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This article has two main objectives: one is to describe some extensions of an adaptive Algebraic Multigrid

(AMG) method of the form previously proposed by the first and third authors, and a second one is to present

a new software framework, named BootCMatch, which implements all the components needed to build and

apply the described adaptive AMG both as a stand-alone solver and as a preconditioner in a Krylov method.

The adaptive AMG presented is meant to handle general symmetric and positive definite (SPD) sparse linear

systems, without assuming any a priori information of the problem and its origin; the goal of adaptivity is to

achieve a method with a prescribed convergence rate. The presented method exploits a general coarsening

process based on aggregation of unknowns, obtained by a maximum weight matching in the adjacency graph

of the system matrix. More specifically, a maximum product matching is employed to define an effective

smoother subspace (complementary to the coarse space), a process referred to as compatible relaxation, at

every level of the recursive two-level hierarchical AMG process.

Results on a large variety of test cases and comparisons with related work demonstrate the reliability and

efficiency of the method and of the software.
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1 INTRODUCTION

Modern applications spanning a variety of fields from the discretization of Partial Differential
Equations (PDEs) to discrete models on general networks very often require the solution of large
and sparse linear systems of equations. The notion of “large” is qualitative and it expands, by
orders of magnitude, over time; nowadays, it is not uncommon to encounter linear systems with
hundreds of millions or even billions of unknowns.

Algebraic Multigrid Methods (AMGs) are a popular choice for solving various classes of such
linear systems; their efficiency is based on the recursive application of a two-grid process con-
sisting of a smoother, typically an iteration process that involves local updates, and a coarse-level
correction. More specifically, the components of the error that cannot be handled by the smoother
are reduced on a coarse level (or coarse grid); these components of the error are commonly referred
to as algebraically smooth ones. In this respect, the multilevel solution process can be viewed as
a divide-and-conquer algorithm working implicitly in a frequency domain: the components of the
error that cannot be handled by the smoother are handled recursively by similar processes acting
on coarser levels.

Smoother iterations are typically based on a simple relaxation method such as Jacobi or Gauss-
Seidel. The coarse-grid correction consists of computing an approximate solution to the residual
equation in an appropriately chosen coarse space, that is, solving a linear system of smaller size.
The coarse space solution is then transferred back to the fine level by a suitable prolongation
operator and this interpolant is used to update the current fine-level approximate solution. In
AMG, the construction of the coarse space and of the prolongation operator linking it with the fine
space is the main task in the set-up process, and it is referred to as the coarsening algorithm. The
coarsening process either involves the system matrix, possibly with some additional information,
or some assumptions are made about the origin of the matrix, possibly provided by the user.

Since the original appearance in the early 80s [12] and that of the popular variant in Refer-
ence [43], AMGs have relied on certain heuristic criteria, most notably the notion of strength of

connections, which is employed in selecting the coarse-level variables, commonly referred to as
coarse degrees of freedom. This has led to some very efficient and scalable parallel software li-
braries targeting classes of sparse matrices that correspond to discretizations of second-order dif-
fusion type elliptic PDEs (see, for example, Reference [24]). Extensions to more general classes of
matrices have been proposed; most notably, versions of AMG that led to the so-called adaptive
or bootstrap AMG, including ones of aggregation type AMG [11, 16, 17]. More recently, many ef-
forts were devoted to the design of adaptive cycles in bootstrap AMG for applications in lattice
Quantum chromodynamics and Markov chains (see Reference [10] and the references herein). All
of these approaches, in one way or another, exploit information gathered by testing the smoother
and/or the current method to modify the method itself, so as to allow handling of the leftover com-
ponents of the error. The basic concept goes back to the so-called compatible relaxation principle
introduced by Achi Brandt in Reference [8], and further analyzed in References [25] and [26].
Our previous work in this field was motivated by the compatible relaxation and the adaptive AMG
strategies. More specifically, we introduced in References [18] and [19] an algorithm named coars-

ening based on compatible weighted matching, which exploits a maximum product matching in the
system matrix graph to enhance matrix diagonal dominance, reflecting the convergence proper-
ties of an appropriately defined compatible relaxation scheme. Information about the smooth error
is then used to define edge weights assigned to the original matrix graph. In References [18] and
[19], we proposed to use the coarsening based on compatible matching within a bootstrap process,
which generates a composite AMG solver to obtain a method with a prescribed convergence rate.

In this article, we first introduce a modification to our original method for computing weights
in the coarsening process and propose the use of an auction-type algorithm [6] for computing
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near-optimal weighted matching with a reasonable computational cost. Our second objective is to
describe the main features of our new C package—BootCMatch: Bootstrap algebraic multigrid based

on Compatible weighted Matching; it comprises all the functionalities needed to build and apply
our bootstrap AMG method exploiting the compatible matching coarsening algorithm described
in the article.

The remainder of the article is organized as follows. In Section 2, we review the main con-
cepts and preliminary information regarding two-level AMG, compatible relaxation, and graph
matching. In Section 3, we give details on the compatible weighted matching coarsening, whereas in
Section 4, we describe the main features of some available algorithms for computation of maximum
weighted matching. Section 5 contains a description of the bootstrap algorithm, which employs
coarsening based on matching. In Section 6, we introduce the software architecture of the BootC-

Match code, describing its main data structure and functionalities. Section 7 discusses performance
results on various test problems ranging from scalar and vector PDEs, and also including general
symmetric and positive definite (SPD) matrices from the SuiteSparse Matrix Collection [20]. We
conclude with additional remarks and future plans in Section 8.

2 PRELIMINARIES

2.1 Algebraic Framework of the Two-Level Hierarchical Method

We are concerned with the solution of linear systems of equations

Ax = b, (1)

whereA ∈ Rn×n is a SPD matrix that is also large and sparse, using AMG based on aggregation. In
this respect, we describe a two-level hierarchical method in which the original, fine-level, vector
space Rn is decomposed as a direct sum of D-orthogonal components (for some given SPD matrix
D)

Rn = Ranдe (Pc ) ⊕⊥ Ranдe (Pf ). (2)

The matrices Pc ∈ Rn×nc and Pf ∈ Rn×nf , with n = nc + nf , are referred to as the prolongator and
complementary prolongator, respectively. The ranges of the two prolongators correspond to the de-
composition of the original fine space into a coarse space and a hierarchical complementary space.
Exploiting the above decomposition, the matrix A admits the following two-by-two two-level hi-
erarchical block form:

[Pc , Pf ]TA[Pc , Pf ] =

(
PT

c APc PT
c APf

PT
f
APc PT

f
APf

)
=

(
Ac Acf

Af c Af

)
. (3)

In what follows, we refer to Ac as the coarse matrix whereas Af is referred to as its hierarchical

complement.

2.2 Compatible Relaxation

We consider smoothers (relaxation schemes) of the Richardson type:

xk+1 = xk +M
−1 (b −Axk ), (4)

assuming that (M +MT −A) is SPD, which is equivalent to the fact that the smoother is convergent
in the A-norm (e.g., Reference [47]). Note that the error propagation matrix corresponding to the
iteration in Equation (4) is (I −M−1A).

A compatible relaxation is defined in Reference [8] as a smoother capable of keeping the coarse
variables invariant; such a smoother may be used to define practical algorithms for selecting coarse
spaces in AMG [8, 9, 15, 25, 34]. In particular, the convergence rate of a compatible relaxation may
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be used to estimate the quality of the coarse grid, i.e., the ability to represent algebraically smooth
error components.

