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Chapter Five: Best Practices of the CFD and
Turbulence Trade

“The result was very happy.” Osborne Reynolds upon the initial formulation of his
dimensionless number, 1883.

“Given the erratic track record of most turbulence models, new ideas are always
welcome.” David Wilcox, 2006.

It was said in the 1970s in regard to finances that when “E. F. Hutton talks, people listen”.
Said in an overtly-enthusiastic fashion, “If CFD calculations are done correctly, then
nature listens!” The correct fluid dynamics equations, coded correctly, and applied
correctly, will certainly mimic nature, and experimental data will inevitably follow pre-test
calculations. And under such careful modeling approach, on the uncommon instance
when computational and experimental output do not match, there is a strong probability
that the source is experimental, such as faulty pressure gauges, incorrect experimental
procedures, and so forth. The sections that follow endeavor to provide guidelines that
increase the likelihood that computational output will accurately reflect system behavior
and its experimental data. But the converse is also true, and too common: when CFD is
done incorrectly, without checks and balances, the GIGO acronym becomes valid—
garbage in, garbage out. CFD is not to be treated as a black box. In this chapter,
numerous guidelines and rules-of-thumb are provided, with the goal of increasing the
computational accuracy of the simulations.

5.1 Developing a Bullet-Proof Mesh

WLOG, consider a 3D system. The mesh represents the system geometry that has been
parsed (divided) into computational elements or nodes, with each reflecting the system
behavior of the primitive variables and a numerous set of derived computational
quantities. Each finite element or finite volume represents (reflects, maps) a small region
of space for the system in question. Each element is in turn comprised of discrete
computational points, or nodes, that have no volume. But, in their agglomeration, the
computational nodes somewhat abstractly represent the physical behavior of a small
volume where conservation of mass, momentum, and energy are applied. In the
cumulative sense, the entire set of discrete, volumeless computational nodes represent
the entire contiguous volume. In this virtual world, each computational node
simultaneously behaves as if it were a thermocouple for recording temperature, as a
pressure transducer for recording pressure, as a flow a meter to obtain mass flow rates
and fluid velocity distribution, and so forth.

Without doubt, anyone can develop a mesh. But how is a quality mesh developed, and
how can it be defined and measured? Moreover, what is “mesh quality”, and is it not
subjective? In the words of P. M. Knupp [Knupp, 2007],



“Mesh quality concerns the characteristics of a mesh that permit a particular numerical
PDE simulation to be efficiently performed, with fidelity to the underlying physics, and with
the accuracy required for the problem.”

Many mesh metrics are available to quantify and control the quality of a computational
mesh, and are summarized in Table 5.1. The table describes over two dozen mesh
metrics for hexahedral elements, including their definition and “acceptable range”. A
metric’s “acceptable range” is considered as a reasonable “rule-of-thumb” that generally
ensures that a mesh will provide defensible output (or at least, not provide additional,
unacceptable errors). However, it is emphasized that a single mesh metric is akin to a
reasonable rule-of-thumb, and does not necessarily, in of itself, guarantee that the mesh
will be “bullet proof”. In fact, the shrewd analysist will demonstrate that the mesh in
question satisfies a set of reasonably-independent mesh metrics, and not just a single
metric. That is, multiple mesh aspects must be tested, and improved as necessary. For
example, having a good aspect ratio says nothing about element angle, and vice-versa.
Thus, it is possible for a mesh to simultaneously have a great aspect ratio and a poor
skew angle, and so forth. In fact, skew is “insensitive to length or aspect ratios”, having
sole dependence on the element’s angles that are formed by the element faces [Knupp,
2003]. Thus, no single (unweighted) mesh metric can capture all the geometric issues
associated with elements, because element geometry involves several exclusive
parameters such as length, angle, etc. This point is showcased in Figure 5.1, which
zooms into an airfoil region, showing both skew and aspect ratio. In this situation, regions
with good aspect ratios have skew magnitudes that are approaching the high limit, and
regions with higher skew and aspect ratio are not always at the same location. Figure
5.2 shows an unzoomed region of the airfoils colored with aspect ratio, with the highest
magnitudes occurring where the geometry has the sharpest changes. This situation is
typical, as regions with the sharpest geometrical changes tend to have the worst mesh
metrics. Thus, those are regions where the analyst should focus attention, as well as the
boundaries, as will be discussed later.

Table 5.1. Mesh metric definition and acceptable range for hexahedral elements.

Metric Definition Acceptable Range References
(units)

Angle The smallest element 45-90 (degrees) [Stimpson et al.,

(Minimum) angle formed by the 2007; Brewer
intersecting planes and Marcum,
(dihedral angle). Too 2008; Zigh and
small of an angle Solis, 2013]
increases numerical
stiffness.

Angle The largest element angle 90-135 (degrees) [Stimpson et al.,

(Maximum) formed by the intersecting 2007; Brewer
planes (dihedral angle). and Marcum,
Too large of an angle 2008; Zigh and
increases numerical error. Solis, 2013]




Aspect Ratio

The ratio of maximum vs.

1-5 (unitless); can reach

[Robinson, 1987;

minimum edge length. up to 10 if gradient is Andersson et al.,
The aspect ratio seeks to | small (e.g., longer length | 2012; Cubit
ensure that quantities | parallel to flow direction, | 2017]
such as momentum and and smaller length
heat are transferred | perpendicular to the wall)
appropriately throughout
the system in question.
Condition Jacobian matrix condition 1-4 (unitless) [Knupp, 2000;
Number number based on the Stimpson et al.,
maximum value of the 2007; Cubit
four element corners. 2017]
Distortion The minimum of the | 0.4-1.0 (length squared) | [SDRC, 1988;
Jacobian determinant Lawry, 2000;

times the ratio of the local
(transformed) and global
(actual) areas. This
represents the element
surface’s deviation from a

Stimpson et al.,
2007; Cubit
2017]

square.
Element Area | Jacobian determinant | None (length squared) | [Robinson, 1987]
magnitude at the
element’s center.
Element Jacobian determinant None (length cubed) [Cubit 2017]
Volume magnitude at the
element’s center.
Expansion Element growth rate < 1.5 (unitless) [Fluent,  2012;
Ratio between adjacent Zigh and Solis,
elements. 2013]
Jacobian The Jacobian matrix | None (length squared) | [Knupp, 2000;
relates how the Stimpson et al.,
computational variables 2007; Cubit

map linearly onto their
spatial location, e.g., the

computational nodes.
The matrix has
geometrical information

such as volume, shape,
and orientation [Knupp,
2001]. The Jacobian
determinant is calculated
to gauge the relative
stretching of the local
spacing in an element. |t
is also a measure of the
orientation of the surface

2017]




normals relative to each
other. To obtain its
relative goodness metric,
it is scaled vs. a perfect
element; refer to “Scaled
Jacobian” in this Table.

Oddy Oddy represents the | 0.0-0.5 (none) [Stimpson et al.,
largest metric tensor 2007]
variation in the four
corners.
Orthogonal The normalized dot | 0.15-1.0 (unitless). A | [Fluent, 2018]
Quality product minimum of the | value approaching 0 is
element area vector and | unacceptable.
the centroid vector based
on the element’s face or
that of the adjacent
element.
Quality Index | A code-defined approach | The acceptable range is | [HyperMesh,
to factor the relative | classified as “ideal” and | 2018]
impact of a number of | “good”, depending on the
mesh metrics into a single | user-defined weight
metric (e.g., HyperMesh | factors. Suspicious
uses 12 different mesh | elements are flagged as
metrics with user-defined | “warn”, while bad
weight factors). elements are tagged as
“fail” and “worst”.
Relative Size | Jis the weighted Jacobian 0.3-1.0 (unitless) [Knupp, 2003;
matrix determinant. Cubit 2017]
Then, the relative size
represents the minimum
of J and its inverse, 1/J.
Scaled The Jacobian minimum is 0.3-1.0 (unitless) [Knupp, 2000;
Jacobian scaled by dividing it by the Stimpson et al.,

lengths of two element-
edge vectors. Itis used in
many CFD codes when
inverting system matrixes.
If the scaled Jacobian is
less than 0.5, the
calculation may abort; 1.0
refers to a cube, and a
value approaching zero
implies a highly-distorted

(and undesirable
element). Negative
Jacobians refer to

2007:
2017]

Cubit




inverted, concave, or
bowed elements, and
should be avoided at all

cost. See “Jacobian” in
this Table.

Shape 2  divided by the 0.3-1.0 (unitless) [Knupp, 2003;
magnitude of the Stimpson et al.,
condition number of the 2007; Cubit
weighted Jacobian matrix. 2017]

Shape and | The product of the shape 0.2-1.0 (unitless) [Knupp, 2003;

Size and the relative size. Stimpson et al.,

2007; Cubit
2017]
Shear 2 divided by the 0.3-1.0 (unitless) [Knupp, 2003;

magnitude of the

Stimpson et al.,

condition number of the 2007, Cubit
Jacobian skew matrix. 2017]
Shear and | The product of the shear 0.2-1.0 (unitless) [Knupp,  2003;

Size

and the relative size.

Stimpson et al.,

2007; Cubit
2017]

Skew The maximum of |cos q, < 0.5 (unitless) [Robinson, 1987;
where a represents the Knupp, 2003;
angle between the edges Stimpson et al.,
at the element’s center. A 2007; Cubit
perfect element with 90° 2017]
has cos(90°)=0, while an
element with 60° has a
value of 0.5. Thus, the
smaller the skew, the
better.

Skewness Skewness compares the | <0.9 (unitless); average | [Fluent, 2009,
shape difference between mesh value should Fluent, 2012;
a given element and that approach < 1/3 Andersson et al.,
of a perfect hexahedral of 2012]
the same volume. The
larger skewness is, the
larger the numerical error
and the potential for
instabilities.

Squish Index | Calculates how much the < 0.9 (unitless) [Fluent, 2009]
faces of an element
diverge from an ideal,
orthogonal face.

Stretch J2 times the ratio of the 0.25-1.0 (unitless) [FIDAP,  1999;

element’s minimum edge

Stimpson et al.,




length and the maximum
diagonal length.

2007; Cubit
2017]

Taper Maximum ratio of element 0.0-0.7 (unitless) [Robinson, 1987;
lengths at opposite sides. Stimpson et al.,
2007; Cubit
2017]
Warp Cosine of the smallest 0.9-1.0 (unitless) [Cubit, 2018]
dihedral angle. That is,
this represents the angle
formed by the element
planes that intersect
diagonally.
Warpage 1 — the cosine of the 0.0-0.7 (unitless) [Stimpson et al.,

smallest dihedral angle.
That is, the angle formed
by the element planes that
intersect diagonally.

2007]
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Figure 5.1. Skew vs. aspect ratio over same region.




Figure 5.2. Overlay of mesh colored with aspect ratio.

As of 2018, no unanimous consensus exists as to what qualifies as a sufficient set of
mesh metrics (but the literature does express some ideas). To make matters worse, is
also clear that many mesh metrics are not independent of each other.

The first modern CFD meshes were boldly generated, without much regard for mesh
metrics; who knew at the time that there would be mesh issues? However, it was quickly
discovered that mesh controls were required to generate defensible output. The first
attempts involved a single metric, and in particular, the aspect ratio [Robinson, 1986]. By
the mid ‘80s, some researchers recommended aspect ratio, skew, and taper.

Other metrics may include distortion, which is the minimum of the Jacobian determinant
times the ratio of the local (transformed) and global (actual) areas. Said in more
geometric terms, this represents the element surface’s deviation from a square. Some
software packages offer a combination of quality metrics that are weighted and factored
into a single metric, such as HyperMesh’s “quality index”. This software uses a
combination of 12 different mesh metrics, including aspect ratio, skew, Jacobian,
warpage, and angle [HyperMesh, 2018]. On the other hand, Fluent recommends
skewness, aspect ratio, and squish (a measure for how much the faces diverge from an
ideal, orthogonal face) [Fluent, 2009]. This brief mesh metrics overview shows a
commonality for certain mesh metrics, such as aspect ratio and skew, as well as a
commonality in geometric parameters that should be qualified. In effect, by the start of
the 21st century, the general notion was, and continues to be, that mesh metrics show
that elements are not unduly [Fluent, 2009; Fluent, 2012]

e stretched (length issues),
e distorted (angle issues), and
¢ transitioned (distance issues between adjacent elements).



For these reasons, ideal mesh metric sets (or equivalent) tend to include the aspect ratio,
skew, expansion ratio, and the scaled Jacobian, because this set considers length ratios,
element angles, distance between adjacent elements, and computational variable
mapping onto node distribution, respectively.

