LowerBounds find the
index of the first item that is greater than or equal to the target value, much like the std: :lower_bound STL
algorithm. The results are returned in an ArrayHandle given in the third argument.

There are two specializations of Algorithm: :LowerBounds. The first takes an additional comparison function
that defines the less-than operation. The second specialization takes only two parameters. The first is an
ArrayHandle of sorted vtkm::Id s and the second is an ArrayHandle of vtkm::Id to find in the first list. The
results are written back out to the second array. This second specialization is useful for inverting index maps.

Example 8.17: Using the LowerBounds algorithm.

1 std::vector<vtkm::Int32> sortedBuffer{ O, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 };
2 std::vector<vtkm::Int32> valuesBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3

4 vtkm::cont::ArrayHandle<vtkm::Int32> sorted =

5 vtkm::cont::make_ArrayHandle (sortedBuffer);

6 vtkm::cont::ArrayHandle<vtkm::Int32> values =

7 vtkm::cont::make_ArrayHandle (valuesBuffer);

8

9 vtkm::cont::ArrayHandle<vtkm::Id> output;

10

11 vtkm::cont::Algorithm::LowerBounds (sorted, values, output);

12
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13 // output has { 8, 0, 1, 1, 6, 6, 5, 3, 8, 10, 11, 3 }

14

15 std::vector<vtkm::Int32> revSortedBuffer{ 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 };

16 vtkm::cont::ArrayHandle<vtkm::Int32> reverseSorted =

17 vtkm::cont::make_ArrayHandle(revSortedBuffer);

18

19 vtkm::cont::Algorithm::LowerBounds (

20 reverseSorted, values, output, vtkm::SortGreater());

21

22 // output has { 2, 11, 9, 9, 4, 4, 6, 7, 2, 1, 0, 7 }
8.5.5 Reduce

The Algorithm: :Reduce method takes an input array, initial value, and a binary function and computes a “total”
of applying the binary function to all entries in the array. The provided binary function must be associative
(but it need not be commutative). There is a specialization of Reduce that does not take a binary function and
computes the sum.

Example 8.18: Using the Reduce algorithm.

1 std::vector<vtkm::Int32> inputBuffer{ 1, 1, 5, 5 };

2 vtkm::cont::ArrayHandle<vtkm::Int32> input =

3 vtkm::cont::make_ArrayHandle (inputBuffer);

4

5 vtkm::Int32 sum = vtkm::cont::Algorithm::Reduce(input, 0);

6

7 // sum is 12

8

9 vtkm::Int32 product = vtkm::cont::Algorithm::Reduce(input, 1, vtkm::Multiply());
10 // product is 25

8.5.6 ReduceByKey

The Algorithm: :ReduceByKey method works similarly to the Reduce method except that it takes an additional
array of keys, which must be the same length as the values being reduced. The arrays are partitioned into
segments that have identical adjacent keys, and a separate reduction is performed on each partition. The unique
keys and reduced values are returned in separate arrays.

Example 8.19: Using the ReduceByKey algorithm.

1 std:: vector <vtkm::Id> keyBuffer{ 0, 0, 3, 8, 3, 3, b, 6, 6, 6, 6, 6 };

2 std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };

3

4 vtkm::cont::ArrayHandle<vtkm::Id> keys = vtkm::cont::make_ArrayHandle (keyBuffer);
5 vtkm::cont::ArrayHandle<vtkm::Int32> input =

6 vtkm::cont::make_ArrayHandle (inputBuffer);

7

8 vtkm::cont::ArrayHandle<vtkm::Id> uniqueKeys;

9 vtkm::cont::ArrayHandle<vtkm::Int32> sums;

10

11 vtkm::cont::Algorithm::ReduceByKey (keys, input, uniqueKeys, sums, vtkm::Add());
12

13 // uniqueKeys is { 0, 3, 5, 6 }

14 // sums is { 7, 12, 4, 30 }

15

16 vtkm::cont::ArrayHandle<vtkm::Int32> products;

17

18 vtkm::cont::Algorithm::ReduceByKey (

19 keys, input, uniqueKeys, products, vtkm::Multiply());
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20
21

// products is { 0, 25, 4, 4536 }

8.5.7 ScanExclusive

The Algorithm: :ScanExclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is always 0. The second value in the output is the same
as the first value in the input. The third value in the output is the sum of the first two values in the input. The
fourth value in the output is the sum of the first three values of the input, and so on. ScanExclusive returns
the sum of all values in the input. There are two forms of ScanExclusive. The first performs the sum using
addition. The second form accepts a custom binary functor to use as the “sum” operator and a custom initial
value (instead of 0).
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Example 8.20: Using the ScanExclusive algorithm.
std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
vtkm::cont::ArrayHandle<vtkm::Int32> input =

vtkm::cont::make_ArrayHandle (inputBuffer);
vtkm::cont::ArrayHandle<vtkm::Int32> runningSum;
vtkm::cont::Algorithm::ScanExclusive (input, runningSum);
// runningSum is { 0, 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50 }
vtkm::cont::ArrayHandle<vtkm::Int32> runningMax;

vtkm::cont::Algorithm::ScanExclusive (input, runningMax, vtkm::Maximum(), -1);

// runningMax is { -1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9 }

8.5.8 ScanExclusiveByKey

The Algorithm: :ScanExclusiveByKey method works similarly to the ScanExclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

© 00~ U W~

Example 8.21: Using ScanExclusiveByKey algorithm.

std::vector<vtkm::Id> keyBuffer{ 0, 0, 3, 3, 3, 3, b, 6, 6, 6, 6, 6 F;
std :tivector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, &5, 5, 4, 3, 7, 8, 9, 3 };
vtkm::cont::ArrayHandle<vtkm::Id> keys = vtkm::cont::make_ArrayHandle (keyBuffer);
vtkm::cont::ArrayHandle<vtkm::Int32> input =

vtkm::cont::make_ArrayHandle (inputBuffer);
vtkm::cont::ArrayHandle<vtkm::Int32> runningSums;
vtkm::cont::Algorithm::ScanExclusiveByKey (keys, input, runningSums);
// runningSums is { O, 7, O, 1, 2, 7, 0, O, 3, 10, 18, 27 }

vtkm::cont::ArrayHandle<vtkm::Int32> runningMaxes;

vtkm::cont::Algorithm::ScanExclusiveByKey (
keys, input, runningMaxes, -1, vtkm::Maximum());

Chapter 8. Device Adapters 125



8.5. Device Adapter Algorithms

19 |

// runningMax is { -1, 7, -1, 1, 1, 5, -1, -1, 3, 7, 8, 9 }

8.5.9 Scanlnclusive

The Algorithm: :ScanInclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is the same as the first value in the input. The second
value in the output is the sum of the first two values in the input. The third value in the output is the sum of the
first three values of the input, and so on. ScanInclusive returns the sum of all values in the input. There are
two forms of ScanInclusive: one performs the sum using addition whereas the other accepts a custom binary
function to use as the sum operator.
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Example 8.22: Using the ScanInclusive algorithm.
std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };

vtkm::cont::ArrayHandle<vtkm::Int32> input =
vtkm::cont::make_ArrayHandle (inputBuffer);

vtkm::cont::ArrayHandle<vtkm::Int32> runningSum;

vtkm::cont::Algorithm::ScanInclusive (input, runningSum);

// runningSum is { 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50, 53 }

vtkm::cont::ArrayHandle<vtkm::Int32> runningMax;

vtkm::cont::Algorithm::ScanInclusive (input, runningMax, vtkm::Maximum());

// runningMax is {7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9}

8.5.10 ScanlnclusiveByKey

The Algorithm::ScanInclusiveByKey method works similarly to the ScanInclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

Example 8.23: Using the ScanInclusiveByKey algorithm.

1 std::vector<vtkm::Id> keyBuffer{ 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 };
2 std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm::cont::ArrayHandle<vtkm::Id> keys = vtkm::cont::make_ArrayHandle (keyBuffer);
5 vtkm::cont::ArrayHandle<vtkm::Int32> input =
6 vtkm::cont::make_ArrayHandle (inputBuffer);
7
8 vtkm::cont::ArrayHandle<vtkm::Int32> runningSums;
9
10 vtkm::cont::Algorithm::ScanInclusiveByKey (keys, input, runningSums);
11
12 // runningSums is { 7, 7, 1, 2, 7, 12, 4, 3, 10, 18, 27, 30 }
13
14 vtkm::cont::ArrayHandle<vtkm::Int32> runningMaxes;
15
16 vtkm::cont::Algorithm::ScanInclusiveByKey (
17 keys, input, runningMaxes, vtkm::Maximum());
18
19 // runningMax is { 7, 7, 1, 1, 5, 5, 4, 3, 7, 8, 9, 9 }
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8.5.11 Schedule

The Algorithm: : Schedule method takes a functor as its first argument and invokes it a number of times specified
by the second argument. It should be assumed that each invocation of the functor occurs on a separate thread
although in practice there could be some thread sharing.

There are two versions of the Schedule method. The first version takes a vtkm: : Id and invokes the functor that
number of times. The second version takes a vtkm::Id3 and invokes the functor once for every entry in a 3D
array of the given dimensions.

The functor is expected to be an object with a const overloaded parentheses operator. The operator takes as a
parameter the index of the invocation, which is either a vtkm: : Id or a vtkm: : Id3 depending on what version of
Schedule is being used. The functor must also subclass vtkm: :exec: :FunctorBase, which provides the error
handling facilities for the execution environment. FunctorBase contains a public method named RaiseError
that takes a message and will cause a vtkm::cont::ErrorExecution exception to be thrown in the control
environment.

8.5.12 Sort

The Algorithm: :Sort method provides an unstable sort of an array. There are two forms of the Sort method.
The first takes an ArrayHandle and sorts the values in place. The second takes an additional argument that is
a functor that provides the comparison operation for the sort.

Example 8.24: Using the Sort algorithm.

1 std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm::cont::ArrayHandle<vtkm::Int32> array =

3 vtkm::cont::make_ArrayHandle (inputBuffer);

4

5 vtkm::cont::Algorithm::Sort (array);

6

i /) array hasi {0, 1, 1,903,038, 4,565,657, 7, 8, 9%k

8

9 vtkm::cont::Algorithm::Sort(array, vtkm::SortGreater ());
10

11 // array has {9, 8, 7, 7, 5, 6, 4, 3, 3, 1, 1, 0 }

8.5.13 SortByKey

The Algorithm: : SortByKey method works similarly to the Sort method except that it takes two ArrayHandles:
an array of keys and a corresponding array of values. The sort orders the array of keys in ascending values and
also reorders the values so they remain paired with the same key. Like Sort, SortByKey has a version that sorts
by the default less-than operator and a version that accepts a custom comparison functor.

Example 8.25: Using the SortByKey algorithm.
std::vector<vtkm::Int32> keyBuffer{ 7, 0, 1, 5, 4, 8, 9, 3 };
std::vector<vtkm::Id> valueBuffer{ O, 1, 2, 3, 4, 5, 6, 7 };

vtkm::cont::ArrayHandle<vtkm::Int32> keys =
vtkm::cont::make_ArrayHandle (keyBuffer);

vtkm::cont::ArrayHandle<vtkm::Id> values =
vtkm::cont::make_ArrayHandle (valueBuffer);

vtkm::cont::Algorithm::SortByKey (keys, values);
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// keys has {o0, 1, 3, 4, 5, 7, 8, 9}
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12 // values has { 1, 2, 7, 4, 3, 0, 5, 6 }

13

14 vtkm::cont::Algorithm::SortByKey (keys, values, vtkm::SortGreater ());
15

16 // keys has {9, 8, 7, 5, 4, 3, 1, 0 }

17 // values has { 6, 5, 0, 3, 4, 7, 2, 1 }

8.5.14 Synchronize

The Synchronize method waits for any asynchronous operations running on the device to complete and then
returns.

