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Abstract—Domain science applications and workflow processes are currently forced to view the 
network as an opaque infrastructure into which they inject data and hope that it emerges at the 
destination with an acceptable Quality of Experience. There is little ability for applications to 
interact with the network to exchange information, negotiate performance parameters, discover 
expected performance metrics, or receive status/troubleshooting information in real time. The work 
presented here is motivated by a vision for a new smart network and smart application ecosystem 
that will provide a more deterministic and interactive environment for domain science workflows. 
The Software-Defined Network for End-to-end Networked Science at Exascale (SENSE) system 
includes a model-based architecture, implementation, and deployment which enables automated end- 
to-end network service instantiation across administrative domains. An intent based interface allows 
applications to express their high-level service requirements, an intelligent orchestrator and resource 
control systems allow for custom tailoring of scalability and real-time responsiveness based on 
individual application and infrastructure operator requirements. This allows the science 
applications to manage the network as a first-class schedulable resource as is the current practice for 
instruments, compute, and storage systems. Deployment and experiments on production networks 
and testbeds have validated SENSE functions and performance. Emulation based testing verified 
the scalability needed to support research and education infrastructures. Key contributions of this 
work include an architecture definition, reference implementation, and deployment. This provides 
the basis for further innovation of smart network services to accelerate scientific discovery in the era 
of big data, cloud computing, machine learning and artificial intelligence. 

Keywords—Intent based networking, end-to-end orchestration, intelligent network services, 
distributed infrastructure, resource modeling, software defined networking, real-time, interactive 
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1 Introduction 
Networked systems are evolving at a rapid pace toward programmatic control, driven in large part by the 

application of software to networking concepts and technologies, and evolution of the network as a critical 
subsystem in global scale systems. This is of interest to major science collaborations that incorporate large 
scale distributed computing and storage subsystems. This software-network innovation cycle is important as 
it includes a vision and promise for improved automated control, configuration, and operation of such 
systems, in contrast to the labor-intensive network deployments of today. However, even the most optimistic 
projections of software adoption and deployment do not put networks on a path that would make them behave 
as a truly smart or intelligent system from the application or user perspective, nor one capable of interfacing 
effectively with facilities supporting highly automated data analysis workflows at sites distributed around 
the world. 

Today, domain science applications and workflow processes are forced to view the network as an opaque 
infrastructure into which they inject data and hope that it emerges at the destination with an acceptable 
Quality of Experience. There is little ability for applications to interact with the network to exchange 
information, negotiate performance parameters, discover expected performance metrics, or receive 
status/troubleshooting information in real time. As a result, domain science applications often suffer highly 
variable (from excellent to poor) performance, especially so in highly distributed data intensive 
environments. 

Indeed, the ability to interact and negotiate with the network infrastructures within a science ecosystem 
should be a hallmark of truly smart networks and applications. The current static, non-interactive network 
infrastructures do not have a path forward to assist or accelerate domain science application innovations. 
We therefore envision a new smart network and smart application ecosystem that will solve these issues and 
enable future innovations across many Research and Education (R&E) domain science communities. The 
Software-Defined Network (SDN) for End-to-end Networked Science at the Exascale (SENSE) [1] project 
has developed an architecture and implementation to address this vision. Key contributions of this work 
include an architecture definition, reference implementation, and deployment. This provides the basis for 
further innovation of smart network services to accelerate scientific discovery in the era of big data, cloud 
computing, machine learning and artificial intelligence. 

The SENSE solution was built upon the previous Software-Defined Networking (SDN) work [2], which 
has been a subject of much discussion and research over the past decade. The crux of the SDN concept is 
software control and programmability of network elements and resources in a manner which enhances 
network services, management, and resource use. Multiple frameworks and systems have been developed 
which carry out the basic goal of software-controlled services across a heterogenous mix of network 
elements. While many of these systems are open source, the reality is that significant deployments in the 
field have been few and limited. These deployments are typically either small isolated systems, or vertically 
integrated systems from larger operators who have complete control over all the network resources needed 
by the higher-level applications being served. A lesson learned is that basic software-defined control 
functionality does not solve many of the key issues as needed to enable pervasive deployment of end-to-end 
automated services across general cyberinfrastructure. These issues include handling of multiple 
administrative/control domains, resource state hiding/visibility, scalability, and real-time responsiveness, all 
of which need to be tailorable for specific deployments and application requirements. 

Initial SDN work was mostly focused on the SDN controller south bound interface and network element 
control mechanisms. Multiple mechanisms utilizing technologies such as OpenFlow [3], NETCONF and 
Yang [4], and others were defined. It was eventually realized that the SDN controller northbound interface 
was where the users obtain services, and that the exact mechanisms used on the southbound side were not as 
interesting from a user/application perspective. Subsequent SDN controller northbound work resulted in 
several systems focused on specific use cases and point solutions. 

Partly because of these issues, much of the SDN research and development energy has transitioned to 
orchestration services/systems. There are now multiple open source orchestration projects [5][6][7][8], 
which include mechanisms to interact with multiple underlying SDN systems via their SDN Controller 



Northbound  Application  Programming  Interface  (API). However,  there  has  been  relatively  little 
architectural work to define what is needed in an SDN controller northbound interface to enable orchestration 
systems  to  address  issues  associated  with  systems  that  extend  “east  and  west”  across  multiple 
administrative/control domains, heterogeneity among the architectures and policies in each domain, as well 
as resource state hiding/visibility, scalability, and real-time responsiveness. In addition, there has been even 
less work done in building systems which will enable the desired smart-application-to-smart-network 
interactive ecosystem, where in the case of major science programs the “application” may itself be a data 
management system that deals in real-time with computational workflow among sites on several continents. 

In summary, current SDN and orchestration technologies have the following issues which inhibit 
development of an integrated, interactive smart network and smart application ecosystem: 

• Current SDN Technologies - The SDN Controller Northbound API solutions are narrowly focused 
designs which are typically driven by an underlying southbound API feature set. The opposite 
approach should be used, where the user-facing API should be developed based on user/application 
requirements, with the southbound API and feature sets correspondingly adapted. With such a layer- 
based orchestration architecture, the SDN Controller Northbound API should be constructed with the 
orchestration layer as its user. 

• Current Orchestration Technologies - The current orchestration architecture and associated 
implementation projects have not defined the requirements and features needed for the API between 
the orchestrator and underlying SDN Controllers. This would be the SDN Controller Northbound 
Interface, which would also be the orchestrator southbound interface. These requirements and the 
orchestrator functionality should be driven by the user/application requirements and therefore 
reflected in the orchestrator northbound interface. 

• Combined SDN and Orchestration Technologies - The current solutions are focused on traditional 
service provisioning, customer onboarding, and operations/maintenance. While updated 
technologies such as Network Functions Virtualization (NFV) and automated provisioning are being 
employed in service of this paradigm, the service and use model is not much changed from a customer 
perspective, outside of the ability to initiate automated functions. These systems are not currently on 
a path to provide the degree of realtimeness and interaction needed for the smart network and smart 
application ecosystem envisioned by the Research and Education (R&E) community [9]. For 
example, the information exchange between the SDN Controller and orchestrator is not designed 
with the ability to i) include/exclude real-time states, ii) adjust the degree of resource/topology 
sharing/hiding as required by local policy and/or user requirements, and iii) tailor operations to 
optimize scalability or real-time responsiveness. In addition, the orchestrator functions are not 
designed to take advantage of enhanced interactions with underlying SDN controllers with a focus 
on interaction, real-time responsiveness, and intelligent services. 

• End-to-End Solutions - Current SDN and Orchestration solutions are not end-to-end in the context 
of application workflows. Domain science application workflows need solutions which manage all 
resources along the end-to-end path. This needs to include the networking stack inside the end 
systems, as well as the devices along the network path. 

The problem statement and solution objective which motivates this work are as follows: 

Problem Statement: Current SDN and orchestration systems do not supply the degree of 
interaction, realtimeness, and intelligent network services needed for the next generation of domain 
science workflows. An integrated smart network and smart application ecosystem is needed to 
enable application workflows to ask questions, iterate on solutions, receive recommendations, and 
access full life-cycle status and troubleshooting information. Future SDN enabled infrastructures 
need mechanisms to provide topology and state information in real time based on fine-grained 
policy, scalability, and service objectives. End system resource management needs to be integrated 
into the orchestration of end-to-end network resources.   In the longer term end-to-end system 



operation needs to be monitored at several layers with enough granularity, to supply a foundation 
for future system optimization through such mechanisms as reinforcement learning. 

 
Solution Objective: Domain science application workflows need real-time, interactive, end-to- 
end orchestrated SDN services across large, distributed, multi-domain networks. 

 
In this paper we present the SENSE model-based orchestration system which operates between the SDN 

layer controlling the individual network regions, and users/applications needing a variety of end-to-end 
network services. The SENSE system provides a solution to the identified problem and includes a novel set 
of APIs and methods for interactions with users/applications, as well as with the underlying software- 
controlled network infrastructure. 

Multiple science community vision and requirement reports [39][40] have identified these types of 
network services as being important for the next generation workflows, including many that will be driven 
by Exascale computing resources and big data. Also driving the need for these types of network services is 
the emerging DOE Superfacility concept which includes the seamless integration of multiple, 
complementary DOE Office of Science user facilities into a virtual facility to fundamentally transform and 
accelerate the scientific discovery workflow. The SENSE system provides the mechanisms needed to 
synchronize and coordinate the connection of multiple distributed compute, storage, and instrument 
resources with deterministic performance. These intelligent interactive services provide methods for 
application driven workflow planning and operations assistance, which will be needed to realize the 
Superfacility vision. 

As an example, the current Exascale for Free Electron Lasers (ExaFEL) [15] workflows utilizing multiple 
data transfers over best effort network paths are being replaced by SENSE services providing deterministic 
network paths capable of supporting real-time data streaming directly to compute memory or burst-buffers. 
This mode of operation will also support computational steering, where instruments use data streaming to 
drive preliminary compute results which are then used to calibrate and guide experiment configurations to 
create real-time science feedback loops. 

It should also be noted that this new class of smart, interactive networked services is not expected to 
replace the existing best effort routed IP services in use today. Most science data flows will continue to use 
traditional IP routed services. However, based on historic use patterns and formal requirement studies [41], 
there will be a set of science-driven use cases which do require these types of advanced, end-to-end network 
services. While these use cases will make up a small subset of the total science data flows, they are expected 
to be responsible for the majority of the bandwidth utilization. Another important observation is that the 
traditional IP routed services and these advanced smart network services will need to run over common 
infrastructure, as a key aim is to not require separate or parallel network infrastructures. Advanced smart 
network services can be realized via using advanced IP features, such as segment routing, or direct access to 
the underlying Layer 2 or Layer 1 infrastructures over which traditional IP network services are run. 