For these reasons, ideal mesh metric sets (or equivalent) tend to include
e aspect ratio (considers length ratios),
e skew (factors in element angles),
e expansion ratio (gauges distance between adjacent elements), and

e scaled Jacobian (a measure of the computational variable mapping onto node
distribution).

As shown in Table 5.1, there is a bewildering number of mesh metrics, whose intent is to
provide guidelines for the generation of quality meshes. Thus, Table 5.1 is not meant to
intimidate users, but is instead intended to offer many options, especially because CFD
tools tend to be associate with diverse metrics. For illustration purposes, Table 5.2 shows
various mesh metric output for a compact heat exchanger with airfoil surfaces. Notice
that a more concise mathematical expression for mesh metrics can be pinpointed if the
average, minimum, maximum, and standard deviations are calculated by the meshing
package. For convenience, Table 5.3 lists key mesh and flow metrics that should be
estimated by the analyst prior to beginning CFD analysis.

Table 5.2. Cubit output showing mesh metrics for a compact heat exchanger with airfoil

surfaces.

Mesh Metric Average Standard | Minimum | Maximum
Deviation | (Element (Element

Number) Number)

Aspect Ratio 1.093E+00 | 9.885E-02 | 1.000E+00 | 2.405E+00
(95714) (51721)

Skew 5.867E-02 | 5.856E-02 | 4.058E-07 | 4.335E-01
(553135) (368)

Taper 4.620E-02 | 6.404E-02 | 3.399E-06 | 4.025E-01
(497420) (22026)

Element Volume 2.081E-13 | 3.856E-14 | 5.344E-14 | 5.336E-13
(107610) (10085)

Stretch 9.228E-01 | 6.818E-02 | 3.568E-01 | 9.973E-01
(55611) (66323)

Diagonal Ratio 9.626E-01 | 3.645E-02 | 6.949E-01 | 1.000E+00
(566257) (664913)

Dimension 3.394E-05 | 2.307E-06 | 1.892E-05 | 4.389E-05
(163499) (10085)

Condition Number | 1.024E+00 | 5.678E-02 | 1.000E+00 | 1.765E+00
(513435) (502167)

Jacobian 1.965E-13 | 4.031E-14 | 3.543E-14 | 5.141E-13
(107610) (10085)




Scaled Jacobian 9.837E-01 | 3.562E-02 | 6.910E-01 | 1.000E+00
(742) (384691)
Shear 9.837E-01 | 3.562E-02 | 6.910E-01 | 1.000E+00
(742) (384691)
Shape 9.793E-01 | 4.231E-02 | 6.212E-01 | 1.000E+00
(107610) (513435)
Relative Size 8.062E-01 | 1.898E-01 | 6.596E-02 | 1.000E+00
(107610) (92062)
Shear and Size 7.974E-01 | 1.976E-01 | 5.785E-02 | 9.999E-01
(107476) (92062)
Shape and Size 7.957E-01 | 2.004E-01 | 4.097E-02 | 9.998E-01
(107610) (45726)
Distortion 9.392E-01 | 8.792E-02 | 4.862E-01 | 1.000E+00
(75966) (50308)
Table 5.3. Tabulation of Key Mesh Metrics for Laminar and Turbulent Flows.
Parameter Coarse | Medium Fine Very Fine
(0.5x) (x) (2x) (4x)

Number of computational nodes

Average aspect ratio

(Desired range: 1.0 to 5.0)

Maximum aspect ratio
(Desired range: 1.0 to 5.0)

Average skew

(Desired range: 0.0 to 0.5)

Maximum skew

(Desired range: 0.0 to 0.5)

Average node spacing (m)
(Desired range: Taylor eddy size <
node spacing < integral eddy size)

Average condition number
(Desired range: 1.0 to0 4.0)

Re =

If turbulent:

Kolmogorov eddy size =

Taylor eddy size =

Integral eddy size =

Aty*=7,y=

Aty* =30,y =

First computation node at y =

While no mesh metric could ever be “perfect’” or “universal’, mesh metric guidelines
should be viewed as more than “rules of thumb”. The metrics generally have a strong
mathematical basis founded upon computational principles [Knupp, 2003], and as such,



are intended to increase confidence in the computational output. Certainly, some meshes
will produce reasonable results even when metrics are ignored, but more often than not,
ignoring the guidelines will result in poor output. Some of the most curious results that
have been pinned down directly to poor meshes include stainless steel that ignited at 400
K, flows exceeding the speed of light, regions with no flow that suddenly accelerate,
levitating flows that only Houdini could explain, temperatures below absolute zero,
negative densities, and countless other nonsense. If this discussion has not yet
generated a healthy dose of caution when developing meshes, then consider Figure 5.3,
which shows how drastically solutions can diverge if mesh metric guidelines are not
followed. In this situation, flow around a cylinder is considered, whereby the cylinder has
D =0.1016 m, U»=2.44 m/s, and v = 4.95x10* m?/s. The fluid flows from left to right, at
Re=500. Two calculations were run, with everything being the same, except that the
mesh on the RHS was developed with good mesh metrics (e.g., aspect ratio < 5, skew <
0.5, and an expansion ratio < 1.5), while the mesh on the LHS was purposely developed
with poor mesh metrics (e.g. aspect ratio = 50, skew = 5, and expansion ratio = 15).

0.000 0.5 1 1.5 2 2.5 3 3.5 3.89

s | .

Figure 5.3. Divergent solutions using noncompliant mesh metrics (LHS) vs. compliant
(RHS).
5.1.1 Additional mesh guidelines
e Highly distorted elements will inevitably produce highly distorted output.

e Regions with large gradients should have a higher element density (e.g., the
boundary layer near the wall, free surfaces).

¢ The element face should be as close to perpendicular to the wall. That is, this is
one of the worst regions to have skewed elements. For this reason, tetrahedral
elements are not recommended at the wall.

¢ Similarly to the criteria above, the element faces should be close to perpendicular
to the main flow direction.



e The longer side of an element should be oriented in the direction of the flow, with
the smaller side perpendicular to the large velocity gradient (e.g. a boundary layer
flow).

e Numerical error is only compounded when elements have multiple, independent
poor mesh metrics (e.g., an element having both poor aspect ratio and large skew).

e Always ensure that the grid is refined spatially (coarse, medium, and fine meshes).
Refer to Chapter 6 for guidelines.

e The usage of Richardson extrapolation greatly increases modeling confidence.

5.1.2 Computational node spacing for RANS models

The spatial distribution of computational nodes in RANS models is crucial for generating
defensible solutions. This is especially so for phenomena-rich calculations involving
complex flows, such as strong wall shear, swirl, rotational surfaces, backflows,
turbomachinery, drag, and lift.

If no wall function is used, then it is important that CFD meshes have the first
computational node at y*= 1 [Fluent, 2012]. Generally speaking, this is the case for most
RANS models, but there are exceptions. For example, Wilcox recommended that the first
computational node be placed at y* = 5 if using his 2006 k-o turbulence model [Wilcox,
2006]. For turbulent, low-Re flows, the first node can be as far as y* = 4 [Andersson et
al., 2012]. Mesh biasing can be used to reduce the number of computational nodes, as
shown in Figure 5.4. If biasing is used, it is crucial that the growth between nodes not
exceed 1.5. But, just how large should the node spacing be, especially near the wall?
Certainly, because RANS is not concerned with individual eddy behavior (except for
Myong-Kasagi RANS and the like), then it is not necessary that node spacing be less
than or equal to the size of the Taylor and Kolmogorov eddies. On the other hand,
including an additional computational node at y* < 30 will help capture the complex
turbulence motions occurring in the buffer layer, as explained in Section 3.6.
Conservative researchers recommend as many as 5 to 10 computational nodes in the
region bounded by y* < 20 [Andersson et al., 2012]. This is certainly consistent with the
use of node biasing with a growth factor that does not exceed 1.5.

So, the above guidelines specify a minimum spacing limit. What should the maximum
spacing limit be? The maximum nodal distance should be decreed by the node spacing
needed to achieve sufficient spatial discretization. For example, if cutting the node size
in half reduces the computational error by less than some reasonable metric acceptable
to the analyst (say < 2%), then the current maximum node spacing is satisfactory.
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Figure 5.4. Biased node distribution based on y* location.

As noted in Section 3.6, different flow physics, with critical impact on the flow, occur in
very narrow regions referred as the viscous sublayer and the buffer sublayer. For
example, drag and lift are significant at and near the wall. Therefore, being able to model
the viscous sublayer in the range of 0 < y* <5 (to as high as 8) is of outmost importance.
As also noted in Section 3.6, crucial turbulence phenomena occur in the buffer layer,
which is at approximately in the range of 5 < y* < 30. This is where lots of nonisotropic
effects occur, where eddy production and decay predominate, and where sizable eddy
fluctuations occur. Therefore, it is not surprising that calculations that fail to include at
least one computational node in the viscous sublayer and at least two in the buffer layer
generally fail to deliver, especially if complex flows are involved. Certainly, following these
guidelines will result in a large mesh that will require much computational time. Therefore,
the analyst in encouraged to run coarse meshes to at least get some preliminary results,
and submit the fine meshes as early as possible.

5.1.3 Wall functions

Wall functions are used to more accurately calculate certain behaviors at the wall, such
as shear stress, wall friction, wall heat flux, wall temperature, and so forth. And for some
turbulence models, it serves as the only way of ensuring that the velocity near the wall is
calculated adequately (e.g., SKE). Wall functions can also serve as a means to decrease
the number of computational nodes. This practice is common when the SKE is used in
low-Re flows. Wall functions can be included in LES and DES calculations as a means
of reducing node count, but their usage is counter to the LES modeling philosophy, as



discussed in Section 5.4.1. By contrast, a wall function is not required for the 2006 k-o
model; indeed, its usage will likely corrupt the calculation.

If a wall function is present, then the first computational node can be at y* < 5 (instead of
1) if a linear wall function is used. If a log wall function is used, then the first computational
node can be at 30 < y* < 500 [Zigh and Solis, 2013]. Of course, wall functions will not
work if the flow is detached (separated). In such cases, SKE should be avoided, and the
2003 SST, 2006 k-o, LES, or DNS can be used.

5.1.4 Computational domain size

Another critical aspect of simulations is to determine a computational space that is
sufficiently large. If the computational domain is too small, important phenomena will be
missed, and if the domain is too large, the calculation will be needlessly slow.

It is important in CFD calculations that the mesh is sufficiently large to capture
recirculation/entrainment/secondary flow. For illustration purposes, the top of Figure 5.5
shows a computational region for an expansion where the recirculation pattern is
truncated, while the bottom section shows a domain that is sufficiently large, such that it
captures the recirculation pattern. Figure 5.6 shows a similar situation for a jet model. In
particular, the LHS shows conceptually what happens if the mesh is not wide enough to
capture the jet as it spreads, while the RHS shows a more satisfactory computational
domain.
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Figure 5.5. Good and bad mesh domains for a flow contraction.
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Figure 5.6. Good and bad mesh domains for a jet.

Generally, a visualization tool will rather quickly and intuitively show whether a mesh has
an adequate domain or not. Fortunately, there are specific guidelines that can serve as
general guiding principles, without having to submit the calculation first [Tutar and Holdo,
2001]. Some rules-of-thumb for flow around a body with hydraulic diameter D, are as
follows [Tutar and Holdo, 2001],

e Distance between the inflow boundary and the body centerline = 7D,

e Distance between the body centerline and the perpendicular side boundaries =
7Dpn, and

e Distance between the body centerline and the flow exit boundary = 15Dh.

Similar guidelines can be found elsewhere for other systems [Leonardi and Castro, 2010],
implying a universality.

Finally, upon running a calculation, the P and u gradients normal to the BC should be
relatively small. If not, then it will be necessary to further extend the mesh.

5.2Boundary and Initial Condition Recommendations

Another key to successful CFD modeling includes the proper selection of boundary
conditions (BCs) and initial conditions (ICs). For instance, though a simulation with an
incorrect BC may run to completion, it will nevertheless yield an incorrect solution. Recall
that BCs provide an infinite family of solution curves, but only one specific BC will provide
the correct solution for a specific system. In other words, BCs determine unique solutions



for the ordinary and partial differential equations (ODEs and PDEs) found in conservation
equations, such as mass, momentum, and energy. Under ideal conditions, a bad BC will
immediately cause a code abort, and thereby raise red flags that something is wrong.
But, under many situations (Murphy’s Law), the code will be happy to proceed in the
generation of useless data. Besides generating bad output, incompatible BCs will result
in other unintended consequences, including solution instabilities and significantly-longer
computational times. Thus, extreme caution is desirable when selecting BCs.