8.5.15 Unique

The Algorithm: :Unique method removes all duplicate values in an ArrayHandle. The method will only find
duplicates if they are adjacent to each other in the array. The easiest way to ensure that duplicate values are
adjacent is to sort the array first.

There are two versions of Unique. The first uses the equals operator to compare entries. The second accepts a
binary functor to perform the comparisons.

Example 8.26: Using the Unique algorithm.

1 std::vector<vtkm::Int32> valuesBuffer{ O, 1, 1, 3, 3, 4, 5, 5, 7, 7, 7, 9 };
2 vtkm::cont::ArrayHandle<vtkm::Int32> values =

3 vtkm::cont::make_ArrayHandle (valuesBuffer);

4

5 vtkm::cont::Algorithm::Unique(values);

6

7 // values has {0, 1, 3, 4, 5, 7, 9}

8

9 std::vector<vtkm::Float64> fvaluesBuffer{ 0.0, 0.001, 0.0, 1.5, 1.499, 2.0 };
10 vtkm::cont::ArrayHandle<vtkm::Float64> fvalues =

11 vtkm::cont::make_ArrayHandle (fvaluesBuffer);

12

13 struct AlmostEqualFunctor

14 {

15 VTKM_EXEC_CONT bool operator () (vtkm::Float64 x, vtkm::Float64 y) const
16 {

17 return (vtkm::Abs(x - y) < 0.1);

18 ¥

19 log

20

21 vtkm::cont::Algorithm::Unique (fvalues, AlmostEqualFunctor ());

22

23 // values has {0.0, 1.5, 2.0}

8.5.16 UpperBounds

The Algorithm: :UpperBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. UpperBounds find the
index of the first item that is greater than to the target value, much like the std: :upper_bound STL algorithm.
The results are returned in an ArrayHandle given in the third argument.

There are two specializations of UpperBounds. The first takes an additional comparison function that defines
the less-than operation. The second takes only two parameters. The first is an ArrayHandle of sorted vtkm: : Id
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s and the second is an ArrayHandle of vtkm::Id s to find in the first list. The results are written back out to
the second array. This second specialization is useful for inverting index maps.

Example 8.27: Using the UpperBounds algorithm.

1 std::vector<vtkm::Int32> sortedBuffer{ O, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 };
2 std::vector<vtkm::Int32> valuesBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3

4 vtkm::cont::ArrayHandle<vtkm::Int32> sorted =

5 vtkm::cont::make_ArrayHandle (sortedBuffer);

6 vtkm::cont::ArrayHandle<vtkm::Int32> values =

7 vtkm::cont::make_ArrayHandle (valuesBuffer);

8

9 vtkm::cont::ArrayHandle<vtkm::Id> output;

10

11 vtkm::cont::Algorithm::UpperBounds (sorted, values, output);

12

13 // output has { 10, 1, 3, 3, 8, 8, 6, 5, 10, 11, 12, 5 }

14

15 std::vector<wvtkm::Int32> revSortedBuffer{ 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 };
16 vtkm::cont::ArrayHandle<vtkm::Int32> reverseSorted =

17 vtkm::cont::make_ArrayHandle (revSortedBuffer);

18

19 vtkm::cont::Algorithm::UpperBounds (

20 reverseSorted, values, output, vtkm::SortGreater ());

21

22 // output has { 4, 12, 11, 11, 6, 6, 7, 9, 4, 2, 1, 9 }

8.5.17 Specifying the Device Adapter

When you call a method in vtkm::cont::Algorithm, a device is automatically specified based on available
hardware and the VI'K-m state. However, if you want to use a specific device, you can specify that device by
passing either a vtkm: :cont::DeviceAdapterId or a device adapter tag as the first argument to any of these
methods.

Example 8.28: Using the DeviceAdapter with vtkm: :cont::Algorithm.

1 std::vector<vtkm::Int32> inputBuffer{ 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm::cont::ArrayHandle<vtkm::Int32> input =

3 vtkm::cont::make_ArrayHandle (inputBuffer);

4

5 vtkm::cont::ArrayHandle<vtkm::Int32> output_no_device_specified;

6

7 vtkm::cont::ArrayHandle<vtkm::Int32> output_device_specified;

8

9 vtkm::cont::Algorithm::Copy (input, output_no_device_specified);

10

11 //optional we can pass the device or int id number

12 vtkm::cont::Algorithm:: Copy (

13 vtkm::cont::DeviceAdapterTagSerial (), input, output_device_specified);
14

15 // output has { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 }
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TIMERS

It is often the case that you need to measure the time it takes for an operation to happen. This could be for
performing measurements for algorithm study or it could be to dynamically adjust scheduling.

Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously.
In the VTK-m control environment timing is simplified because the control environment operates on a single
thread. However, operations invoked in the execution environment may run asynchronously to operations in the
control environment.

To ensure that accurate timings can be made, VITK-m provides a vtkm::cont::Timer class to provide an
accurate measurement of operations that happen on devices that VI'K-m can use. By default, Timer will time
operations on all possible devices.

The timer is started by calling the Timer: :Start method. The timer can subsequently be stopped by calling
Timer: :Stop. The time elapsed between calls to Start and Stop (or the current time if Stop was not called) can
be retrieved with a call to the Timer: :GetElapsedTime method. Subsequently calling Start again will restart
the timer.

Example 9.1: Using vtkm: :cont: :Timer.

1 vtkm::filter::PointElevation elevationFilter;

2 elevationFilter.SetUseCoordinateSystemAsField (true);

3 elevationFilter.SetOutputFieldName ("elevation");

4

5 vtkm::cont::Timer timer;

6

7 timer.Start ();

8

9 vtkm::cont::DataSet result = elevationFilter.Execute(dataSet);
10

11 // This code makes sure data is pulled back to the host in a host/device
12 // architecture.

13 vtkm::cont::ArrayHandle<vtkm::Float64> outArray;

14 result.GetField("elevation").GetData().CopyTo(outArray);
15 outArray.GetPortalConstControl ();

16

17 timer.Stop ();

18

19 vtkm::Float64 elapsedTime = timer.GetElapsedTime ();

20

21 std::cout << "Time to run: " << elapsedTime << std::endl;




Some device require data to be copied between the host CPU and the device. In this case you might want
to measure the time to copy data back to the host. This can be done by “touching” the data on the host by
getting a control portal.

The VITK-m Timer does its best to capture the time it takes for all parallel operations run between calls to
Start and Stop to complete. It does so by synchronizing to concurrent execution on devices that might be in
use.

¢

Because Timer synchronizes with devices (essentially waiting for the device to finish executing), that can
have an effect on how your program runs. Be aware that using a Timer can itself change the performance
of your code. In particular, starting and stopping the timer many times to measure the parts of a sequence
of operations can potentially make the whole operation run slower.

By default, Timer will synchronize with all active devices. However, if you want to measure the time for a
specific device, then you can pass the device adapter tag or id to vtkm: :cont::Timer’s constructor. You can
also change the device being used by passing a device adapter tag or id to the Timer: :Reset method. A device
can also be specified through an optional argument to the Timer: :GetElapsedTime method.

The following methods are provided by vtkm: :cont: :Timer.

Start Causes the Timer to begin timing. The elapsed time will record an interval beginning when this method
is called.

Started Returns true if Start has been called. It is invalid to try to get the elapsed time if Started is not
true.

Stop Causes the Timer to finish timing. The elapsed time will record an interval ending when this method is
called. It is invalid to stop the timer if Started is not true.

Stopped Returns true if Stop has been called. If Stopped is true, then the elapsed time will no longer increase.
If Stopped is false and Started is true, then the timer is still running.

Ready Returns true if the timer has finished the synchronization required to get the timing result from the
device.

GetElapsedTime Returns the amount of time that has elapsed between calling Start and Stop. If Stop was not
called, then the amount of time between calling Start and GetElapsedTime is returned. GetElapsedTime
can optionally take a device adapter tag or id to specify for which device to return the elapsed time.

Reset Restores the initial state of the Timer. All previous recorded time is erased. Reset optionally takes a
device adapter tag or id that specifies on which device to time and synchronize.

GetDevice Returns the id of the device adapter for which this timer is synchronized. If the device adapter has
the same id as vtkm: :cont: :DeviceAdapterTagAny (the default), then the timer will synchronize on all
devices.
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VARIANT ARRAY HANDLES

The ArrayHandle class uses templating to make very efficient and type-safe access to data. However, it is some-
times inconvenient or impossible to specify the element type and storage at run-time. The VariantArrayHandle
class provides a mechanism to manage arrays of data with unspecified types.

vtkm: :cont: :VariantArrayHandle holds a reference to an array. Unlike ArrayHandle, VariantArrayHandle
is not templated. Instead, it uses C++ run-type type information to store the array without type and cast it
when appropriate.

A VariantArrayHandle can be established by constructing it with or assigning it to an ArrayHandle. The
following example demonstrates how a VariantArrayHandle might be used to load an array whose type is not
known until run-time.

Example 10.1: Creating a VariantArrayHandle.

VTKM_CONT

vtkm::cont::VariantArrayHandle LoadVariantArray(const void* buffer,
vtkm::Id length,
std::string type)

vtkm::cont::VariantArrayHandle handle;
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if (type == "float")
i
vtkm::cont::ArrayHandle<vtkm::Float32> concreteArray =

10 vtkm::cont::make_ArrayHandle (reinterpret_cast<const vtkm::Float32*>(buffer),
11 length);
12 handle = concreteArray;
13 i
14 else if (type == "int")
15 {
16 vtkm::cont::ArrayHandle<vtkm::Int32> concreteArray =
17 vtkm::cont::make_ArrayHandle(reinterpret_cast<const vtkm::Int32*>(buffer),
18 length);
19 handle = concreteArray;
20 I
21 return handle;
22 |}

10.1 Querying and Casting

Data pointed to by a VariantArrayHandle is not directly accessible. However, there are a few generic queries
you can make without directly knowing the data type. The GetNumberOfValues method returns the length of
the array with respect to its base data type. It is also common in VTK-m to use data types, such as vtkm: :Vec,
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with multiple components per value. The GetNumber0fComponents method returns the number of components
in a vector-like type (or 1 for scalars).

Example 10.2: Non type-specific queries on VariantArrayHandle.

1 std::vector<vtkm::Float32> scalarBuffer (10);

2 vtkm::cont::VariantArrayHandle scalarDynamicHandle (

3 vtkm::cont::make_ArrayHandle (scalarBuffer));

4

5 // This returmns 10.

6 vtkm::Id scalarArraySize = scalarDynamicHandle.GetNumberOfValues ();

7

8 // This returmns 1.

