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ABSTRACT

This project combines several new concepts to create a boundary layer transition prediction
capability that is suitable for analyzing modern hypersonic flight vehicles. The first new concept
is the use of "optimizatioe methods to detect the hydrodynamic instabilities that cause boundary
layer transition; the use of this method removes the need for many limiting assumptions of other
methods and enables quantification of the interactions between boundary layer instabilities and
the flow field imperfections that generate them. The second new concept is the execution of
transition analysis within a conventional hypersonics CFD code, using the same mesh and
numerical schemes for the transition analysis and the laminar flow simulation. This feature
enables rapid execution of transition analysis with less user oversight required and no
interpolation steps needed.
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EXECUTIVE SUMMARY

Throughout the history of hypersonics flight research, the transition from laminar to turbulent
flow has been a frustrating source of uncertainty in re-entry vehicle design. Vehicles flying at
hypersonic speeds undergo enormous heating loads that must be mitigated using a Thermal
Protection System (TPS) to prevent structural damage. If the flow past the vehicle is turbulent, the
heating rate can be 4-10 times larger than that of laminar flow, thus the points along the trajectory
at which transition to turbulence takes place are often first-order design considerations. The
location along the surface of the vehicle at which transition occurs is also important to predict,
since the heating rate generally features a local maximum during the transition from laminar to
turbulent flow, and vibrational loads are also most intense in this region. While existing
computational fluid dynamics (CFD) models are adequate for simulating either fully laminar or
fully turbulent attached flow, they are not capable of predicting transition to turbulence. There are
currently no viable computational tools that deliver acceptable a priori predictions of transition
for hypersonic flight.

In the past, engineering predictions of boundary layer transition have usually been made using
empirical correlations that are calibrated against a large body of historical flight data. These
correlations are useful when designing vehicles similar to those that have been flown before, but
are not predictive when the vehicle geometry, TPS materials, or trajectory are changed.
Additionally, correlations obtained using ground-based wind tunnels do not extrapolate to the
flight environment, so the development of new correlations for new applications would require
expensive flight tests. Because of their reliance on correlations, current transition predictions have
large uncertainties which demand that costly margins be included in the design of the entire
system. To reduce these margins and minimize the number of costly flight tests, future missions
will require that transition be predicted a priori on the basis of the fluid mechanics rather than
using empirical correlations. This project proposes a new computational method that can predict
and model laminar-turbulent boundary layer transition on complex re-entry systems. The new
method will be closely coupled with an existing hypersonic CFD solver so that the solver can
predict transition and simulate the laminar, transitional, and turbulent regions of the flow in a
single analysis. The new computational method offers numerous advantages over current practice
and other competing technologies. The largest benefit is that the new method is based on physical
solutions of the compressible Navier-Stokes equations, rather than on empirical correlations. This
means that the new approach can be used to analyze new geometries, materials, and trajectories
that are radically different from those flown previously. Although other competing technologies
exist, they have generally not been useful for hypersonic vehicle design because they make
unacceptable simplifying assumptions, they can analyze only a small subset of the possible
mechanisms of transition to turbulence, and the analysis is cumbersome and time consuming The
new proposed computational method solves all of these problems. It avoids the simplifying
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assumptions invoked by other methods, it accounts for all mechanisms of transition to turbulence,
and it is tightly integrated with a hypersonic CFD solver.

This project takes the first steps towards delivering a predictive tool that can simultaneously
simulate laminar, transitional, and turbulent regions of the flow. If successful, this technology will
be an enormous step forward in capability, both for modeling re-entry systems (including future
NW systems and boost-glide vehicles) and for modeling turbulent transition in other applications
across Sandia's mission space.
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1. INTRODUCTION

1.1. Project Overview

Throughout the history of hypersonics flight research, the transition from laminar to turbulent
flow has been a frustrating source of uncertainty in re-entry vehicle design. Vehicles flying at
hypersonic speeds undergo enormous heating loads that must be mitigated using a Thermal
Protection System (TPS) to prevent structural damage. If the flow past the vehicle is turbulent, the
heating rate can be 4-10 times larger than that of laminar flow, thus the points along the trajectory
at which transition to turbulence takes place are often first-order design considerations. The
location along the surface of the vehicle at which transition occurs is also important to predict,
since the heating rate generally features a local maximum during the transition from laminar to
turbulent flow, and vibrational loads are also most intense in this region. While existing
computational fluid dynamics (CFD) models are adequate for simulating either fully laminar or
fully turbulent attached flow, they are not capable of predicting transition to turbulence. There are
currently no viable computational tools that deliver acceptable a priori predictions of transition
for hypersonic flight.