For mature CFD codes, one of the most significant sources of boundary errors arises from
the user via poor meshes and/or BC choices. For these reasons and others, it is
incumbent that analysts spend a reasonable amount of time reflecting on BC selection as
the input model is developed and tested. Thereafter, the analyst could consider running
additional simulations with alternative BCs, to explore the system behavior.

5.2.1 Boundary conditions

Boundary conditions (BCs) enable unique solutions to be obtained from ODEs and PDEs.
BCs can also be viewed as solution drivers because they force the calculation into a
unique solution. The number of required BCs for ODEs and PDEs is based on the largest
order for each spatial coordinate being solved. For example, a second order ODE in 3D
space will require two BCs for each of the three spatial coordinates, for a total of six. Note
that BCs are associated with the system behavior at the spatial boundaries, that is, at the
system edges, while ICs are specified for the entire domain.

2

Example 5.1. Consider the following ODE, g

T T
— + cos(37rx)d— —107 =0, where
x dx

T=T(x), and 0 < x < L. How many BCs are needed?

Solution. Two BCs are needed to appropriately solve this system because the highest
spatial derivative is of order two and only one space coordinate is considered (x-

direction). As an example of such system, one possibility is that it has fixed-temperature
conditions, e.g., T(x=0) = 450 K on the LHS and T(x=L) = 600 K on the RHS.

Example 5.2. Consider a system in 3D Cartesian space, whereby T=T(x,y,z), 0 < x <L,

9 2 2
0<y<M,and 0 <z < N. The PDE is 87;+Z{ af:o. How many BCs are

ox Yy oz

needed?

Solution. This system is second order for each of the three space derivatives, and there
are three directions. Therefore, a total of six BCs are needed: two in the x-direction, two
in the y-direction, and another two to take care of the z-direction.

More formally, BC types for a given spatial domain of length [a,b] are classified as follows:

e Dirichlet (first type). This type associates the primitive variables (e.g., u, v, w, T,
P, p, etc.) with a fixed value or scalar field. For example, w(a) = 5.5 m/s.

e Neumann (second type). This BC type associates a derivative with zero, meaning
that the spatial gradient is zero. For example, if no heat transfer occurs, then



dT
8_ =0, so the system is adiabatic, which means Twai = Thode adjacent towaii. In theory,
X

it is impossible to have a perfectly adiabatic boundary, but for engineering
purposes, this is a great approximation if the system is reasonably insulated at the
boundary.

e Robin (third type). This BC is a superposition (generalization in this case) of the
terms associated with a Dirichlet and Neumann BC. For instance, a

dT
convective/conductive BC can be represented as kd— +hT =C,.
X

5.2.2 BC types in CFD codes

There are many types of BCs used in commercial CFD codes. However, it is up to the
analyst to justify the usage of all input model BCs and to perform sensitivity studies to
quantify their impact on the solution. This is the case because BC input is one of the top
sources of modeling errors. Furthermore, boundaries are one of the worst places to have
poor mesh metrics. For this reason, it is highly recommended that analysts use aspect
ratios near 1.0 for elements normal to boundaries. Likewise, having skew less than 0.5
is highly recommended, and more so if skew approaches 0. A selection of major BC
types is discussed next.

A symmetry boundary is ideal for use when the flow field has geometric symmetry and
the flow is symmetric. (Asymmetric flow can occur in situations with symmetric geometry,
but with different BCs). Where appropriate, use symmetry to reduce the element count.
Symmetry BCs are ideal for DNS analysis and are also suitable in the spanwise direction
of boundary layer flows, far away from the wall. For example, a free-stream boundary
allows the user to model fluid conditions far away from boundary layer.

Periodic boundaries are ideal for repetitive geometry, such as occurs in the periodic flow
lattice of a nuclear reactor core [Rodriguez and Turner, 2012; Joshi and Nayak, 2019].

An inflow (or outflow) BC allows the user to impose velocity or mass flow rate at the inlet
(or outlet). The quantity can be fixed or variable, and can be rather complex, involving
functions, subroutines, tables, and so forth. Often, inflows and outflows should be normal
to the BC surface, but there are exceptions, such as a swirl BC [Rodriguez, 2011].

An open boundary (used to compute inflow or outflow), allows the fluid to exit the domain,
without impacting the interior solution (hopefully!). In theory, such is the case, whereby
the momentum distribution within the system is not impacted. In practice, these
boundaries can generate spurious reflective waves. Therefore, careful inspection should
be undertaken to ensure a defensible solution. The reader is encouraged to consult the
literature in this specialized research topic, which includes many areas regarding
reflectiveless BCs and wave-mitigation techniques [Thompson, 1987; Spalart, 1990;
Nordstrom, Nordin, and Henningson, 1999].

Wall BCs are used to define mathematically how the flow is shaped by surfaces. This
includes characteristics such as wall roughness, with the “smooth wall” being the general
CFD code default. Wall BCs are generally “no slip”, meaning that the fluid is attached to



the wall. Therefore, the fluid velocity at the wall matches the wall velocity, which is
normally 0; the same situation applies to temperature T. Slip is present in situations with
small Knudsen number (Kn), 0.01 < Kn < 0.3, which is usually in the realm of micro and
nano flows. In such cases, Usuid # Uwar and Truig # Twan. Rather, the fluid velocity at the
wall is greater than zero when slip occurs! It is thought that slip is present as a result of
thin, trapped gas sheets that behave as a lubricant between a liquid and the wall surface
roughness [Tabeling, 2009; Bolanos and Vernescu, 2017]. If slip is present, a reasonable
wall BC for liquid flow is [Tabeling, 2009]

ou
u=L,—
0z
where
Ln = Navier length ~ Y __ L,
u u

therm s

In this context,

v = kinematic viscosity of the gas trapped between the liquid and the wall and
Utherm ~ Us, the sound velocity.

Kn is defined as

(

char

where

A = mean free path, which is the average distance travelled by particles between collisions
and

£

For liquids, A is approximately on the magnitude of the liquid’s molecular size. For water,
A ~ 0.02 nm [Wang, Yang, and Zhao, 2014; Bolanos and Vernescu, 2017]. Recently,
researchers have considered the impact of surface roughness on slip [Bolafios and
Vernescu, 2017].

Example 5.3. Find the Navier length for water at 30 °C and 1 atmosphere in a cylindrical
tree root. How small can the hydraulic diameter be such that slip occurs?

= characteristic length of the flow channel.

char

Solution. Water has the following physical properties: us = 1,507 m/s and v = 0.801x10-®
v 0.801x10°° m®/s

m?/s. Hence, L, ~—= =5.32x10""" m. Solving for the smallest
u, 1,507 m/s
hydraulic diameter implies that Kn < 0.3. Therefore,
A 02x10° m 10 o . ,
L. = ~ =6.67x10"" m, which is clearly in the nano region.

har Ky 0.3



Example 5.4. Consider a rectangular duct with H=0.005 m, W= 0.025 m, average water
velocity = 0.247 m/s, and Re = 11,000. It is desired to use various RANS models, so k,
€, ®, and vt must be calculated for usage as input values. Apply the LIKE algorithm to
estimate the values of the four variables.

4FA _ 4HW  2HW _2%0.005%0.025
WP 2H+2W H+W  0.005+0.025

(=0.07D, =0.07*0.0083 =0.000583 m

1/8

I =0.16Re;,* =0.16(11,000) "~ =0.05

=0.00833.

Solution. D, =

Now it is straightforward to calculate the input values:

3 3
k= 5(—1)2 =2(0247 *0.05)" =2.29x10™ m?/s?
C,=0.09.
3/2
3/2 2.29x107*
e=C k—:0.09( ) =5.35x10"* m?/s’
" 0.000583
1/2
2 (2.29x107*
a)=k :( ) =26.01/s
14 0.000583
2
‘ol 0.09(2.29x107*
y =t = e (Prandtl-Kolmogorov ) = 5(35 e ) =8.82x10"° m?/s
yo, £ 35x
As a “sanity check”,
2.32x10™
y=H 2200 ) 46x107 ms
o, 942
-6
v, _882:0° o
v  2.46x10

That v, >> V is consistent with our expectation that the more turbulent the flow is, the

larger Vv, will be.

5.2.3 Initial conditions

Initial conditions (ICs) are needed to solve initial value problems that march in time as the
solution progresses. Analogous to BCs, the number of required ICs for ODEs and PDEs
is based on the maximum order of the time derivative. For example, consider a chunk of
ice. Its mass as a function of time can be determined if it is known just how much ice



there was initially—this is an IC (and of course, just how much heat the ice is absorbing,
perhaps a BC such as a heat flux or Robin).

The mathematical utility of an IC is that it specifies the initial quantity (value) of a given
parameter, usually at time 0. For example, T(t=0) = 310 K specifies the temperature
distribution at time zero when the transient was initiated for the domain in question.

Often, it is better to set the initial velocities to 0, and just let the code calculate consistent
values based on the BCs. Otherwise, there may be inconsistencies between the pressure
and velocity fields, as specified by the ICs and BCs, and these can cause the code to run
longer before it converges, and may even result in solution divergence! In other words,
failure to include ICs that are consistent with the values in the BCs may cause numerical
issues.

While not needed for LES or DNS, RANS methods require IC input for various turbulence
quantities, depending on the model being used:

e kforthe k PDE (e.g., Prandtl k, k-¢, v2-f, and k-® models),
o ¢forthe ¢ PDE (e.g., SKE, realizable k-¢, RNG k-¢, and Myong-Kasagi k-¢ models),

e o forthe ® PDE (e.g., Kolmogorov k-o, 1988 k-m, 1998 k-», and 2006 k-o models),
and

e vifor Prandtl-Kolmogorov closure models (SKE).

k is the turbulent kinetic energy in m?/s2, which describes the velocity scale of the large
eddies. ¢ is the kinetic energy dissipation rate in m?/s3, and is a measure of the eddy
length scale. o is the eddy specific dissipation frequency in 1/s, and is a measure eddy
time scale. Finally, vtis the turbulent kinematic viscosity in m?/s, which is a metric for the
relative degree of the turbulence, and can be orders of magnitude larger than v. These
input parameters have a significant impact near open BCs, but not as much far away from
inlets and outlets. The best approach is to obtain k, €, ®, and vt from experimental data.
But such data is usually not available. The next best approach is to estimate input values
using the LIKE algorithm; refer to Sections 3.4 and 3.5. The approach of last resort is to
use the CFD code default values. But such values are generalized, and are therefore not
always suitable for the specific situation of interest of all analysts.

Example 5.5. Consider the following PDE,

ou ou Ou ou pu(du ou 0Ou) 10P _
—+U—+V—F+W—== >+ —5+—=5 |~ ——= Howmany ICs are required?
ot ox ox ox p\ox~ oy oz p Ox

Solution. This is the Navier-Stokes equation, with a first order partial derivative for time.
Therefore, only one IC is needed.

Example 5.6. Consider the following Navier-Stokes PDE,
o 1% 1% ou ou 0° 1 0P
“ “ + w—u £ th + th + Z: — ——"_ How many ICs are required?

ox~ oy. 0Oz p Ox

ox  Ox ox ;



Solution. This equation is the steady state (SS) version of Navier-Stokes, so the time
partial derivative is zero, and therefore no ICs are needed.

Example 5.7. Consider the following PDE,

0’ 0’ 0’ 0’
—zl =c’ Z + L; + th . How many ICs are required?
ot ox~ oy° oz

Solution. This is the wave equation with a second order time derivative. Therefore, two
ICs are needed.

5.2.4 Compatible vs. incompatible BCs

When various BCs are used, the following Western classic comes to mind, “The Good,
the Bad, and the Ugly”. In particular, certain BC combinations for inlets and outlets are
generally defensible and reliable, while other are notoriously untrustworthy. This is

summarized in Table 5.4.

Table 5.4. Inlet and outlet BC combinations.

The Good...

The Bad...

And the Ugly

The specification of u at the
inlet and static P at the
outlet yields reasonable
results. These BCs are
highly compatible.

Usage of total P at the inlet
and static P at the outlet
can result in numerical
instabilities.

The specification of both
inlet and outlet u will result

in incorrect velocity
distributions. In any case,
what is driving the

momentum here?

Because mass flow rate is
proportional to wu, the
specification of mass flow
rate and static P at the
outlet yields reasonable
results for incompressible
situations.