9 vtkm::IdComponent scalarComponents = scalarDynamicHandle.GetNumberOfComponents ();
10

11 std::vector<vtkm::Vec<vtkm::Float32, 3>> vectorBuffer (20);

12 vtkm::cont::VariantArrayHandle vectorDynamicHandle (

13 vtkm::cont::make_ArrayHandle (vectorBuffer));

14

15 // This returns 20.

16 vtkm::Id vectorArraySize = vectorDynamicHandle.GetNumberOfValues();

17

18 // This returns 3.

19 vtkm::IdComponent vectorComponents = vectorDynamicHandle.GetNumberOfComponents();

It is also often desirable to create a new array based on the underlying type of a VariantArrayHandle. For
example, when a filter creates a field, it is common to make this output field the same type as the input. To
satisfy this use case, VariantArrayHandle has a method named NewInstance that creates a new empty array
with the same underlying type as the original array.

Example 10.3: Using NewInstance.
std::vector<vtkm::Float32> scalarBuffer (10);
vtkm::cont::VariantArrayHandle variantHandle (

vtkm::cont::make_ArrayHandle (scalarBuffer));

// This creates a new empty array of type Float32.
vtkm::cont::VariantArrayHandle newVariantArray = variantHandle.NewInstance();
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Before the data with a VariantArrayHandle can be accessed, the type of the array must be established. This
is usually done internally within VIK-m when a worklet or filter is invoked and the VariantArrayHandle is
converted into an ArrayHandleVirtual. However, it is also possible to query the types and cast to a concrete
ArrayHandle.

You can query the component type using the VariantArrayHandle: : IsValueType method. IsValueType takes
a value type and returns whether that matches the underlying array. You can query the component type and
storage type using the VariantArrayHandle: : IsType method. IsType takes an example array handle type and
returns whether the underlying array matches the given static array type.

Example 10.4: Querying the component and storage types of a VariantArrayHandle.
std::vector<vtkm::Float32> scalarBuffer (10);
vtkm::cont::ArrayHandle<vtkm::Float32> concreteHandle =

vtkm::cont::make_ArrayHandle (scalarBuffer);
vtkm::cont::VariantArrayHandle variantHandle (concreteHandle);

// This returns true
bool isFloat32Array = variantHandle.IsType<decltype(concreteHandle)>();

// This returns false
bool isIdArray = variantHandle.IsType<vtkm::cont::ArrayHandle<vtkm::Id>>();
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Once the type of the VariantArrayHandle is known, it can be cast to either to ArrayHandleVirtual or a
concrete ArrayHandle, which has access to the data as described in Chapter 7. The easiest ways to do this is to
use AsVirtual when desiring an ArrayHandleVirtual or CopyTo method when wanting a concrete ArrayHandle.

The VariantArrayHandle::AsVirtual templated method takes a value type as a template parameter and
returns a array handle virtual that points to the array in VariantArrayHandle. If the given types are incorrect,
then AsVirtual throws a vtkm: :cont: :ErrorControlBadValue exception.

Example 10.5: Casting a VariantArrayHandle to a virtual ArrayHandle.

1 vtkm::cont::ArrayHandleVirtual<vtkm::Float32> virtualArray =
2 variantHandle.AsVirtual<vtkm::Float32>();

% Remember that ArrayHandle and VariantArrayHandle represent pointers to the data, so this “copy” is a

shallow copy. There is still only one copy of the data, and if you change the data in one array handle that
change is reflected in the other.

The VariantArrayHandle: :CopyTo templated method takes a reference to an ArrayHandle as an argument
and sets that array handle to point to the array in VariantArrayHandle. If the given types are incorrect, then
CopyTo throws a vtkm: :cont: :ErrorControlBadValue exception.

Example 10.6: Casting a VariantArrayHandle to a concrete ArrayHandle.
1 | variantHandle.CopyTo (concreteHandle);

Remember that ArrayHandle and VariantArrayHandle represent pointers to the data, so this “copy” is a
shallow copy. There is still only one copy of the data, and if you change the data in one array handle that
change is reflected in the other.

10.2 Casting to Unknown Types

Using AsVirtual, and CopyTo are fine as long as the correct types are known, but often times they are not. For
this use case VariantArrayHandle has a method named CastAndCall that attempts to cast the array to some
set of types.

The CastAndCall method accepts a functor to run on the appropriately cast array. The functor must have an
overloaded const parentheses operator that accepts an ArrayHandle of the appropriate type.

Example 10.7: Operating on VariantArrayHandle with CastAndCall.

struct PrintArrayContentsFunctor
{
template<typename T, typename S>
VTKM_CONT void operator () (const vtkm::cont::ArrayHandle<T, S>& array) const

=W N =
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5 {

6 this->PrintArrayPortal (array.GetPortalConstControl ());

7 }

8

9 |private:

10 template<typename PortalType>

11 VTKM_CONT void PrintArrayPortal (const PortalType& portal) const

12 {

13 for (vtkm::Id index = 0; index < portal.GetNumberOfValues(); index++)
14 {

15 // All ArrayPortal objects have ValueType for the type of each value.
16 using ValueType = typename PortalType::ValueType;

17

18 ValueType value = portal.Get(index);

19

20 vtkm::IdComponent numComponents =

21 vtkm::VecTraits<ValueType >:: GetNumberOfComponents (value);

22 for (vtkm::IdComponent componentIndex = 0O; componentIndex < numComponents;
23 componentIndex++)

24 {

25 std::cout << " "

26 << vtkm::VecTraits<ValueType >::GetComponent (value, componentIndex);
27 }

28 std::cout << std::endl;

29 ¥

30 }

31 | };

32

33 | template<typename VariantArrayType >

34 | void PrintArrayContents(const VariantArrayType& array)

35 | {

36 array.CastAndCall (PrintArrayContentsFunctor ());

37 | ¥

It is possible to store any form of ArrayHandle in a VariantArrayHandle, but it is not possible for
CastAndCall to check every possible form of ArrayHandle. If CastAndCall cannot determine the Array-
Handle type, then an ErrorControlBadValue is thrown. The following section describes how to specify the
forms of ArrayHandle to try.

10.3  Specifying Cast Lists

The CastAndCall method can only check a finite number of value types. The default form of CastAndCall uses
a default set of common types. These default lists can be overridden using the VTK-m list tags facility, which
is discussed at length in Section 6.7.

Common type lists for value are defined in vtkm /TypeListTag.h and are documented in Section 6.7.2. This header
also defines VTKM_DEFAULT_TYPE_LIST_TAG, which defines the default list of value types tried in CastAndCall.

There is a form of CastAndCall that accepts a tag for the list of component types. This can be used when the
specific list is known at the time of the call. However, when creating generic operations like the PrintArray-
Contents function in Example 10.7, passing these tag is inconvenient at best.
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To address this use case, VariantArrayHandle has a method named ResetTypes. This method returns a new
object that behaves just like a VariantArrayHandle with identical state except that the cast and call functionality
uses the specified component types instead of the default. (Note that PrintArrayContents in Example 10.7 is
templated on the type of VariantArrayHandle. This is to accommodate using the objects from the ResetTypes
method, which have the same behavior but different type names.)

So the default component type list contains a subset of the basic VTK-m types. If you wanted to accommodate
more types, you could use ResetTypes.

Example 10.8: Trying all component types in a VariantArrayHandle.
1 | PrintArrayContents (dynamicArray.ResetTypes (vtkm:: TypeListTagAll ()));

Likewise, if you happen to know a particular type of the variant array, that can be specified to reduce the amount
of object code created by templates in the compiler.

Example 10.9: Specifying a single component type in a VariantArrayHandle.
1 | PrintArrayContents (dynamicArray.ResetTypes (vtkm:: TypeListTagId()));

¢

§ VariantArrayHandle: :ResetTypes does not change the object. Rather, it returns a new object with dif-
ferent type information. This method has no effect unless you do something with the returned value.

ResetTypes works by returning a vtkm: :cont::VariantArrayHandleBase object. VariantArrayHandleBase
specifies the value tag as a template argument and otherwise behaves just like VariantArrayHandle.

I lied earlier when I said at the beginning of this chapter that VariantArrayHandle is a class that is not
templated. This symbol is really just a type alias of VariantArrayHandleBase. Because the VariantAr—
rayHandle fully specifies the template arguments, it behaves like a class, but if you get a compiler error it
will show up as VariantArrayHandleBase.

Most code does not need to worry about working directly with VariantArrayHandleBase. However, it is
sometimes useful to declare it in templated functions that accept variant array handles so that works with every
type list. The function in Example 10.7 did this by making the variant array handle class itself the template
argument. This will work, but it is prone to error because the template will resolve to any type of argument.
When passing objects that are not variant array handles will result in strange and hard to diagnose errors.
Instead, we can define the same function using VariantArrayHandleBase so that the template will only match
variant array handle types.

Example 10.10: Using VariantArrayHandleBase to accept generic variant array handles.

1 | template<typename TypelList>

2 | void PrintArrayContents (const vtkm::cont::VariantArrayHandleBase<TypelList>& array)
314

4 array.CastAndCall (PrintArrayContentsFunctor ());

5|}
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DATA SETS

A data set, implemented with the vtkm: : cont: :DataSet class, contains and manages the geometric data struc-
tures that VTK-m operates on. A data set comprises the following 3 data structures.

Cell Set A cell set describes topological connections. A cell set defines some number of points in space and how
they connect to form cells, filled regions of space. A data set must have at least one cell set, but can have
more than one cell set defined. This makes it possible to define groups of cells with different properties.
For example, a simulation might model some subset of elements as boundary that contain properties the
other elements do not. Another example is the representation of a molecule that requires atoms and bonds,
each having very different properties associated with them.

Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

Coordinate System A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VITK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

In addition to the base vtkm: :cont: :DataSet, VIK-m provides vtkm: :cont: :MultiBlock to represent multi-
block data sets. A MultiBlock is implemented as a collection of DataSet objects. Multi-block data sets are
described later in Section 11.5.

11.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let
us first discuss how to build a data set. One simple way to build a data set is to load data from a file using the
vtkm: :io module. Reading files is discussed in detail in Chapter 3.

This section describes building data sets of different types using a set of classes named DataSetBuilder*, which
provide a convenience layer on top of vtkm: :cont: :DataSet to make it easier to create data sets.
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11.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes.
Uniform grids are also sometimes called regular grids or images.

The vtkm: :cont: :DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional uniform grids.
DataSetBuilderUniform has several versions of a method named Create that takes the number of points in
each dimension, the origin, and the spacing. The origin is the location of the first point of the data (in the lower
left corner), and the spacing is the distance between points in the x, y, and z directions. The Create methods
also take an optional name for the coordinate system and an optional name for the cell set.

The following example creates a vtkm: : cont: :DataSet containing a uniform grid of 101 x 101 x 26 points.

Example 11.1: Creating a uniform grid.

1 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
2
3 vtkm::cont::DataSet dataSet = dataSetBuilder.Create(vtkm::Id3(101, 101, 26));

If not specified, the origin will be at the coordinates (0,0,0) and the spacing will be 1 in each direction. Thus,
in the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and 25,
respectively, and the mesh will be centered at (50,50,12.5). Let us say we actually want a mesh of the same
dimensions, but we want the z direction to be stretched out so that the mesh will be the same size in each
direction, and we want the mesh centered at the origin.