The remainder of this paper will describe the SENSE Solution (Section 2), SENSE Services 
Implementation (Section 3), Testbed Deployment (Section 4), Use Cases (Section 5), Performance 
Evaluation Analysis, Results and Analysis (Section 6), and Summary and Future Plans (Section 7). 

 
2 SENSE Solution 

As summarized in the introduction, there are several key features which are missing from current 
solutions as they relate to domain science research and associated cyberinfrastructure systems. SENSE 
enables a new application to networked system interaction paradigm, which includes the following 
capabilities in response to the problem statement and solution objective: 

• Intent Based - The ability for an application to submit a service request in the form of a high-level 
statement of desired results or outcomes, as opposed to a specific set of network centric inputs. The 
format of an Intent based interface will be customized based on application specific requirements. In 
some situations, an intent may be expressed based on a highly abstracted network view with 



performance metric annotations. In other situations, the intent form will be expressed in the context 
of application specific resources, end points, and references. The SENSE system is designed to 
apply a DevOps (Development Operations) model to the interface construction, which is enabled by 
a rich semantic model-based infrastructure description which allows for variable levels of 
abstractions and infrastructure/services relationship tracking. 

• Interactive - The ability for an application workflow agent to engage in a "conversation" via a bi- 
directional exchange with the network as part of workflow planning. This conversation can include 
discovery of available services, asking "what is possible" or "what do you recommend" types of 
questions, engaging in iterative negotiations prior to actual service requests, or full-service life-cycle 
status and troubleshooting queries. This can be extended to processes that drive adjustments or 
remedial actions to maintain system performance and/or task progress, and to balance among 
competing demands on the available resources. 

• Realtime - This term has many different meanings and time scales depending on the situational 
context. For the purposes of this project, the problem space is large scale multi-domain, orchestrated 
SDN services. Each of the full lifecycle activities of resource discovery, provisioning, service status, 
troubleshooting, and feedback response loops may have their own requirements as it relates to real- 
time operations. In these contexts, realtime typically means a time scale of seconds to minutes. For 
example, provisioning an end-to-end path which consists of two Department of Energy (DOE) 
Laboratories High Performance Computing (HPC) facilities connected across a single wide area 
network, may have a response time in the 10s of seconds. A more complex end-to-end path with ten 
or more separate administrative domains, may have a response time of several minutes. A key 
objective of the SENSE design is to provide the mechanism where a tradeoff between realtimeness 
and scalability can be made at runtime by dynamic configuration. The SENSE model-based 
interface between the orchestration and SDN layer is designed to allow this tradeoff via controls that 
dynamically vary the real-time states which are included as part of the topology distribution. In 
addition, there are mechanisms which allow for on-demand discovery of real-time information and 
associated service parameter negotiation. 

• End-to-End - The SENSE notion of end-to-end orchestrated SDN includes the multi-domain wide 
area, regional, and end-site networks as well as the network stack inside the end systems. The 
inclusion of the end-system networking stack is important from deterministic and automated service 
provisioning, monitoring, and troubleshooting perspective. The practical application of this approach 
is to manage the networking stack all the way to the network socket of the host operating system, 
virtual machine, or container where the application process is interacting with the network. This is 
designed to provide a foundation for applications such as science workflow management systems 
that coordinate the use of computational, storage and network resources. 

• Full-Service Lifecycle Interactions - To optimize performance and adjust to changing conditions, 
applications need mechanisms to discover status and states during the service provisioning as well as 
during the service operational phase. This includes functions such as resource discovery, 
provisioning, service status, troubleshooting, and feedback response loops. The SENSE vision 
includes a continuous conversation between application and network for the full-service duration to 
enable new levels of application situational awareness. 

The SENSE approach to end-to-end at-scale networking is based on software programmability and 
intelligent service orchestration. The SENSE orchestration architecture provides many performance and 
assurance benefits through application oriented services. These are enabled by some novel technologies, 
including a) hierarchical service-resource architecture (Section 2.2 for more details), b) unified network and 
end-site resource modeling and computation (Section 2.2.2 for more details), c) model based real-time 
control (Section 2.3 for more details), d) application driven orchestration workflow (Sections 2.4 and 2.5 for 
more details), and e) end-to-end network data collection and analytics integration (Section 2.6 for more 
details). 



2.1 SENSE Key Functions 
There are four main functions of the SENSE system: 

• SENSE Orchestrator North Bound Interface – This is a highly customizable interface for 
application workflow agents to query regarding possible actions, recommendation, and/or 
request specific service instantiation. While a standard northbound interface has been defined, 
this interface is designed to be easily and rapidly customized for individual user requirements. 
The SENSE system has much data and intelligence regarding the underlying networked systems. 
This information can be customized for user consumption in a highly detailed or abstract manner. 

• SENSE Orchestration - This includes the integration of resource model-based descriptions from 
underlying network infrastructures, the computation services to process resource models for user 
request responses, and the coordination of provisioning actions. 

• SENSE Orchestrator South Bound Interface – This provides for a continuous exchange of 
topology descriptions which include an ability for the resource owners to tailor the level of 
abstraction and real-time states in accordance with local policies and service objectives. This is 
one of the key innovations of the SENSE system and is based on semantic web based graph 
models which provides a high degree of service flexibility and infrastructure owner controlled 
customizations. 

• SDN Layer - The SENSE architecture relies on an underlying SDN layer; however, it does not 
require a specific SDN controller or system implementation. The SENSE architecture accepts 
that there will be a variety of deployed SDN solutions which will cover different network and 
administrative regions. SENSE provides mechanisms and functions to leverage these systems 
and guidance for how they can be fully integrated into orchestrated system. This typically 
requires existing SDN systems to implement the SENSE Orchestrator Southbound Interface as 
their controller Northbound Interface. Existing systems may accomplish this via native 
implementation of the SENSE API or via thin layer on top of their existing API which provides 
the proper interface. This technique of adopting underlying SDN systems for SENSE system 
integration has been used successfully as part of the SENSE system deployment on ESnet and 
other R&E infrastructures. Systems based on OpenDaylight (ODL) [10], Network Services 
Interface (NSI) [11], On-Demand Secure Circuits and Advance Reservation System (OSCARS) 
[12], and Open Network Operating System (ONOS) [13] have all been integrated into SENSE 
orchestrator operations. SENSE development and testing activities have demonstrated that 
valuable orchestrated services can be provided using these existing SDN systems as they are with 
no internal modifications. More advanced SENSE services can also be enabled by making some 
changes to these systems in the areas of topology description, abstraction, real-time states 
inclusion, and computation to support negotiations. 

 
2.2 SENSE Architecture Components 

Within the SENSE orchestration architecture, there are two distinct functional roles: Orchestrator and 
Resource Manager (RM). The interaction of Orchestrator(s) and RM(s) follows a hierarchical workflow 
structure whereby the Orchestrator accepts requests from users or user applications, determines the 
appropriate RMs to contact, and coordinates the end-to-end service request. The RMs are (administrative or 
technology) domain specific and are responsible for configuring and managing local resources. 

An overview of the SENSE architecture is shown in Figure 1. At the lower layer are RMs covering 
various organizations from the R&E community who are part of the testbed deployment. These RMs create 
model descriptions for their infrastructure, in varying degrees of abstraction, and provide it to the 
Orchestrator. The SENSE Orchestrator absorbs and integrates these models to create an end-to-end model 
which provides a basis for subsequent intelligent infrastructure reasoning and service provisioning. The 
SENSE Orchestrator is also responsible for providing an interface facing the science users. To support a 
variety of use cases, the Orchestrator includes a pluggable Model Computation Elements (MCE) 
architecture, which enables flexible and rapid custom service construction.   The Orchestrator operates 



between the automation layer controlling the individual networks/end-sites, and the science workflow 
agents/middleware layer. This figure also shows planned future work integrating external network 
monitoring and telemetry data sources into the model descriptions and services computation. 
2.2.1 SENSE Orchestrator 

The SENSE Orchestrator is expected to be closely associated with a domain science 
collaboration/application (such as LHC/CMS [14] and ExaFEL [15]) and processes “high-level” context 
sensitive intents to determine what resources are needed and coordinate the requests of “lower-level” (or 
sub) intents to the corresponding RMs. As such, the SENSE Orchestrator performs the following functions: 

• Model Receipt - Receives model-based resource descriptions from multiple RMs. 
• Intent Receipt - Receives and responds to the user’s “high-level” intent requests (which is defined 

within the context of the user’s domain science collaboration/application). 
• Intent Processing - Renders the user’s “high-level” descriptive intent request into “low-level” 

prescriptive requests for required resources. 
• Resource Computation - Performs multi-constraint resource computation (based on AuthN 

(authentication) / AuthZ (authorization), resource availability, and other parameters) to determine 
the appropriate and necessary resources needed and which RMs to contact. The AuthN functions 
are utilized to create the trusted relationship between the SENSE Orchestrator and the individual 
SENSE-RMs. The SENSE orchestration layer AuthZ/AuthN functions are based on industry 
standards such as OpenID [42] , OAuth [43] , and InCommon [44]. 

• RM Workflow - Coordinate requests and replies from RMs and feedback the results to the user 
accordingly. 

• Status Queries - Support queries by the user for status and states. 
• Notifications - Provide resource notifications to the user as necessary. 

 
The SENSE Orchestrator can take on different functionality, customized to the domain science needs 

based on the experiment, compute, storage, network, and other resources available. A SENSE Orchestrator 
North Bound Interface (SENSE Orchestrator NBI) is provided to accommodate such needs via service- 
oriented intent based interactions. This interface is discussed in Section 3 along with the intent design, 
negotiation mechanisms, and workflow operations. 
2.2.2 SENSE Resource Manager 

The SENSE Resource Manager (SENSE-RM) is tied to a domain with physical resources, such as a 
Wide Area Network (WAN), a Regional Network, or a Site (with Science DMZ [16] resources). The 
SENSE-RM is responsible for management of its domain-specific resources and includes the following 
functions: 

• Model Generation - Provides (appropriately scoped and abstracted) model-based resource 
descriptions. 

• Orchestrator Interactions - Receives and responds to the “low-level” intent requests from the 
Orchestrator. 