The usage of total P at the
inlet, while using an outflow
BC at the outlet can result

in flow instabilities and
incorrect momentum
calculation.

P can be specified at the
inlet, so long as the code
calculates the exit
conditions.

Usage of mass flow rate at
the inlet and an outflow BC
at the outlet is not
recommended. This is
particularly so when p is not
constant, i.e., when the flow
is compressible.

For convenience, the total static pressure is defined as,

_ pu
Ptotal — ¥ static + 2 '




A set of BC conditions must be self-consistent, and along with the PDEs/ODEs being
solved, the system must not form an ill-posed problem [Rempfer, 2006]. This can result
when the BC fails to provide additional independent information, such as when n+1
unknowns are solved with n equations. Additionally, BC intersections, such as the
interphase where curves and surfaces meet, can be prone to numerical issues if the
intersecting BCs are not compatible.

5.3RANS Modeling Recommendations

If there is a choice between the 1988, 1998, and 2006 k-o models, the latter is much
superior, and is therefore the preferred version. Unfortunately, the coefficients for the
Kolmogorov k-o model are not well documented, so this version is not recommended.

If only k-€ models are available, the Myong-Kasagi is a fairly-recent, promising contender
with much potential, but not as much validation as the SKE; yet, because of its promising
characteristics (See Section 4.6.3.6), it is highly recommended. On the one hand, the
realizable and RNG k-¢ models resolve various issues associated with the SKE.
However, issues associated with the € PDE regarding eddy scales continue to impact all
k-€ models (except Myong-Kasagi, and similar models), as discussed in Section 4.7 and
its subsections.

For great, all-around RANS models, the 2006 k-m, 2003 SST, and Myong-Kasagi k-€ are
recommended, while the SKE is not; refer to Chapter 4 for additional details and
reasoning behind such choices. The v2-f model is quite useful, but encounters instability
issues on occasion. Table 5.5 summarizes some of the pros and cons of various
turbulence models.

Table 5.5. Some guidelines towards turbulence model selection.

Zero-equation Fastest, great for getting analytical Very limited applicability

(algebraic solutions from PDEs. (Ex. Prandtl and successful mostly for

models; mixing mixing-length model; Baldwin- very simple flows. No

length Lomax is good for transport of turbulent

hypothesis) turbomachinery/aerospace scales (e.g., vand £). Do
applications, and attached, thin, not use near solid
boundary layers.) Simplest form of  boundaries, unless using a
turbulence model, easiest to damping function (Van
implement, and very robust Driest), etc.

numerically.



One-equation
(k-algebraic
model)

Two-equation
models

Reynolds Stress
Model (RSM)

Standard k-¢
(SKE)

Renormalization
group (RNG) k-¢

Realizable k-¢

(RKE)

Fast. Computes turbulent length
scale. Spalart-Allmaras is good for
turbomachinery/aerospace
applications; Prandtl k PDE is
useful for fast calculations, test
cases.

Compute velocity turbulence scale,
and some other key scale, such as
length, etc. Generally provides
good results for many flows, with
varying degrees of success.

Zero-, one-, and two-equation
RANS models assume isotropic
viscosity via the Boussinesq
approximation. RSM is anisotropic
and Boussinesq-less. Great for
strong swirl, adverse pressure
gradients, and anisotropic
turbulence.

The most widely used model prior
to ~2005. Good for isotropic (high
Re) flows, simple flows, plane and
radial jets (but NOT round jets), and
plumes.

Improves standard k-¢ for low Re,
separation, and swirling flows with
an extra dissipation term.

Improves standard k-¢ for separated
and swirling flows, boundary flows,
strong streamline curvature, and
round jets. The realizability
constraints only yield positive
normal stresses. Better than RNG
for separated flow and secondary
flows. Solves the round jet anomaly.

No transport of the length
scale. More limited
compared to two-equation
models (e.g. k-, k-o).

Shear stress diffusion and
non-homogeneity are not
calculated. Cannot
compute eddy dynamics.

RSM uses six PDEs to
solve each of the six
components in the stress
tensor. Theory is great, but
successes are limited, as it
has many coefficients that
require justification.
Computationally costly.

Poor results for round jets
(round jet anomaly), far
wakes, strongly-curved
surfaces, swirl, flow
separation, sudden
acceleration, and low-Re.

Not good for round jets and
plumes. Not as stable as
the standard k-¢.

Not as stable as the SKE.



V2-f Has the same k-¢ PDEs as SKE, Some misses at low swirl.
but dissipation is different. Models Notoriously unstable.
the wall region without using wall or
damping functions. Good for strong

swirl.

2006 k-o Great for adverse pressure Requires a fine mesh near
gradients, separated flows, swirl, the wall, as it does not use
and low-Re (no wall functions). wall functions (which is
Solves the round jet anomaly. Best actually a pro). Itis
all-around RANS model. recommended that the first

node be at y* < 5.

5.4LES Modeling

The larger eddies obtain their kinetic energy from the bulk fluid energy, contain most of
the turbulent kinetic energy (~80%), transfer kinetic energy to the smaller eddies by
stretching them and breaking them up (“cascading”), and are responsible for the majority
of the diffusive processes such as mass, momentum, energy, and stress. The larger the
eddy, the higher its non-isotropic nature. For these reasons, the simulation of large
eddies is highly desirable. On the other hand, the smaller eddies take the kinetic energy
from the larger eddies and transfer their energy back to the fluid through viscous shear.
For high Re, the small-scale turbulent eddies are statistically isotropic. Therefore, they
are “more universal”, independent of the boundary conditions, and the mean flow velocity
than the larger eddies. Thus, simulation of the smaller eddies is also desirable.

So, why not simulate (resolve) the larger eddies, and approximate (model) the behavior
of the smaller eddies? To this effect, large eddy simulation (LES) models have been
developed for several decades [Smagorinsky, 1963; Leonard, 1974; Germano et al.,
1991; Kim and Menon, 1995; Nicoud and Ducros, 1999; You and Moin, 2007]. Figure 5.7
conceptually shows that LES resolves integral and Taylor eddies up to a user- or mesh-
defined minimum eddy size A, while DNS resolves the integral, Taylor, and Kolmogorov
eddies (all scales). In this context, the scale A determines the minimum size for which
eddies will be resolved, thereby acting as a filter for the subgrid scale where eddies
smaller than A are modeled.
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Figure 5.7. LES (top) and DNS (bottom) eddy modeling.

Figure 5.8 shows the instantaneous velocity based on resolved LES and DNS
calculations. Note that LES will capture a significant number of velocity fluctuations
associated with the larger eddies, while DNS will capture all the LES fluctuations, as well
as the Taylor eddies that were cut off from the LES (in the interest of a faster calculation),
and the Kolmogorov eddy fluctuations as well. In other words, DNS resolves the entire
eddy spectrum: integral, Taylor, and Kolmogorov eddies. Hence, the DNS instantaneous
velocity is more “jagged”, and of course, synonymous with the fluctuations seen in
experimental data. Note that RANS will not calculate the dynamic eddy behavior, but is
instead a representative behavior of “non-dynamic, average” eddy behavior. As such,
the RANS instantaneous velocity as a function of time (and space) can never have the
wiggles that are resolved by LES or DNS, as shown in Figure 5.9.




Figure 5.8. LES (top) and DNS (bottom) instantaneous velocities.
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Figure 5.9. A comparison of RANS, LES, and DNS instantaneous velocities.

Finally, Figure 5.10 compares the velocity distribution for a jet at Re=3,220, which was
simulated using RANS, LES, and DNS. A close inspection shows significant differences
and similarities in velocity distribution. The main idea is that although all three provide
useful details of the velocity field, RANS is faster than LES, which is faster than DNS;
conversely, DNS is more detailed than LES, which is more detailed than RANS. ltis also
worthy of mention, that theoretically speaking, DNS will calculate all turbulence cases,
while LES can do so for most situations, whereas RANS is much more limited in
applicability. The choice of turbulence model is ultimately based on financial resources,
time constraints, computational resources, and the necessary level of output required of
the simulation. Said more pragmatically, use the fastest model that gets reasonable
accuracy for the system of interest.



Figure 5.10. Velocity distribution for a turbulent jet using RANS (LHS), LES (middle),
and DNS (RHS).

For the reasons discussed above, LES can be considered as an intermediate
methodology between RANS and DNS, as a balance between output and computational
effort. In general, LES is about an order or two of magnitude more expensive than RANS,
but is an order or two cheaper than DNS. The reason for LES’s computational cost is
primarily due to the number of elements used (i.e., a simulation may require refinement
up to the smaller eddies in the Taylor scale). On the other hand, RANS elements are
much larger because they are not trying to resolve the integral and Taylor eddies that
LES resolves. Unlike RANS, LES captures the behavior of the larger, energy-carrying
eddies. Like RANS, the LES models typically employ the Boussinesq assumption (which
is applied to the smaller eddies in the subgrid scale).

LES is great for adverse pressure gradients, complex surfaces, and swirl, but can be
expensive in the boundary layer [Afgan, 2007; Rodriguez, 2011]; hence the use of DES.
Due to its success in theoretical and, increasingly in engineering calculations, there are
dozens of LES models in the literature. The interested reader is encouraged to pursue
this subject matter. A partial list of such models includes

e Standard Smagorinsky model [Smagorinsky, 1963],

e Algebraic dynamic model (aka “dynamic subgrid-scale model” or “dynamic
Smagorinsky”) [Germano et al., 1991; Lilly, 1992],

e Localized dynamic model [Kim and Menon, 1993],
e Wall-adapting local eddy-viscosity (WALE) model [Nicoud and Ducros, 1999],



¢ Dynamic global-coefficient model [You and Moin, 2007],
e RNG-LES model [CFD-Online, 2018], and

e Kinetic energy subgrid-scale model (KSGS) [Fuego, 2016A; Fuego, 2016B].
5.4.1 How LES Works—A Brief Overview

As anticipated, the LES methodology divides the simulation into two areas. One portion
calculates the velocity field of the larger eddies, thereby resolving their behavior explicitly,
while the subgrid portion represents the smaller eddies, which are modeled
(approximated). This is shown conceptually in Figure 5.11.
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Figure 5.11. Size filtering of LES model eddies.




The computational approach is made by choosing some length scale A. In particular, if
the eddy size = A, such eddy belongs to the larger eddies that are resolved, and if the
eddy is smaller than A, it belongs to the smaller, modelled category. That is, the larger
eddies are simulated (calculated, resolved), while the smaller eddies are “modeled” (more
like lumped as a homogeneous-like group for a RANS-like treatment). First proposed by
Joseph Smagorinsky [Smagorinsky, 1963], the smaller eddies are modeled with subgrid
scale (SGS) models. The two domains (the larger and the smaller subgrid eddies) are
then coupled together to seamlessly simulate the entire turbulent flow space.

A generic “convolution filter” for the space filtering approach is as follows [Leonard, 1974,
Shaanan, Ferziger, and Reynolds, 1975],

it 1 =5 e — 3>
i, (x,1) :J.”G(x,x' (x0)d’x
A convolution takes two functions and mathematically changes (maps) them onto a new

relationship that is related to one of the original functions. In this case, a convolution
takes the instantaneous velocity U, and filters it per eddy dimension, A, to produce the

filtered larger eddy velocity, L7l and the smaller eddy velocity ui’. So now, the
instantaneous velocity is split as follows,

o . . j—si ’
u, = u,(x,t) = instantaneous velocity = v, +u, ,

where L_ll is the resolved velocity field for the larger eddies and ul.' is the subgrid velocity

for the smaller, modeled eddies; this concept is illustrated in Figure 5.12. Note that the
velocity-field superposition notation is identical to Reynolds decomposition, but has a

different meaning, viz., U. is the velocity of the resolvable scale (the larger-eddy

velocities), while ul.' is the modeled subgrid velocity (eddies whose size is < A). This
means that the LES velocity field is

u, = Y (resolved + subgrid) = > _(larger eddies + smaller eddy approximation ).
Note that the convolution filter methods allow the analyst to employ GCI and Richardson
extrapolation.

Some authors use the following notation for the filter function to more explicitly indicate
the existence of a mapping transformation based on parameter, A,

G(x,x")=G(XX;A).
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Figure 5.12. Resolvable vs. filtered eddies.