Example 11.2: Creating a uniform grid with custom origin and spacing.
vtkm::cont::DataSetBuilderUniform dataSetBuilder;

vtkm::cont::DataSet dataSet =
dataSetBuilder.Create (vtkm::Id3 (101, 101, 26),
vtkm::Vec<vtkm::FloatDefault, 3>(-50.0, -50.0, -50.0),
vtkm::Vec<vtkm::FloatDefault, 3>(1.0, 1.0, 4.0));
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11.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between
adjacent grid points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the
points are still constrained to be aligned with the axes and each other. The irregular spacing of a rectilinear grid
is specified by providing a separate array each for the x, y, and z coordinates.

The vtkm: : cont : :DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional rectilinear
grids. DataSetBuilderRectilinear has several versions of a method named Create that takes these coordinate
arrays and builds a vtkm: :cont: :DataSet out of them. The arrays can be supplied as either standard C arrays
or as std: :vector objects, in which case the data in the arrays are copied into the DataSet. These arrays can
also be passed as ArrayHandle objects, in which case the data are shallow copied.

The following example creates a vtkm: : cont: :DataSet containing a rectilinear grid with 201 x 201 x 101 points
with different irregular spacing along each axis.

Example 11.3: Creating a rectilinear grid.

1 // Make x coordinates range from -4 to 4 with tighter spacing near O.
2 std::vector<vtkm::Float32> xCoordinates;

3 for (vtkm::Float32 x = -2.0f; x <= 2.0f; x += 0.02f)

4 {

5 xCoordinates.push_back(vtkm::CopySign(x * x, x));

6 }

7
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10
11
12
13
14
15
16
17
18
19
20
21
22

24
25

// Make y coordinates range from O to 2 with tighter spacing near 2.

std::vector<vtkm::Float32> yCoordinates;
for (vtkm::Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
{
yCoordinates.push_back(vtkm::Sqrt(y));
}

// Make z coordinates rangefrom -1 to 1 with even spacing.
std::vector<vtkm::Float32> zCoordinates;

for (vtkm::Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
{

zCoordinates .push_back(z);
}

vtkm::cont::DataSetBuilderRectilinear dataSetBuilder;

vtkm::cont::DataSet dataSet =

dataSetBuilder.Create (xCoordinates, yCoordinates, zCoordinates);

11.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different
types of cells. Explicit meshes are also known as unstructured grids.

The cells of an explicit mesh are defined by providing the shape, number of indices, and the points that comprise
it for each cell. These three things are stored in separate arrays. Figure 11.1 shows an example of an explicit
mesh and the arrays that can be used to define it.

Shape Num Indices Connectivity

vtk::CELL_SHAPE_TRIANGLE - 3
vtk: :CELL_SHAPE_QUAD 4
vtk::CELL_SHAPE_TRIANGLE - 3
vtk::CELL_SHAPE_POLYGON - 5
vtk::CELL_SHAPE_TRIANGLE - 3

Figure 11.1: An example explicit mesh.
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The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with explicit meshes.

DataSetBuilderExplicit has several versions of a method named Create.

Generally, these methods take

the shapes, number of indices, and connectivity arrays as well as an array of point coordinates. These arrays
can be given in std: :vector objects, and the data are copied into the DataSet created.

The following example creates a mesh like the one shown in Figure 11.1.
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Example 11.4: Creating an explicit mesh with DataSetBuilderExplicit.
1 // Array of point coordinates.
2 std::vector<vtkm::Vec<vtkm::Float32, 3>> pointCoordinates;
3 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(1.1f, 0.0f, 0.0f));
4 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(0.2f, 0.4f, 0.0f));
5 pointCoordinates.push_back (vtkm::Vec<vtkm::Float32, 3>(0.9f, 0.6f, 0.0f));
6 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(1.4f, 0.5f, 0.0f));
7 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(1.8f, 0.3f, 0.0f));
8 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(0.4f, 1.0f, 0.0£f));
9 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(1.0f, 1.2f, 0.0f));
10 pointCoordinates.push_back(vtkm::Vec<vtkm::Float32, 3>(1.5f, 0.9f, 0.0f));
11
12 // Array of shapes.
13 std::vector<vtkm::UInt8> shapes;
14 shapes.push_back(vtkm:: CELL_SHAPE_TRIANGLE);
15 shapes.push_back(vtkm:: CELL_SHAPE_QUAD);
16 shapes.push_back(vtkm::CELL_SHAPE_TRIANGLE) ;
17 shapes.push_back(vtkm:: CELL_SHAPE_POLYGON) ;
18 shapes.push_back(vtkm::CELL_SHAPE_TRIANGLE) ;
19
20 // Array of number of indices per cell.
21 std::vector<vtkm::IdComponent > numIndices;
22 numIndices.push_back(3);
23 numIndices.push_back (4);
24 numIndices.push_back(3);
25 numIndices.push_back (5);
26 numIndices.push_back(3);
27
28 // Connectivity array.
29 std::vector<vtkm::Id> connectivity;
30 connectivity.push_back(0); // Cell O
31 connectivity.push_back(2);
32 connectivity.push_back(1);
33 connectivity.push_back(0); // Cell 1
34 connectivity.push_back(4);
35 connectivity.push_back(3);
36 connectivity.push_back (2);
3T connectivity.push_back(1); // Cell 2
38 connectivity.push_back (2);
39 connectivity.push_back(5);
40 connectivity.push_back(2); // Cell 3
41 connectivity.push_back(3);
42 connectivity.push_back (7);
43 connectivity.push_back (6);
44 connectivity.push_back (5);
45 connectivity.push_back(3); // Cell 4
46 connectivity.push_back (4);
47 connectivity.push_back(7);
48
49 // Copy these arrays into a DataSet.
50 vtkm::cont::DataSetBuilderExplicit dataSetBuilder;
51
52 vtkm::cont::DataSet dataSet =
53 dataSetBuilder.Create(pointCoordinates, shapes, numIndices, connectivity);

Often it is awkward to build your own arrays and then pass them to DataSetBuilderExplicit. There also
exists an alternate builder class named vtkm: :cont: :DataSetBuilderExplicitIterative that allows you to
specify each cell and point one at a time rather than all at once. This is done by calling one of the versions of
AddPoint and one of the versions of AddCell for each point and cell, respectively. The next example also builds

the mesh shown in Figure 11.1 except this time using DataSetBuilderExplicitIterative.

L]

Example 11.5: Creating an explicit mesh with DataSetBuilderExplicitIterative.

vtkm::cont::DataSetBuilderExplicitIterative dataSetBuilder;
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2

3 dataSetBuilder.AddPoint (1.1, 0.0, 0.0);
4 dataSetBuilder .AddPoint (0.2, 0.4, 0.0);
5 dataSetBuilder .AddPoint (0.9, 0.6, 0.0);
6 dataSetBuilder.AddPoint (1.4, 0.5, 0.0);
7 dataSetBuilder.AddPoint (1.8, 0.3, 0.0);
8 dataSetBuilder.AddPoint (0.4, 1.0, 0.0);
9 dataSetBuilder.AddPoint (1.0, 1.2, 0.0);
10 dataSetBuilder.AddPoint (1.5, 0.9, 0.0);
11

12 dataSetBuilder .AddCell (vtkm:: CELL_SHAPE_TRIANGLE);
13 dataSetBuilder.AddCellPoint (0);
14 dataSetBuilder .AddCellPoint (2);
15 dataSetBuilder.AddCellPoint (1);

17 dataSetBuilder.AddCell (vtkm:: CELL_SHAPE_QUAD);
18 dataSetBuilder.AddCellPoint (0);
19 dataSetBuilder .AddCellPoint (4);
20 dataSetBuilder.AddCellPoint (3);
21 dataSetBuilder .AddCellPoint (2);

22

23 dataSetBuilder.AddCell (vtkm:: CELL_SHAPE_TRIANGLE);
24 dataSetBuilder.AddCellPoint (1);

25 dataSetBuilder.AddCellPoint (2);

26 dataSetBuilder .AddCellPoint (5);

27

28 dataSetBuilder .AddCell (vtkm:: CELL_SHAPE_POLYGON);
29 dataSetBuilder .AddCellPoint (2);

30 dataSetBuilder .AddCellPoint (3);

31 dataSetBuilder.AddCellPoint (7);

32 dataSetBuilder .AddCellPoint (6);

33 dataSetBuilder .AddCellPoint (5);

34

35 dataSetBuilder.AddCell (vtkm:: CELL_SHAPE_TRIANGLE);
36 dataSetBuilder.AddCellPoint (3);
37 dataSetBuilder .AddCellPoint (4);

38 dataSetBuilder .AddCellPoint (7);
39
40 vtkm::cont::DataSet dataSet = dataSetBuilder.Create();

11.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data.
Fields describe numerical data associated with the topological elements in a cell. They often represent a physical
quantity (such as temperature, mass, or volume fraction) but can also represent other information (such as
indices or classifications).

The easiest way to define fields in a data set is to use the vtkm: : cont: :DataSetFieldAdd class. This class works
on DataSets of any type. It has methods named AddPointField and AddCellField that define a field for either
points or cells. Every field must have an associated field name.

Both AddPointField and AddCellField are overloaded to accept arrays of data in different structures. Field
arrays can be passed as standard C arrays or as std: :vectors, in which case the data are copied. Field arrays
can also be passed in a ArrayHandle, in which case the data are not copied.

The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells
are on the boundary of the mesh.

Example 11.6: Adding fields to a DataSet.
1 | // Make a simple structured data set.
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2 const vtkm::Id3 pointDimensions (20, 20, 10);

3 const vtkm::Id3 cellDimensions = pointDimensions - vtkm::Id3(1, 1, 1);
4 vtkm::cont::DataSetBuilderUniform dataSetBuilder;

5 vtkm::cont::DataSet dataSet = dataSetBuilder.Create(pointDimensions);
6

7 // This is the helper object to add fields to a data set.

8 vtkm::cont::DataSetFieldAdd dataSetFieldAdd;

9

10 // Create a field that identifies points on the boundary.

11 std::vector<vtkm::UInt8> boundaryPoints;

12 for (vtkm::Id zIndex = 0; zIndex < pointDimensions[2]; zIndex++)

13 {

14 for (vtkm::Id yIndex = 0; yIndex < pointDimensions[1]; yIndex++)

15 {

16 for (vtkm::Id xIndex = 0; xIndex < pointDimensions[0]; xIndex++)
17 o

18 if ((xIndex == 0) || (xIndex == pointDimensions[0] - 1) || (yIndex == 0) ||
19 (yIndex == pointDimensions[1] - 1) || (zIndex == 0) |

20 (zIndex == pointDimensions[2] - 1))

21 {

22 boundaryPoints.push_back (1);

23 }

24 else

25 {

26 boundaryPoints.push_back (0);

27 }

28 }

29 }

30 }

31

32 dataSetFieldAdd.AddPointField (dataSet, "boundary_points", boundaryPoints);

34 // Create a field that identifies cells on the boundary.