• Resource Computation - Performs multi-constraint resource computation (based on 
authentication/authorization, resource availability, other parameters) to determine the local 
resources appropriate and necessary to service the request. 

• Resource Provisioning - Coordinates resource allocations/commitments, provisioning, and de- 
provisioning with local controllers as necessary. 

• Status Query - Supports queries by the SENSE Orchestrator for status and state. 
• Resource Notification - Supplies resource notifications to the SENSE Orchestrator as necessary. 



 
 
 

 
 

Figure 1 SENSE Architecture 
 

The SENSE-RMs are specific to an administrative domain. However, within a single administrative 
domain, multiple instances of RMs may be deployed based on the distinct technology regions (such as Data 
Transfer Nodes (DTNs), optical packet/transport, Layer2, and/or OpenFlow resources). Conversely, a 
SENSE-RM may model multiple technology domains as a single resource description. For example, a 
network may have distinct switches and routers which provide layer 2 and layer 3 services correspondingly. 
However, the domain may instantiate a single RM which provides a unified resource description 
characterizing both sets of resources. The current SENSE implementation includes the following types of 
SENSE-RMs: Network Resource Manager (Network-RM) and Data Transfer Node Resource Manager 
(DTN-RN). There are multiple types of Network-RM which are tailored toward interoperation with specific 
types of underlying SDN systems. The DTN-RM is currently evolving into a Site Resource Manager (Site- 
RM) where it will manage local site networking in addition to the end host networking stacks. 
2.2.3 Many-to-Many Relationship between SENSE Orchestrator and SENSE-RM 

The SENSE Orchestrator should not be confused with a central orchestration service for all applications. 
Instead, multiple SENSE Orchestrator instances can independently serve different organizations, 
collaborations and application groups. The primary motivation for this architecture is that each scientific 
collaboration or workflow may have unique security, resource computation, and access 
policies/mechanisms. This allows each collaboration to implement fine-grained authentication, 
authorization, resource utilization, and security functions in accordance with its collaboration group 
policies. Each SENSE Orchestrator instance in turn has a unique trust relationship with multiple SENSE- 
RMs. This facilitates scalability in that an RM does not need to manage authentication, authorization, and 



policy information at the individual end-user level. The RM can enforce policies against the identity of the 
requesting SENSE Orchestrator instance and the negotiated service parameters. 

In addition, different collaborations may have access to different resources within a SENSE-RM’s 
domain. For instance, one collaboration may be restricted to a certain set of network links, whereas another 
collaboration may not have the same constraint. By having distinct SENSE Orchestrator instances per 
collaboration, a SENSE-RM may publish different resource descriptions based on Service Level 
Agreements (SLAs) that it has with the SENSE Orchestrator instance. The SENSE Orchestrator instance 
in turn may perform resource computation and allocation with priorities and constraints that are unique to 
the collaboration. 

SENSE-RM's can also receive detailed information regarding the individual requesting user, which may 
be desired to apply finer grained policy and resource management policies.   The SENSE Orchestrator 
supports multiple industry standard AuthN (authentication) / AuthZ (authorization) mechanisms, such as 
OpenID [42], OAuth [43], InCommon [44], Shibboleth [17], and Kerberos [18].   This facilitates the 
exchange of meaningful user information between multiple Orchestrator and RMs in the distributed system. 

An important SENSE architectural premise is that from an Orchestrator's perspective, the RM is the 
owner and in control of its underlying resources. That is, the RM is the source of "ground truth" regarding 
the resource topology and states. The RM decides what set of resource descriptions to provide to an 
Orchestrator, and how to process (accept, modify, or reject) service requests. An Orchestrator's role is to 
simply gather resource descriptions from multiple RMs and facilitate the computation and service 
provisioning coordination across multiple Resource Managers. A key benefit of the SENSE approach is 
that the RM only needs to concern itself with the resources it owns and controls. A RM does not need to 
think about end-to-end services or resources in other administrative domains. This architecture will require 
careful optimizations and tuning in the two key dimensions of data consistency and conflict resolution. 

Data consistency refers to the accuracy of the resource description information held by the Orchestrators. 
This information is provided by the RMs and may be incomplete or become inaccurate over time. A key 
benefit of the model-based exchange between the RM and Orchestrator is that the amount of real-time data 
and the update frequency can be optimized based on service objectives and scalability realities. An RM 
may provide a resource model, which includes only topology information that is relatively static. For 
instance, a resource topology model may just include the fact that an End Site has a specific number of Data 
Transfer Nodes (DTNs) which are connected at 100 Gigabit per second (Gbps), and that the site has 100 
Gbps connections to two different wide area networks. It should be noted that changes to this "static" 
information are still automated, with periodic model updates sent as needed. At the other end of the 
resource model update spectrum, the RM could continuously update its states to reflect the current services 
provisioned and resource usage. For example, the resource model could include real-time information 
regarding services which are provisioned to the DTNs, including VLAN and bandwidth usage. This model 
could be updated every second, resulting in an Orchestrator with a much higher fidelity view of the current 
resources states.  The SENSE system was designed to allow the tailoring of the amount of real-time data 
in the model exchange. Deployments which have small total number of RMs, and service objectives which 
include rapid provisioning, may want to provide frequent model updates with more real-time data included. 
Deployments which include a large number of RMs, and provisioning times which can be longer, may opt 
for model updates with less real-time information and less frequent updates. Both of these approaches will 
allow for successful multi-RM services provisioning due to the conflict resolution features which are 
described next. 

Conflict resolution refers to the fact that an Orchestrator will likely be interacting with multiple RMs. 
Likewise, an RM may interact with multiple Orchestrators. The SENSE approach is to leverage the fact 
that the RM is in control of its resources and can always optimize based on its knowledge of real-time 
states. We could have taken the approach of also adding Orchestrator-to-Orchestrator coordination. 
However, we felt that this would add unnecessary complication to the system. Instead, we built into the 
Orchestrator to RM interface the notion of real-time negotiation and hold times. The negotiation features 
allow  the  RMs  to  inspect  a  request  from  an  Orchestrator  and  suggest  specific  resource  usage  or 



configuration changes to optimize based in its unique knowledge of real-time states. The hold times provide 
a mechanism for the Orchestrator to receive a promise for specific resources being available for a small 
window of time, sufficient for it to coordinate with other RMs as part of a multi-RM service provisioning 
event. These features, with an intelligent Orchestrator possibly engaging in multiple negotiation rounds 
with some RMs as needed, are intended to result in a high percentage of service provisioning success, and 
resource utilization optimization. Testing and detailed data analytics in this area will be the subject of 
future work and papers. In addition, the need for Orchestrator to Orchestrator coordination may be 
reevaluated based on future testing and deployments. 

There will be a tradeoff between optimization for data consistency versus contention resolution. 
Increasing the data consistency by including more real-time information in the model with more frequent 
updates, will allow an Orchestrator to make better initial decisions, along with less utilization of the 
negotiation and hold time features. However, the inclusion of too much real-time information may cause 
scalability or stability issues.  If there is too little real-time state information available to the Orchestrators, 
it will have to rely on the negotiation and hold time features to obtain the real-time information at service 
provisioning time, which may increase service responsiveness from a user perspective. 

Fairness and contention management are also important considerations that must be addressed at both 
the data plane and control plane levels. From the data plane perspective, SENSE includes some services 
with resource guarantees which allow these issues to be managed at the control plane level as part of service 
instantiation. For services which operate across shared resources, standard mechanisms for traffic 
monitoring can be utilized to identify unacceptable levels of utilization by specific users. Control plane 
interaction is the area where the SENSE system presents some new challenges in the fairness and contention 
management dimensions. A combination of monitoring, policy enforcement, and cost structures will be 
used to ensure that a user does not "game" the system to the detriment of other users. The first line of 
defense relies on the RMs using their freedom to flexibly manage their total resource pool for overall 
optimization based on the infrastructure owner policies. In this manner, the amount of resources which 
can be reserved or dedicated to a specific set of users can be tailored and controlled. The second line of 
defense is that there will be a "cost" associated with reserving or using specific resources. The specific 
form of this "cost" structure is future work, and may include monetary considerations, usage of allocation 
credits, or real-time monitoring to highlight and publicize when resources are not being used effectively. 
Thirdly, all users accessing the control plane will be authenticated which will enable historical usage 
profiling. This will allow the implementation of explicit priority and/or fair sharing policies and algorithms 
which manage the user interaction dynamics. The overall goal will be to ensure that if resources are made 
available via the SENSE intelligent interface, they are used effectively and efficiently. 

2.3 Ontology-Based Resource Modeling 
Orchestrating end-to-end SDN services over large network infrastructures must address two classic 

challenges: control automation and distributed coordination. Automation in any complex system requires 
formation of a control loop. In one direction, control operation results in state changes in the infrastructures. 
In the other, control feedback and/or telemetry is desired to provide additional state awareness back to the 
orchestration layer. Unified resource modeling can supply semantics in both directions. With a proper level 
of abstraction, the orchestration intelligence can learn dynamic resource and service states and create new 
services with reduced chance of conflict and better efficiency. The same modeling semantics can also serve 
to synchronize the orchestration intent to resource and service states in the underlying infrastructures and 
thus close the control loop. We call this a full-stack model driven approach, which is also a complete 
service-oriented approach. Applying this approach helps solve the other challenge in distributed 
coordination. When all resource owners use unified, extensible models to describe their resources, services, 
and states, we effectively create a thin-API to introduce universal programmability to all the parties. Each 
party can engage in free-form provider-consumer relationships for any As-a-Service transactions and thus 
decentralize the service integration, orchestration and instantiation processes. 



The above vision led us to the search for a standards-based, composable, extensible and scalable 
semantic representation for Resource Modeling. We settled with using ontology-based modeling based on 
Semantic Web technologies [19]. Semantic Web, or Linked Data, is a suite of well-established standards 
by the World Wide Web Consortium (W3C) for web applications to describe and interconnect resources or 
data. Among the standards, the Resource Description Framework (RDF) [20] defines ways for “how” to 
exchange data, i.e. syntax, while the Web Ontology Language (OWL) [21] defines ways for “what” to 
exchange, i.e. semantics. The RDF/OWL combination provides a solution for defining ontologies which 
allow machines/software programs to understand and reason about the data. 