Many types of filters are used in the literature, and a general consensus is not yet fully
formulated, primarily because the filters have properties that are not generically
applicable [Deardorff, 1970; Shaanan, Ferziger, and Reynolds, 1975; Ferziger, 1977;
Galperin and Orszag, 1993; Stefano and Vasilyev, 2002; Lesieur, Metais, and Comte,
2005]. Said more explicitly, the choice of filter will impact the solution, unfortunately. In
particular, the SGS model output depends on whether the filter has a smooth or sharp
cutoff. For example, smooth filters permit the filtered region to be fuzzier, in the sense
that the cutoff is not sharply divided between the larger eddies that are resolved, and the
smaller eddies that are modeled. By contrast, a sharp filter behaves more like a binary
switch, being either “on” or “off”, and thereby providing a well-defined separation cutoff
[Stefano and Vasilyev, 2002]. Because turbulence is not smooth and fuzzy, but is instead
sharp and chaotic, the sharp filter resonates well with the present authors. Some common
filters are discussed next.

A simple, yet very effective filter is known as the volume-averaged box filter (aka “running
mean filter”) [Deardorff, 1970; Shaanan, Ferziger, and Reynolds, 1975; Fuego, 2016B].
The filter includes the element volume A3 in its filtering criteria for cut-off; because the
eddy is either inside or outside of the unit volume, this filter is of the sharp type, and is
popular in CFD tools,



1 |x-x' | < aF
G(X—i';A): A3’ 2.
0, otherwise

Another sharp, spectral filter employs a sine function to filter out the eddies [Garnier,
Adams, and Sagaut, 2009],

o 55

A

(XX’

G(i—i’;A) =

A Gaussian filter was developed to account for eddy distribution [Shaanan, Ferziger, and
Reynolds, 1975], and is therefore a smooth filter [Stefano and Vasilyev, 2002],

S 3/2 oxx

Finally, the box filter is also known as the “grid filter” and as “top hat filter” [Wilcox, 2006;
Garnier, Adams, and Sagaut, 2009]. This filter employs the Heaviside function H, which
integrates the Dirac delta function, and therefore applies a cutoff at the halfway width,
Al2. This filter is also considered as a smooth filter [Stefano and Vasilyev, 2002], and is
defined as,

G(xX-X";A) :lH(%—R—X’

A
where
H=H(x): J.é'(s)ds
and

o = Dirac delta function.

5.4.2 LES mass and momentum conservation

As was done with the derivation of RANS, assume an incompressible, Newtonian flow.
Use SS mass conservation and the transient “laminar” (i.e. unmodified, unfiltered) NS

equation. WLOG, simplify further by letting 1 # ,u(F). Then, the unfiltered conservation
of mass PDE is

aui —
ox, -

0.

The unfiltered momentum conservation PDE is represented with the following NS
formulation,
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Now, perform the filter (bar) operation over the unfiltered NS equation to begin the
derivation of the LES momentum equation; do not apply u, =, + ul.' yet. Then,

on, , Out) o (az+8ajJ_l@
ot ox; pox,\dx, ox, ) pox

Now substitute 2, =1, + ui’ into the convective term, ul—u] (which is currently unknown),
and perform the FOIL multiplication,

— AV ' __ _ 1 r_ 1ot p—— _ 1 r_ o
lxll.l/lj z(ul. +Ml. )(Ul +l/lj ):(uiuj +l/ll.l/lj +1/ll- Mj +Mi Mj ):Ml-l/lj +l/ll.1/lj +Z/ll. Mj +1/ll. uj

Caution: unlike Reynolds averaging, L:ll # U, under LES bar operation; that is, the space

filtering of a space-filtered velocity yields an entirely different velocity (whereas the RANS
filtering of a filtered quantity yields the same quantity). Furthermore, under LES operation
[Clark, Ferziger, and Reynolds 1979],

uiuj ;tul.uj-

Instead,

p—— _ r— 1o
U.M.IM.L{‘.—FMZ-MJ- +ul.uj+ul.uj :

Note that Wilcox uses ﬁjui' for the second term [Wilcox, 2006]; this is appropriate for
symmetric tensors.
At this point, more succinct and fairly universal notation can be used, namely that

A - ’ r_ / ! —_—
uu, = uiuj+uiuj ‘u U tuu, = ul.u].+Cl.j+Lij+Rl.j

where the following standard notation is used:



Cl.jz Z/_liuj,—Fui’L_li: cross-term stress [Clark, Ferziger, and Reynolds 1979],

L,= wu, —ui,= Leonard stress arising from the convective term [Leonard, 1974;

Wilcox, 2006], and

R. = ui'uj' = SGS Reynolds stress [Clark, Ferziger, and Reynolds 1979].

y

In summary, the space-filtered NS reduces to

on, , Out) o [az+aajJ_l@
ot ox, pox(ox, ox | pox’

with the hitherto unknown term uu, NOW expressible in a more manageable form as

uu, = uiuj+Ll.j+Cij+Rfj.

Next, substitute the expression for u,—“, into the space-filtered NS and simplify the
expression as follows,
ou 8(L_lil/_lj+LU.+CU.+RU):£ o [ ou, ou, 1 oP

- +—1 _
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Now rearrange it to obtain the sought-after space-averaged LES PDE,

7 Oluiu, . Ou. P
o, , o) _p @ [6ul+ ujj 1P o ;|

o, pox|loa, o) pox

It is worthwhile noting that the Cj cross-term decreases as Re increases [Clark, Ferziger,
and Reynolds 1979]. In addition, ﬁiﬁj goes away once Ll.j is included, because the

Leonard stress has a negative uiu; term. Note that the Leonard stress can be

approximated as being on the order of the truncation error associated with second-order
finite differences [Shaanan, Ferziger, and Reynolds, 1975; Wilcox, 2006], and is ignored
by some for that reason [Wilcox, 2006]. On the other hand, the Leonard stress term ought
not to be discounted so readily, as it has a significant role regarding the transfer of the
eddy turbulent kinetic energy during cascading [Shaanan, Ferziger, and Reynolds, 1975].

For low-Re applications, Llj can be approximated as [Leonard, 1974; Clark, Ferziger, and
Reynolds 1979],

where 7, is calculated as the second moment of the filter function, G,



7, =[5 6(F)as.

Finally, in shrewd anticipation of using various SGS closure relationships, the previous
space-filtered NS form is conveniently re-formulated as follows,

ou, _ ou u O ||ou Ou, 1 oP
o ek pox|lox o | T o
t X . X . X . X, X,
;P J : Small modeled eddies P X;
| Large resolved eddies i
where
_ 1
;= _Qij + §Qkk5ij ’

PEI_)+§kak’and

Q,=C, + L, +R,=SGS stresses.

At this point, the LES filtered NS requires an analytical expression to calculate 7. For

this reason, there are dozens of SGS models in the literature, with the first model
originating over half a century ago. The first model, now called the standard Smagorinsky,
is analogous to the Newtonian shear model [Smagorinsky, 1963], and is expressed as,

T = 2Vr§ij = (CSA)2 \/§U§U :

The resolved strain rate is

s 1o, @

" Ox, O, ’

1

while the Smagorinsky eddy kinematic viscosity is

V.= £ = (CSA)z N §u‘§y ’

Yol
where

A=(AxAyAz)"” and

Cs = the Smagorinsky constant.

Some authors use 0.1 < Cs < 0.3 [Tutar and Holdo, 2001], while others use 0.1 < Cs <
0.24 [Fuego, 2016A]. Additional guidelines regarding Cs are found in Section 5.4.3.



5.4.3 Miscellaneous LES modeling recommendations

Computer processing unit (CPU) time is strongly dependent on the minimum
element size, A (and number of elements, of course).

o The smaller A is, the longer it will take to run the simulation.

For very large simulations, RANS can be submitted first to get faster, preliminary
results.

o Then, the LES calculations ought to be submitted as soon as possible, as
they can take 10 to 100 times more computational time than RANS.

A good starting point for an LES simulation is to let A=\ (i.e., simulate down to the
Taylor eddies).

o The logic behind this approach is that LES resolves the larger eddies, which
carry about 80% of the total turbulent kinetic energy. Therefore, setting A=\
means that sufficient computational nodes are included in the region
occupied by the integral eddies, as well as a significant fraction of the Taylor
eddies that can also carry a significant fraction of k (recall that the Taylor
eddy spans a wide spatial range).

The integral and Taylor eddy dimension can be estimated using the LIKE algorithm
(refer to Sections 3.4 and 3.5).

The usage of higher order elements such as hexahedrals is highly recommended
(conversely, avoid lower-order tetrahedrals) [Tyacke et al., 2014].

Caution: Cs magnitude has a strong dependency on geometry and flow
conditions—unfortunately, there is no universal value that is valid for all scenarios.

Some reasonable guidelines and values for Cs for various specific cases include:
o Cs=0.1forinternal flow in ducts [Rogallo and Moin, 1984],
o Cs=0.15 for flow around a sphere [Tutar and Holdo, 2001],

o The Fuego CFD code has Cs = 0.17 as a default value, which is the average
of its minimum and maximum range [Fuego, 2016A], in an attempt towards
a good, all around value, and

o Cs=0.21 forflows where buoyancy dominates or flows with low mean shear
[Rogallo and Moin, 1984],

o Csshould be decreased for situations where the mean strain rate increases,
and

o If Csis too large, the eddies will undergo excessive damping.

The dynamic Smagorinsky model automatically calculates Cs in both space and
time as the calculation proceeds, whereby Cs = C; (Tc,t).



e Given a choice of the standard Smagorinsky vs. the dynamic Smagorinsky model,
use the latter; a “constant” Cs can never fully represent a dynamic situation
involving spatial and temporal changes.

e Unfortunately, the standard Smagorinsky calculates a non-zero value for vt at the
wall, so some LES models are forced to use a damping function such as van Driest.
Nevertheless, this issue can be overcome by using sufficiently-discretized
resolution near the wall, without having to use damping functions [Rodi et al., 1997;
Tutar and Holdo, 2001].

e A wall function can be detrimental for LES simulations with separated flow [Rodi
et al., 1997].

e The addition of wall and damping functions tend to induce a counterintuitive flavor
for LES purists. Namely, LES theory adheres to the notion that flow ought to be
adequately calculated using a reasonable A that includes sufficient quantities of
the larger and intermediate-sized eddies (i.e., a good fraction of the Taylor eddies),
plus the behavioral contributions of the lumped, smallest eddies. So why “fudge”
the simulation with extraneous functions? Particularly, any numerical accuracy
that damping and wall functions may add to the simulation, can doubtlessly be
obtained using sufficient spatial resolution, higher order elements, and good mesh
metrics, especially near the wall.

e As for what is sufficiently discretized for LES, the limit can be based on purely
theoretical arguments: the first computational node ought to be the minimum of:
either the smallest eddies being resolved (say the Taylor eddies) or the size
determined by the physics in question (e.g., the viscous layer is at y* = 5).

e Large Re simulations should include a mechanism for calculating the Leonard
stress [Shaanan, Ferziger, and Reynolds, 1975].

5.5DNS Modeling Recommendations

RANS calculates time-averaged turbulence effects, but no eddy dynamics. By contrast,
direct numerical modeling (DNS) is a turbulence approach that solves the unsteady
Navier-Stokes equations such that all turbulence scales are resolved, and unlike LES, no
subgrid model is employed [Wilcox, 2006; Afgan, 2007]. As a result, DNS often-times
requires multiple tens of millions to billions of computational nodes [Day, 2009]. DNS is
therefore used sparingly, especially in large systems under high Re; the higher the Re,
the higher the required node count. Nevertheless, time favors this turbulence method,
especially as computers and algorithms become faster. As of 2018, DNS is generally at
least two to three orders of magnitude more expensive than LES.

DNS is unique amongst the turbulence models because it does not employ averaging (no
4, no u’), no Boussinesq (or nonlocal, nonequilibrium approaches), no k, ¢, ®, or v, no
wall functions, no curve fits, no ad hoc models, and so on and so forth. DNS is purely
Navier-Stokes calculated for all time and spatial scales. DNS uniquely solves Navier-
Stokes to calculate the actual, instantaneous, primitive-variable fluctuations (u’, v, w’, T,
P’, etc.).