Starting from the decomposition in Equation (2), we can see that the modified relaxation method
represented by the following error propagation:

ek+1 =
(
I − Pf

(
PT

f MPf

)−1
PT

f A
)
ek

is a compatible relaxation. The coarse variables can be defined as wc = πc w, where πc =

Pc (PT
c DPc )−1 (Pc )TDw (i.e., as the D-orthogonal projection of w onto the coarse space); by con-

struction, we have (Pc )TDPf = 0 and therefore πcPf = 0. This implies that πc ek+1 = πc ek , i.e., the
coarse variables are invariant under this iteration. In general, if Mf is a well-defined smoother for
the hierarchical complement Af , we can think of it as being derived from a global smoother, i.e.,

Mf = PT
f
MPf ; it can act as a compatible relaxation for the matrix in Equation (3), and the com-

plementary space Ranдe (Pf ) can be defined as the effective smoother space, that is, the space on
which the smoother must be effective.

In Reference [25] (Theorem 5.1), it has been proven that the quantity ρf = ‖I −M−1
f
Af ‖Af

is

an upper bound of a measure of the quality of the coarse matrix Ac : if the compatible relaxation
converges fast, the smoother is able to damp large eigenmodes of the matrixA, whereas the coarse
matrix Ac represents well the corresponding smooth vectors.

2.3 Graph Matching

LetG = (V ,E) be the undirected adjacency graph of the symmetric matrixA = (ai j )i, j=1, ...,n , where
the vertex set V consists of the row/column indices of A and the edge set E corresponds to the
sparsity pattern of the matrix A so that (i, j ) ∈ E iff ai j � 0. A matching in G is a subset of edges
M ⊆ E such that no two edges share a vertex. The number of edges in M is the cardinality of
the matching; a maximum cardinality matching is a matching which includes the largest possible
number of edges, and a matching is perfect if its edges touch all vertices. In the following, we
assume that we have a set of weights ci j ≥ 0 associated with the edges; the weight of a matching

is then defined as:

C (M) =
∑

(i, j )∈M
ci j . (5)

A maximum product matching in the graph of a sparse matrix is a matching that maximizes the
product of the entries ai j for each edge (i, j ) in the matchingM; maximum product matchings are
successfully used in sparse matrix direct solvers to move large matrix entries onto the main matrix
diagonal (see References [22, 23, 27, 30, 31]). For general weights ci j associated with the edges, we
are interested in a maximum product weighted matching, that is, one which maximizes the product
of the weights of all edges in the matching.

It has been shown (see Reference [22]) that maximizing the product
∏

(i, j )∈M ci j is equivalent
to maximizing the quantity: ∑

(i, j )∈M
(log |ci j | − logmaxi |ci j |), ci j � 0. (6)

In the following, we describe how we use a maximum product weighted matching of the matrix
graph, defining edge weights, which depend on a general (smooth) vector and the given matrix A,
to generate a pairwise aggregation of unknowns (associated with the vertices of the matrix graph)
for use in the AMG coarsening process. Note that using graph matching for aggregation-based
AMG was already proposed in other works, e.g., References [14] and [13].
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3 COMPATIBLE RELAXATION AND MAXIMUM WEIGHTED MATCHING

LetM = {e1, . . . , enp
} be a matching of the graph G, with np the number of index pairs, and let

w = (wi ) be a given (smooth) vector; for each edge e = (i, j ), we define two local vectors:

we =
1√

w2
i +w

2
j

[
wi

w j

]
(7)

and

w
⊥
e =

1√
w2

j /aii +w
2
i /aj j

[
−w j/aii

wi/aj j

]
, (8)

where De = [
aii 0
0 aj j

] is the diagonal of the local matrix, the restriction ofA to the edge e . Note that

by construction, we have w
T
e De w

⊥
e = 0. Based on the above vectors, we can form the following

block-diagonal matrices:

P̃c = blockdiag(we1 , . . . ,wenp
), P̃f = blockdiag(w⊥e1

, . . . ,w⊥enp
),

from which two corresponding prolongators can be constructed:

Pc =

(
P̃c 0
0 W

)
∈ Rn×nc , Pf =

(
P̃f

0

)
∈ Rn×np . (9)

In Equation (9),W is the diagonal matrix

W = diag(wk/|wk |), k = 1, . . . ,ns ,

which has been considered for possible self-matched or unmatched nodes and nc = np + ns .
Let D = diag (A) be the diagonal matrix having the same diagonal entries of A. The matrix Pc

represents a piecewise constant interpolation operator whose range includes the original (smooth)
vector w; furthermore, by construction, Ranдe (Pc ) and Ranдe (Pf ) are orthogonal with respect to
the D-inner product on Rn , i.e., the property in Equation (2) holds.

A two-by-two block form of as in Equation (3) is easily defined for the matrix A by reordering
the unknowns according to the index pairs in the matching M, and moving all the unknowns
corresponding to unpaired vertices at the bottom.

In the above setting, each relaxation scheme well defined for the block Af is a compatible re-
laxation; therefore, our goal is to seek a matchingM which makes Af as well conditioned, or as
more diagonally dominant, as possible. In this way, the compatible relaxation becomes effective
on the space Ranдe (Pf ) and Ranдe (Pc ) would be considered a good coarse space.

To this end, we chooseM so that the product of the diagonal entries ofAf is as large as possible.

Note that the diagonal of Af is a subset of the entries of a new matrix Â = (âi j ), a function of the
original system matrix A, and of the vector w, whose entries are defined as follows:

âi j =
1

w2
j /aii+w2

i /aj j

[
−w j/aii

wi/aj j

]T [
aii ai j

aji aj j

] [
−w j/aii

wi/aj j

]
= 1

aj j w2
j +aii w2

i

(
aj jw

2
j + aiiw

2
i − 2ai jwiw j

)

= 1 − 2ai j wi w j

aii w2
i +aj j w2

j

.

(10)

The matrix Â has the same adjacency graph as that of A, and the computational cost for building
it is O (nnz), where nnz is the number of non-zeros of A, or equivalently the size of the edge set E.

Therefore, we can use Â as a viable weight matrix for the edge setE to obtain a pairwise aggregation
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of the original vertex set, driven by a maximum product weighted matching for the graph G; the

entries of Â serve as edge weights, leading to a matrix Af in Equation (3) exhibiting (generalized)
diagonal dominance.

Note that the choice of the weights in Equation (10) is a modification with respect to the weights
we originally proposed in Reference [18], due to the use of the D-inner product defined on Rn .
We introduce this new product since our goal is to make A and the diagonal of A as spectrally
equivalent as possible in the subspace complementary to the coarse space; therefore, it is natural
to consider theD-orthogonal complement to the coarse-space. In our experiments, we verified that
the use of the corresponding new weights for the matrix graph leads to aggregations based on the
maximum product matching, which generally improve convergence of our final AMG.

Our basic pairwise aggregation procedure based on weighted matching is detailed in Algo-
rithm 1. It builds a partitionGk , k = 1, . . . , nc of the vertex setV = 1, . . . ,n, where each aggregate
Gk is normally a pair of matched indices. In the case of self-matched indices or possible unmatched
indices due to sub-optimal solutions, we may obtain a partition containing singletons.

ALGORITHM 1: Pairwise aggregation based on maximum product matching

Data: graph G of dimension n, weight matrix Â
Result: np , ns , nc and sets of aggregates G1, . . .Gnc

• ComputeM maximum product matching for the weighted graph (G, Â).

• Initialize: nc = 0, np = 0, ns = 0;

U = [1, . . . ,n];

• while U � ∅ do

Pick i ∈ U ;

if ∃j ∈ U \ {i} such that (i, j ) ∈ M then

np = np + 1;

nc = nc + 1;

Gnc = {i, j};
U = U \ {i, j};

else

ns = ns + 1;

nc = nc + 1;

Gnc = {i};
U = U \ {i}

end

end

Algorithm 1 is an automatic aggregation procedure once the matching is constructed, in the
sense that it only uses the matrix entries with no additional assumptions such as strength of con-
nection measures. The aggregation algorithm is the key element of the coarsening scheme de-
scribed in this section; by applying it in a recursive manner, we can build a multilevel hierarchy
of coarse spaces and matrices, as described in Algorithm 2.