35 std::vector<vtkm::UInt8> boundaryCells;

36 for (vtkm::Id zIndex = 0; zIndex < cellDimensions[2]; zIndex++)

37 {

38 for (vtkm::Id yIndex = 0; yIndex < cellDimensions[1]; yIndex++)
39 L

40 for (vtkm::Id xIndex = 0; xIndex < cellDimensions[0]; xIndex++)
41 {

42 if ((xIndex == 0) || (xIndex == cellDimensions[0] - 1) || (yIndex == 0) ||
43 (yIndex == cellDimensions[1] - 1) || (zIndex == 0) ||

44 (zIndex == cellDimensions[2] - 1))

45 {

46 boundaryCells.push_back (1);

47 3

48 else

49 {

50 boundaryCells.push_back (0);

51 }

52 ¥

53 }

54 b

55

56 dataSetFieldAdd.AddCellField(dataSet, "boundary_cells", boundaryCells);

11.2 Cell Sets

A cell set determines the topological structure of the data in a data set. Fundamentally, any cell set is a
collection of cells, which typically (but not always) represent some region in space. 3D cells are made up of
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points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.) Figure 11.2 shows
the relationship between a cell’s shape and these topological elements. The arrangement of these points, edges,
and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VITK-m are discussed in detail in Section 14.1 starting on page 205.

Points

Face
— Edges

Figure 11.2: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions.
These different cell set types are managed by different cell set classes in VITK-m. All VTK-m cell set classes
inherit from vtkm: :cont::CellSet. The two basic types of cell sets are structured and explicit, and there are
several variations of these types.

11.2.1 Structured Cell Sets

A vtkm::cont::CellSetStructured defines a 1-, 2-; or 3-dimensional grid of points with lines, quadrilaterals,
or hexahedra, respectively, connecting them. The topology of a CellSetStructured is specified by simply
providing the dimensions, which is the number of points in the 4, j, and k directions of the grid of points. The
number of points is implicitly 7 X j x k and the number of cells is implicitly (i —1) x (j —1) x (k—1) (for 3D
grids). Figure 11.3 demonstrates this arrangement.
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Point
Figure 11.3: The arrangement of points and cells in a 3D structured grid.

The big advantage of using vtkm: : cont: :CellSetStructured to define a cell set is that it is very space efficient
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because the entire topology can be defined by the three integers specifying the dimensions. Also algorithms
can be optimized for CellSetStructured’s regular nature. However, CellSetStructured’s strictly regular grid
structure also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals, or
hexahedra. It cannot represent irregular data well.

Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
CellSetStructured. This is because in a VIK-m data set the cell set and the coordinate system are defined
independently and used interchangeably. A structured cell set with uniform point coordinates makes a uniform
grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates
are defined by the data set’s coordinate system, which is discussed in Section 11.4 starting on page 149.

11.2.2  Explicit Cell Sets

A vtkm: :cont::CellSetExplicit defines an irregular collection of cells. The cells can be of different types and
connected in arbitrary ways. This is done by explicitly providing for each cell a sequence of points that defines
the cell.

An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell.
(Cell shapes are discussed in detail in Section 14.1 starting on page 205.) The second array identifies how many
points are in each cell. The third array has a sequence of point indices that make up each cell. Figure 11.4 shows
a simple example of an explicit cell set.

Shape Num Indices Connectivity
vtk::CELL_SHAPE_TRIANGLE - 3 >0
vtk::CELL_SHAPE_QUAD -4 2
vtk::CELL_SHAPE_TRIANGLE - 3 1
vtk::CELL_SHAPE_POLYGON -5 0
vtk::CELL_SHAPE_TRIANGLE - 3 4
3
\ |2
1
2
\ |5
12
3
7
6
\.5
13
4
7

Figure 11.4: Example of cells in a CellSetExplict and the arrays that define them.

An explicit cell set may also have other topological arrays such as an array of offsets of each cell into the
connectivity array or an array of cells incident on each point. Although these arrays can be provided, they are
optional and can be internally derived from the shape, num indices, and connectivity arrays.

vtkm: :cont: :ExplicitCellSet is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, ExplicitCellSet requires a
significant amount of memory to represent the topology.
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An important specialization of an explicit cell set is vtkm: :cont: :CellSetSingleType. CellSetSingleType is
an explicit cell set constrained to contain cells that all have the same shape and all have the same number of
points. So for example if you are creating a surface that you know will contain only triangles, Cel1SetSingleType
is a good representation for these data.

Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no longer
need to be stored. CellSetSingleType also allows VI'K-m to skip some processing and other storage required
for general explicit cell sets.

11.2.3 Cell Set Permutations

A vtkm::cont::CellSetPermutation rearranges the cells of one cell set to create another cell set. This re-
structuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation establishes a
look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.

A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.

Although CellSetPermutation can mask cells, it cannot mask points. All points from the original cell set
are available in the permuted cell set regardless of whether they are used.

The following example uses vtkm: :cont: :CellSetPermutation with a counting array to expose every tenth
cell. This provides a simple way to subsample a data set.

Example 11.7: Subsampling a data set with CellSetPermutation.

1 // Create a simple data set.

2 vtkm::cont::DataSetBuilderUniform dataSetBuilder;

3 vtkm::cont::DataSet originalDataSet = dataSetBuilder.Create(vtkm::Id3(33, 33, 26));
4 vtkm::cont::CellSetStructured<3> originalCellSet;

5 originalDataSet.GetCellSet ().CopyTo(originalCellSet);

6

7 // Create a permutation array for the cells. Each value in the array refers
8 // to a cell in the original cell set. This particular array selects every
9 // 10th cell.

10 vtkm::cont::ArrayHandleCounting<vtkm::Id> permutationArray (0, 10, 2560);

11

12 // Create a permutation of that cell set containing only every 10th cell.
13 vtkm::cont::CellSetPermutation<vtkm::cont::CellSetStructured<3>,

14 vtkm::cont::ArrayHandleCounting<vtkm::Id>>
15 permutedCellSet (permutationArray, originalCellSet);

11.2.4 Dynamic Cell Sets

vtkm: :cont: :DataSet must hold an arbitrary collection of vtkm::cont::CellSet objects, which it cannot do
while knowing their types at compile time. To manage storing CellSets without knowing their types, DataSet
actually holds references using vtkm: :cont: :DynamicCellSet.

DynamicCellSet is similar in nature to VariantArrayHandle except that it, of course, holds CellSets instead
of ArrayHandles. The interface for the two classes is similar, and you should review the documentation for
VariantArrayHandle (in Chapter 10 starting on page 133) to understand DynamicCellSet.
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vtkm: :cont: :DynamicCellSet has a method named CastToBase that returns a const reference to the held cell
set as the abstract CellSet class. This can be used to easily access the virtual methods in the CellSet interface.
You can also create a new instance of a cell set with the same type using the DynamicCellSet: :NewInstance
method.

The DynamicCellSet: :IsType method can be used to determine whether the cell set held in the dynamic cell
set is of a given type. If the cell set type is known, DynamicCellSet: :Cast can be used to safely downcast the
cell set object, or DynamicCellSet: :CopyTo can be used to safely copy to a reference of the appropriate type.

When a typed version of the cell set stored in the DynamicCellSet is needed but the type is not known, which
happens regularly in the internal workings of VI K-m, the DynamicCellSet: :CastAndCall method can be used
to make this transition. CastAndCall works by taking a functor and calls it with the appropriately cast cell set
object.

The CastAndCall method works by attempting to cast to a known set of types. This set of types used is defined by
the macro VTKM_DEFAULT_CELL_SET_LIST_TAG, which is declared in vtkm/cont/CellSetListTag.h. This list can
be overridden globally by defining the VTKM_DEFAULT_CELL_SET_LIST_TAG macro before any VTK-m headers
are included.

The set of types used in a CastAndCall can also be changed only for a particular instance of a dynamic cell set
by calling its ResetCellSetList. This method takes a list of cell types and returns a new variant array handle
of a slightly different type that will use this new list of cells for dynamic casting.

11.2.5 Blocks and Assemblies

Rather than just one cell set, a vtkm: : cont: :DataSet can hold multiple cell sets. This can be used to construct
multiblock data structures or assemblies of parts. Multiple cell sets can also be used to represent subsets of the
data with particular properties such as all cells filled with a material of a certain type. Or these multiple cells
might represent particular features in the data, such as the set of faces representing a boundary in the simulation.

11.2.6 Zero Cell Sets

It is also possible to construct a vtkm: :cont: :DataSet that contains no cell set objects whatsoever. This can
be used to manage data that does not contain any topological structure. For example, a collection of series that
come from columns in a table could be stored as multiple fields in a data set with no cell set.

11.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe
physical properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a
VTK-m data set as an array where each value is associated with a particular element type of a mesh (such as
points or cells). This association of field values to mesh elements and the structure of the cell set determines
how the field is interpolated throughout the space of the mesh.

Fields are manged by the vtkm: :cont: :Field class. Field holds its data with a VariantArrayHandle, which
itself is a container for an ArrayHandleVirtual. Field also maintains the association and, optionally, the name
of a cell set for which the field is valid.

The data array can be retrieved as a VariantArrayHandle using the GetData method of Field. Field also has
a convenience method named GetRange that finds the range of values stored in the field array. The returned
value of GetRange is an ArrayHandle containing vtkm::Range values. The ArrayHandle will have as many
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values as components in the field. So, for example, calling GetRange on a scalar field will return an ArrayHandle
with exactly 1 entry in it. Calling GetRange on a field of 3D vectors will return an ArrayHandle with exactly 3
entries corresponding to each of the components in the range.

11.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described
by providing a 3D vector at each point that gives the coordinates there. The point coordinates can then be
interpolated throughout the mesh.

Coordinate systems are managed by the vtkm::cont::CoordinateSystem class. In actuality, a coordinate
system is just a field with a special meaning, and so the CoordinateSystem class inherits from the Field class.
CoordinateSystem constrains the field to be associated with points and typically has 3D floating point vectors
for values.

In addition to all the methods provided by the Field superclass, the CoordinateSystem also provides a Get-
Bounds convenience method that returns a vtkm::Bounds object giving the spatial bounds of the coordinate
system.

It is typical for a DataSet to have one coordinate system defined, but it is possible to define multiple coordinate
systems. This is helpful when there are multiple ways to express coordinates. For example, positions in geographic
may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful in
different ways.

It is also valid to have a DataSet with no coordinate system. This is useful when the structure is not rooted in
physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.

11.5 Multi-Block Data

A multi-block data set, implemented with vtkm: : cont: :MultiBlock, comprises a set of vtkm::cont: :DataSet
objects. The MultiBlock interface allows for adding, inserting, and replacing DataSets in its list with the
AddBlock (or AddBlocks), InsertBlock, and ReplaceBlock methods, respectively. The GetBlocks method
returns a list of DataSet objects in a std: :vector.

The following example creates a vtkm: :cont: :MultiBlock containing two uniform grid data sets.

Example 11.8: Creating a MultiBlock.