Fortunately, as of 2018, DNS is no longer limited to low to moderate Re flows for
reasonably-sized domains (this excludes very large systems such an entire nuclear plant,
cruise ships, very large geophysical systems, etc.). Starting around 2005 or so, it has
become more commonplace to see higher Re calculations for small- to mid-sized
industrial applications [Huser and Biringen, 1993; Terentiev, 2006; Stein, 2009]. For
example, excellent results were obtained for swirling jets at Re=5,000 and swirl number
S=0.79 [Freitag and Klein, 2005]. A higher Re in the range of 12,000 < Re < 33,500 and
S<0.5 was achieved for swirling jets a year later [Facciolo, 2006]. Channel flow involving
cubes as wall roughness have been simulated up to Re = 7,000 [Leonardi and Castro,
2010]. DNS has also been conducted on oscillating and stationary cylinders at Re =
10,000 [Dong and Karniadakis, 2005]. Using spectral methods, a total of 40963
(6.87x10"° grid points) were used to explore isotropic turbulence in atmospheric flows at
Re, = 1,000 [Kaneda and Ishihara, 2006; Yeung et al., 2010]. And many more examples
can be cited that show a favorable trend towards DNS. The case for DNS is further
strengthened in light of faster computational systems, such as multi-core and manycore
processors for increased computing performance [Alfonsi, 2011], as well as nano and
quantum computers [Rudinger, 2017]. The novel hardware, combined with quantum
algorithms, will surely continue the DNS computational growth trend for many decades to
come, if not centuries. In any case, as computational power increases, DNS will not only
be used for turbulence research and small systems, but for engineering design as well
[Kim, Moin, and Moser, 1987].

Moreover, if done properly, DNS is extremely accurate—as good, if not better, than
experimental data. For example, DNS can be better than experimental data because it
can tract parameters that are difficult, and perhaps even impossible, to measure
experimentally (e.g., P’). Furthermore, DNS provides much more detailed data than any
experiment could ever achieve, e.g. “computational probes” in the millions to billions to
trillions. Moreover, many recent studies can be cited in the literature whereby DNS
calculations compare favorably with experimental data, to the point that many authors go
as far as considering the output as good as experimental data [Moet et al., 2004; Freitag
and Klein, 2005; Duraisamy and Lele, 2006; Afgan, 2007; Bonaldo, 2007; Busch, Ryan,
and Sheard, 2007; Walther et al., 2007; Taub et al., 2010].

For the interested reader, many useful guidelines, too many to be cited here, can be found
in the literature. A small sample includes [Moin and Mahesh, 1998; Modi, 1999; Wilcox,
2006; Coleman and Sandberg, 2010; Alfonsi, 2011; Joslin, 2012; Tryggvason and
Buongiorno, 2013; Argyropoulos and Markatos, 2015; Joshi and Nayak, 2019].

5.5.1 DNS numerics

DNS usually requires higher-order numerical methods (e.g., fourth, fifth, and sixth order
in space), basically with the goal of reducing numerical errors such as aliasing and
associated instabilities [Rai and Moin, 1991; Huser and Biringen, 1993; Drikakis and
Geurts, 2002; Sengupta and Bhaumik, 2019]. The aliasing error refers to the calculational
error associated with the nonlinear convective term on the node-based mesh.

Generally, fourth order methods are used in DNS, especially during its earlier years
[Coleman and Sandberg, 2010]. More recently, this trend has seen some changes,
including the usage of both second and fourth order methods that can be used



successfully if error mitigation precautions are taken [Verstappen and Veldman, 1997,
Wilcox, 2006].

Many DNS solvers are explicit due to large memory constraints required by this approach.
But, more recently, implicit solvers have become more common [Rodriguez, 2000;
Wilcox, 2006; Coleman and Sandberg, 2010; Alfonsi, 2011].

5.5.2 DNS BCs and ICs

BCs must be employed such that they do not generate spurious instabilities or have
numerical errors that overshadow the eddy dynamics, especially the smaller eddies that
are associated with very small velocity and length scales.

Inflow BCs pose issues because it is not possible to implement a priori inflow distribution.
Therefore, the BC takes the DNS output from the computational domain, modifies the
results to reflect the inlet conditions, and then uses the rescaled data for the next time
step. An alternative is to let the flow reach turbulence, but that extends the domain to a
prohibitive size. Another approach is to supply functions that randomly perturb the flow.
Additionally, a relatively-coarser mesh calculation can be used as input, or perhaps even
an LES simulation can be used as a starting point for the input; of course, these two would
only be approximations.

Well-posed outflow BCs permit the eddies to exit the boundary seamlessly, without
producing numerical errors, instabilities, and reflective waves. For this reason,
researchers have developed non-reflecting, damping BCs, which have demonstrated
their ability to suppress spurious waves [Thompson, 1987; Spalart, 1990; Nordstrom,
Nordin, and Henningson, 1999].

Periodic BCs are extremely useful for DNS modeling. Recall that fully developed flow
(FD) is relatively homogeneous along the perpendicular (spanwise) direction of the
primary flow [Kim, Moin, and Moser, 1987; Moin and Mahesh, 1998; Leonardi and Castro,
2010]. Therefore, periodic BCs are ideally suited here. This is an important point, as
having to include the entire system means the addition of tens of millions to billions more
computational cells. Refer to Section 2.6 for estimating the entrance length of turbulent
flows.

Wall BCs with no slip (provided Kn is in the appropriate range) are considered fairly safe
for DNS applications [Coleman and Sandberg, 2010; Leonardi and Castro, 2010].

Regarding ICs, these can be obtained from coarser meshes, and then superimposed on
the DNS grid [Coleman and Sandberg, 2010]. Then, the initial input is flushed out by
allowing the calculation to run for several time periods, typically three or more
flowthroughs [Dong and Karniadakis, 2005]. Alternatively, ICs can be chosen such that
they start the simulation using reasonable values, such as having the initial velocity equal
to zero throughout the domain. Then, the simulation proceeds until it reaches its
stationary limit [Day et al., 2009]. At this point, the calculated turbulence data should be
independent of the ICs.



5.5.3 DNS spatial domain

LES calculates the integral eddies and larger eddies up to some user-defined or mesh-
defined minimum scale, such as the Taylor scale. On the other hand, DNS not only
resolves all the LES eddies and the smaller Taylor eddies that were filtered out by LES,
but it also resolves the Kolmogorov eddies. Said most concisely, DNS calculates all eddy
scales. Because DNS includes the Kolmogorov eddies, it is not uncommon for the first
computational node to be at small fractions of y*, with y* << 1.0. For example, a channel
flow at Re=3,300 included the first computational node at y* = 0.05, while its maximum
spacing was set to y* = 4 [Kim, Moin, and Moser, 1987]. Of course, Kolmogorov eddy
size is dependent on Re, and the larger Re is, the smaller y* ought to be. These are good
guidelines, but to ensure more problem-specific node spacing, the user is encouraged to
use the LIKE algorithm to determine node spacing; refer to Sections 3.4 and 3.5.

The Kolmogorov eddy is the smallest eddy scale that is sustainable by the flow, and is
calculated as follows,

The distance between the computational nodes must not exceed this value. However, to
fully capture the eddy’s interior dynamics, a more rigorous restriction is imposed for the
distance between the computational nodes,

Ax < Qtoz.

3 2
As for the largest eddies, it is not appropriate to assume that the hydraulic diameter is the
limiting scale. For example, because the larger integral eddies can stretch significantly
(say at 45° from the main flow direction), the maximum bound is conservatively placed at

A=2D, .

This size restriction guides the minimum size that a mesh domain can be, and still have
enough space to capture all eddies. As a check that the DNS computational mesh is
sufficiently large, the eddy fluctuations must be uncorrelated up to half the distance of the
domain for the largest eddies.

5.5.4 DNS time and stability criteria
If the time step is limited by the Courant limit, then
u’AtCourant — z/l,Al‘Couram‘ < 10 .

Ax n

On the other hand, the Kolmogorov eddy life time before collapsing into a laminar sheet
is calculated as




Therefore, the smallest time step is the minimum of the two,
AtDNS = min (T’ AtCoumnt ) :

If an explicit DNS simulation show signs of instability, the time step can be restricted even

further using a more restrictive criterion, which is based on the wall friction velocity, u:

and the channel characteristic length, Xxchar [Kim, Moin, and Moser, 1987; Wilcox, 2006],
char
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where
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A stability criterion that combines the convective and diffusive limits is as follows
[Coleman and Sandberg, 2010],

2 2
(1—4@} +(”—Atj <1,
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which applies to the following expression for momentum conservation,
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As discussed in Section 3.5, the number of nodes required in 1D DNS calculations is
estimated as

P a4
N,, =Re;",

where

For 3D DNS calculations, the number is significantly larger [Afgan, 2007; Sodja, 2007;
Stein, 2009; Taub et al., 2010],

~ PO 11/4
N,, = Re;” to Re, .

A more precise relationship is as follows [Wilcox, 2006; Sodja, 2007],
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As might be fully expected by now, the impressive 3D DNS calculations come at a high
cost: the CPU needed to solve these problems is a strong function of the turbulent Re, so
the required computational power only increases stratospherically to the third power as
Re increases,

CPU o Re;.

5.6 Miscellaneous Do’s and Don’ts of the Trade

5.6.1 Well-posed solutions

Certain criteria must be met to solve fluid dynamics PDEs. This includes the
mathematical notion that the problem is “well-posed”, meaning that the following three
conditions are satisfied by the solution: 1) the solution exists (which sounds obvious, but
not all problems have solutions!), 2) the solution is unique, and 3) the solution depends
continuously on its boundary and initial conditions. For tough engineering problems that
seem to exhibit more than their fair share as “code breakers”, it is advisable to question
if the problem at hand is well-posed. Are the boundaries consistent? Does a solution
exist?

Example 5.8. A university wishes to perform wind tunnel experiments and CFD analysis
on a dimpled airfoil experiencing a wide Ma range, from subsonic (Ma < 1) to supersonic
(Ma = 1.0) (but not hypersonic). To simplify the analysis, assume that the flow is SS,
inviscid, irrotational, and compressible. In addition, simplify the problem further by
considering a 2D Cartesian geometry, with no external heat sources, and let the air
behave as an ideal gas. Because the flow is SS and inviscid, the transient and viscous
terms readily drop, but the convective term remains. For this highly-simplified situation,

the momentum and energy conservation equations reduce to (I—Maz)a—u+@=0

ox Oy

after several pages of elegant mathematical procedures that involve the Prandtl-Glauert
rule for linearizing compressible, isentropic flow [Hanson, 2012; Pritamashutosh, 2014].
For this situation, determine if this problem is well-posed for the Ma domain in question.

Solution. Many terms in the conservation equations are zero for this for this idealized
situation. In particular, because the flow is SS,

a —_—
ot
Because the flow is inviscid,

ViV =0.

Because the flow is compressible (Ma > 0.3),

V.V #£0.

0.



This implies that the conservation of mass is reduced to,

L-As ) - (%)
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And because the flow is irrotational, the cross product of the velocity is zero. Namely,
from the definition of an irrotational flow,
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Now use the dot product to multiply by ]; (because /;l; =1), thus reducing the PDE to

N _ou_y
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The momentum and irrotational PDEs are very valuable, as they allow the elegant usage
of the eigenvalue method, and this will be used to investigate the unruly behavior of this
seemingly straightforward PDE system of equations. In particular, the above two PDEs
conform to the following 2D PDE generic classification [DuChateau and Zachmann,
2011],
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Therefore, the two PDEs can be put into matrix form, in anticipation of determining their
eigenvalues, and thus pin down their behavior (e.g., it will be determined if the flow is
hyperbolic, parabolic, elliptic, or mixed). The two PDEs can now be expressed in general
matrix format as,
M 8_W +N 6_W =E,

Ox oy
such that the M and N matrices are associated with the x and y partial derivatives,
respectively,

a ¢ b d,
M = and N = :
a, ¢ b, d,




In this context, the two vectors are

The coefficients for M and N are as follows,

1-Ma®> 0 0 1
M = and N = :
0 -1 I 0
Fortunately, M is a 2x2 matrix, so obtaining its inverse is straightforward [Kreyzig, 1979];
the inversion is performed in preparation to obtain the system eigenvalues,

1
M =|1-Md*
0 -1

For convenience, let

O=M"'N. Then,
1 1
01(o0 1 0
®=|1- Ma* L 0}: 1— Md*
0 -1 -1 0

Notice that in this particular case, N acts as a rotational operator on M; that is, it rotates
each of the coefficients in a clockwise direction by one element. Finally, the A eigenvalues

are found through the determinant, ‘(I) - /11’20 [Kreyzig, 1979]. That is,

1
A 5 1
1-Ma*|=0=2" + ——.
1-Ma
-1 -A

Solving for A, it is evident that the two distinct eigenvalues are solely a function of Ma,

A4, =:k L )
Ma* -1




From the rules of the eigenvalue method, if there are two real and distinct eigenvalues,
then the solution is hyperbolic. If there is only a single real eigenvalue, the solution is
parabolic. Finally, if the eigenvalues are imaginary, then the solution is elliptic. Therefore,
this problem has a mixed behavior, being elliptic if Ma < 1 and hyperbolic for Ma > 1. But,
what happens when the hapless CFD engineer is asked to solve the problem for Ma=1?
Will a solution exist? Will the CFD calculation cease to abort if the timestep is reduced
or more elements are added?