We observe that, during the coarsening process, the smooth vector components corresponding
to some index set of the partition could become very small, i.e., these error components are suffi-
ciently reduced by the smoother. In these cases, we associate the related unknowns to the vector

space Ranдe (Pf ). In details, if (i, j ) ∈ M is such that
√
w2

i +w
2
j < TOL, we consider the corre-

sponding indices as unpaired; furthermore, for each index i such that |wi | < TOL, we consider i as
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ALGORITHM 2: Coarsening based on compatible weighted matching

Data: matrix A, (smooth) vector w, maximum dimension for the coarsest matrix maxsize, maximum number

of levels maxlev

Result: hierarchy of coarse matrices Ak (and prolongators)

A1 = A, k = 1;

while dim(Ak ) > maxsize and k < maxlev do

build Âk from Ak and w
k ;

compute partition Gk
l

by Algorithm 1 for graph associated with Ak and the weight matrix Âk ;

build Pk
c and Ak

c from Gk
l

, Ak and w
k ;

Ak+1 = Ak
c , w

k+1 = (Pk
c )T w

k ;

k = k + 1;

end

only fine-grid index and modify the complementary prolongator in Equation (9) as in the following:

Pf =

(
P̃f 0
0 I

)
∈ Rn×(np+nf ), (11)

where I ∈ Rnf ×nf is the identity matrix and nf is the number of only fine-grid indices. In our ex-
periments, we choose TOL as the machine epsilon.

To obtain a more aggressive coarsening strategy, we can compose in a multiplicative framework
the prolongators obtained by the pairwise aggregation of Algorithm 2; for example, starting from
nl prolongators, with nl number of levels of the AMG hierarchy built with the basic pairwise
aggregation of unknowns, we can define a new hierarchy with 
nl/2� levels, corresponding to
aggregates of size at mostm = 22, by computing multiple products each involving two consecutive
prolongators. This scheme may be extended to aggregates of size at mostm = 2s , for some suitable
value s , by computing the product of s consecutive pairwise prolongators.

As already observed, the prolongation operator Pc we used for moving between the selected
coarse space and the original fine space corresponds to a piecewise constant interpolant. To im-
prove performance of a single V-cycle, we also consider the use of a more accurate interpolation
operator obtained by applying one step of a weighted-Jacobi smoother to the basic piecewise con-
stant interpolation, as in the smoothed aggregation AMG introduced in Reference [46]. The actual

prolongators P̂k are obtained from Pk as in the following:

P̂k = (I − ωD−1Ak )Pk ,

where D = diag(Ak ) and ω ≈ 1/ρ (D−1Ak ); to estimate the spectral radius ρ (D−1Ak ), we use the
infinity norm of D−1Ak .

4 ALGORITHMS FOR MAXIMUM WEIGHTED MATCHING

Many algorithms have been devised to compute maximum weighted matchings; typically, they
search first for a maximum cardinality matching and then maximize the weight of the matching.

One of the most widely used algorithms for computing a maximum cardinality maximum weight
matching problem, which is also known as the assignment problem, is that implemented in the
subroutine MC64 available from the HSL library [45]. MC64 works on bipartite graphs, that is,
graphs where the vertex set is partitioned into two subsets Vr and Vc (for example, the rows and
the columns of A), such that (i, j ) ∈ E connects i ∈ Vr and j ∈ Vc [21]; it uses the Hungarian algo-
rithm [32] to search optimal augmenting paths in the matrix between unmatched vertices. MC64
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39:8 P. D’Ambra et al.

has a worst-case computational complexity of O (n(n + nnz) logn), which makes it very expensive
to apply in the context of Algorithm 1. Moreover, the Hungarian algorithm is a sequential process;
therefore, it represents a roadblock in the search for a parallel implementation of Algorithm 1.

If we relax the optimality requirement and settle for a large but not necessarily maximum prod-
uct of the weights, we can use various approximate algorithms giving near-optimal results in car-
dinality and weight with better computational complexity and offering improved opportunities for
parallelism; we tested two such algorithms—a half-approximation algorithm [41] and an auction-
type algorithm [6].

4.1 Half-Approximate Matching

The half-approximate algorithm we implemented in our code is a greedy algorithm, which is able
to find, in linear time O (nnz), a matching whose total weight is at least half the optimal weight
and whose cardinality is at least half the maximum cardinality.

Algorithm 3, proposed by Preis [41], uses a queue-based mechanism; at each iteration, it adds
to the matching a local dominant edge, i.e., an edge (i, j ) with weight ci j , such that arg maxk cik =

arg maxk c jk = ci j ; the matched edge and its vertices are removed and the resulting reduced graph
is considered for the next iteration until the edge set is empty.

Note that our interest is in the maximum product weighted matching, while the approximation
algorithm computes a matching to maximize the total weight; therefore, we apply the transforma-
tion in Equation (6) to the assigned edge weights.

We note that some parallel implementations of this half-approximate matching algorithm have
been proposed [28, 40].

ALGORITHM 3: Algorithm for half-approximate matching

Data: G = (V ,E) graph, C edges weight matrix

Result: matchingM
M = ∅;
while E � ∅ do

take a locally dominant edge (i, j ) ∈ E, i.e., such that arg maxk cik = arg maxk c jk = ci j ;

add (i, j ) ∈ M;

remove all edges incident to i and j from E;

end

4.2 Auction-Type Algorithm

A different algorithm to compute a near-optimal maximum weight maximum cardinality match-
ing is the auction algorithm first proposed by Bertsekas [5]. In our code, we use the implemen-
tation described in Reference [31] and available in the Sparse Parallel Robust Algorithms Library
(SPRAL) [29].

The original auction algorithm works on a bipartite graph where matrix rows represent buyers
and matrix columns represent objects. Each edge weight ci j represents the benefit to buyer i of
obtaining the object j. A standard auction algorithm defines some row variables ui , called the cost
variables and initialized to zero, and looks for the row index i such that i = arg maxk (ck j − uk ), for
each unmatched column j. Any column j for which ci j − ui > 0 is a candidate for matching with
row i , but only the column index ji with the largest value is chosen, while the others remain un-
matched. The row variable ui is then updated with the value ui = ui + (ci ji

− ui ) −maxk�i (ck ji
−

uk ), i.e., the variable ui is updated to be the cost of using the second best row; in other words, ui
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is the reduction in the objective if ji is not matched to i . A parameter ϵ is generally added to the
variableui to guarantee a minimum increase in the objective function at each iteration. The choice
of the initial value for parameter ϵ and the way to scale it during the iterations are important for
the optimality and convergence properties of the algorithm; these issues are discussed at length
in Reference [44]. The number of iterations to convergence increases for decreasing values of ϵ ,
but on the other hand, large values of ϵ may produce matchings with small weight. The auction
algorithm implemented in SPRAL starts from a constant value (ϵ = 0.01) and then applies an in-
creasing scaling strategy in which the value of ϵ is chosen as min(1.0, ϵ + 1/(n + 1)) where n is the
size of the vertex set. We used the same choices in our experiments.

The original auction algorithm has a worst-case computational complexity of O (n ·
nnz log (Cn)), in the case of integer weights, where C = maxi j |ci j |. However, in our application,
we use a version of the sequential auction algorithm as implemented in SPRAL and described in
Reference [31] (see Algorithm 4), where the first column j for which ci j − ui > 0 is matched to i ,
without looking for the best column; then, if there already exists k such that (i,k ) ∈ M, this last
edge is removed from the matchingM and the column k becomes unmatched. This version re-
duces the cost per iteration and the average number of iterations; as observed in our experiments,
it produces good quality aggregates and leads to effective aggregation schemes at a much reduced
cost compared to the use of the optimal (but expensive) algorithm MC64.