In the past, engineering predictions of boundary layer transition have usually been made using
empirical correlations that are calibrated against a large body of historical flight data. These
correlations are useful when designing vehicles similar to those that have been flown before, but
are not predictive when the vehicle geometry, TPS materials, or trajectory are changed.
Additionally, correlations obtained using ground-based wind tunnels do not extrapolate to the
flight environment, so the development of new correlations for new applications would require
expensive flight tests. Because of their reliance on correlations, current transition predictions have
large uncertainties which demand that costly margins be included in the design of the entire
system. To reduce these margins and minimize the number of costly flight tests, future missions
will require that transition be predicted a priori on the basis of the fluid mechanics rather than
using empirical correlations.

In this project, a new computational method is developed that can predict and model
laminar-turbulent boundary layer transition on complex re-entry systems. The new method will
be integrated into an existing hypersonic CFD solver so future development will allow the solver
to predict transition and simulate the laminar, transitional, and turbulent regions of the flow in a
single analysis. The new computational method offers numerous advantages over current practice
and other competing technologies [2, 5, 12-14]. The largest benefit is that the new method is
based on physical solutions of the compressible Navier-Stokes equations, rather than on empirical
correlations. This means that the new approach can be used to analyze new geometries, materials,
and trajectories that are radically different from those flown previously. Although other
competing technologies exist, they have generally not been useful for hypersonic vehicle design
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because they make unacceptable simplifying assumptions, they can analyze only a small subset of
the possible mechanisms of transition to turbulence, and/or the analysis is cumbersome and time
consuming. The new proposed computational method solves all of these problems. It avoids the
simplifying assumptions invoked by other methods, it accounts for all mechanisms of transition to
turbulence, and it is tightly integrated with a hypersonic CFD solver.

1.2. Overview of the method

The goal of this project is a new computational method that can predict and model
laminar-turbulent transition in hypersonic boundary layers from within a CFD solver. The start of
transition is usually defined as the locus of points on the surface of the vehicle at which the heat
flux begins to increase above the laminar value. In general, the start of transition varies around the
circumference of the vehicle; for example, transition could begin further forward on the windward
side of a pitched vehicle compared to the lee side. Additionally, different physical mechanisms
can be responsible for transition at different locations, so the computational method must be able
to simultaneously account for all of these different mechanisms.

1.2.1. Prediction of the Transition Location

As has already been discussed, it is essential that future predictions of boundary layer transition
be made on the basis of the physical mechanisms involved, rather than on empirical correlations.
At flight conditions, transition to turbulence is understood to take place by the following process.
Small disturbances are inevitably introduced into the flow from a variety of sources including
atmospheric velocity and temperature fluctuations, sound waves, impacts from particulate matter,
and irregularities on the surface of the flight body. At low Reynolds numbers, these small
disturbances decay away and the flow remains laminar. For sufficiently high Reynolds numbers,
the disturbances amplify and grow until they are large enough to cause the flow to break down
into turbulence. This project proposes a new approach to transition prediction in which an
optimization problem is solved to identify the form of disturbance that has the greatest potential
to trigger transition to turbulence. The solution of the optimization problem also yields the
amount that the disturbance will grow, which is then used to predict where transition to turbulence
begins. It should be noted that this transition prediction method currently relies on an empirically
measured breakdown amplitude, thus is not entirely predictive. This would make the method
semi-empirical, similar to the linear stability analysis in competing methods [5, 12-14], where the
transition prediction relies on anchoring transition to a relative growth of disturbances. While this
distinction may seem subtle, the power of the current method will be described in the
demonstration shown below.

To frame laminar-turbulent transition as an optimization problem, one first considers the source of
the disturbances such as atmospheric velocity and temperature fluctuations or sound waves. The
average amplitude of these sources is usually known or can be estimated, but the fluctuations are
stochastic in nature and take on many different orientations, wavelengths, frequencies, and
waveforms. The goal of the optimization problem is to find the "most dangerous" form of
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disturbance which has the greatest potential to trigger transition. The optimization algorithm
searches among all possible disturbances of known initial amplitude to find the disturbance that
gains the most energy as it travels through the laminar region of the boundary layer.