Based on RDF/OWL we developed a Multi-Resource Markup Language (MRML) [22] as the ontology 
base for extensive types of resources and services in large information infrastructures. The modeling 
framework is based on extensions to the Network Markup Language (NML) [23] ontology developed by 
the Open Grid Forum (OGF) [24]. As part of a DOE Advanced Scientific Computing Research (ASCR) 
research project, RAINS [25], extensions to NML were defined to allow other resource types in addition to 
network elements/topologies to be described and modeled. The base NML standard and these extensions 
define the MRML, which is used as the ontology basis for resource modeling in the SENSE architecture. 

2.4 SENSE Orchestrator To Resource Manager API 
From the resource providers’ perspective, the SENSE RM API provides the mechanism for real-time 

ontology-based data integration of distributed and diverse resource domains into the SENSE orchestration. 
The SENSE Orchestrator manipulates the provided topology model to achieve its target goal, computes and 
expresses a model “delta” between the original topology and the desired topology, and then proposes this 
resulting delta to the RMs. 
2.4.1 MRML Resource Modeling 

The SENSE-RM API is based on a resource model exchange and manipulation paradigm. The SENSE 
Orchestrator queries multiple RMs for a resource model which describes the infrastructure and services 
available for use. The resource model provided by each RM includes a description of its local network and 
other resources such as Data Transfer Nodes (DTN) [26], storage systems, instruments, and compute nodes. 
This model description includes a definition of the interconnects to external resources which allows the 
SENSE Orchestrator to build a model-based connected graph with all the RMs in its query space. This end- 
to-end model-based graph provides the basis for the SENSE Orchestrator to respond to user requests and 
construct workflows for service provisioning interactions with the proper RMs. In the SENSE Orchestrator, 
Modular Computation Elements (MCEs) provide the mechanisms to translate high level intent based user 
requests into specific workflow orchestration steps and resource requests to individual SENSE-RMs. 
Additional details regarding the MCE functions and usage for custom workflow computations is provided 
in Section 2.5. 
2.4.2 Model Driven Real-time Resource Management 

Each RM describes its topology and resources in the form of an MRML document with version 
management to track changes over time. This model document defines all the semantics for the SENSE 
Orchestrator API. Therefore, the API operations are radically reduced, down to two: model pull and delta 
push. The latter is divided into two methods, propagate and commit, to support a transactional Two-Phase 
Commit (2PC) push process. This simple set of API methods will not need to change when resource types 
or services are modified. Since all information is embedded within the model, only the model processing 
functions will need to be adjusted. In SENSE, we also emphasize another important performance metric: 
realtimeness. We will discuss what this means for end-to-end resource integration and service orchestration, 
below. 

• Pull Model - The SENSE Orchestrator receives a model-based resource description from each of 
the RMs in the end-to-end SENSE ecosystem. The SENSE Orchestrator integrates models from 
multiple SENSE-RMs to generate a multi-domain resource description model. The individual 
SENSE-RMs utilize local policy to determine what information is provided with regard to 
resources, abstraction degree, and any other factors based on use cases associated with an individual 



SENSE Orchestrator. On the current SENSE Testbed, the SENSE Orchestrator is customized to 
pull RM models every 30 seconds. The HTTP “If-Modified-Since” mechanism is used to reduce 
redundant data pull. SENSE-RMs will be responsible for adjusting the abstraction degree and 
resource update frequency to satisfy the “realtime” requirements posed by the SENSE Orchestrator. 
The SENSE-RM API also provides an optional subscribe-notify mechanism for the SENSE-RMs 
to push model changes to the SENSE Orchestrator before the Pull call, for speedier updates. 

• Propagate Delta - The SENSE Orchestrator processes intent-based service requests from the 
SENSE Orchestrator API and generates a “model delta” which will be used to communicate a 
potential action/provision request to the SENSE-RM(s). The SENSE-RM is not expected to take 
any provisioning action based on the Propagate Delta method. In response to the Propagate Delta 
method, the SENSE-RM should inspect, verify, and confirm the request of suggest revisions. For 
example, a specific VLAN may be requested in the Propagate Delta method, while the SENSE-RM 
would prefer another VLAN. In this case the SENSE-RM should indicate the modified VLAN 
request in the response via modifying the provided “model delta”. As the propagate call is 
composed entirely of data transactions, it can be executed quickly. Experiment results reported in 
Section 6 demonstrate that a Network-RM running on the production ESnet, which include a 
resource model with over 100 network elements, can execute a Propagate Delta around in under 11 
seconds on average. A host based DTN-RM can execute a Propagate Delta in under one second 
on average. A negotiation procedure has been built into this phase such that multiple rounds of fast 
propagate and feedback transactions can be performed, to achieve an updated real-time result that 
may be different than the original “delta”. This real-time negotiation and update is necessary as 
the SENSE Orchestrator and SENSE-RM are in a many-to-many loosely coupled relationship that 
does not always allow for a complete “real-time” synchronization of the resource state information. 

• Commit Delta - The SENSE Orchestrator uses this method to ask the SENSE-RM to commit the 
changes negotiated as part of the Propagate Delta exchange(s). This is where the SENSE-RM is 
expected to provision resources. As this procedure is normally time-consuming, it is separated from 
the transactional propagate method. The SENSE-RM API commit is always asynchronous so that 
none of the SENSE Orchestrator calls to the SENSE-RMs are blocked for long time periods. 
Polling-based status queries are used to check the result of each asynchronous commit. Again, an 
optional subscribe-notify mechanism is supported for the SENSE-RMs to call back to the SENSE 
Orchestrator for real-time updates. 

2.5 Intelligent Orchestration and Model Computation Framework 
The core of SENSE Orchestrator is StackV [27], a general-purpose open-source orchestrator for 

networked multi-services. StackV is implemented based on the full-stack model driven intelligent 
orchestration approach. From the very top of the stack, applications communicate to the orchestrator with 
an abstract service intent. Intents including those specifically for SENSE take different forms, for the 
convenience of users. The SENSE Orchestrator NBI translates each service intent into a so-called “Service 
Model Description and Abstraction”, which is a formal MRML model that consists of abstract resources 
annotated with service policy statements. The abstract model data are then fed to a dynamic compile 
procedure and compiled into a model-based computation workflow. A computation workflow consists of a 
variety of Model Computation Elements (MCE) as intelligent functions assembled into an execution tree. 
Each MCE uses system model data, service model data and policy data as input and accomplishes a specific 
function such as resource placement and connection computation. The output will be more detailed service 
model data, which could be used as input for another MCE. When the computation workflow finishes 
successfully, a System Model Delta will be created that provides detailed model statements about what 
needs to change in the underlying infrastructures governed by RMs to satisfy the intent. 

The benefits of model-based computation include i) eliminating conversions between external interface 
and internal data structures, ii) leveraging standard tools for data query, navigation, transformation and 
reasoning, and, iii) maintaining consistent data semantics through all the computation modules.  In this 



framework, MCE is the basic computation module. The input and output of an MCE are both model data 
based on the RDF/OWL, MRML and policy ontologies. Each MCE instance computes for a specific 
purpose and produces a compiled workflow of execution instructions. For an example, a Layer-2 VLAN 
Connection MCE absorbs the initial service abstraction model that specifies connection terminals, 
bandwidth and schedule parameters. It then creates model statements for end-to-end layer-2 connection 
across end sites and wide area networks. The result is an updated service abstraction model which is 
exported together with some intermediate policy data. The intermediate policy data has dynamically 
generated resource constraints and interdependencies that add to the context of next step computation 
actions. In this example, it suggests new VLAN interfaces as related to terminal ports and requests for data- 
plane IP addresses on such interfaces. Then a Layer-3 Address Assignment MCE uses this new service 
abstraction model and policy data (which is more detailed than the original one) as input to perform its own 
computation and add layer-3 modeling statements to the further updated service abstraction model. StackV 
has implemented sophisticated logic to concatenate MCEs and merge computation results. The basic idea 
of this technique is to use SPARQL [28] queries to “shape” the output of an upstream MCE into custom 
JSON format and use JSONPath [29] queries to extract information and “fit” to the input required by 
downstream MCEs. Success in finishing the computation workflow means StackV has resolved all model 
abstractions and policy annotations in the final product and has converted an application intent into a System 
Model Delta. This “delta” can be pushed down to the SENSE-RM API for instantiation. This modular 
model computation framework enables SENSE Orchestrator to perform in-situ intelligent computation 
when working with both real-time model data from SENSE-RMs and interactive intents from users. 

In the context of this project, the terms "intelligence" and "smart" refer to several related SENSE 
architectural features and capabilities. To provide a flexible and customizable set of interactive, real-time, 
intent-based services across distributed autonomous SDN infrastructures, the SENSE system needs to do 
many things, which when taken together represents a certain level of intelligence. These activities include 
the absorption of information from the underlying dynamic SDN layer, computing multi-constraint 
solutions, and engaging in subsequent interactions and negotiations, both on the orchestrator southbound 
and northbound interfaces. Another context for intelligence is from the user services perspective. Here the 
user, via the SENSE Orchestrator northbound intent based API, can ask abstract and open-ended questions. 
As part of this, the user can engage in a "conversation" via a bi-directional exchange with the network as 
part of workflow planning. This conversation can include discovery of available services, asking "what is 
possible" or "what do you recommend" types of questions, engaging in iterative negotiations prior to actual 
service requests, or full-service life-cycle status and troubleshooting queries. This constitutes a certain 
level of intelligence from a user perspective and is discussed in more detail in Section 3 (SENSE Services 
Implementation). The third context for intelligence is based on the SENSE architecture definition and 
vision, which includes the incorporation of real-time telemetry data to feed the orchestration algorithms. 
The expectation is that this data will also be used to feed future machine learning systems, which will 
provide a mechanism for enhanced SENSE operations. This network telemetry integration, machine 
learning, and artificial intelligence work is part of future work, and represents the plan for SENSE 
movement toward more intelligence as a key part of future services. Additional information on this is 
provided in Section 2.6. 

 
2.6 Network Data Collection and Analytics Integration 

Topological model and resource states are the basis for the SENSE Orchestrator intelligent computation 
for orchestration services. In the current SENSE Testbed, ESnet and many DTN end sites have deployed 
various monitoring and data collection and archiving mechanisms. The planned SENSE analytics solution 
will consolidate these existing resources into a functional utility engine that has distributed data collection, 
archiving and access endpoints, but uses common API and data schema definitions. 