// Create two uniform data sets
vtkm::cont::DataSetBuilderUniform dataSetBuilder;

vtkm::cont::DataSet dataSetl = dataSetBuilder.Create(vtkm::Id3(10, 10, 10));
vtkm::cont::DataSet dataSet2 = dataSetBuilder.Create(vtkm::Id3(30, 30, 30));

// Add the datasets to a multi block
vtkm::cont::MultiBlock multiBlock;
multiBlock.AddBlock (dataSet1);
multiBlock.AddBlock (dataSet2);

—_
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It is always possible to retrieve the independent blocks in a MultiBlock, from which you can iterate and get
information about the data. However, VITK-m provides several helper functions to collect metadata information
about the collection as a whole. However, MultiBlock also offers several helper methods to collect metadata
information about the collection as a whole. Each function is in its own respective header file.
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vtkm: : cont: :BoundsCompute Queries the bounds of all the DataSets contained in the given MultiBlock and
returns a vtkm: :Bounds object encompassing the conglomerate data.

vtkm: : cont: :BoundsGlobalCompute An MPI version of BoundsCompute that also finds the bounds around the
conglomerate data across all processes. All MPI processes must call this method.

vtkm: :cont: :FieldRangeCompute Given a MultiBlock, the name of a field, and (optionally) an association of
the field, returns the minimum and maximum value of that field over all the contained blocks. The result
is returned in a ArrayHandle of vtkm: :Range objects in the same manner as the vtkm: :cont: :Field::-
GetRange method (see Section 11.3).

vtkm: :cont: :FieldRangeGlobalCompute An MPI version of FieldRangeCompute that also finds the field
ranges over all blocks on all processes. All MPI processes must call this method.

The following example illustrates a spatial bounds query and a field range query on a vtkm: :MultiBlock.

Example 11.9: Queries on a MultiBlock.

// Get the bounds of a multi-block data set
vtkm::Bounds bounds = vtkm::cont::BoundsCompute (multiBlock);

// Get the overall min/max of a field named "cellvar"
vtkm::cont::ArrayHandle<vtkm::Range> cellvarRanges =
vtkm::cont::FieldRangeCompute (multiBlock, "cellvar");

// Assuming the "cellvar" field has scalar values, then cellvarRanges has one entry
vtkm::Range cellvarRange = cellvarRanges.GetPortalConstControl ().Get (0);

© 00~ Uk WN

The aforementioned functions for querying a MultiBlock object also work on DataSet objects. This is
particularly useful with the BoundsGlobalCompute and FieldRangeGlobalCompute to manage distributed
parallel objects.

W69

Filters can be executed on MultiBlock objects in a similar way they are executed on DataSet objects. In both
cases, the Execute method is called on the filter giving data object as an argument.

Example 11.10: Applying a filter to multi block data.
vtkm::filter::CellAverage cellAverage;
cellAverage.SetActiveField ("pointvar", vtkm::cont::Field::Association::POINTS);

W N =

vtkm::cont::MultiBlock results = cellAverage.Execute(multiBlock);
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WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a
functor that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis
operator (which must be declared const for thread safety). However, worklets are also embedded with a sig-
nificant amount of metadata on how the data should be managed and how the execution should be structured.
This chapter explains the basic mechanics of defining and using worklets.

12.1  Worklet Types

Different operations in visualization can have different data access patterns, perform different execution flow,
and require different provisions. VTK-m manages these different accesses, execution, and provisions by grouping
visualization algorithms into common classes of operation and supporting each class with its own worklet type.

Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the
type of the worklet easy to identify. The following list describes each worklet type provided by VIK-m and the
superclass that supports it. Details on how to create worklets of each type are given in Section 12.5. It is also
possible to create new worklet types in VI K-m. This is an advanced topic covered in Chapter 23.

Field Map A worklet deriving vtkm: :worklet: :WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh,
a WorkletMapField may actually be applied to any array. Thus, a field map can be used as a basic map
operation.

Topology Map A worklet deriving vtkm: :worklet: :WorkletMapTopology or one of its sibling classes performs
a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to
a field map except that in addition to access fields being mapped on, the worklet operation also has access
to incident fields.

There are multiple convenience classes available for the most common types of topology mapping. vtkm: :-
worklet: :WorkletMapPointToCell calls the worklet operation for each cell and makes every incident point
available. This type of map also has access to cell structures and can interpolate point fields. Likewise,
vtkm: :worklet: :WorkletMapCellToPoint calls the worklet operation for each point and makes every
incident cell available.

Point Neighborhood A worklet deriving from vtkm::worklet::WorkletPointNeighborhood performs a
mapping operation that applies a function (the operator in the worklet) on all points of a structured
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mesh. The basic operation is similar to a field map except that in addition to having access to the point
being operated on, you can get the field values of nearby points within a neighborhood of a given size.
Point neighborhood worklets can only applied to structured cell sets.

Reduce by Key A worklet deriving vtkm: :worklet: :WorkletReduceByKey operates on an array of keys and
one or more associated arrays of values. When a reduce by key worklet is invoked, all identical keys are
collected and the worklet is called once for each unique key. Each worklet invocation is given a Vec-like
containing all values associated with the unique key. Reduce by key worklets are very useful for combining
like items such as shared topology elements or coincident points.

12.2  Dispatchers

Worklets are instantiated in the control environment and run in the execution environment. This means that
the control environment must have a means to invoke worklets that start running in the execution environment.

This invocation is done through a set of dispatcher objects. A dispatcher object is an object in the control
environment that has an instance of a worklet and can invoke that worklet with a set of arguments. There are
multiple types of dispatcher objects, each corresponding to a type of worklet object. All dispatcher objects have
at least one template parameter: the worklet class being invoked, which is always the first argument.

All dispatcher objects must be constructed with an instance of the worklet they are to invoke. If no worklet is
provided to the constructor, a new worklet object is created with the default constructor. Many worklets do not
require any state, so allowing the dispatcher to construct its own is fine. However, if the worklet holds some
parameters (e.g. a threshold value), then you will have to construct a worklet and pass it to a dispatcher as it
is created.

All dispatcher classes have a method named Invoke that launches the worklet in the execution environment.
The arguments to Invoke must match those expected by the worklet, which is specified by something called a
control signature. The expected arguments for worklets provided by VI'K-m are documented in Section 12.3.
Also, for any worklet, the Invoke arguments can be gleaned from the control signature, which is described in
Section 12.4.1.

The following is a list of the dispatchers defined in VTK-m. The dispatcher classes correspond to the list of
worklet types specified in Section 12.1. Many examples of using these dispatchers are provided in Section 12.3.

vtkm: :worklet: :DispatcherMapField The dispatcher used in conjunction with a worklet that subclasses
vtkm: :worklet: :WorkletMapField. The dispatcher class has one template argument: the worklet type.

vtkm: :worklet: :DispatcherMapTopology The dispatcher used in conjunction with a worklet that subclasses
vtkm: :worklet: :WorkletMapTopology or one of its sibling classes (such as vtkm: :worklet: :WorkletMap-
PointToCell). The dispatcher class has one template argument: the worklet type.

vtkm: :worklet: :DispatcherPointNeighborhood The dispatcher used in conjunction with a worklet that sub-
classes vtkm: :worklet: :WorkletPointNeighborhood. The dispatcher class has one template argument:
the worklet type.

vtkm: :worklet: :DispatcherReduceByKey The dispatcher used in conjunction with a worklet that subclasses
vtkm: :worklet: :WorkletReduceByKey. The dispatcher class has one template argument: the worklet

type.
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12.3 Provided Worklets

VTK-m comes with several worklet implementations. These worklet implementations for the most part provide
the underlying implementations of the filters described in Chapter 4. The easiest way to execute a filter is to run
it from the associated filter class. However, if your data is not in a vtkm: :cont: :DataSet structure or you have
knowledge of the specific data types used in the DataSet, it might be more efficient to run the worklet directly.
Note that many of the filters use multiple worklets under the covers to implement the full functionality.

The following example demonstrates using the simple vtkm: :worklet: :PointElevation worklet directly.

Example 12.1: Using the provided PointElevation worklet.

1 | VTKM_CONT

2 | vtkm::cont::ArrayHandle<vtkm::FloatDefault> ComputeAirPressure (

3 vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> pointCoordinates)
4 |4

5 vtkm::worklet::PointElevation elevationWorklet;

6

7 // Use the elevation worklet to estimate atmospheric pressure based on the
8 // height of the point coordinates. Atmospheric pressure is 101325 Pa at

9 // sea level and drops about 12 Pa per meter.

10 elevationWorklet.SetLowPoint (vtkm::Vec<vtkm::Float64, 3>(0.0, 0.0, 0.0));
11 elevationWorklet.SetHighPoint (vtkm::Vec<vtkm::Float64, 3>(0.0, 0.0, 2000.0));
12 elevationWorklet.SetRange (101325.0, 77325.0);

13

14 vtkm::worklet::DispatcherMapField<vtkm::worklet::PointElevation>

15 elevationDispatcher (elevationWorklet);

16

17 vtkm::cont::ArrayHandle<vtkm::FloatDefault> pressure;

18

19 elevationDispatcher.Invoke (pointCoordinates, pressure);

20

21 return pressure;

22 |}

12.4  Creating Worklets

A worklet is created by implementing a class or struct with the following features.
1. The class must contain a functional type named ControlSignature, which specifies what arguments are
expected when invoking the class with a dispatcher in the control environment.

2. The class must contain a functional type named ExecutionSignature, which specifies how the data gets
passed from the arguments in the control environment to the worklet running in the execution environment.

3. The class must contain a type named InputDomain, which identifies which input parameter defines the
input domain of the data.

4. The class may define a scatter operation to override a 1:1 mapping from input to output.

5. The class must contain an implementation of the parenthesis operator, which is the method that is executed
in the execution environment. The parenthesis operator must be declared const.

6. The class must publicly inherit from a base worklet class that specifies the type of operation being per-
formed.

Figure 12.1 demonstrates all of the required components of a worklet.
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Defines dispatching method
4
class TriangulateCell : public vtkm::worklet::WorkletMapPointToCell
{
public: DeﬁneshomﬂnputawaysandschUNesareﬂnerpmned
typedef void ControlSignature(CellSetIn topology,
ExecObject tables,
FieldOutCell<> connectivityOut);

typedef void ExecutionSignature(CellShape, PointIndices, _2, _3, VisitIndex);
using InputDomain = _1; : . ' \ Defines how data are
<———— Specifies domain argument (optional) S

) % \assigned to threads
using ScatterType = vtkm::worklet::ScatterCantlng; \
|
template<typename CellShapeTag, Deﬁnesrnappuwgfmnn |
typename ConnectivityInVec, inputdcwnaH1U)output |

typename ConnectivityOutVec> donuﬂn(opﬁonan |
VTKM_EXEC |

void operator ()(
CellShapeTag shape, y
const ConnectivityInVec &connectivitylIn, K
const internal::TriangulateTablesExecutionObject<DeviceAdapter> &tables,
ConnectivityOutVec &connectivityOut,

vtkm::IdComponent visitIndex) const Akgonthnwsarejustfuncﬂonsthat
run on a single instance of the input

Figure 12.1: Annotated example of a worklet declaration.

12.4.1 Control Signature

The control signature of a worklet is a functional type named ControlSignature. The function prototype
matches the calling specification used with the dispatcher Invoke function.

Example 12.2: A ControlSignature.
1 | using ControlSignature = void(FieldIn inputVectors, FieldOut outputMagnitudes);

The return type of the function prototype is always void because the dispatcher Invoke functions do not return
values. The parameters of the function prototype are tags that identify the type of data that is expected to be
passed to invoke. ControlSignature tags are defined by the worklet type and the various tags are documented
more fully in Section 12.5.

By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by
the domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a
field on the points of a mesh that are used as input (read only). Although they should be there in most cases,
some tag names might leave out the domain or in/out parts if they are obvious or ambiguous.

12.4.2 Execution Signature

Like the control signature, the execution signature of a worklet is a functional type named ExecutionSignature.
The function prototype must match the parenthesis operator (described in Section 12.4.4) in terms of arity and
argument semantics.