The novelty of this approach is that the optimization problem described above can be solved using
the numerical schemes already contained in standard aerodynamics CFD solvers. The CFD solver
is adapted to solve an auxiliary set of equations alongside the usual equations of fluid mechanics.
The key enabling technology is that the time marching scheme associated with the standard CFD
solver can be harnessed to solve optimization problems of this type. Some of the theoretical
groundwork for such an approach has already been laid by other researchers [1, 11, 19], but much
work remains to convert this basic concept into a predictive tool. Development of this technology
has only recently begun, since the requisite advances in linear algebra and computing power have
only been made in the last decade or so. The work of other researchers has so far been limited to
academic contexts and has only been applied to simple model problems. Furthermore, this
approach has never been used to make actual predictions of transition to turbulence, and
consequently this approach has not been subjected to experimental validation [10]. This project
will build on and refine the available conceptual framework to deliver an engineering capability
that has been validated against experiments.

Another key benefit of this method is that it is agnostic to the mechanism that causes transition. It
is well-known that transition to turbulence can be caused by numerous mechanisms, such as
Tollmien-Schlichting waves, "2nd mode" waves, and crossflow instabilities. Other computational
methods for predicting the growth of instabilities are specifically designed to target one or more
of these mechanisms, but are usually not general enough to capture them all. The complicated
flowfields associated with realistic re-entry systems can excite all of these instability mechanisms
as well as others that have not yet been identified. The simulation method proposed in this project
is well suited for this scenario, since the optimization algorithm is able to account for all of these
mechanisms. Much of the work needed to make this capability a reality lies in the details of the
optimization algorithm. Several procedures for solving the optimization problem have been
proposed [1, 11, 19], but the relative merits and drawbacks of these methods have not been
analyzed. Likewise, there are many choices for the precise specification of the objective function
used in the optimization, and the options used previously by other researchers are not believed to
be suitable for transition prediction. The approach that will be taken in this project is to first apply
the optimization algorithm to a simple, well-understood model problem, which will enable the
numerical properties of different modeling choices to be assessed. The best practices determined
by this exercise will then be incorporated in the full transition model.

To begin the process of validation of the new approach to transition prediction, comparisons will
be made with wind tunnel data sets from the open literature and from tests previously conducted
by Sandia. The data sets will include both sharp and blunted cones at zero degrees angles of
attack.
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1.2.2. Overview of the method

The core procedure used to predict the transition location in this project is an optimization method
which determines the largest-growing disturbances that can develop in a laminar boundary layer.
In this section, a high-level overview is given of the mathematical foundation behind the method
without giving any specifics of the actual implementation.

The core optimization procedure used to predict transition can be constructed in one of two ways.
In the first framework, known as the temporal method, the optimization problem is treated as an
initial-value problem in which the most dangerous initial condition is sought. The amplification
of the initial condition over time is evaluated and the initial condition that grows the most over a
specified time interval t E [0, t,nax] is sought. Of course, the amplification achieved depends on the
value of t,na„ that is chosen, so optimizations must be conducted for multiple values of tmax in
order to find the worst-case initial condition. The temporal method can be inefficient for
convective instabilities, which amplify as they propagate downstream, but is very useful for
analyzing absolute instabilities which remain constrained to a specific region of the flow (such as
instabilities in a separation bubble).

The second framework for applying the optimization procedure is known as the spatial method.
In this method, time-periodic disturbances having a fixed, real frequency are analyzed. The
disturbances are assumed to originate at the boundaries of the domain (typically the inflow
boundary) and the optimization procedure is used to determine the inflow disturbance type that
achieves the largest growth as it interacts with the boundary layer. Since this analysis considers
only one frequency at a time, multiple analyses must be carried out to analyze each possible
frequency and determine the most dangerous disturbance selected from among all frequencies.
The spatial method tends to be more efficient than the temporal method for analyzing convective
instabilities, such as those typically encountered in planar boundary layers. Additionally, since
disturbance sources in wind tunnels are typically characterized using frequency dependent power
spectra, the spatial method has an advantage of being easy to compare with experimental data.

In the following sections, the mathematical details of the spatial and temporal methods are
described. As will be seen, the two methods can be cast in very similar mathematical forms so
that the same high-level procedure can be used for both methods.