The expectation is that further integration of real time and historical network data through an analytics 
engine can provide improved quality of experience for users, through better understanding of end-to-end 
network states and more precise prediction of traffic trends. The analytics-based feedback will also help 



users better understand network conditions and options and refine their service intent requests. An extended 
SENSE architecture includes integration with a data analytics engine that collects network data from end 
sites and transport networks, and provides analytics pre-processing and feedback to the SENSE 
Orchestrator. It will collect extensive telemetry data from various monitoring and active measurement 
sources that reflect network resource utilization and real-time states. This data collection and analytics 
capability is not yet in place and is anticipated as part of future work. 

The Data Analytics Engine will be a component external to the SENSE Orchestrator. Following the suit 
of model driven API design, the interaction between the Data Analytics Engine and SENSE Orchestrator 
will be based on the same resource model used for the orchestration and resource management functions. 
With per-user and per-service ownerships being annotated upon collection, data contents and formats will 
be customized based on service orchestration needs. In addition, the analytics data will be integrated with 
the existing MRML model through abstraction, reference and annotation processing. New MCEs will also 
leverage the custom, pre-processed, MRML friendly data from the Analytics Engine to compute improved 
results for existing service intents and provide answers to more complex intent questions. This includes 
finer grained and more accurate answers to the "what is possible" or "what do you recommend" types of 
questions. In general, the objective is to utilize historical and real-time telemetry data to provide the user 
with estimates regarding end-to-end performance, and recommendations about when and how to use the 
network. 

The Service Specific Data bridge across the Analytics Engine and the SENSE Orchestrator will form a 
closed control-feedback loop. The orchestration results will be monitored and measured and provided as 
feedback for fine tuning of future orchestration computation. On the other hand, the SENSE Orchestrator 
will also provide information to the Analytics Engine to help verify and instrument the data collection and 
analysis more efficiently. Including telemetry-based data analytics in the control-feedback loop will 
enhance SENSE realtimeness and interaction capabilities for end-to-end orchestration. 

 
3  SENSE Services Implementation 

The SENSE system has been developed to operate in “Development Operations (DevOps)” mode, where 
custom services can be rapidly developed in response to individual application requirements. The general 
system philosophy is that while not “every” service imaginable can be implemented, almost “any” service 
can be. This philosophy results in a system design that resource states and capabilities are sufficiently 
available to allow the construction of many different services. The user requirements will be utilized to form 
the basis of the actual services. For each of these services, the user can interact with SENSE in the following 
modes: 

• Immediate Provision - If SENSE finds a resource path which satisfies the application request, 
provisioning starts at once (after routine confirmations from both sides). 

• What is Possible? - In this mode, SENSE simply conducts a “Resource Computation” and provides 
the results back to the requestor. No provisioning action is taken without further explicit requests 
from the user. 

• Negotiation - One or more rounds of Resource Computation requests with subsequent provisioning 
request by the application user if desired. 

In the context of SENSE services, the “network” includes the switching and routing elements and the 
network stacks of the end systems, such as Data Transfer Nodes inside Science DMZ facilities. The data 
plane capabilities associated with these services are: 

• Layer 2 point-to-point with Quality of Service (QoS) 

• Layer 2 multi-point with QoS 

• Layer 3 Virtual Private Network (VPN) and Flow QoS 



Additional details regarding these (and other) services, the supporting system architecture, use case 
integration, and testing results are provided in the subsequent sections. 

From the user application perspective the SENSE Orchestrator provides services via a programmable 
northbound interface, called the SENSE Orchestrator NBI. The SENSE Orchestrator supports modular 
intelligent computation and arbitrary orchestrated services. The SENSE Orchestrator NBI is a customizable 
intent based API with an emphasis on end-to-end network connection discovery, computation, and intelligent 
services to support science workflows. 

 
3.1 SENSE Orchestrator End-to-End Service and Intent Based API 

The SENSE Orchestrator NBI service is designed to be customized based on individual use case 
requirements. An example service is a "Multi-Path P2P VLAN" where a user requests a 10G connection 
with hard-capped bandwidth QoS between DTN sites at NERSC and Caltech. An alternative service type, 
“Multi-Point VLAN Bridge” could be used to request a VLAN connection of three and more terminals. A 
Layer 3 service allows the dynamic creation or attachment of end site resources to a specific VPN. The intent 
requests are captured in a simple JSON document and sent to the SENSE Orchestrator NBI for processing. 
A service request message format and key field information example is listed below: 

Service Request Message Format (example instance values in italics) 
service_type: Multi-Path P2P VLAN 

service_alias: sc18-p2p-b1 
connections: 

name: connection 1 
terminals: 

uri: urn:ogf:network:nersc.gov:2013:server+dtn11.nersc.gov 
label: any 

uri: urn:ogf:network:caltech.edu:2013:server+xfer-2.ultralight.org 
label: any 

bandwidth: 
qos_class: guaranteedCapped 
capacity: 10 
unit: gbps 

Key Message Field Information 

• service_type - This field indicates the type of service being requested. The example value is 
"Multi-Path P2P VLAN", which allows for multiple point-to-point connections to be computed 
and provisioned as a group. 

• service_alias - This field indicates a service specific name for this service instance. 

• connections - This section defines the specific connections requests. There may be multiple 
individual connections included in a single request. The advantage to including multiple 
connections in a single request is that they will be computed and optimized as a group with regard 
to satisfying the user requests and also using the network resources efficiently. 

• name - This field supplies a service specific name for this connection instance. 

• terminals - This block names one or more endpoint pairs for each connection. 

• uri - A uniform resource indicator which defines the endpoints where service should terminate. 
The values correlate to information in the resource models. 

• label - A list of any constraints or preferences for connection labels which may be VLANS or 
other network flow space element. The example value "any" indicates that the SENSE system 
may select a value based on available resources. 



• bandwidth - This section defines the type of bandwidth desired for a specific connection. 

• qos_class - An indication of the type of QoS desired with options as described in Section 3.3. 
Supported QoS classes include guaranteedCapped (no burst over the capped limit), softCapped 
(allowing for bursting over the cap when extra bandwidth is available) and bestEffort. The 
example value is "guaranteedCapped". 

• capacity - This field indicates the amount of bandwidth requested. 

• units - This field defines the units for the above capacity value. 

SENSE has developed an intent schema to describe complex end-to-end network connectivity, QoS and 
scheduling requirements for the intent-based API. Internally, SENSE Orchestrator converts such intents into 
an ontology-based MRML model and converges them into a full-stack model computation, transaction and 
integration process that performs service instantiations and life-cycle operations. 

 
3.2 Interactive Service Negotiation Workflow 

The SENSE Orchestrator NBI also includes a set of messages which allow applications to interact with 
SENSE as part of its workflow planning. This includes SENSE messages for service and resource discovery, 
asking questions about options, and seeking recommendations. These are referred to as query and 
negotiation features. Additional description and examples for these types of interactions are provided below. 
3.2.1 Service Request with Queries 

A service request can optionally include a "query" block in order to ask questions without initiating 
actual provisioning events. Using the above service intent as an example, the below “query” blocks “ask” 
questions about end-to-end QoS capabilities. The query response from the SENSE Orchestrator then 
performs the regular service computation, to provide answers to the questions posed in the “queries”. In 
the below example, the question is "What is the maximum bandwidth possible for the indicated 
connection?". The query response from the SENSE Orchestrator answers that it can allocate 10G of 
guaranteed and hard-capped bandwidth at this moment. The response also reports that this end-to-end path 
has a 100 Gbps bandwidth capability, based on the combined allocated and unallocated resources. 

Query Request Format (example instance values in italics) 
bandwidth: 

qos_class: guaranteedCapped 
queries: 

ask: maximum-bandwidth 
options: 

name: connections1 

Query Response Format (example instance values in italics) 
bandwidth: 

qos_class: guaranteedCapped 
capacity: 10000 
units: mbps 

queries: 
asked: maximum-bandwidth 
options: 

name: connections1 
bandwidth: 100000 
units: mbps 

 
3.2.2 Service Request with Negotiation and Multi-Round Interactions 

An application workflow agent may "negotiate" with the SENSE system by engaging in multiple rounds 
of query request/response exchanges.  As part of this negotiation, the SENSE Orchestrator will revise the 



intent and post a newer version to the same service session identified by the service instance ID found in 
the reply from the initial service request call. Following the above example, the user knows the maximum 
bandwidth is 10 Gbps for the requested end-to-end connection. However, this only applies at the instant of 
the last reply, and this gives the user only a rough idea of the available network capacity. Then the user 
could negotiate for a feasible schedule in a sliding window that is bounded by the maximum and minimum 
allowed bandwidth, as illustrated in the request segments below. Here the user asks for a time-bandwidth 
product of 1 Terabyte to be transferred within next 2 days with acceptable bandwidth between 2 and 10 
Gbps, the SENSE Orchestrator provided a feasible solution for a transfer, that it accomplished between 
10:00:00 and 10:26:40 ET on September 1st 2018 at a fixed speed of 5 Gbps.  Additional information 
regarding the time-bandwidth product is provided in Section 3.3.2. 

Negotiation using Query Request Format (example instance values in italics) 
queries: 

ask: time-bandwidth-product, 
options: 

name: connection 1 
tbp-mbytes: 1000000 
start-after: now 
end-before: +2d 
bandwidth-mbps <=: 10000 
bandwidth-mbps >=: 2000 

 
Negotiation using Query Response Format (example instance values in italics) 

queries: 
ask: time-bandwidth-product 
options 

name: connection 1 
bandwidth: 5000 
unit": "mbps", 
start":"2018-9-01T10:00:00.000-0400", 
end":"2018-9-01T10:26:40.000-0400" 

 
3.2.3 Reserve and Commit Service 

Negotiation can be performed for many rounds until the user is satisfied with the reply. Once the user 
has settled on the final intent, it could use the Reserve method to reserve the service, which corresponds to 
the reply sent by the SENSE Orchestrator in the last round of negotiation as the final intent. In a final step, 
the user calls the Commit method to actually allocate the resources. Compared to a “soft” Reserve that is 
mostly a database operation, the Commit call is “hard” operation, which can take considerable time for 
some resources. The SENSE Orchestrator NBI offers both synchronous and asynchronous methods to 
execute the commit call. The complete intent API document for SENSE Orchestrator NBI is published at 
[30], which includes other components such as the service termination and discovery methods. 

 
3.3 End-to-End Quality of Experience and Intelligent Services 

Through ontology-based resource modeling and intelligent orchestration, SENSE provides a powerful 
solution for end-to-end QoS across many network domains. Bandwidth QoS only represents one aspect of 
Quality of Experience for data transfer application users. Many users also want deterministic or predictable 
time schedules for data transfers. In addition, some users would like to ask open-ended questions, so they 
can optimize their workflow operations based on the network services and status. 