Example 12.3: An ExecutionSignature.
1 l using ExecutionSignature = _2(_1);
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The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as _1, 2, etc. These numbers refer back
to the corresponding argument in the ControlSignature. For example, 1 means data from the first control
signature argument, _2 means data from the second control signature argument, etc.

Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis
operator returns a value. If this is the case, the return value should be one of the numeric tags (i.e. _1, 2,
etc.) to refer to one of the data structures of the control signature. If the parenthesis operator does not return
a value, then ExecutionSignature should declare the return type as void.

In addition to the numeric tags, there are other execution signature tags to represent other types of data. For
example, the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function
will have a unique WorkIndex. Other such tags exist and are described in the following section on worklet types
where appropriate.

12.4.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain.
The type of domain is inherent from the worklet type, but the size of the domain is dependent on the data being
operated on. One of the arguments given to the dispatcher’s Invoke in the control environment must specify
the domain.

A worklet identifies the argument specifying the domain with a type alias named InputDomain. The InputDomain
must be aliased to one of the execution signature numeric tags (i.e. _1, 2, etc.). By default, the InputDomain
points to the first argument, but a worklet can override that to point to any argument.

Example 12.4: An InputDomain declaration.

1 | using InputDomain = _1;

Different types of worklets can have different types of domain. For example a simple field map worklet has a
FieldIn argument as its input domain, and the size of the input domain is taken from the size of the associated
field array. Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size
of the input domain is taken from the cell set.

Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input
domain.

12.4.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet
represents is contained in or called from the parenthesis operator method.

Example 12.5: An overloaded parenthesis operator of a worklet.

1 template<typename T, vtkm::IdComponent Size>
2 VTKM_EXEC T operator () (const vtkm::Vec<T, Size>& inVector) const
3 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the Execu-
tionSignature, and the types of the parameters and return must be compatible. Second, because it runs in
the execution environment, it must be declared with the VTKM_EXEC (or VTKM_EXEC_CONT) modifier. Third, the
method must be declared const to help preserve thread safety.
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12.5 Worklet Type Reference

There are multiple worklet types provided by VI K-m, each designed to support a particular type of operation.
Section 12.1 gave a brief overview of each type of worklet. This section gives a much more detailed reference
for each of the worklet types including identifying the generic superclass that a worklet instance should derive,
listing the signature tags and their meanings, and giving an example of the worklet in use.

12.5.1 Field Map

A worklet deriving vtkm: :worklet: :WorkletMapField performs a basic mapping operation that applies a func-
tion (the operator in the worklet) on all the field values at a single point or cell and creates a new field value at
that same location. Although the intention is to operate on some variable over the mesh, a WorkletMapField
can actually be applied to any array.

A WorkletMapField subclass is invoked with a vtkm: :worklet: :DispatcherMapField. This dispatcher has one
template argument: the type of the worklet subclass.

A field map worklet supports the following tags in the parameters of its ControlSignature.

FieldIn This tag represents an input field. A FieldIn argument expects an ArrayHandle or a VariantAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a
single value out of this array.

The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the
size of the array.

FieldOut This tag represents an output field. A FieldOut argument expects an ArrayHandle or a VariantAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. The array is resized before scheduling
begins, and each invocation of the worklet sets a single value in the array.

FieldInOut This tag represents field that is both an input and an output. A FieldInOut argument expects
an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke. Each
invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.

The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be
the size of the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.
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AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm: :exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm: :cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm: :exec: :ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

_1, _2,... These reference the corresponding parameter in the ControlSignature.
WorkIndex This tag produces a vtkm: :Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm: : IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm: :Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm: :Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 12.6: Implementation and use of a field map worklet.

#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/WorkletMapField.h>

#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/VariantArrayHandle.h>

#include <vtkm/VecTraits.h>
#include <vtkm/VectorAnalysis.h>

0~ Uk WN -

10 | namespace vtkm

11 | {

12 | namespace worklet
13 | {
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15 | struct Magnitude

16 | {

17 class ComputeMagnitude : public vtkm::worklet::WorkletMapField

18 {

19 public:

20 using ControlSignature = void(FieldIn inputVectors, FieldOut outputMagnitudes);
21 using ExecutionSignature = _2(_1);

22

23 using InputDomain = _1;

24

25 template<typename T, vtkm::IdComponent Size>

26 VTKM_EXEC T operator () (const vtkm::Vec<T, Size>& inVector) const
27 1

28 return vtkm::Magnitude (inVector);

29 ¥

30 };

31

32 template<typename ValueType, typename Storage>

33 VTKM_CONT static vtkm::cont::ArrayHandle<

34 typename vtkm::VecTraits<ValueType>::ComponentType>

35 Run (const vtkm::cont::ArrayHandle<ValueType, Storage>& input)

36 {

37 using ComponentType = typename vtkm::VecTraits<ValueType>::ComponentType;
38 vtkm::cont::ArrayHandle<ComponentType> output;

39

40 vtkm::worklet::DispatcherMapField <ComputeMagnitude> dispatcher;
41 dispatcher.Invoke (input, output);

42

43 return output;

44 }

45 | };

46

47 |} // namespace worklet

48 |} // namespace vtkm

Example 12.6 is using an informal but helpful convention where worklets are defined inside another class
that also contains a static method named Run that runs the worklet using a common set of operations.
The Run method helps make clear the intention and use of the worklet. This is especially important for
operations that require a series of worklet invocations that might be non-obvious.

Although simple, the WorkletMapField worklet type can be used (and abused) as a general parallel-
for /scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature
tag can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked
about in more detail in Sections 12.6 and 12.9, respectively, in more detail, but here is a simple example that
uses the random access of WholeArrayOut to make a worklet that copies an array in reverse order.

Example 12.7: Leveraging field maps and field maps for general processing.

namespace vtkm
{
namespace worklet

{

struct ReverseArrayCopy

{

NO Ot W
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8 struct PermuteArrayValues : vtkm::worklet::WorkletMapField

9 {

10 using ControlSignature = void(FieldIn inputArray, WholeArrayOut outputArray);
11 using ExecutionSignature = void(_1, _2, WorkIndex);

12 using InputDomain = _1;

13

14 template<typename InputType, typename OutputArrayPortalType>

15 VTKM_EXEC void operator ()(const InputType& inputValue,

16 const OutputArrayPortalType& outputArrayPortal,
17 vtkm::Id workIndex) const

18 {

19 vtkm::Id outIndex = outputArrayPortal.GetNumberOfValues() - workIndex - 1;
20 if (outIndex >= 0)

21 {

22 outputArrayPortal.Set (outIndex, inputValue);

23 }

24 else

25 {

26 this->RaiseError ("Output array not sized correctly.");

27 }

28 }

29 13

30

31 template<typename T, typename Storage>

32 VTKM_CONT static vtkm::cont::ArrayHandle<T> Run(

33 const vtkm::cont::ArrayHandle<T, Storage>& inArray)

34 {

35 vtkm::cont::ArrayHandle<T> outArray;

36 outArray.Allocate (inArray.GetNumberOfValues ());

37

38 vtkm::worklet::DispatcherMapField <PermuteArrayValues> dispatcher;
39 dispatcher.Invoke (inArray, outArray);

40

41 return outArray;

42 }

43 | };

44

45 |} // namespace worklet

46 |} // namespace vtkm

12.5.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements
of a DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the worklet
has access to data from all incident elements of another type.

There are several versions of topology maps that differ in what type of element being mapped from and what
type of element being mapped to. The subsequent sections describe these different variations of the topology
maps. Regardless of their names, they are all defined in vtkm /worklet/WorkletMapTopology.h and are all invoked
with vtkm: :worklet: :DispatcherMapTopology.

Point to Cell Map

A worklet deriving vtkm: :worklet::WorkletMapPointToCell performs a mapping operation that applies a
function (the operator in the worklet) on all the cells of a DataSet. While operating on the cell, the worklet
has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.
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A WorkletMapPointToCell subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has one template argument: the type of the worklet subclass.

A point to cell map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of cells the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 14.)

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points.

Each invocation of the worklet gets a Vec-like object containing the field values for all the points incident
with the cell being visited. The order of the entries is consistent with the defined order of the vertices for
the visited cell’s shape. If the field is a vector field, then the provided object is a Vec of Vecs.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.

FieldOutCell This tag represents an output field, which is necessarily associated with cells. A FieldOut-
Cell argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.

FieldOut is an alias for FieldOutCell (since output arrays can only be defined on cells).

FieldInOutCell This tag represents field that is both an input and an output, which is necessarily associated
with cells. A FieldInOutCell argument expects an ArrayHandle or a VariantArrayHandle in the asso-
ciated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this
array, which is replaced by the resulting value after the worklet completes.

FieldInOut is an alias for FieldInOutCell (since output arrays can only be defined on cells).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.
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AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm: :exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm: :cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm: :exec: :ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

_1, _2,... These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited cell. (Cell shapes and the
operations you can do with cells are discussed in Chapter 14.) This is the same value that gets provided
if you reference the CellSetIn parameter.

PointCount This tag produces a vtkm::IdComponent equal to the number of points incident on the cell being
visited. The Vecs provided from a FieldInPoint parameter will be the same size as PointCount.

PointIndices This tag produces a Vec-like object of vtkm: :Id s giving the indices for all incident points. Like
values from a FieldInPoint parameter, the order of the entries is consistent with the defined order of the
vertices for the visited cell’s shape.

WorkIndex This tag produces a vtkm: :Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm: : IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm: :Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space
of the data set. See Chapter 14 for a description on how to work with the cell information provided to the
worklet. The following example provides a simple demonstration that finds the geometric center of each cell by
interpolating the point coordinates to the cell centers.
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Example 12.8: Implementation and use of a map point to cell worklet.
1 |#include <vtkm/worklet/DispatcherMapTopology.h>
2 |#include <vtkm/worklet/WorkletMapTopology.h>
3
4 |#include <vtkm/cont/DataSet.h>
5 |#include <vtkm/cont/DataSetFieldAdd.h>
6
7 |#include <vtkm/exec/CellInterpolate.h>
8 |#include <vtkm/exec/ParametricCoordinates.h>
9
10 | namespace vtkm
11 | {
12 | namespace worklet
13 | {
14
15 | struct CellCenter
16 | {
17 class InterpolateCenter : public vtkm::worklet::WorkletMapPointToCell
18 {
19 public:
20 using ControlSignature = void(CellSetIn cellSet,
21 FieldInPoint inputPointField,
22 FieldOut outputCellField);
23 using ExecutionSignature = _3(_1, PointCount, _2);
24
25 using InputDomain = _1;
26
27 template<typename CellShape, typename InputPointFieldType>
28 VTKM_EXEC typename InputPointFieldType::ComponentType operator () (
29 CellShape shape,
30 vtkm::IdComponent numPoints,
31 const InputPointFieldType& inputPointField) const
32 al
33 vtkm::Vec<vtkm::FloatDefault, 3> parametricCenter =
34 vtkm::exec::ParametricCoordinatesCenter (numPoints, shape, *this);
35 return vtkm::exec::CellInterpolate(
36 inputPointField, parametricCenter, shape, *this);
37 ¥
38 e
39
40 template<typename CellSetType, typename ValueType, typename StorageType>
41 VTKM_CONT static vtkm::cont::ArrayHandle<ValueType> Run(
42 const CellSetType& cellSet,
43 const vtkm::cont::ArrayHandle<ValueType, StorageType>& inPointField)
44 {
45 vtkm::cont::ArrayHandle<ValueType> outCellField;
46
47 vtkm::worklet::DispatcherMapTopology <
48 vtkm::worklet::CellCenter::InterpolateCenter>
49 dispatcher;
50 dispatcher.Invoke(cellSet, inPointField, outCellField);
51
52 return outCellField;
53 }
54 | };
55
56 |} // namespace worklet
57 |} // namespace vtkm
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Cell To Point Map

A worklet deriving vtkm: :worklet::WorkletMapCellToPoint performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to fields associated both with the point and with all incident cells.