As in the half-approximate matching, the auction algorithm computes a matching with a max-
imum weight; therefore, to get a maximum product matching an edge weight transformation is
needed. In the SPRAL code, the following transformation is applied:

ci j = α + log |ci j | + (α − c j ),

where c j = maxi log |ci j | and α = maxi j (c j − log |ci j |). Introducing α reflects the fact that the
matching objective includes not only the maximum weight but also the maximum cardinality (see
Reference [31]).

ALGORITHM 4: Simplified Auction Algorithm

Data: G = (Vr ,Vc ,E) bipartite graph of dimension n, C = (ci j ) edges weights,maxiter
Result: matchingM
InitializeM = ∅, U = ∅, u = 0, ϵ = 0.01;

while |M| < n and |M| is changing and iter < maxiter do

scale ϵ = min(1.0, ϵ + 1/(n + 1));

for j ∈ Vc \U and unmatched do

find i = arg maxk (ck j − uk ), pval = ci j − ui , qval = maxk�i (ck j − uk );

if pval > 0 then

ui = ui + pval − qval + ϵ ;

add (i, j ) ∈ M;

if (i,k ) ∈ M then

add k ∈ U ;

remove (i,k ) fromM;

end

else

add j ∈ U ;

end

end

end
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We also note that an efficient parallel algorithm for auction-based weighted matching has been
proposed in Reference [44].

5 BOOTSTRAP AMG BASED ON COMPATIBLE WEIGHTED MATCHING

One of the main ingredients of Algorithm 2 is the choice of the initial vector w, which is meant
to be a good approximation to an algebraically smooth vector for the problem at hand. As already
mentioned, following the main concept of bootstrap/adaptive AMG developed in References [11,
16, 17], in Reference [18], we proposed to use coarsening based on compatible weighted matching

within a similar adaptive process. The goal is to improve the convergence rate of the final AMG
scheme by generating algebraically smooth vectors obtained dynamically throughout the adaptive
set-up process, by testing the most recent method for possible further improvement.

In our bootstrap process, we build a solver B composed from a number of different AMG cycles.
The error propagation matrix corresponding to the operator B has the following product form:

I − B−1A = (I − B−1
� A) . . . (I − B−1

1 A) (I − B−1
0 A), (12)

where each Br is an AMG cycle operator built with its own hierarchy of aggregates. These are
constructed by a weighted matching of the original matrix graph. The weights come from the
algebraically smooth vector wr computed by testing (in an iteration procedure) of the currently
available (up to r − 1) composite solver, i.e., the solver composed from the previously constructed
AMG operators B0, . . . ,Br−1.

More specifically, the composite solver is constructed as follows. Starting from a given gen-
eral (smooth) vector w0, this vector is used to build an initial AMG hierarchy by Algorithm 2.
This AMG hierarchy is used to define an initial AMG operator B0. Then, we use the operator as a
solver applied to the homogeneous systemAw = 0, starting with a non-zero random initial iterate
by successively computing w

k := (I − B−1
0 A)wk−1 for a fixed number of iterations k = 1, . . . ,kmax.

The iterative process provides an approximation to the eigenvector of B−1
0 A corresponding to the

minimal eigenvalue of B−1
0 A, i.e., the algebraically smooth vector corresponding to the current

solver B = B0. This last vector w1 = w
kmax is then used to build a new AMG hierarchy using Algo-

rithm 2. This AMG hierarchy defines a new operator B1, which, together with the previous one,
B0 is composed as in Equation (12) and tested on the homogeneous system. The whole process is
then iterated. That is, at step r ≥ 1, we have already built AMG operators B0, B1, . . . , Br−1. Then,
we use them in a multiplicative fashion to iterate on the homogeneous equation Aw = 0 starting
with a random initial vector. We compute successive iterates w

k , for a fixed number of iterations
k = 1, . . . , kmax, as follows:

w
k = (I − B−1

r−1A) . . . (I − B−1
1 A) (I − B−1

0 A)wk−1.

We note that w
k 
→ 0 as k 
→ ∞, and since w = 0 is the exact solution, w

k are the true errors. We
monitor their norm ‖wk ‖A to test the convergence property of the composite AMG operator B
defined from:

I − B−1A = (I − B−1
r−1A) . . . (I − B−1

1 A) (I − B−1
0 A).

If the ratio ‖wkmax ‖A
‖wkmax−1 ‖A

stays above ϱdesir ed , we choose the last iterate wr = w
kmax as the alge-

braically smooth component and use it to build a new AMG operatorBr and augment the composite
operator B with one more component, the operator Br . To define Br , we use wr in Algorithm 2.
The iterated bootstrap process described above is stopped when the composite AMG solver B rep-
resented by Equation (12) reaches a desired convergence rate or when a maximum number of
hierarchies is built.
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Fig. 1. BootCMatch Software Structure.

If the goal is to use the final B as a preconditioner in the Conjugate Gradient Krylov method,
we use its symmetrized version, Bsym , defined from the symmetrized product error propagation
matrix (assuming the individual AMG operators Br are constructed linear and symmetric),

I − (Bsym )−1 A = (I − B−1
0 A) (I − B−1

1 A) . . . (I − B−1
� A) (I − B−1

� A) . . . (I − B−1
1 A) (I − B−1

0 A).

6 BOOTCMATCH SOFTWARE FRAMEWORK

The method described in the previous sections has been implemented in a C-language software
framework called BootCMatch: Bootstrap amg based on Compatible Weighted Matching. We
designed a multi-layer modular framework (see Figure 1) including all the functionalities for
building and applying a single hierarchy AMG or a composite AMG relying on the bootstrap
process described in Section 5. Each AMG is built on the base of Algorithm 2; the final simple
or composite AMG can be applied either as a stand-alone solver or as a preconditioner within
a Krylov iterative method. The BootCMatch software code (rel. 0.9), including some testing
codes and data sets, is available at the URL in Reference [7]. In particular, at the base layer, we
implemented functionalities for basic linear algebra operations on vectors and sparse matrices.1

The main data structures are those for sparse matrices represented in the Compressed Sparse
Row (CSR) storage scheme (bcm_CSRMatrix), and for vectors (bcm_Vector), respectively. At this
level, we also implemented the functionalities for sparse matrix and vector management and for
applying basic point-wise relaxation schemes (weighted Jacobi, forward/backward Gauss-Seidel,
and symmetrized Gauss-Seidel).

1Many of the routines for basic linear algebra are based on the design of those implemented in hypre rel. 2.9 [23].
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The functionalities needed for building each AMG hierarchy are implemented at a medium-level
layer, where the main data structure is the general multilevel hierarchy represented in terms of an
array of sparse matrices (bcm_AMGHierarchy). This structure includes the current-level matrix and
the corresponding diagonal, lower triangular, and upper triangular parts, to be used in the pre/post
smoothing steps of a general cycle. At the same medium level layer, we implemented the coarsen-
ing algorithm described in Algorithm 2; the algorithm makes use of either the half-approximate
matching, the HSL-MC64 software, or the simplified auction-type algorithm implemented in the
SPRAL software, if available and configured at compile time. Both HSL-MC64 and SPRAL are im-
plemented in Fortran 95, with C interfaces available through the C interoperability layer defined
in the Fortran language standard [35]. At the coarsest level of the multigrid hierarchy, we have the
option of applying the SuperLU sparse direct solver [33], if configured at build time. At the coars-
est level, the multilevel hierarchy, therefore, includes the sparse LU factorization of the coarsest
matrix, computed by SuperLU during the set-up phase of each AMG hierarchy. The user defines
the algorithmic parameters in the coarsening scheme, in particular the number of pairwise aggre-
gation steps that needs to be applied to define a possibly more aggressive coarsening than the basic
pairwise scheme, and also, one can choose to apply one sweep of the weighted Jacobi smoother to
the piecewise constant prolongator Pc in Equation (9), in order to define a smoothed aggregation
(SA)-type method.