Through implementation of these sophisticated capabilities, SENSE represents an innovative end-to- 
end SDN service paradigm. In this paradigm, the network control plane is an intelligent system that 



integrates and orchestrates arbitrary end-to-end services through ontology based real-time resource 
modeling and modular model computation. Users or client agents can then ask intelligent and complex 
“What is possible” questions via an intent based, interactive and negotiable service interface. In the SENSE 
project, we are building a reference implementation that is specific to the big science models, controlling 
primarily data transfer and network resources. Further developments of this implementation will continue 
to provide more sophisticated intents adapted to complex situations encountered in actual field operations, 
and possible optimized responses using machine learning. 

To add more specificity to these ideas of smart network services, we present four examples of SENSE 
service capabilities that represent the use of query, negotiation, and question features to enhance the overall 
user Quality of Experience. 
3.3.1 Immediate QoS Provisioning 

This is the most basic feature where a user asks for a specific connection service with a specific QoS 
level. The supported QoS classes include guaranteedCapped (no burst over the capped limit), softCapped 
(allowing for bursting over the cap when extra bandwidth is available) and bestEffort. For users who are not 
sure how much bandwidth to ask for, or want to check availability before provisioning they may first query 
for the maximum available using the “maximum-bandwidth” query statement as shown in the earlier 
example. Once the intent negotiation is concluded, the service will be reserved across all domains, and then 
immediately provisioned once it is committed. 
3.3.2 Time-Block-Maximum Bandwidth (TBMB) 

With this feature the user would like to know the maximum bandwidth available for a specific time 
period. This is the same as the immediate provisioning service, but adds the time dimension to queries, and 
scheduling for provisioning. As an example, the user may ask for the same 10 Gbps connection as above 
without requiring immediate provisioning. Instead the request is to schedule a bandwidth service to start and 
end at specific times in the future, and to provide the maximum possible bandwidth that is continuously 
available during that block of time. The query "ask" segment would include a "total-block-maximum- 
bandwidth" value along with "start" and "end" values. 
3.3.3 Bandwidth Sliding Window (BSW) 

SENSE also implements a feature for end-to-end bandwidth scheduling based on the “sliding window” 
concept. As an example, a user may ask to schedule a service lasting for 4 hours that can be scheduled 
flexibly within the next 2 days. This particular intent is called a “bandwidth-sliding-window”. The query 
statement is only slightly different than TBMB in that it includes a "start-after" and "end-before" fields allow 
the SENSE system to flexibly identify a time block within that window. 
3.3.4 Time-Bandwidth Product (TBP) 

Another SENSE service intent is based on the concept of the “Time-Bandwidth Product” (TBP). For 
instance, an 8-hour transfer at 10Gbps represents a data volume, or TBP, of 36000 gigabytes or 36 terabytes. 
Allowing users to query and negotiate bandwidth and schedule based on a given TBP is provided to assist 
bulk data transfer focused workflows, as TBP is a good estimate of the total amount of data to transfer. As 
an example, user “queries” may be formatted to find a schedule for the transfer an estimated 10,000 
megabytes (10 gigabytes) of data within a 2 day time window after October 1st 2018 8:00ET. The user would 
like to check for the fastest possible transfer speed using a “use-highest-bandwidth  =  true” option. 
Alternatively, the user can ask for the least bandwidth (or widest schedule) using a “use-lowest-bandwidth 
= true” option, or a bandwidth-bounded schedule using both “bandwidth-mbps >=” and “bandwidth-mbps 
<=” options. The latter will return a feasible schedule that satisfies both the time-bandwidth-product and the 
bandwidth upper and lower bounds. 

 
4 Testbed Deployment 

The SENSE solution architecture aims to address the problem of real-time interactive end-to-end SDN 
orchestration, which includes a complex set of issues and features revolving around distributed resource 
management, real-time modeling, multi-domain data integration, end-to-end orchestration, and intelligent 



service interface and interaction. The method for SENSE solution architecture design is more empirical 
than quantitative. Reference implementations and testbed experiments are the primary means to validating 
the design. In addition, a real-world, at-scale SENSE testbed deployment helps us evaluate its technical 
applicability for a wide spectrum of use cases, scenarios and application workflows. 

The SENSE architecture, models, and protocols define methods such that new implementations can 
include the most advanced levels of smart interactive networked services. However, a key part of the 
SENSE vision is to allow adaptation to and deployment on existing facility deployments interconnected by 
production networks. The same features that allow for adjustment and optimization of realtimeness vs. 
scalability, also allow existing SDN deployments to adapt their use of the SENSE functions in a manner 
which is compatible with their underlying network infrastructure. This allows early deployment of SENSE 
services for testing and use case development, and also provides guidance for future upgrades of network 
automation systems. This approach allowed the deployment of SENSE services which operate on top of 
ESnet, DOE laboratory, and university production and testbed infrastructures. The result is a SENSE 
testbed which allows for real world testing and the ability to provide services to use cases which include 
connections to their production resources. 

The SENSE testbed deployment had to deal with multiple existing deployed SDN systems. The SENSE 
system provides the mechanisms and infrastructure to leverage these systems and provide guidance as to 
how they can be fully integrated into the SENSE system. This requires existing SDN systems to implement 
the SENSE Orchestrator Southbound Interface as their controller Northbound Interface. Existing systems 
may accomplish this via native implementation of the SENSE API or via a thin layer on top of their existing 
API which provides the proper interface. 

This technique of adopting underlying SDN systems for SENSE system integration has been used as 
part of the SENSE system deployment on ESnet and other R&E infrastructures. Systems based on 
OpenDaylight (ODL) [10], Network Services Interface (NSI) [11], On-Demand Secure Circuits and 
Advance Reservation System (OSCARS) [12], and Open Network Operating System (ONOS) [13] have 
all be integrated into SENSE Orchestrator operations. The SENSE development and testing activities have 
demonstrated that valuable orchestrated SDN services can be provided using these existing SDN systems 
as is, with no internal modifications. The practical implication of this approach so far is that existing SDN 
system capabilities may limit the degree of realtimeness or interactivity that SENSE can provide to the 
user's application workflows. 

However, we have also identified the needed changes to these systems in the areas of topology 
description, abstraction, real-time states inclusion, and computations to support negotiation that will allow 
for full provision of the more advanced SENSE services. There are also opportunities for native 
implementation of a SENSE based SDN system which further enhances the ability to increase the 
realtimeness and interactivity of the orchestrated services. This typically involves a tighter coupling 
between the SENSE defined resource model generation, real-time states tracking, and resource control 
mechanisms. This native implementation approach was utilized for the SDN layer at end sites, and higher 
performance was observed in the subsequent testing activities. 



A SENSE testbed has been deployed which includes a mix of development and production resources. 
This testbed is being utilized to develop and test the SENSE software, as well as test with domain science 
use cases. As shown in Figure 2, this testbed is deployed at multiple DOE laboratory and university facility 
sites. For the allocation of network resources, the SENSE system interacts with production provisioning 
systems of ESnet and other networks. For the end-system resources, a mix of production and prototype 
DTNs are deployed. For the production DTNs limited access is provided, resulting in tailoring the set of 
SENSE based dynamic configurations to match local site policies. This approach to use a mix of production 
and research resources enables experience with various real-world site deployments and considerations. 

 
 

 
Figure 2 SENSE Testbed Deployment 

 

The initial experimentation on the SENSE testbed were focused on validating the SENSE solution 
architecture design, evaluating soundness of intent based interactive service workflow for real-world use 
cases, and obtaining metrics on the key performance factors for realtimeness and scalability. 

 
5 Use Cases 

The SENSE project is now in a phase where use case integration is a key focus area. The main use cases 
currently under test are described below. 

Data Transfer Node Priority Flow: Science DMZ located Data Transfer Nodes (DTNs) are a common 
method for moving data to/from compute facilities in the R&E community. For this use case, SENSE 
services are utilized to enable a “DTN Priority Flow Service”. Since SENSE services are provisioned 
across the switching and routing elements and the network stacks of the end systems, this allows the creation 
of QoS-enabled paths that can be utilized for specific flows such that deterministic performance can be 
achieved regardless of the background traffic. The concept of operation is that these “SENSE enabled 
DTNs” can either be placed adjacent to current production DTNs as standalone transfer nodes, or SENSE 
software can be installed directly on the production DTNs. In either case, standard DTN operations and 
flows across the best effort routed IP paths continue as normal. When a SENSE flow is established between 
DTNs, this flow will receive priority access to network and host level resources. The best effort flows will 
continue, possibly at a reduced rate.  This SENSE capability currently includes Layer 2 point-to-point, 



Layer 2 multipoint, and Layer 3 VPN services. The workflow agent for this use case utilizes the “Time- 
Block-Maximum Bandwidth”, the “Bandwidth-Sliding-Window”, and the “Time-Bandwidth-Product 
(TBP)” SENSE features to instantiate Layer 2 paths with QoS. This workflow also demonstrates the “What 
is Possible?” and “Negotiation” feature sets. A description of SENSE services, as well as more information 
regarding testing for this use case is available here [31]. 

LHC/CMS Use Cases: The SENSE project is also working on use cases that integrate with Large Hadron 
Collider/ Compact Muon Solenoid (LHC/CMS) data movement and analysis workflows. SENSE 
integration with this science domain is focused in two areas: 

• Rucio - This is a next-generation of Distributed Data Management system addressing high- 
energy physics experiment scaling requirements. Rucio was originally developed to meet the 
requirements of the high-energy physics experiment ATLAS and now is extended to support 
not only the LHC experiments but also other diverse scientific communities. Rucio uses File 
Transfer Service (FTS) to globally distribute the majority of the LHC data across the WLCG 
infrastructure. The SENSE team is implementing a plugin for FTS Service to be able to request 
network resources depending on the transfer queues and sizes between participating sites and 
do bulk transfer of files reliable from one site to another. 

• nanoAOD - Another ongoing implementation is a new compact event form called the 
"nanoAOD" [34] that enables the rapid widespread distribution, ingest and real-time processing 
through a set of "PhysicsTools" of entire datasets of one to a few terabytes, that can be 
subsequently further analyzed on user's desktops and laptops. 

The associated CMS analysis workflows and Distributed Data Management implementations currently 
under development, are planned to be accelerated and scaled up in terms of the number of simultaneous 
workflows supported, through the use of SENSE's interactive bandwidth allocation and management 
services, together with the RM services at a number of CMS sites, and high throughput data transfer 
applications such as FTS, XRootD and Caltech's open source Fast Data Transfer (FDT) [35]. 