1.2.2.1. Temporal Method

Consider a state vector q(x, y, z, t) which contains as its components the fluctuations in velocity
and thermodynamic quantities. The linearized Navier-Stokes equations in this situation have the
form:

Lqat
where L is the operator that represents the linearized dynamics of the Navier-Stokes equations. If
the state vector has initial components qo at time t = 0, then the fluctuations evolve according to

16



exponential of the operator (or matrix) describing the linear dynamics:

q = eLt go

In order to maximize the disturbance, it is necessary to define a measure of its magnitude.
Leaving the precise specification undetermined for now, the energy E of the disturbance is
defined by a suitable inner product:

(1.2)

E = (q, q) (1.3)

For a given linear operator L, this inner product implies an adjoint operator L+ which satisfies
the following relation for two arbitrary vector fields u and v:

(Lu, v) = (u, L+ v) (1.4)

Using the foregoing results, the increase in energy of the disturbance from time t = 0 to the
maximum time t = t is given by:

E (t) (eLt clo , eLt q0) (go, eL±T eLTqo)

E 0 (q0,c10) (qo , (10)

This form is recognized as a Rayleigh quotient; the ratio E(t) 1 E 0 is an eigenvalue of the

combined linear operator eL±T eLt and the initial condition go is a right eigenvector. The
"optimal" initial condition is the right eigenvector belonging to the eigenvalue that acheives the
highest disturbance energy. A well-established method for solving eigenvalue problems of this
type is the power iteration method, in which an initial guess of go is repeatedly multiplied by the
combined operator eL+T eLt until convergence is reached. This procedure converges rapidly when
the eigenvalues are well separated; if this is not the case, Krylov methods which involve multiple
eigenvalues and eigenvectors can be used.

As described above, the optimization method is reduced to repeatedly multiplying the initial
condition go against the combined linear operator eL+T eLt . The action of the forward operator
eLt can be approximated by discretizing Equation 1.1 and integrating forward in time from t = 0
to t = t using any suitable explicit or implicit numerical method. This can be carried out using a
standard CFD code by either linearizing the code or simulating disturbances small enough to
remain in the linear regime.

Similarly, the adjoint operator eL+T is the solution of the adjoint partial differential equation

aq ±

+ L q = O

The action of this equation can be approximated by discretizing Equation 1.6 and integrating
backward in time from t = t to t = 0 using any suitable numerical method. The "initial condition"
at t = T for this marching procedure is the product eLt cii0 determined above. The final result at
t = 0 is then a discrete approximation to the operation eL±T eLtqo . Thus, repeated application of
the direct and adjoint time marching procedures has the effect of performing power iterations on
the composite operator eL±T eLT . Using the above procedure, the temporal optimization problem
can be solved using any CFD code provided that the code can solve the linearized equations and
their adjoint counterparts.
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1.2.2.2. Spatial Method

The spatial method can be constructed in a manner analogous to the temporal method above.
Following a Laplace transform with respect to time, the linearized Navier-Stokes equations take
the form:

(F — kol)q = Bf (1.7)

where (0 is the frequency, E is the identity operator, and F is the flux term of the Navier-Stokes
equation. The operator B maps the external forcing f onto the solution variables q at the
boundaries of the domain and is zero on the interior of the domain

The second framework for constructing the optimization problem is known as the spatial method.
In this approach, a periodic forcing with frequency (0 is applied either at the boundary or the
interior of the simulation domain. Such a problem can be cast in the form:

Lq = Bf (1.8)

where f(w) is a periodic forcing function that represents either volumetric forcing or the action of
non-homogeneous boundary conditions. Defining the resolvent operator by q = Rf, the
normalized energy of the fluctuations is given by

E (0)) (RC Rf) (f , R+ Rf) 
E f (f, f) (f, f)

(1.9)

This again represents an eigenvalue problem, in which the most dangerous forcing is the right
eigenvector of the operator R+R corresponding to the largest positive eigenvalue. In the same
manner as the temporal problem, the spatial problem can be solved using the power iteration
method.

The two methods described above both boil down to solving an eigenvalue problem using the
power iteration method, which requires repeated application of the linear system operator and its
adjoint. Determining whether one of these two methods is superior to the other is an objective of
this research.
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2. LINEARIZED NAVIER-STOKES EQUATIONS

At the core of the optimization procedure used in this project lies the solution of the direct and
adjoint linearized Navier-Stokes equations. These equations describe the amplification and
evolution of small disturbances within the laminar boundary layer, which are believed to be the
cause of transition to turbulence in low-disturbance environments. This chapter describes these
equations and the methods used to solve them.