Above this AMG level, we have the functionalities implementing the bootstrap algorithm; these
are used to set up the composite solver with a prescribed convergence rate. The composite solver
is represented in terms of an array of multilevel hierarchies (bcm_BootAMG), which can be applied
in a more general way than in Equation (12), including additive and symmetrized-multiplicative
composition. The bcm_BootAMG hierarchy also includes the smooth vectors computed at each new
application of the current composite AMG built during the bootstrap process. In this software
layer, we also provide functionalities to apply each multilevel hierarchy in a general μ−fold cy-
cle [47], including as special cases the standard V- and W-cycles. As an alternative, we provide an
implementation of a K-cycle [39] with two inner iterations of Flexible Conjugate Gradient (FCG)
at each level but the coarsest one (see Algorithm 3.2 in Reference [38]), to improve convergence
behavior in the case of unsmoothed prolongators.

Finally, a linear solver layer implements both the use of the composite solver as a stand-alone
iterative method, as well as a preconditioned FCG employing the general (single component or
composite) AMG as preconditioner. More precisely, we use the version of FCG(1) described in
Reference [39], which is equivalent to the standard conjugate gradient method when a SPD pre-
conditioner is used, while it allows to enhance the stability of the standard method when a variable
preconditioner is employed.

7 RESULTS AND COMPARISONS

We tested BootCMatch on several sparse SPD matrices arising from different model problems and
on some matrices available on the SuiteSparse Matrix Collection [20]. The runs have been carried
out on one core of a 2.6GHz Intel Xeon E5-2670, running the Linux 2.6 kernel with the GNU
compiler version 4.9, release 5.0 of SuperLU, release 2.3.1 of the C interface to HSL-MC64 and the
latest available release of the SPRAL.

We always used the AMG method as preconditioner for the FCG Krylov method. We present
both results related to the use of a single component AMG, as well as results obtained with the
bootstrap process of Section 5 applied to obtain a composite AMG solver with a prescribed con-
vergence rate.

In all cases except where it is specified otherwise, we solved the linear systems with the right-
hand side set equal to the unit vector. The iterations were stopped when the Euclidean norm
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of the relative residual reached the tolerance rtol = 10−6 or a maximum number of iterations
itmax = 1000 was reached. We always considered AMG hierarchies built by Algorithm 2, with
the maximum size of the coarsest matrix fixed to maxcoarseset ∗ n1/3, where n is the matrix di-
mension so that the cost of the direct solution of the coarsest system is no larger than the cost
of a matrix-vector product involving the original matrix; we generally set maxcoarseset = 40,
while in the case of slow coarsening (i.e., when coarsening ratio of the basic pairwise aggrega-
tion scheme is less than 1.2 out of 2 for the current level), we dynamically setmaxcoarseset = 400.
A maximum number of levels was also fixed to 40. In order to have a maximum coarsening ratio
of 4, we compose sets of prolongator operators computed by basic Algorithm 2, as described in
Section 3, to obtain double pairwise aggregates. Unless otherwise specified, we apply unsmoothed
aggregation, since it generally produces the best results on our test cases when coupled with the
symmetric K-cycle. In all cases, one sweep of forward/backward Gauss-Seidel relaxation was ap-
plied as pre/post-smoother at the finest level, while the SuperLU sparse factorization was applied
at the coarsest level. We report the following parameters, which are commonly used to characterize
the quality of the convergence and efficiency of the method:

—nboot : number of components built for obtaining the desired convergence rate; it is reported
only in the case of the application of the bootstrap process for building a composite AMG;

—ρ: estimated convergence rate of the composite AMG; only in the case of composite AMG;
—average number of levels of the AMG components:

nlev =
1

nboot

nboot∑
j=1

nlevj ,

where nlevj is the number of levels of the AMG component built at the bootstrap step j;
—average operator complexity of the AMG components defined as:

cmplx =
1

nboot

nboot∑
j=1

∑nlevj−1

k=0
nnz (Ak

j )

nnz (A0)
,

whereAk
j is the matrix at level k at bootstrap step j (k = 0 corresponds to the fine level) and

nnz (Ak
j ) is the number of non-zeros of Ak

j ;

—average coarsening ratio of the AMG components built by the bootstrap process, defined
as:

cratio =
1

nboot

nboot∑
j=1

1

nlevj

nlevj∑
k=1

n(Ak−1
j )

n(Ak
j )
,

where n(Ak
j ) is the size of matrix Ak

j ;

—tbuild : the execution time in seconds, needed to set up the preconditioner.

When using a single component AMG, i.e., when the bootstrap process is not applied, we have
nboot = 1, the above parameters correspond to definitions commonly used in (V-cycle) AMG. Fi-
nally, we report the number of iterations and execution times of the preconditioned FCG as it and
tsolve , respectively.

7.1 Test Cases

Our first model problem is the following anisotropic two-dimensional PDE on the unit square,
with homogeneous Dirichlet boundary conditions imposed:

−div (K ∇u) = f ,
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where K is the coefficient matrix

K =

[
a c
c b

]
, with

⎧⎪⎪⎨⎪⎪⎩
a = ϵ + cos2 (θ )
b = ϵ + sin2 (θ )
c = cos(θ ) sin(θ )

The parameter 0 < ϵ ≤ 1 defines the strength of anisotropy in the problem, while the parameter
θ specifies the direction of anisotropy. In the following, we discuss results related to ϵ = 0.001
and θ = 0, π/8, π/4, for a total of three test cases, which we refer to as Pii=1,2,3, respectively. The
problem was discretized with the Matlab PDE toolbox, using linear finite elements on triangular
meshes of three different sizes (168, 577; 673, 025; 2, 689, 537), obtained by uniform refinement.

A second set of test cases comes from the discretization of Lamé equations for linear elasticity.
These are equilibrium equations written in terms of the displacement field u:

μΔu + (λ + μ )∇(div u) = f x ∈ Ω,

where u = u(x) is the displacement vector, Ω is the spatial domain, and λ and μ are the Lamé
constants. A mix of Dirichlet boundary conditions and so-called traction conditions are usually
applied to have a unique solution. Discretization of the vector equation leads to systems of equa-
tions whose coefficient matrix is SPD. The matrix admits two commonly used block forms. If each
scalar component of the displacement vector is chosen as block unknown, this leads to the so-
called unknown-based [42] matrix ordering; i.e., the coefficient matrix admits a block form where
each diagonal block corresponds to the matrix coming from the discretization of Laplace equa-
tion for each unknown component. In the case of the so-called node-based ordering, at each grid
point, all scalar components are grouped together, which results in the final matrix to have small
block entries of dimension 2 × 2 or 3 × 3 (in two or three space dimensions). We considered Lamé
equations on a beam characterized by μ = 0.42 and λ = 1.7; one side of the beam is considered
fixed and the opposite end is pushed downward. The problem was discretized using linear finite
elements on triangular (2D) and tetrahedral meshes (3D); different mesh sizes were obtained by
uniform refinement using the software package MFEM [36]. In the following, we refer to the above
test cases as LE2DU and LE3DU when the unknown-based ordering is applied, and LE2DN and
LE3DN when the node-based ordering is applied. Three different sizes are considered for the 2D
cases (66, 690; 264, 450; 1, 053, 186) as well as for the 3D cases (15, 795;111, 843; 839, 619). It is well
known that efficient AMG for linear elasticity requires a priori knowledge of the smooth errors,
i.e., of the so-called rigid body modes (three vectors in 2D and six vectors in 3D problems), and
that they are well represented on all coarse levels (see, e.g., Ref. [4]).

For the above test cases, we also considered the corresponding diagonally scaled matrices
D−1/2AD1/2, where A is the matrix of the original problem and D is its main diagonal so that the
scaled matrix has diagonal entries equal to 1. These test cases are referred as LE2DUS , LE3DUS ,
LE2DNS , and LE3DNS , respectively. Rescaling the matrices generally changes the features of the
smooth errors components and can lead to a significant deterioration of the convergence rate of
standard AMG.