Further related developments, underway through the NSF-funded SDN Assisted NDN for Data Intensive 
Experiments (SANDIE) project [36], include the use of Named Data Networking (NDN) and its caching 
and routing methods, to be supported as part of future SENSE services to expand NDN's ability to deal with 
larger scale data intensive workflows. 

Exascale for Free Electron Lasers (ExaFEL): The objective of this use case is to stream nano 
crystallography diffraction data from SLAC National Accelerator Laboratory (SLAC) to National Energy 
Research Scientific Computing Center (NERSC) over the network in order to perform analysis on Cori, a 
Cray XC40, which has a peak performance of about 30 petaflops with 2,388 Intel Xeon "Haswell" processor 
nodes, 9,688 Intel Xeon Phi "Knight's Landing" nodes, and a 1.8 PB Cray Data Warp Burst Buffer. The 
feedback is provided afterwards to the beamlines in the form of 3D electron structure visualization. The 
workflow uses SENSE components to stream the data from the LCLS online cache at SLAC to NERSC 
compute nodes over network, and also orchestrates the SFX analysis processes to give near-real-time 
feedback to the experiment. For this use case, the ExaFEL application workflow agent utilizes the “Time- 
Block-Maximum Bandwidth” SENSE Service to provision the network path. This includes establishment 
of Layer 2 paths with QoS with time domain scheduling.  More information about testing for this use case 
is available here [32]. 

BigData Express: BigData Express provides schedulable, predictable, and high-performance data 
transfer service for DOE’s large-scale science computing facilities (LCF, NERSC, and US-LHC computing 
facilities, among others) and their collaborators. This project seeks to orchestrate the system, storage, and 
network resources involved in high-performance data transfers. From a network services perspective, 
BigData Express focuses on controlling local network resources supporting the end systems. For wide-area 
service, the BigData Express system utilizes SENSE services to provision paths across ESnet. The BigData 
Express workflow agent utilizes the “Time-Block-Maximum Bandwidth” and the “Bandwidth-Sliding- 



Window” SENSE services to instantiate Layer 2 paths with QoS.  This application also utilizes the “What 
is Possible?” and “Negotiation” features sets to co-schedule across multiple end-sites and network 
resources.  More information about testing for this use case is available here [33]. 

 
6 Performance Evaluation, Results and Analysis 

The SENSE solution architecture enables feature rich end-to-end services for many use cases. It is 
important to evaluate the design and implementation against our target problem in realistic settings and 
verify its performance in at-scale deployments. Results from testbed experiments will provide (a) reference 
performance metrics for integrating new network domains, end sites and facilities, and (b) ground truth in 
support of large-scale deployments and service operations. The performance study in this paper reflects an 
initial attempt to verify system functionality with a focus on real-time speeds and scalability metrics. 

 
6.1 Performance Tests Setup 

The overall performance evaluation setups include testbed configuration, experiments run, data 
collection and results analysis. For the baseline performance evaluation, we ran experiments and collected 
data from the actual SENSE Testbed that consisted of 8 select SENSE RMs, including 3 Network RMs for 
Production ESnet, ESnet Testbed and CENIC / PacificWave wide area domains, and 5 DTN-RMs for the 
NERSC/LBL, Argonne National Lab (ANL), Fermilab (FNAL), Caltech and University of Maryland 
(UMD) end sites. The SENSE Orchestrator and RMs were standalone software suites running on medium 
sized virtual servers (VM). Each VM typically had 4 vCPU cores and 8 GB of memory. The experimental 
testing plan was as follows. 

• Compose - Compose a batch of 6 DTN-to-DTN service intents. Each represents a point-to-point 
(P2P) or multi-point (MP) layer-2 network connection service that requires transactions with 3, 4, 
5, 6, 7 and 8 RMs respectively. These intents are described in Table I. 

• Request - Request the batch of services to SENSE Orchestrator. Repeat the same batch when all 
the requested services have been orchestrated and go active. 

• Collect - Collect performance data from SENSE Orchestrator and the 8 SENSE-RMs. This work 
mainly involves extracting beginning and ending timestamps for model generation, model pull, 
delta propagate, delta commit, model integration and orchestration computation events from 
logging outputs by all the participating systems. 

 
Table I. Service intents in one batch of testbed experiments. 

 

Experiment Service Intent # of RMs 
P2P UMD - FNAL 3 x RM 
P2P NERSC - FNAL 4 x RM 
P2P NERSC - Caltech 5 x RM 
MP NERSC + Caltech + ANL 6 x RM 
MP NERSC + Caltech + ANL + FNAL 7 x RM 
MP NERSC + Caltech + ANL + FNAL + UMD 8 x RM 

 
6.2 SENSE Testbed Baseline Experiment Results 

Through the experiments, we collected data to verify the speed and scalability of the entire control- 
feedback loop for SENSE orchestration. We can break down the speed metrics into these three parts: 

A. Decision speed: Service computation at the SENSE Orchestrator. 
B. Control  speed:  Service  model  delta  “propagate”  and  “commit”  times  from  the  SENSE 

Orchestrator to SENSE-RM. 



C. Feedback speed: Model generation from SENSE-RM pull and integration times at the SENSE 
Orchestrator. 

Data collected for (A) and (B) include per-service event times, which are presented in Figure 3. Item 
(C) is a per-system metric associated with the SENSE Orchestrator pull of a full model update from a 
SENSE-RM system. These results are presented in Figure 4. 

There are three different types of SENSE-RMs referenced as part of these experiments: N-RM-OSCARS 
is a Python implementation of SENSE-RM on top of the latest ESnet OSCARS API, N-RM-NSI is a Java 
implementation wrapping around the Network Service Interface (NSI) that many R&E networks currently 
use for dynamic layer-2 circuit provisioning, and DTN-RM is a native implementation of SENSE model 
driven resource management for DTN centric end sites and local SDN implementations. The results are 
aggregated based on the system components involved in the orchestration: SENSE Orchestrator, N-RM- 
OSCARS, N-RM-NSI and DTN-RM. From Figure 3, we have the following observations. 

1. Network RMs take a much longer time than DTN RMs to propagate a service delta. This is because 
both OSCARS and NSI have their own reservation system that adds overhead to the SENSE propagate 
process, while the DTN-RM can have this process built on native SENSE modeling without wrapping 
around a legacy system. The propagate is transactional, so propagate with RMs has to be synchronous, 
meaning the propagate times add up for all involved RMs in a service. The number of DTN end sites 
has very little impact as the DTN-RM propagate is very fast. The number of WAN domains the service 
traverses will have a major impact on the speed, as the average N-RM propagate operation takes about 
11.2 seconds. The largest service in these experiments has 3 N-RM and 5 DTN-RM instances, bringing 
the total propagate transaction time to 48 seconds. 

2. commit takes the longest times, because this is the process where resource allocation is actually 
executed. Unlike propagate, the commit process is asynchronous. Multiple commits are done in 
parallel, so that the total commit time equals the longest among the RMs involved in a service. 30 
seconds of commit is quite common in these tests, although the maximum could be around 48 seconds 
when N-RM-OSCARS is involved. It should be noted that the actual RM commit could be very short. 
For example, a DTN-RM takes only a bit more than a second to finish end site configuration. The 
SENSE Orchestrator runs a periodic poll after the asynchronous commit call to identify the “finish” 
status which introduces an extra time penalty due to the fixed polling intervals.  The SENSE-RMs can 



also use the optional subscribe-notify mechanism to call back to the SENSE Orchestrator for immediate 
update which eliminates this time penalty. 

 

 
 

 
3. The SENSE Orchestrator service computation times have the biggest deviation, ranging from 4.5 to 

31.1 seconds. This is largely driven by the number of domains and provisioned paths in the requested 
end-to-end topology. A point-to-point (P2P) service spanning 3 or 4 RMs takes the least time for path 
finding, while a multipoint (MP) service spanning all 8 RMs takes the longest computation time. 

4. Adding up the times for the various steps, we see that the full process of service control including 
computation, propagation and committing takes about 1 to 2 minutes at this scale. From the scalability 
perspective, the number of RMs involved in a service matters as it will add overhead to the service 
computation and delta propagation times. 

 
The SENSE orchestration performance also depends on how quickly the SENSE-RMs can update their 

models, and how fast the SENSE Orchestrator can pull and integrate these model updates. The results 
shown in Figure 4 provide some insight into these factors. 

1. The N-RMs need longer times than the DTN-RMs on average to generate a model, due to the overhead 
in communicating with the OSCARS or NSI API. However, this difference becomes less important 
when the network size (number of resources under the RM) increases. The N-RM-OSCARS takes a 
much longer time than the N-RM-NSI because the production ESnet controlled by N-RM-OSCARS is 
much bigger than the other two WANs controlled by the N-RM-NSI instances. Generating a model at 
the Caltech DTN-RM is also significantly longer than other DTN-RMs because Caltech has a more 
complex campus SDN component that adds to the model generation time for its DTN-RM. 

2. Model pull times have the biggest range from milliseconds to many seconds, due to very different 
model sizes between RMs. The longest pull time of 24 seconds comes from the production ESnet N- 
RM-OSCARS, which generates a model from OSCARS on-the-fly with a pull API call. A planned 
improvement will separate the model generation procedure from the API method and reduce the pull 

Figure 3. SENSE Testbed service orchestration speeds breakdown (in seconds). 



time to sub-second. The SENSE-RM API recommends using the “If-Modified-Since” HTTP header, 
which allows the RM to return code 304 instead of the actual model content when no model update is 
available. SENSE-RM API also recommends HTTP content encoding with gzip compression. These 
options result in the shortest pull times for the two N-RM-NSI instances that have implemented them. 

3. Model integration is a process in which the SENSE Orchestrator combines all the model pieces pulled 
from RMs into a connected union model. This requires CPU computation at the SENSE Orchestrator. 
Experiments show that this process is normally sub-second at this scale. 

4. The SENSE Orchestrator model pulls from all RMs are asynchronous and done in parallel. The speed 
is determined by the combined model generation and model pull times at the slowest RM. The total 
feedback time, which is the system wide model learning time, can then be calculated by adding up the 
longest SENSE-RM model generation plus pull time and the SENSE Orchestrator model integration 
time. This total time is easily scalable as model integration time is the only limiting factor that will 
increase with the number of RMs in orchestration. The good news is that the model integration process 
is very fast. 