A WorkletMapCellToPoint subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has one template argument: the type of the worklet subclass.

A cell to point map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke.

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells.

Each invocation of the worklet gets a Vec-like object containing the field values for all the cells incident
with the point being visited. The order of the entries is arbitrary but will be consistent with the values of
all other FieldInCell arguments for the same worklet invocation. If the field is a vector field, then the
provided object is a Vec of Vecs.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points. Each invocation of the worklet gets a single
value out of this array.

FieldOutPoint This tag represents an output field, which is necessarily associated with points. A FieldOut-
Point argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.

FieldOut is an alias for FieldOutPoint (since output arrays can only be defined on points).

FieldInOutPoint This tag represents field that is both an input and an output, which is necessarily associated
with points. A FieldInOutPoint argument expects an ArrayHandle or a VariantArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.

FieldInOut is an alias for FieldInOutPoint (since output arrays can only be defined on points).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.
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WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm: :cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm: :exec: :ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, _2,... These reference the corresponding parameter in the ControlSignature.

CellCount This tag produces a vtkm: :IdComponent equal to the number of cells incident on the point being
visited. The Vecs provided from a FieldInCell parameter will be the same size as CellCount.

CellIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident cells. The
order of the entries is arbitrary but will be consistent with the values of all other FieldInCell arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm: :Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm: : IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm: :Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such
as a volume weighted average.
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Example 12.9: Implementation and use of a map cell to point worklet.

#include <vtkm/worklet/DispatcherMapTopology.h>
#include <vtkm/worklet/WorkletMapTopology.h>

#include <vtkm/cont/DataSet.h>

#include <vtkm/cont/DataSetFieldAdd.h>
#include <vtkm/cont/DynamicCellSet.h>
#include <vtkm/cont/Field.h>

#include <vtkm/cont/VariantArrayHandle.h>

namespace vtkm

{

namespace worklet

{

struct ConvertCellFieldsToPointFields

{

class AverageCellField : public vtkm::worklet::WorkletMapCellToPoint
{

public:
using ControlSignature = void(CellSetIn cellSet,
FieldInCell inputCellField,
FieldOut outputPointField);
using ExecutionSignature = void(CellCount, _2, _3);
using InputDomain = _1;

template<typename InputCellFieldType, typename OutputFieldType>
VTKM_EXEC void operator () (vtkm::IdComponent numCells,
const InputCellFieldType& inputCellField,
OutputFieldType& fieldAverage) const

// TODO: This trickery with calling DoAverage with an extra fabricated type
// is to handle when the dynamic type resolution provides combinations that
// are incompatible. On the todo list for VITK-m is to allow you to express
// types that are the same for different parameters of the control
// signature. When that happens, we can get rid of this hack.
using InputComponentType = typename InputCellFieldType::ComponentType;
this->DoAverage (numCells,

inputCellField,

fieldAverage,

vtkm::ListTagBase <InputComponentType, OutputFieldType>());

}

private:
template<typename InputCellFieldType, typename OutputFieldType>
VTKM_EXEC void DoAverage(
vtkm::IdComponent numCells,
const InputCellFieldType& inputCellField,
OutputFieldType& fieldAverage,
vtkm::ListTagBase<OutputFieldType, OutputFieldType>) const

fieldAverage = OutputFieldType (0);

for (vtkm::IdComponent cellIndex = 0; cellIndex < numCells; celllIndex++)
{

fieldAverage = fieldAverage + inputCellField[cellIndex];
}

fieldAverage = fieldAverage / OutputFieldType (numCells);
}

template<typename T1, typename T2, typename T3>
VTKM_EXEC void DoAverage(vtkm::IdComponent, T1, T2, T3) const
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64 {
65 this->RaiseError ("Incompatible types for input and output.");
66 }
67 ¥
68
69 VTKM_CONT
70 static vtkm::cont::DataSet Run(const vtkm::cont::DataSet& inData)
71 {
72 vtkm::cont::DataSet outData;
73
74 // Copy parts of structure that should be passed through.
75 for (vtkm::Id cellSetIndex = 0; cellSetIndex < inData.GetNumberOfCellSets ();
76 cellSetIndex++)
s {
78 outData.AddCellSet (inData.GetCellSet (cellSetIndex));
79 }
80 for (vtkm::Id coordSysIndex = O0;
81 coordSysIndex < inData.GetNumberOfCoordinateSystems ();
82 coordSysIndex++)
83 o
84 outData.AddCoordinateSystem(inData.GetCoordinateSystem(coordSysIndex));
85 }
86
87 // Copy all fields, converting cell fields to point fields.
88 for (vtkm::Id fieldIndex = 0; fieldIndex < inData.GetNumberOfFields();
89 fieldIndex++)
90 {
91 vtkm::cont::Field inField = inData.GetField(fieldIndex);
92 if (inField.GetAssociation() == vtkm::cont::Field::Association::CELL_SET)
93 {
94 vtkm::cont::VariantArrayHandle inFieldData = inField.GetData();
95 vtkm::cont::DynamicCellSet inCellSet =
96 inData.GetCellSet (inField.GetAssocCellSet ());
97
98 vtkm::cont::VariantArrayHandle outFieldData = inFieldData.NewInstance();
99 vtkm::worklet::DispatcherMapTopology <AverageCellField> dispatcher;
100 dispatcher.Invoke(inCellSet, inFieldData, outFieldData);
101
102 vtkm::cont::DataSetFieldAdd::AddCellField (
103 outData, inField.GetName (), outFieldData, inField.GetAssocCellSet ());
104 }
105 else
106 L
107 outData.AddField (inField);
108 ¥
109 }
110
111 return outData;
112 }
113 | };
114
115 |} // namespace worklet
116 |} // namespace vtkm

General Topology Maps

A worklet deriving vtkm: :worklet: :WorkletMapTopology performs a mapping operation that applies a function
(the operator in the worklet) on all the elements of a specified type from a DataSet. While operating on each
element, the worklet has access to fields associated both with that element and with all incident elements of a

different specified type.
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The WorkletMapTopology class is a template with two template parameters. The first template parameter
specifies the “from” topology element, and the second template parameter specifies the “to” topology element.
The worklet is scheduled such that each instance is associated with a particular “to” topology element and has
access to incident “from” topology elements.

These from and to topology elements are specified with topology element tags, which are defined in the vtkm/-
TopologyElementTag.h header file. The available topology element tags are vtkm: :TopologyElementTagCell,
vtkm: : TopologyElementTagPoint, vtkm::TopologyElementTagEdge, and vtkm::TopologyElementTagFace,
which represent the cell, point, edge, and face elements, respectively.

WorkletMapTopology is a generic form of a topology map, and it can perform identically to the aforementioned
forms of topology map with the correct template parameters. For example,

vtkm: :worklet: :WorkletMapTopology <vtkm: :TopologyElementTagPoint, vtkm::Topolo-
gyElementTagCell >

is equivalent to the vtkm::worklet::WorkletMapPointToCell class except the signature tags have different
names. The names used in the specific topology map superclasses (such as WorkletMapPointToCell) tend to
be easier to read and are thus preferable. However, the generic WorkletMapTopology is available for topology
combinations without a specific superclass or to support more general mappings in a worklet.

The general topology map worklet supports the following tags in the parameters of its ControlSignature, which
are equivalent to tags in the other topology maps but with different (more general) names.

CellSetIn This tag represents the cell set that defines the collection of elements the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 14.)

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInFrom This tag represents an input field that is associated with the “from” elements. A FieldInFrom ar-
gument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s
Invoke. The size of the array must be exactly the number of “from” elements.

Each invocation of the worklet gets a Vec-like object containing the field values for all the “from” elements
incident with the “to” element being visited. If the field is a vector field, then the provided object is a Vec
of Vecs.

FieldInTo This tag represents an input field that is associated with the “to” element. A FieldInTo argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.

FieldOut This tag represents an output field, which is necessarily associated with “to” elements. A FieldOut ar-
gument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s
Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets a single
value in the array.

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated
with “to” elements. A FieldInOut argument expects an ArrayHandle or a VariantArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
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WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm: :cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm: :exec: :ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A general topology map worklet supports the following tags in the parameters of its ExecutionSignature.

1, _2,... These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited “to” element. (Cell shapes
and the operations you can do with cells are discussed in Chapter 14.) This is the same value that gets
provided if you reference the CellSetIn parameter.

If the “to” element is cells, the CellShape clearly will match the shape of each cell. Other elements will
have shapes to match their structures. Points have vertex shapes, edges have line shapes, and faces have
some type of polygonal shape.

FromCount This tag produces a vtkm::IdComponent equal to the number of “from” elements incident on the
“to” element being visited. The Vecs provided from a FieldInFrom parameter will be the same size as
FromCount.

FromIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident “from” ele-
ments. The order of the entries is consistent with the values of all other FieldInFrom arguments for the
same worklet invocation.
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WorkIndex This tag produces a vtkm: :Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm: : IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm: :Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm: :Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

12.5.3 Point Neighborhood

A worklet deriving vtkm: :worklet: :WorkletPointNeighborhood performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to field values on nearby points within a neighborhood.

A WorkletPointNeighborhood subclass is invoked with a vtkm::worklet::DispatcherPointNeighborhood.
This dispatcher has one template argument: the type of the worklet subclass.

A point neighborhood worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a vtkm::cont::CellSetStructured object in the associated parameter of
the dispatcher’s Invoke. The object could also be stored in a DynamicCellSet, but it is an error to use
any object other than CellSetStructured.

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldIn This tag represents an input field that is associated with the points. A FieldIn argument expects an
ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke. The size
of the array must be exactly the number of points. Each invocation of the worklet gets a single value out
of this array.

FieldInNeighborhood This tag represents an input field that is associated with the points. A FieldInNeigh-
borhood argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The size of the array must be exactly the number of points.

What differentiates FieldInNeighborhood from FieldIn is that FieldInNeighborhood allows the worklet
function to access the field value at the point it is visiting and the field values in the neighborhood around it.
Thus, instead of getting a single value out of the array, each invocation of the worklet gets a vtkm: :exec: : -
FieldNeighborhood object. FieldNeighborhood objects are described in the Neighborhood Information
section starting on page 173.

FieldOut This tag represents an output field, which is necessarily associated with points. A FieldOut argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The array is resized before scheduling begins, and each invocation of the worklet sets a single value in the
array.
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FieldInOut This tag represents field that is both an input and an output, which is necessarily associated with
points. A FieldInOut argument expects an ArrayHandle or a VariantArrayHandle in the associated
parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this array,
which is replaced by the resulting value after the worklet completes.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm: :cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm: :exec: :ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.
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