We also include tests on some SPD matrices from the SuiteSparse Matrix Collection; Table 1
summarizes the main features of the selected matrices from that set.

Finally, we present results obtained on linear systems (matrices and right-hand sides) arising
from the Alya code, a multiphysics parallel solver developed at the Barcelona Supercomputing
Center for atmospheric flow simulations [3]. The code implements a stabilized finite-element for-
mulation based on the variational multiscale method for solving the Reynolds-Averaged Navier-
Stokes equations coupled with a k − ϵ turbulence model in a 3D domain representing the Atmo-
spheric Boundary Layer. Using a fractional step approach, the velocity field is decoupled from the
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Table 1. Main Features of Selected Matrices

Matrix Name Group Application Field n nnz cond

PDE problems

crystm03 Boeing material pb. 24,696 583,770 264.003

sts4098 Cannizzo structural eng. 4,098 72,356 2.17 × 108

qa8fm Cunningham acoustics pb. 66,127 1,660,579 109.601

thread DNVS structural eng. 29,736 4,444,880 2.57 × 1010

crankseg_1 GHS_psedef structural eng. 52,804 10,614,510 2.23 × 108

non PDE problems

obstclae GHS_psedef quadratic obstacle pb. 40,000 197,608 40.997

chem97ztz Bates statistical pb. 2,541 7,361 247.219

bundle1 Lourakis computer graphycs 10,581 770,811 1,004.24

cvxbqp1 GHS_psedef optimization 50,000 349,968 9.31 × 106

pressure field and two SPD linear systems have to be solved at each time step. The velocity vector
field is discretized using a node-based approach, leading to a matrix with 3 × 3 block entries. Our
test case is related to wind flow simulations in a realistic scenario for wind farm applications ob-
tained by the Energy Oriented Center of Excellence (EoCoE) European project. Again, in this test
case, we consider three different grid sizes, corresponding to pressure matrices of size 305, 472;
790, 856; and 2, 224, 476; and velocity matrices of size 916, 416; 2, 372, 568; 6, 673, 428. The presence
of high numerical anisotropy, due to the use of block-structured non-uniform hexahedral grid,
makes this test case very challenging for standard AMG.

7.1.1 Comparison of the Matching Algorithms. We begin our discussion with the results of the
application of the three available matching algorithms to the test cases Pii=1, ...,3 for increasing
mesh size. To this aim, we only consider a single AMG component as preconditioner without
using bootstrap. In Table 2, we report the parameters related to set-up costs, while number of iter-
ations and execution times for application of the preconditioner are reported in Table 3. Using the
matching algorithm implemented in HSL-MC64 produces hierarchies with the smallest operator
complexity and generally the largest coarsening ratio. The operator complexity of the hierarchies,
for all test cases and mesh sizes, is about 1.34 when HSL-MC64 is used, about 1.41 in the case of
the half-approximate matching, and 1.37 with the auction-type matching.

These operator complexities result from a coarsening ratio, which is more than 3.88 out of 4
for the HSL-MC64 matching when the medium and largest mesh sizes are used. The auction-type
matching also produces good coarsening ratio for increasing mesh sizes, resulting in hierarchies
with the same number of levels as the previous case, with a small increase in the operator complex-
ities. Looking at the execution times for building the hierarchies, we can observe that HSL-MC64
matching, as expected, requires the largest times: for all mesh sizes, it takes about twice as long
as when auction-type matching was used. The good operator complexities obtained by the HSL-
MC64 matching have a positive impact in the solution phase, where we can observe that we gen-
erally obtain the best execution times per iteration. Both the half-approximate matching and the
auction-type matching produce good quality coarse matrices, resulting in a number of iterations
to converge, which is smaller than that required by the AMG based on HSL-MC64 matching.
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Table 2. BootCMatch: Building a Single Component AMG with Different Matching Algorithms

BootCMatch: Comparison among matching algorithms

P1 P2 P3

nlev cmpx cr tbuild nlev cmpx cr tbuild nlev cmpx cr tbuild

Half-approximate Matching

5 1.40 3.41 0.46 5 1.40 3.41 0.46 5 1.40 3.42 0.46

6 1.41 3.10 1.90 6 1.41 3.10 1.90 6 1.41 3.10 1.88

7 1.41 3.15 7.81 7 1.41 3.14 7.82 7 1.41 3.14 7.81

Auction-type Matching

5 1.37 3.27 0.49 5 1.37 3.29 0.49 5 1.37 3.30 0.48

5 1.37 3.73 2.15 5 1.37 3.74 2.14 5 1.37 3.74 2.08

6 1.37 3.74 9.34 6 1.37 3.73 9.23 6 1.37 3.74 9.11

HSL-MC64 Matching

5 1.34 3.42 0.91 5 1.34 3.41 0.96 5 1.34 3.42 0.94

5 1.34 3.90 3.86 5 1.34 3.90 4.17 5 1.34 3.89 4.22

6 1.34 3.89 17.22 6 1.34 3.89 19.71 6 1.34 3.88 19.91

Table 3. BootCMatch: Applying a Single Component AMG, Built

with Different Matching Algorithms, as Preconditioner for FCG

BootCMatch: Comparison among matching algorithms

P1 P2 P3

it tsolve it tsolve it tsolve

Half-approximate Matching

81 2.94 82 3.01 83 3.01
105 17.28 103 16.97 107 17.48
127 91.27 128 91.99 132 95.01

Auction-type Matching

81 2.71 83 2.74 85 2.77
106 15.39 108 15.52 110 15.71
132 84.29 133 84.72 136 85.93

HSL-MC64 Matching

86 2.64 91 2.80 86 2.63
114 14.98 116 15.29 119 15.66
146 83.76 143 82.43 155 89.60

The good behavior of the AMG based on near-optimal matching confirms that the corresponding
vector space Ranдe (Pf ), which can be explicitly computed at each level of Algorithm 2 by using
the formula in Equation (11), is handled well by the AMG smoother. As discussed in Section 2.2, a
measure of the effectiveness of the smoother on the spaceRanдe (Pf ) can be obtained by estimating
the convergence rate of the related compatible relaxation. In Table 4, we summarize an estimate
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Table 4. Compatible Relaxation Convergence Rates at Each Level of Algorithm 2

Test case P2 corresponding to the smallest size

lev Half-approximate Matching Auction-type Matching HSL-MC64 Matching

1 0.897 0.831 0.849
2 0.815 0.806 0.832
3 0.812 0.773 0.811
4 0.782 0.736 0.762
5 0.750 0.706 0.722
6 0.735 0.686 0.696
7 0.714 0.676 0.685

Table 5. BootCMatch: Single Component AMG, Built with Auction-type

Matching, as Preconditioner for FCG

BootCMatch: single component AMG building and application

Building Application

name nlev cmpx cr tbuild it tsolve

PDE problems

crystm03 4 1.73 3.32 0.25 8 0.05
sts4098 3 1.45 2.78 0.03 102 0.08
qa8fm 5 1.90 2.94 0.86 8 0.17
thread 4 1.24 3.17 1.86 1,000 29.87

crankseg_1 4 1.24 3.67 5.40 160 10.65

non-PDE problems

obstclae 4 1.36 3.30 0.05 7 0.03
chem97ztz 2 1.95 1.05 0.003 4 0.001

bundle1 3 1.61 2.09 1.09 13 0.07
cvxbqp1 4 1.52 3.50 0.19 1,000 4.74

of the compatible relaxation convergence rate ρf = ‖I −M−1
f
Af ‖Af

obtained by computing the

ratio rk/rk−1, where rk is the residual at the iteration k , and Mf is a weighted Jacobi smoother
(with weight equal to 1/3) applied to Af for a sufficiently large number of iterations. In these
experiments, we set k = 20 and, for sake of space, we report results for the test case P2 with the
smallest size. We can observe that, at each level lev of the constructed hierarchy, the compatible
relaxation convergence rate measured for the auction-type matching is generally better than that
obtained by the other two algorithms. Furthermore, the auction-type matching produces the best
total (set-up and solve) execution times. Since similar results are generally obtained for all our test
cases, in the following, we report results obtained using the auction-type matching.