 

 
 

 

To summarize, with a reasonable number and size of services on the eight-RM SENSE testbed, 1 to 2 
minutes of decision making, and service control time is needed, and less than half a minute is needed for 
system wide model learning and update. We have identified and analyzed the factors that determine the 
overall decision and control time. The majority of these are related to the local computation and legacy API 
overhead, which can be improved through software internal tuning. At the SENSE-RM API level, several 
enhancements have been designed but not implemented. The results of our experiments have confirmed 
that these enhancements will potentially reduce the remaining overheads substantially. At the SDN 
infrastructure layer, we see that the choice of control plane technologies has a significant impact on 
performance, as manifested by the difference between pre-SENSE systems such as OSCARS and SENSE 
native implementations such as the DTN-RM SDN. The experimental results have shown that while SENSE 

Figure 4. SENSE Testbed system model generation pull and integration speeds (in seconds). 



can adapt legacy systems to work with SENSE-RM API, the control and feedback often becomes less than 
real-time. Enhancing such systems with SENSE native resource modeling, model update and negotiation 
mechanisms will greatly improve the overall performance and hence the Quality of Experience. 

6.3 Scale-Out Emulation and Results 
The baseline experiments summarized above provide the initial results and insights into real-time speed 

metrics. A bigger question now is: how would these findings fare in a much larger orchestration 
environment? To answer this question, we set up a SENSE emulation environment for scale-out 
experiments. We deployed a total of 25 emulated DTN-RMs on real-world end sites. We also created 42 
NSI N-RM instances to emulate the global AutoGOLE network domains [37]. In this environment, both 
the DTN-RMs and N-RMs present realistic topological models to the SENSE Orchestrator. Model 
visualization of the 67-domain topology is shown in Figure 5. They interact with the SENSE Orchestrator 
through the same SENSE-RM API with realistic distributed transactions, except that the device-level 
resource allocation actions are emulated. 

 

 
 

 
In the scale-out experiments, we generated multiple batches of service requests among select DTN end 

sites. Each batch consists of 20 service instances, requested simultaneously. When one batch is fully 
committed, a second batch will then be handled. This scale of SENSE deployment and service operations 
is very close to what is expected in real world global R&E infrastructures. We collected data from the 
SENSE Orchestrator and all 67 RMs and present the results in Figure 6. 

Figure 5. SENSE-Orchestrator model visualization of the 67-domain topology 
(screen shot) for scale-out experiments. 



 

 
 

 
These results confirm the projected scalability performance based on observations from the baseline 

experiments and supply further insights. 

1. Model propagate and commit are per-RM events. They are not affected by the size of the testbed. 
Emulation makes them slightly faster than working with actual devices. Due to the SENSE Orchestrator 
poll based model verification, it takes around 30 seconds for a service to be committed, even though 
this is emulation. As the device-free commit takes no time, we could use the optional subscribe-notify 
mechanism to update SENSE Orchestrator for completion of commit operations. This should reduce 
the commit time to sub-second for emulation, and potentially a few seconds for real services. 

2. SENSE Orchestrator scalability refers to its ability to handle large topologies (quantified by the number 
of independent resource models and elements) and high degrees of dynamism (many model updates 
due to tracking real-time states and/or high service provisioning frequency). This scalability is affected 
by three factors: model pull and integration from all RMs; per-service model computation; and per- 
service delta propagate and commit with involved RMs. The test results confirm the model pull and 
commit operations scale well with little performance impact due to their asynchronous and parallel 
performance mode of operation. The model integration and per-service propagate operations are 
synchronous and serial process, and there was some concern that they would not scale as well. 
However, based on the parameters of the testing described, there were no significant differences from 
the baseline experiments. 

3. The biggest and practically only factor affecting the scalability is the service computation times at 
SENSE Orchestrator. We see an average of 57 seconds for each computation, and the maximum time 
can reach 4 minutes. One reason is that when dealing with a large network of 67 domains that consists 
of 92 nodes and over 200 links, the longest path could span over 9 domains and 11 nodes. Path finding 
takes significantly more time than for an 8-domain network. A more important reason is that with each 
batch of 20 service instances being requested simultaneously, the concurrent computation threads cause 
contention in a modest virtual server. SENSE Orchestrator is built with Enterprise Java and can be 
deployed in cluster mode with workloads balanced to multiple nodes. The current SENSE testbed has 
not taken advantage of this capability. A next generation of testbed will use a clustered SENSE 
Orchestrator deployment to eliminate the computation bottleneck. 

Figure 6. SENSE scale-out experiments, with 42 WAN domains and 25 DTN end sites, 
results (speeds in seconds). 



From the scale-out experiments, we have proven that the overall SENSE architecture is optimized for 
parallel orchestration and is highly scalable. The orchestrator path finding algorithm and deployment size 
needs to be improved for large networks to reduce the per-service computation time. Combining that with 
the reduction introduced by RM-pushed commit notification, the whole SENSE orchestration will 
potentially only carry seconds of overhead. This will provide additional value for many real-time or time 
sensitive operations, as well as for major science programs with a global reach. 

7  Summary and Future Plans 
The SENSE system architecture and implementation presented utilizes model-driven datafication of 

cyberinfrastructure to enable intelligent network services. Science applications utilizing intent based APIs 
with automated resources discovery and negotiation enable a significantly different mode of operation as 
compared to current network usage modes. With the falling costs of 100 Gbps capable devices, powerful 
end systems are increasingly being placed at edge locations where high-bandwidth connections directly to 
regional and national networks will be the norm, and this trend will continue with the current emergence of 
400 Gbps capable switches and the corresponding end systems. The Science DMZ based, National 
Research Platform Initiative [38] is an example of a high-performance end-system edge deployment. As a 
result, the expectation is that we are entering a cycle where network capacity will be easily overwhelmed 
by these advanced end-site and edge facilities. This indicates a need for methods to manage network 
resources and access them in a more intelligent manner, which includes providing the application agents 
with sufficient information so that they can plan and optimize their operations. The SENSE vision and 
solution is focused on these issues in anticipation of the time where unmanaged network utilization and 
extreme overprovisioning is no longer the preferred operational approach, or no longer feasible due to cost 
and/or technical considerations. 

The SENSE project tackles a range of network research problems and has produced results that are 
interesting for many aspects of network research and practical operations. In this paper, we are focused on 
the centric problem of real-time, interactive, end-to-end SDN orchestration. We presented a SENSE 
Solution to this problem with detailed description of architectural functions, components and novel resource 
modeling, management, computation and orchestration mechanisms. We validated this solution as noted 
in the SENSE Services Implementation section and described how the SENSE Orchestrator supports 
sophisticated interactions for better quality of experience through an intent based interface and intelligent 
negotiation workflows. We further validated realtimeness and end-to-end aspects of the solution with 
description of the SENSE Testbed Deployment and Use Cases. In the Performance Evaluation section, we 
quantified the speed and scalability metrics through real-world experiments and emulations. This provided 
insights and assurance regarding the applicability of the SENSE solution to real-time, large, distributed, 
multi-domain environments. The experimental results presented in this paper also pointed us to several 
implementation issues that can be fixed or improved in a straightforward fashion via follow-up work. Initial 
prototyping [32] indicates that this solution provides a set of services which can greatly facilitate the 
realization of the emerging DOE Superfacility concept. This vision includes the seamless integration of 
multiple, complementary DOE Office of Science user facilities into a virtual facility to enable 
fundamentally greater capabilities. The SENSE system provides the mechanisms needed to synchronize 
and coordinate the connection of multiple distributed compute, storage, and instrument resources with 
deterministic performance and methods to assist in the application driven workflow planning/operations to 
realize the Superfacility vision. Key contributions of the SENSE work include the architecture definition, 
reference implementation, and deployment as the basis for further innovation of smart network services to 
accelerate scientific discovery in the era of big data, cloud computing, machine learning and artificial 
intelligence. 

The SENSE solution architecture and services implementation creates many avenues for investigation 
and provides a platform to address interesting research questions. These issues revolve around the focus 
on interaction, negotiation, the degree of real-time state management and consideration at many levels of 



the decision and control operation process. Future plans include exploring some of these issues noted below 
as part of ongoing development and testing of the SENSE system: 

• Real-time States - SENSE is designed to allow resource owner to flexibly adjust the amount and 
type of real-time information to share with orchestrators. There are tradeoffs which revolve around 
scalability and performance. More real-time data means better orchestrator computation results, 
fewer rounds of negotiation, and faster provisioning times. Too much real-time information can 
result in scalability issues and the need to ignore some updates in order to keep the control feedback 
loop stable. Future activities will seek to quantify and develop best practices regarding the amount, 
type, and update frequency of real-time data to be included in the resource model exchange. 

• Real-time Data Dynamic Adjustment - The optimal amount and type of real-time information is 
expected to be dependent on specific deployment topologies, changing operational conditions, and 
service objectives. Future activities will investigate options of data collection, analysis, and 
mechanisms associated with the dynamic adjustment for real-time data inclusion in resource 
models. 

• Resource Model Abstraction Level - Resource models can vary from highly detailed (complete 
representation of the physical infrastructure) to highly abstract (an entire infrastructure described 
as single node with just edge connections). Future activities will investigate and evaluate different 
levels of abstraction. There is a complex interaction between abstraction level and the real-time 
data issues noted above which will also be investigated. 

• Policy Guided Decisions - There are multiple levels of authentication and authorization that are 
independently managed by different resource managers and orchestrators. Federated user 
authentication will allow individual resource owners to use a common identification base over 
which to apply their local policies. These policies can be communicated in the resource models 
and service computations. Future activities will investigate the best method for realizing multi- 
domain, multi-resource authentication and authorization, including issues around granularity and 
resource types (user, project, domain, individual network, end system resource elements, and/or 
flows). 

• Machine Learning and Artificial Intelligence - The above issues highlight that SENSE is a real- 
time system with multiple levels of dynamic information exchange and feedback loops. Multiple 
architectural features are included to allow tailoring of this real-time information based on 
deployment, operational, and service constraints. Previous work has evaluated unsupervised. semi- 
supervised [45], and reinforcement learning [46] techniques to classify flows in real time and plan 
network usage profiles. Future activities will evaluate if these types of systems can leverage 
SENSE data as an added input and also recommend SENSE service provisioning actions. The 
system goals would include enhanced individual workflow quality of experience and optimization 
of overall infrastructure use. 

As the SENSE architecture and implementation evolves through multi-institution testbed deployment, 
the focus of the project is to continue integration with domain science use cases and transition the SENSE 
services to production status for both the network and application operations. 
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