5.6.2 Time steps, stability, and CFL

Most modern commercial CFD tools are fully implicit. This means that their numerical
method is unconditionally stable. That is, the method should be stable for all time steps.
However, this does not mean that very large time steps are encouraged. In fact, too large
a time step in an implicit algorithm will increase the numerical error as a result of
truncation. By contrast, explicit and semi-explicit methods are easier to program, but
should never use a time step larger than the Courant limit; failure to do so will result in
numerical instability, large parameter oscillations per time step, nonsensical output, a
severe cut in the time step if the coding attempts to adjust the time step, and code aborts.
Thus, whether a numerical method is implicit or explicit, it is always a good idea to
calculate the Courant number, either as a guide to limit truncation error, or to avoid
instabilities, respectively. The Courant number is also referred as the CFL number (the
last name initials of its developers) [Courant, Friedrichs, and Lewy, 1967].

To determine the CFL limit for a 1D PDE, consider the following,
0 0
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where

b

¢=ascalar (e.g., p, T, u, v, w) and
¢ = parameter for a given PDE (e.g., u, etc.)

Then, if c=u, meaning that the PDE is a 1D /laminar, inviscid flow momentum equation,
the 1D CFL limit can be expressed as,

CFchﬁzuﬂSC
Ax Ax
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where

At = time step,

Ax = distance between computational nodes in the x direction, and

C_. is the maximum size of the CFL number, depending on the computational situation,
as explained earlier and later in this Section.

In 2D, the laminar CFL is expressed as



CFL = ult " VAL
Ay

while in 3D, the laminar CFL is
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CFL values greater than 1, up to 5 or so, are acceptable for implicit solvers [Andersson
et al., 2012]. Some code developers push the envelope even further, using CFL as large
as 10, usually as a quick turnaround for testing new code. (Though this likely results in
large truncation error). Nevertheless, used with caution, CFL values greater than 1 for
implicit codes are desirable, especially for those seeking faster numerical solutions.
However, it is up to the analyst to show that temporal discretization is satisfied, that the
solution converges as At is reduced. This can be shown as follows: once the solution
converges spatially using a given time step Ats, a second simulation is run using the same
mesh, but with a time step of Afs/2. If the solution does not change appreciably (say
<1%), temporal discretization has been reached, at least reasonably so. For the truly
obsessed (or diligent!), yet a third simulation can be performed, with the spatial distance
being cut once more in half, using At//4, and plotted to show temporal convergence vs. a
desired variable, e.g., u, P, etc.

In contrast with implicit solvers, a CFL value of 1.0 or less is necessary for explicit solvers,
lest the solution becomes unstable. For an explicit application for the laminar,
compressible, inviscid Navier-Stokes in a 2D Cartesian system [Anderson, Tannehill, and
Pletcher, 1984], the maximum recommended time step is,
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where
u, = sound speed.

For convenience, the above expression will be referred as “ATP”, and can be extended
onto a laminar 3D format as,

At 1

|u|+|V|+|W|+uS -+ 12+ 12
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as well as simplified onto the laminar 1D expression,
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Note that the ATP expressions are for explicit numerics (not implicit), so CFL < 1.0. Note
as well that such expressions do not depend on viscosity, as Af__is limited to situations

where the viscous effects are negligible compared with the inertial term. As a further note
of caution, stability analysis not only depends on the PDE in question, but also on the
type of numerical discretization used [Courant, Friedrichs, and Lewy, 1967]. Thus,
stability analysis tends to be ad hoc, for very specific applications, and not necessarily
generalizable. Fortunately, there are exceptions, because the physical PDEs tend to
follow similar expressions (see Problem 5.8), and that is the focus of much research
[Courant, Friedrichs, and Lewy, 1967; Anderson, Tannehill, and Pletcher, 1984]. And one
final cautionary note: the above expressions are not suitable for turbulent flows! This
situation will be treated though simple approximations later in this Section.

Now, a close inspection of the CFL criterion and the ATP expressions shows that these
limits are specific to convective limits. What happens if stability is dependent on the
viscous dissipation, meaning that only so much viscous momentum can be transferred
per unit time? Consider a system where Navier-Stokes has the following form,
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Suppose that the viscous (i.e., molecular diffusion) term is larger in magnitude than the
convective term, and that the pressure and body force are small. Then, for a 1D laminar
system,
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The above equation can be approximated using forward in time, centered in space
(second order) finite differences. Then, the von Neumann stability analysis method (or

some such method) can be applied to determine stability limits. In this case, the numerical
error E in both space and time can be modeled as a Fourier series,

M
E(x,t)= Ze“’ei’“ .

n=l
And, after about one page of elegant algebra, a stable time step is obtained if the following
condition is satisfied,

2
< 1A
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Again, note that the above stability expression applies for laminar flows.

At




The above expression can also be derived by using scaling analysis, whereby the
transient viscous PDE is transformed according to its key parameters and variables.
Namely the PDE scales (transforms) approximately (to within an order of magnitude) as
follows:
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Note that scaling is generally palatable for engineers, but is known to give mathematicians
extreme heartburn!

For small time steps and small changes in space, then t ~ At and x ~ Ax, respectively; it
is assumed that the error in these approximations is small because the changes are
linear, i.e., taken near a well-known point and not deviated much from it. Therefore,
substituting the approximations, scaling allows the following approximation,

2
At LA

max, scale

Then, because diffusing more than half of the available mass per unit time step will lead
to instabilities, the maximum allowable time step is cut in half, and imposed as a limiting
bound,
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Thus, the same bounding equation is derived for laminar flows, whether scaling
arguments are used or a more rigorous method is applied (i.e., von Neumann stability
analysis). Thus, the solution lends credibility to the scaling method, and it is therefore
extended onto turbulent flows. That is, how can the maximum time step be estimated for
a turbulent flow? Lacking much guidance in the literature, the analysis begins by noting

that for turbulent flows, v, >V, so the viscous term can be ignored (at least as a first order

approximation). Now assume a situation where the convective term is sufficiently smaller
than the turbulence diffusion term, and considering only the x-direction,
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Using scaling analysis, the PDE is thereby transformed into,
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Finally, in analogy with the laminar convective scaling completed earlier, the limiting
bound for turbulent diffusion ought to permit at most half of the available mass to transfer
per unit time step. Further, the approximation will consider only small time steps and
spatial changes. Hence,
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Finally, to ensure stability for explicit methods, the minimum time step based on the
convective (CFL or ATP) and diffusive bounds should be used, where diffusive refers to
either molecular or turbulent,
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5.6.3 A few more tips

Reducing computational time:

[®]

(@]

Where appropriate, use symmetry to reduce the element count.

Calculational time is substantially reduced if the problem can be reduced
from 3D to 2D, or even 1D.

Certainly, turbulence is a 3D phenomenon, but it can still be simulated in a
2D domain when the flow tends to be symmetric about the primary flow
direction. Furthermore, the largest turbulent fluctuations tend to occur along
the primary flow direction.

For implicit calculations, let CFL > 1, to perhaps 2, and as high as 5. This
is highly practical for exploratory calculations; but for the final calculation,
reduce the CFL so that truncation error is minimized.

Seek to reduce the system size. For example, regions of interest may
already be FD, so modeling the flow as it reaches FD is not necessary. If
so, an FD flow BC will significantly reduce the computational domain.

Use node biasing to increase the distance between nodes in regions with
small velocity gradients. But ensure that the expansion ratio is less than
1.5.

In general, higher-order numerical methods have higher accuracy, and therefore
require fewer computational nodes. However, higher-order methods tend to be
more unstable because they have less numerical dissipation. In addition, fourth-
order spatial methods require more complex boundaries, including so-called
“‘ghost boundaries”.

Use iterative solvers (e.g., Gauss-Siedel, Jacobi, and successive over-relaxation)
for very large matrices (e.g., systems with a large number of computational nodes,
say in the millions or billions).

Use preconditioners to transform an unruly matrix so that it is more manageabile,
thereby making it more amenable towards numerical iteration or solution.

Preconditioners can be useful under the following circumstances:

- unstructured meshes (meshes with irregular patterns),



- ill-posed matrices, matrices with large Jacobians, or systems with large
condition numbers,

- multiphase flows,
- flows with widely-varying Ma, and
- meshes with large span (range) in aspect ratio.

5.7 Natural Circulation Modeling Hints

Many systems undergo natural convection, aka free convection and natural circulation.
This phenomenon is typically generated as a result of temperature gradients that induce
density changes in fluids, thereby causing the fluid to flow. Other natural circulation-
inducing gradients include species concentration gradients such as changes in salinity,
and so forth. The key point is that under natural circulation, there is no forced circulation,
such as occurs from pumps, injectors, and the likes. Natural circulation systems include
passive cooling of nuclear reactors under normal and accident conditions, bodies of water
(ponds, lakes, oceans), weather patterns (thunderstorms, wind, tornadoes, hurricanes),
storage tanks, heat exchangers, micro devices, heat pipes, heat sinks, building circulation
flow patterns, etc. Natural circulation flows can be laminar, transitional, or turbulent. And
to add more complexity, these flows can be purely natural or involve a degree of
extraneous forced flow, in which case the flow is considered as “mixed” circulation.
Because natural circulation flows tend to have lower velocities than forced flows, they
exhibit special numerical challenges.

5.7.1 Natural circulation modeling

Consider a Cartesian system under natural circulation, subject to conservation of mass,
momentum, and energy, as shown in Figure 5.13. If the system is 2D (which is a
reasonable approximation due to symmetry), then conservation of momentum under
laminar natural circulation is,
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where

u = fluid velocity in the x-direction,

v = fluid velocity in the y-direction,

p = fluid density,

u = fluid dynamic viscosity, and

g = gravitational constant in the x-direction.

Note that the viscous term in the x-direction is negligible because the u velocity gradient
WRT to x is a relatively-smaller quantity.
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Figure 5.13. Thermal boundary layer generated by a heated wall on the LHS.

The conservation of energy equation is,

a—T+I7-§T:—°+aV2T,
ot pC,
where

T = fluid temperature,

IV = velocity vector,

or = volumetric heat source,
t =time,

a = L=therma| diffusivity.

PC,
k = fluid thermal conductivity,
p = fluid density, and
C, = fluid heat capacity under constant pressure.

The energy equation simplifies under the assumption of a 2D system with no heat source,
or or or k o°'T

—tU—FV—=———.
o0 o d pC, oy



At this point, the dimensionless Grashof number (Gr) can be defined, which is analogous
to Re. In particular, Re is the degree of laminarity or turbulence under forced circulation,
while Gr times the Prandtl number (Pr) is a measure of the degree of laminarity or
turbulence under natural circulation (GrPr = Raleigh number=Ra). For example, for a
vertical plate, GrPr < 10° implies laminar natural circulation, while GrPr > 10° implies
turbulent natural circulation [Holman, 1990]. Gr, Pr, and Re are defined as,

3
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In this context,
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p.—p=pB(T-T,),

AT=(T,-T,),

h = wall height,

Tw = temperature of the wall in contact with the fluid (heats-up the fluid),

T, = fluid temperature far away from the wall, and

v = —=fluid kinematic viscosity.

R~

Note that there is a pressure gradient caused by the fluid’s weight per unit length of the
fluid,
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At this point, it is convenient to substitute the two expressions for pressure and density
into the momentum equation, as follows,

2
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Furthermore, the transient term can be dropped if SS is assumed, and dividing by p,
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But the new PDE expression cannot be solved exactly. Fortunately, there are many ways
to obtain approximate solutions for this intractable PDE, such as back-of-the envelope
energy balances [White, 1991], numerical methods [Ostrach, 1953], and extended
numerical solutions resulting in a curve-fit solution [Rodriguez and Ames, 2015].

A simplified method for estimating the natural circulation velocity begins by assuming that
there is a macroscopic (lumped) balance between the potential and kinetic energies (PE
and KE, respectively) for the fluid [White, 1991],

pe=1 ghAp
2
and
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where Vi is the average natural convection velocity. If PE is approximately balanced by
KE, then
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Solving for the characteristic fluid velocity,

1/2
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where it is assumed that

AP . pAT
P

Various researchers have employed polynomial techniques to approximate PDE
solutions [Blasius, 1908; Holman, 1990; Haberman, 2004]. For example, Holman
assumes a cubic polynomial with four unknown constants, and then solves the unknowns
subject to the problem’s BCs [Holman, 1990],

u(x,y)zU(a+by+cy2 +dy3):U(y).