2.1. Equations of Motion

For a calorically perfect, non-reacting compressible gas, the fully nonlinear equations of
continuity, momentum, energy, and state can be expressed in the following form:

ap
+V • (pu) =0

p
 

ot 
+u-Vu)+Vp=V•T

iaT
pc +u • V T) + pRTV • u V • q + cl)

p = pRT

Here p is the fluid density, p the pressure, T the temperature, and u the velocity vector with
Cartesian components (u, v, w). The specific heat at constant volume is denoted Cv, the gas
constant is R, and the viscous stress tensor is denoted ti with components

(2.1a)

(2.1b)

(2.1c)

(2. 1d)

aui a aUk
tij = (axi 

uj) 
(2.2)axk

where p is the shear viscosity, X the second viscosity, and Einstein summation notation is used on
the vector indices. The heat flux vector q has components

aT
qi = axl (2.3)
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where k is the thermal conductivity. The viscous dissipation per unit volume, 0, is given by the
contraction of the velocity gradient tensor against the shear stress tensor:

aui
= t'lax;

In this project, the analysis is restricted to flows of a calorically perfect ideal gas. However,
application of this method to flight cases may require that the addition of physics associated with
chemical reactions and thermo-chemical non-equilibrium.

2.1.1. Linearized Equations

The equations of motion (2.2) can be linearized to produce the linearized Navier-Stokes
equations:

ari+ o • (ficp + = o
anp 
at 

+u•vii+fi•vu +0-fi•vii-pv/3=v•t-

(2.4)

(2.5)

(2.6)

pc, (ap—at +0.vp +ri.vT)+0c,o. VT-F/3V•ii+/W•fi= V•ii+43 (2.7)

The components of the fluctuating viscous stress tensor, heat flux vector, and viscous dissipation
are given by:

(aai au; auk aui auf) auk 
tij=i1 + + 4 aJ I k Xj Xk

_aT -aT
gi =

axi axi
aai aai(1)=T7 +  ax; ax;

The linear fluctuations in transport properties are then written in terms of the temperature
fluctuations:

(2.8a)

(2.8b)

(2.8c)

ap
(2.9)

ak -
k= aTT (2. 1 0)

axx = aTT (2. 1 1)

Using these definitions, the linearized Navier-Stokes equations in two dimensions can be written
in the form of a first-order system as follows:

At + Ax
aQ 
+ A —

aQ =o (2.12)at ax Y ay
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In this equation, Q is the vector of disturbances

Q- (15,5,17,T,txx,txptyy,4x14y)T (2.13)

and At, Ax, and Ay are 9 x 9 matrices. This system can equivalently be written as a set of four
second order partial differential equations by substituting the definitions of the viscous stress
tensor and heat flux vector.
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3. OPTIMIZATION PROBLEM

3.1. Introduction

In this chapter, the details of the optimization problem which determines the most amplified
disturbances is described. Before considering the details associated with the Navier-Stokes
equations, the generic principles of the optimization method are described.

Consider a time-varying dynamical system consisting of N states, where the ith state is denoted
qj(t). The collection of all N states is represented by a column vector q(t) of length N containing
the state values as its elements. Suppose further that the size of the disturbance is described by an
arbitrary quadratic function of the state variables of the form:

E(T) = qTMq (3.1)

Here E is the energy, or magnitude of the disturbance and M is a N x N matrix. The goal of the
optimization problem is to find the initial conditions qo = q(t = 0) that maximize the energy E at
some time T . The initial conditions are subject to the constraint that the initial energy of the
system has some prescribed value Et,. Using the Lagrange multiplier technique, this objective is
met by maximizing the objective function:

j = emq x(goTivigo E0)

where X is a Lagrange multiplier. The state vector at time T can be expressed in terms of the
resolvent operator R, which maps the initial condition qo onto the final result q(T):

q(T) = R(T)q0 (3.3)

With this result, the optimization problem becomes

= clIATAINSI0 — X(4:10TMclo — E0) (3.4)

This problem is solved by setting the partial derivatives with respect to each initial state varible,

go,i equal to zero, as well as setting the derivative with respect to X equal to zero. These
operations produce a system of N +1 equations:

aJ cji0T [remR AM]
acio
= 0 = q0MClo Eo

(3.2)

(3.5)

(3.6)

Equation 3.5 is an eigenvalue problem with eigenvalue X and left eigenvector qoT , while
Equation 3.6 specifies the normalization of the eigenvector. For the special case in which M =
the eigenvalue problem reduces to:

IRTR-al =
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The optimization problem which determines the most amplified disturbances can be prescribed
using one of two frameworks: the temporal and spatial frameworks. The temporal framework
considers the temporal response of the linear system to an initial condition, while the spatial
framework considers the response of the linear system to time-periodic forcing or time-periodic
boundary conditions. One objective of this study is to determine which formulation is best suited
for transition prediction. In the following sections, these two approaches are described in detail.