7.2 Further Results with Single Component AMG

In Table 5, we summarize results obtained when a single AMG component built by BootCmatch
with the auction-type matching is applied as a preconditioner for FCG to the matrices arising from
the SuiteSparse Matrix Collection. We observe that in all cases except thread and cvxbqp1, BootC-
match is able to build, in an efficient way, a good preconditioner with reasonable coarsening ratio
and operator complexity. In the case of the chem97ztz matrix, Algorithm 2 is unable to effectively
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Table 6. BootCMatch: Single Component AMG, Built with Auction-type

Matching, as Preconditioner for FCG

BootCMatch: single component AMG building and application

Building Application

nlev cmpx cr tbuild it tsolve

Test Alya—Pressure

5 1.30 3.81 2.01 97 8.82
5 1.31 3.83 5.46 86 21.89
6 1.30 3.77 15.08 79 58.08

Test Alya—Velocity

6 1.33 3.35 28.05 69 47.67
6 1.32 3.71 90.22 46 101.78
7 1.31 3.43 264 125 838

coarsen the matrix, leading to a two-level preconditioner with a high operator complexity of 1.95,
which corresponds to a coarsening ratio of only 1.05 out of expected value of 4, and a coarsest ma-
trix size of 2, 410. For the cvxbqp1 matrix, the convergence of the preconditioned FCG appears very
slow: to reach the prescribed accuracy, 1,789 iterations were needed. For the thread matrix, the
solver stalled around a relative residual of about 100 after 1, 000 iterations. However, we observed
that if we apply BootCMatch for building a bootstrap AMG based on a symmetrized multiplicative
composition, a composite preconditioner with seven components and an estimated convergence
rate of 0.92, with a building cost of 40.88 seconds, we can attain convergence in 1, 928 iterations
within 877.58 seconds of solver time.

Results obtained when a single component AMG was used as preconditioner of the FCG solver
on the systems arising from the Alya code are summarized in Table 6. For all mesh sizes, and for
both scalar and vector systems, BootCMatch is able to obtain an efficient preconditioner with a
small operator complexity of no more than 1.33; in all the cases, the coarsening based on match-
ing produces sufficiently large coarsening ratio and effective AMG hierarchies. In the case of the
finest mesh size, corresponding to a pressure matrix with more than 58 millions non-zeros and a
velocity matrix with more than 530 millions non-zeros, the cost for building and applying a sin-
gle component AMG is about 10−6 seconds per non-zero entry, for both the pressure and velocity
system.

7.3 Applying Bootstrap AMG Preconditioner

We now turn to the application of a bootstrap AMG when a convergence ratio ρ = 0.8 is prescribed;
we consider the test cases arising from linear elasticity, where, as expected, single component AMG
built on the base of a single smooth vector is not effective.

To set up the bootstrap AMG, we choose symmetrized multiplicative composition of the mul-
tiple hierarchy built within the iterative process. The composite AMG is applied as a solver to
the homogeneous system associated to the original coefficient matrix for a number of iterations
ν = 15, in order to estimate its asymptotic convergence rate. In Table 7, we report results obtained
when applying a double pairwise unsmoothed aggregation for each hierarchy and a K-cycle for the
application, as in the results discussed in the previous sections. In all cases, the bootstrap AMG is
able to obtain an asymptotic convergence rate smaller than the prescribed one, leading to a small
number of iterations of the preconditioned FCG in the solution phase; this, in turn, means having
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Table 7. BootCMatch: FCG Preconditioned with a Bootstrap

AMG of Desired Convergence Rate, When Double Pairwise

Unsmoothed Aggregation and K-cycle Are Applied

BootCMatch: Bootstrap AMG building and application

Building Application

nboot ρ nlev cmpx cr tbuild it tsolve

LE2DU

5 0.80 4 1.41 3.75 6.24 16 1.90
6 0.66 5 1.43 3.38 41.69 15 10.85
7 0.59 6 1.43 3.41 254.27 14 54.99

LE3DU

5 0.64 4 1.68 3.05 2.09 12 0.48
4 0.68 5 1.72 3.19 13.35 16 4.75
9 0.51 6 1.32 3.25 1,483.11 11 178.07

LE2DN

6 0.57 4 1.41 3.75 8.49 12 1.75
6 0.67 5 1.43 3.37 40.54 15 10.65
7 0.76 6 1.43 3.40 238.56 18 65.48

LE3DN

7 0.50 4 1.31 3.04 9.60 9 1.13
7 0.65 5 1.32 3.18 88.81 13 14.42
8 0.76 6 1.32 3.24 1,035.68 13 151.20

a final solver with good scalability with respect to the problem size. As expected, the number of
the AMG components to be built for a prescribed accuracy generally increases with the matrix size
for both 2D and 3D problems; however, no more than nine components are needed for the largest
size LE3DU test case, where a final composite AMG with a very small asymptotic convergence rate
of 0.51 is obtained. The unknown ordering used for discretization does not seem to have a large
impact on the coarsening process, especially in the 2D cases; indeed, the average number of lev-
els, the average operator complexity and the average coarsening ratio of all the AMG components
have similar values for both orderings.

In the 3D cases, the impact of the ordering appears to be more important, although it also de-
pends on the matrix size. However, we observe that the use of bootstrap AMG, with no a priori

information on rigid body modes, improves the convergence rate of the final preconditioner and
the large set-up costs are justified by small solution times.

A substantial fraction of the set-up cost is due to the procedure for estimating the asymptotic
convergence rate and the generation of the new approximate smooth vector; hence, it can be sig-
nificantly reduced if we are able to fix, a priori, the number of components to be built by using a

priori information on the smooth vector space. Furthermore, in many applications, we need to solve
many linear systems having the same coefficient matrix; therefore, large building costs can be jus-
tified if they enable a more efficient solution. Similar results are obtained on the diagonally scaled
problems as shown in Table 8. In Table 9, we show results obtained for the diagonally scaled prob-
lems using bootstrap AMG with prescribed desired convergence rate, where each AMG component
is built by composition of four consecutive basic pairwise prolongators obtained by Algorithm 2.
In this way an aggressive coarsening is produced with a maximum coarsening ratio of 16 and the
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Table 8. BootCMatch: FCG Preconditioned with a Bootstrap

AMG of Desired Convergence Rate, When Double Pairwise

Unsmoothed Aggregation and K-cycle Are Applied

BootCMatch: Bootstrap AMG building and application

Building Application

nboot ρ nlev cmpx cr tbuild it tsolve

LE2DUS

6 0.59 4 1.41 3.75 8.42 12 1.72
8 0.63 5 1.43 3.36 68.95 11 10.80
8 0.67 6 1.43 3.40 319.41 15 66.46

LE3DUS

5 0.78 4 1.67 3.05 2.01 13 0.49
5 0.75 5 1.72 3.20 18.92 15 5.52
9 0.69 6 1.32 3.24 1,478.26 12 192.28

LE2DNS

6 0.55 4 1.41 3.76 8.37 10 1.46
6 0.79 5 1.43 3.38 40.07 15 10.39
8 0.66 6 1.43 3.41 300.24 13 54.78

LE3DNS

6 0.73 4 1.31 3.03 7.35 11 1.15
8 0.48 5 1.32 3.19 108.49 10 12.79
9 0.76 6 1.32 3.25 1,243.31 12 156.12

final prolongators are computed by applying one sweep of a weighted-Jacobi smoother, as dis-
cussed in Section 3, considering a more accurate smoothed aggregation-type approach. A simple
V-cycle is employed for the application of each hierarchy. The average of the operator complexi-
ties of the AMG hierarchies remains generally much smaller than two in all cases, except the first
two matrix sizes of the LE3DUS test. More components are generally needed, with respect to the
results in Table 8, to reach the prescribed asymptotic convergence; however, due to the general
reduction in the number of levels of each hierarchy and in their operator complexities, the set-up
times are reduced for the 2D test cases, whereas in the 3D cases, building costs have a moderate
increase. We note that, even in such a case, the largest fraction of the set-up times corresponds
to the estimation of the asymptotic convergence rate and the generation of the new approximate
smooth vector. Nevertheless, the scalability of the final solver remains fairly good, and the timings
for solving the systems are reduced in all test cases.