The laminar velocity distribution u is assumed to be solely a function of y, with no x
dependency. This is not a bad approximation, as most of the velocity changes occur in



y, as shown in Figure 5.13. Then, upon applying the BCs, and after a few pages of
algebra, the desired velocity distribution is obtained for a laminar, natural circulation flow
for Pr ~ 1 [Holman, 1990],
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However, the above laminar velocity can be further developed by taking the derivative of
uWRT y, and setting it to 0. That is, the thermal boundary thickness, y, can be obtained
at the location where u is maximum, as follows,

ﬂzoz[ﬂazg(n_Tw)}(l—4l+3y—2j.
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After about one page of algebra,

y:§.

In other words, for any location x, there is a maximum peak velocity u, which is always
located at y=6/3 (this is a direct consequence of the velocity distribution being parabolic;
refer to Figure 5.13). Thus, the maximum velocity u(x) for laminar flows with Pr= 1 is now
derived as,
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A more general laminar velocity expression, valid for 0.001 < Pr < 1,000 [Rodriguez and
Ames, 2015], is based on an extension of Ostrach’s work [Ostrach, 1953], and is cited as
follows,

. (x)=2(0.5Pr " — 024) "= [Gr, .

X

The thermal boundary layer for the laminar circulation was derived by Blasius over a
century ago [Blasius, 1908],

The thermal boundary layer thickness for the laminar natural circulation flow can also be
expressed as [Holman, 1990],
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where C;7 is a function of the fluid physical properties a, B, and v; moreover, the middle
term is quite similar to Gr, and is in fact the so-called buoyancy parameter times the
temperature difference [White, 1991],
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5.7.2 Additional natural circulation modeling guidelines

e Knowing the peak velocity allows the analyst to estimate a reasonable time step.
The CFL criteria can therefore be estimated by using the peak velocity for laminar
flows discussed in Section 5.7.1.

e Pr has a significant impact on the modeling of natural circulation flows [Ostrach,
1953; Holman, 1990; Yokomine et al., 2007; Rodriguez and Ames, 2015].

e Low Pr materials (e.g., liquid metals) cannot be adequately modeled using a fixed
turbulent Pr, as the results can diverge from Nusselt number (Nu) experimental
data by as much as 50%. This divergence trend increases as Re increases.
Nevertheless, this situation can be fixed by using wall functions suitable for low-Pr
fluids, along with low-Pr turbulence models such as the k-o-k+-€: [Bna et al., 2012].
Prt is generally a function of Re and Pr for low-Pr fluids [Jischa and Rieke, 1979;
Chen et al., 2013],
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e For large Pr materials (e.g., oils), the turbulent Pr; is generally a function of both
Re and Pr as well [Hasan, 2007; Yokomine, 2007],

Pr.=6.374Re—0.238Pr—0.161.

e In general, a reasonable time step for natural circulation flows is typically on the
order of 10s to 100s of times larger than forced convection, because natural
circulation flows tend to be that much slower.

e For codes that allow the user to use different (separate) solvers for mass,
momentum, and energy (e.g., Fuego [Fuego, 2016B]), it is preferable to choose
the same solver for all three PDEs, and to use the same convergence criteria.
Failure to do so may result in inconsistent solutions and code aborts.

e Because the flow motion depends on density differences that occur near the wall,
it is critically important that the mesh near the wall be sufficiently discretized and
have good mesh metrics. For turbulent natural circulation flows, y*=1 is an ideal
starting point. The criteria for laminar, natural circulation flows is not as restrictive,
and is resolvable with meshes having 10s to as much as 1,000s of fewer nodes
than if the flow were turbulent and modeled with a RANS model.



e Natural circulation flows can involve many transitions, including chaotic transitions,
bifurcations, and turbulence. Therefore, changes in key parameters may result in
significantly divergent flows [Gleick, 1988; Strogatz, 1994].

o Because of the above situation, small changes in initial conditions may
result; under the right conditions, chaotic flows and bifurcations will occur
as well [Strogatz, 1994].

o In fact, the famous system of three coupled PDE equations presented by
Lorenz that so beautifully capture the butterfly-like Lorenz attractor, were
derived directly from conservation of energy and the Navier Stokes
equations [Lorenz, 1963]. This confirms that the seemingly deterministic
PDEs have lots of hidden chaotic structure!

5.8 Data Visualization Tips

As discussed in Chapter 1, an extreme advantage of CFD and Multiphysics over
experiments is that millions of computational nodes can be used to model a system, with
each node providing information as though it were a thermocouple, a pressure
transducer, a flow meter, and so on. This is certainly not possible experimentally. Other
issues include instrumentation that results in unintended changes for the experimental
output, such as being a heat source or sink, or interfering with the flow by blocking it or
diverting it, and so forth. Certainly, good experimentalists will take care of these and other
issues, so this would never happen, right?

Needless to say, the human eye will not respond well to reams of numerical data, so what
are some ways to most effectively summarize millions of computational data points?
Because data visualization is a science and an art form that is embedded with diverse
and conflicting human factors, there is no ultimate consensus as to how to generate
excellent images, figures, charts, etc. [Sanders and McCormick, 1987]. But, speaking in
general terms, computational output imagery should be focused, clear, legible, self-
contained, and show a compelling point or story; having eye appeal (“‘eye-candy”) is a
definite bonus. That said, there are general, useful tips that blend various human factors,
data display, and art forms.

e Use overlay as much as possible. Overlay refers to the superposition of two or
more images, and in this context, the overlaying of key surfaces and some form of
parameter color rendering. For example, the top image on the RHS of Figure 5.15
shows a velocity distribution for flow around six cylinders. However, by overlaying
the six tubes with translucent coloring (refer to “volume” rendering in Paraview),
the flow pattern comes alive and makes more intuitive sense, as shown in the lower
LHS image. The overlay of streamlines and the tubes is shown in the lower RHS.
More often than not, it is recommended that the system geometry (or a cut-out
section) be included. If necessary for a clearer view of the velocity distribution, set
the solid body’s opacity to 5 to 20%.
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Figure 5.15. Velocity distribution around vertical cylinders using various overlay
schemes.

¢ Visualization can be used to show how spatial convergence is coming along, and
might even point to meshing issues. This is achieved by overlaying the
computational mesh onto the parameter color display (whetheritis T, u, v, w, etc.).
In particular, meshes that are sufficiently discretized will show that the element
coloring by parameter is independent of the mesh grid pattern—the parameter
values (by color) must not follow (hug) the computational elements. For example,
notice that Figure 5.16 (upper LHS) has various unusual vertical velocity streaks;
this image provides few clues as to the source of the problem. However, once the
mesh is overlaid onto the colored velocity distribution (upper RHS), it is
immediately evident that the velocity distribution follows (is dependent upon) the
element boundaries, and the culprit immediately follows. The overlay shows that
the mesh has a large aspect ratio on the RHS of the domain and a large expansion
ratio at the interface between the small and large elements (central region). Once
better mesh metrics are applied to the model, the velocity distribution is shown to
be independent of the element boundaries (lower RHS), and the mysterious
velocity distribution vanishes.
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Figure 5.16. Velocity distribution in a rectangular domain. Upper two images: mesh
has a large aspect ratio and large expansion ratio. Bottom: mesh with better mesh
metrics.

e It is often useful to include multiple sets of parameters on a single image (e.g.
single page). For example, if the image is split into two screens, then T can be
shown on one side and perhaps u on the other, and so forth. This juxtaposition of
computational parameters can provide many useful engineering insights.

e A significant portion of the population is color blind, so do not count on color to
provide the entire exposition of data [Sanders and McCormick, 1987]. To avoid
this issue, not only consider using different colors for the curves, but also use
symbols (e.g., triangles, circles, etc.) and diverse types of curves (e.g., dashed,
dotted, etc.). The curves and symbols should be much larger than size 1, and
more likely should be on the order of 3 to 7.

e Consider using log scales (both for curves and coloring by parameter) when there
is a broad range in parameter space.

e Use arrows and brief descriptions to identify key changes in parameters. Many
programs can to do this, including Matlab and Paraview. However, the process
can also be accomplished by copying the figure onto PowerPoint, overlaying
arrows and comments on the slide, and then generating the final image through a
screen shot.

e Certainly, too many arrows, comments, and “bells and whistles” can be distracting,
and even detrimental. Again, this is an art and a science. The point is to focus on
the narrative that a figure should convey. If too much information is required,
consider using several figures instead of one.

e |tis wise to spend on the order of five minutes per figure to check for errors and
pesky, ubiquitous typos. This is also an area where spell checkers are not



available. Check the units. Make sure the font is still readable in the document
(not just on the image that was created!). The same applies to the curves, are they
distinguishable? If possible, have a colleague inspect your figure(s); do they make
sense? Does your image convey the story you need to express?

¢ Do not use yellow on white! Images require sharp contrast.

e For extremely appealing, artful images, consider using opposing colors, such as
they appear on color wheels. For example, blue and orange go well together on a
side-by-side basis, and so does green and red; ditto cyan and light green; etc.

¢ In contrast to the previous point, avoid using, on a side by side basis, colors that
are adjacent in the color wheel. For example, blue and purple do not go well near
each other; ditto yellow and light orange; or light blue and green.

e Remember that data will likely be viewed by important people with diverse
backgrounds, including engineers of many types, managers, administrators,
students, lawyers, and financiers with deep pockets. Therefore, terms that make
sense to a civil engineer may not mean much for a nuclear engineer, and so forth.
A well-thought-out figure will cross these language barriers, and appeal to a wider
audience.

e Avoid using ACRONYMS in figures. (As a side note, some acronyms have diverse
meanings, depending on the field. They should always be defined in reports.)

e A figure should be “self-contained”, meaning that in of itself, it must contain all the
information necessary for the audience to understand its message. For example,
do not assume that a deeply-buried paragraph in the report will clarify the
information that is missing in a legend or that of a poorly-written figure title.

¢ Images should have font size that are at least 20 or higher. Do not ruin a great
computational effort with legends that are unreadable (or not present, as is
sometimes the case).

e The legend should clearly label all curves, and allow the reader to fully understand
the parameter range under consideration.

e Indeed, “a picture is worth a thousand words”. Make it count!

5.9Problems
5.1 Is it ever acceptable to only use one mesh metric? Why or why not?

5.2 What is a minimum set of independent mesh metrics, and why?

5.3 Can a mesh metric replace the aspect ratio? Why or why not?

5.4 Explain the CFL number, and what are acceptable CFL values? Why is the CFL
magnitude different for explicit and implicit solvers?



5.5 For an explicit calculation, is it sufficient to only check the CFL criteria? If not, what
else should be checked?

5.6 Consider a smooth flat plate under isothermal boundary layer flow. The plate is 0.1
m long and 0.05 m wide, with air flowing parallel to the plate at 300 K and 1 atmosphere
(v=1.58x10"° m?/s and Us = 347.3 m/s). The air flows from left to right along the 0.1 m
plate at a constant velocity U. = 15.8 m/s. Will a turbulence model be needed? Develop
a mesh with aspect ratios 2 50 and skew = 5. Use biasing near the wall, with an expansion
ratio = 15. Compare that CFD solution with another mesh that has aspect ratio < 5, skew
< 0.5, and an expansion ratio < 1.5. What happened here?

5.7 Show that for a laminar flow with the following velocity distribution,
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5.8 A system in 3D Cartesian space, where V=V(x,y,z), 0 <x<L,0<y<M,and0<z<
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5.9 A system in 3D Cartesian space, where V=V(x,y,z), 0 <x<L,0<y<M,and0<z<
N. The mass conservation PDE is 8—’0=—,o @+@+8_w — u@_p+v(3_p+w8_p :
ot ox 0z Z

What BCs and ICs are needed to solve the equation?

5.10 Water at 400 K and 6 MPa is flowing inside a cylindrical duct at a mass flow rate of
50 kg/s with D=0.1 m. If an implicit solver is used with CFL=5 and the first computational
node is at y*= 1, what is the expected time step?

5.11 Consider the following Cartesian 3D energy equation,
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Assume no heat source and SS. What is the heat convection stability criteria? Hint: note
the similarity between the energy and the u-momentum conservation equation, with no
external pressure source, no body force (e.g., no g), and the viscous term is much smaller
than the convective term:
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5.12 Consider the same situation for the energy equation as in the previous Problem,
except that now, the diffusive term is much larger than the convective term. What is the
diffusive stability limit?
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