7.4 Comparisons with Related Works Based on Unsmoothed Aggregation

In this section, we report, for comparison purposes, some results obtained by using the academic
version of AGMG (rel. 3.2) software code [38]. Our aim is to compare the behavior of single com-
ponent AMG obtained by BootCMatch with a similar AMG operator based on unsmoothed aggre-
gation. We run AGMG with the default setting for SPD matrices, i.e., each hierarchy is built by the
double pairwise unsmoothed aggregation scheme described in [37, 38], where matching among
the unknowns is driven by a usual measure of strength of connections, and a K-cycle using two
inner iterations is applied as preconditioner in the FCG Krylov solver. The sparse LU factorization

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 39. Publication date: June 2018.



BootCMatch: A Software Package for Bootstrap AMG Based 39:21

Table 9. BootCMatch: FCG Preconditioned with a Bootstrap

AMG of Desired Convergence Rate, When Aggressive Coarsening

with Smoothed Aggregation and V-cycle Are Applied

BootCMatch: Bootstrap AMG building and application

Building Application

nboot ρ nlev cmpx cr tbuild it tsolve

LE2DUS

7 0.53 3 1.30 9.08 8.47 10 1.06
7 0.77 3 1.20 11.26 36.70 15 6.66
9 0.64 4 1.23 10.18 248.51 15 37.10

LE3DUS

5 0.73 3 2.68 7.63 2.86 15 0.46
8 0.72 3 2.26 10.27 42.69 12 4.70
9 0.78 4 1.37 9.62 1,498.45 13 140.68

LE2DNS

7 0.60 3 1.30 9.08 8.19 11 1.12
8 0.58 3 1.21 11.22 43.71 13 6.45
9 0.67 4 1.23 10.17 228.60 16 36.60

LE3DNS

7 0.57 3 1.41 7.49 10.97 10 1.01
8 0.68 3 1.29 10.07 108.39 12 10.49
9 0.70 4 1.37 9.62 1,289.79 14 119.94

provided in MUMPS [2] is used as the coarsest solver. In Table 10, we report results obtained on
the test cases Pii=1,2,3. If we compare the above results with the ones reported in Table 2, corre-
sponding to the auction-type matching and the best BootCMatch execution times, we can observe
that AGMG generally builds hierarchies with one less level than those obtained by BootCMatch,
and therefore, with slightly smaller operator complexities, even if BootCMatch has an average
coarsening ratio that is generally better than AGMG. This is due to the different coarsening strat-
egy employed by the two codes. AGMG obtains smaller execution times both for building and for
applying the solver; this is essentially related to the way AGMG computes the coarse matrices.
The prolongators involved in the AGMG unsmoothed aggregation scheme are simple 0-1 matri-
ces whose action can be implemented by simple gather/scatter operations without forming the
matrices explicitly; this is in contrast with the general form of the prolongators/restrictions de-
fined by BootCMatch, which require full-fledged matrix-vector products. In Table 11, we report
results obtained by AGMG on the test cases arising from the SuiteSparse Matrix Collection. We
can observe that AGMG, in all test cases except obstclae and chem97ztz, is unable to coarsen the
matrices in an efficient way, showing a very small coarsening ratio. Indeed, for the crystm03 and
qa8f m matrices, we see a coarsening ratio exactly 1, i.e., the matrices are not coarsened at all,
and reverting to a one-level preconditioner means we are effectively solving the original system
with a sparse LU factorization. In general, the AGMG coarsening algorithm results in a large op-
erator complexity, and set-up and solve times that are larger than those achieved by BootCMatch.
In the case of obstclae and chem97ztz, the average coarsening ratio of AGMG appears better than
that obtained by BootCMatch, producing smaller matrix dimensions at corresponding levels in the

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 39. Publication date: June 2018.



39:22 P. D’Ambra et al.

Table 10. AGMG for Pii=1,2,3 Test Cases

AGMG building and application

Building Application

nlev cmpx cr tbuild it tsolve

P1

4 1.36 3.14 0.11 91 1.84
5 1.35 3.25 0.38 121 9.14
5 1.35 3.27 1.47 155 51.7

P2

4 1.36 3.13 0.09 91 1.54
5 1.35 3.23 0.32 116 7.41
5 1.35 3.22 1.35 148 44.2

P3

4 1.36 3.17 0.1 93 2.09
5 1.36 3.29 0.48 121 11.4
5 1.35 3.28 1.34 152 44.9

Table 11. AGMG for Test Cases from the SuiteSparse Matrix Collection

AGMG building and application

Building Application

name nlev cmpx cr tbuild it tsolve

PDE problems

crystm03 2 2.0 1.0 3.83 1 0.03
sts4098 2 1.74 1.34 0.06 38 0.1
qa8fm 2 2.0 1.0 16.9 1 0.34
thread 3 1.85 1.69 3.22 1,000 (NC) 84.2

crankseg_1 5 2.52 1.63 3.99 79 21.4

non PDE problems

obstclae 4 1.32 4.08 0.04 9 0.05
chem97ztz 2 1.09 3.71 0.001 8 0.002

bundle1 2 1.61 1.75 0.42 13 0.08
cvxbqp1 3 3.0 1.0 1.77 2 0.13

hierarchy; therefore, the final solver generally requires more iterations than BootCMatch, leading
to a slightly larger solve time.

Finally, in Table 12, we report results obtained by AGMG on the test cases arising from the Alya
simulation code. We can observe that in all the cases, BootCMatch outperforms AGMG both in the
setup and in the application of the preconditioner. In particular, AGMG exhibits large difficulties
in the coarsening of the vector systems, where very small coarsening ratios are observed. We also
notice that in the case of the smallest size velocity system, AGMG is not convergent, producing an
increase of the relative residual in the solution process.
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Table 12. AGMG for Alya Test Cases

AGMG building and application

Building Application

nlev cmpx cr tbuild it tsolve

Test Alya—Pressure

5 1.39 2.7 0.56 100 8.3
7 1.50 2.6 1.83 92 23.8
7 1.52 2.9 3.78 96 74.0

Test Alya—Velocity

5 1.9 1.7 313 1,000 2,890
6 1.78 1.7 73.1 121 444
6 1.65 1.9 547 203 14,200

8 CONCLUSIONS

In this article, we described some new features of an adaptive AMG method aimed at handling gen-
eral SPD linear systems, without exploiting any a priori information about the problem at hand.
We also presented the software framework BootCMatch, which implements all the functionali-
ties for building and applying the method as stand-alone solver or as preconditioner in a Krylov
method. Results on a variety of test cases show that the method works in a fairly reliable and ef-
ficient way. Work in progress aims at reducing the computational costs of the solve phase of the
adaptive AMG, by using already computed hierarchies and multiple smooth vectors to generate
a more effective AMG hierarchy, thus reducing the operator complexity of the final AMG. Future
work includes the extension of the method and the related software to unsymmetric problems as
well as effective parallel implementation on modern architectures. Preliminary results related to
a decoupled parallel implementation of the coarsening procedure described in Algorithm 2 can be
found in Reference [1].
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