3.2. Temporal Analysis / Initial-Value Problem

In the temporal analysis, the linearized Navier-Stokes equations are cast as an initial-value
problem of the following form:

aq
—
at 
+ Lq= 0

q(t = 0) = q,

(3.8)

(3.9)

Here q is the vector of state variables, L is a linear operator representing the linearized
Navier-Stokes equations, and q, is the initial condition. The objective of the analysis is to
determine the initial condition that produces the largest perturbation amplitude at some later time
T . In order to accomplish this, a measure of the disturbance amplitude must be proposed. A
general measure of the disturbance energy E takes the following form:

E(q)2 _ cjiHmq (3.10)

where M is a matrix of weights and superscript H denotes the conjugate (Hermitian) transpose.
By selecting a suitable weight matrix M, this energy can be set equal to the kinetic energy, the
sum of the kinetic, acoustic, and thermal energies, or a variety of other choices.

Having introduced the energy metric, the optimization problem involves the process of
maximizing the energy at time T while constraining the energy at time t = O. This can be
achieved by minimizing the Lagrange functional [19]:

T
J = f 

o 0 Q. 
(q(T),q(T))dV — f f (v,

a

at + Lq)c1V — (f (q,,q,)dv — 1)n

q 
(3.11)

For generality, three different volume domains are considered: no is the optimization volume, ni
is the input domain, and S2 is the full computational domain. Separate domains are considered
because one might wish to allow initial disturbances only over some subset of the computational
volume, or one might wish to maximize the resulting disturbance over a different subdomain The
first term in Equation 3.11 contains the disturbance energy integrated over the output domain The
second term is a penalty term that forces the disturbances to adhere to the linearized
Navier-Stokes equations, using a vector of Lagrange multipliers v (also known as the adjoint
solution vector or the co-state vector) to enforce this condition over the entire domain n. Finally,
the last term enforces the initial disturbance energy to be 1.0 when integrated over the input
domain S2i, and X is the Lagrange multiplier corresponding to this constraint. Solving the
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optimization problem then consists in minimizing the functional J, which is accomplished by
setting the gradients of J with respect to each variable independently equal to zero.

Setting the first variation of J with respect to v equal to zero results in the following condition:

aq

+ LEI 
(3.12)

which recovers the linearized Navier-Stokes equations. Using integration by parts, the second
term in Equation 3.11 can be written in the form:

‘10 0

fT f
v, 

dt 
,

cji 
Lq)d17 = iT (— 

dt 
— L+v,q)dv+

fK2(v(T),q(T))dV — f (v(0), q(0))dV +B.T. (3.13)
where L+ is the adjoint linear operator and "B.T." stands for boundary terms, which are set to
zero by selecting suitable boundary conditions on the adjoint solution v. Using Equation 3.13,
setting the first variation of J with respect to q equal to zero results in the following condition:

av— — L±v = 0 (3.14)

This equation defines the adjoint solution v Finally, taking the first variation of J with respect to
the initial and final states q(0) and q(T) results in the following conditions:

q(0)dV = f v(0)c117

2 q(71c1V = f v(T)6117
no

The fact that the two sides of these equations are integrated over different volumes can be
managed by introducing the functions Si and 8,, which are equal to 1.0 inside S2i and no
(respectively) and equal to zero elsewhere. The optimality conditions then read:

22L, f q(0) öidV = f v(0)d17

2 f q(T)8,c/V = f v(T)clv

(3.15)

(3.16)

(3.17)

(3.18)

The solutions to the direct and adjoint equations can be written in terms of the matrix exponential
as:

q = q(0)eLt

v = v(T)eL+t

Combining all these results produces the following result:

xq(0) = eL+T eLT q(o)
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This equation can be viewed as an eigenvalue problem involving the matrix exponentials of the
linear operator L and its adjoint. The most amplified disturbance corresponds to the largest
eigenvalue X of this system. The matrix exponentials can be numerically approximated by
time-marching the direct and adjoint linearized Navier-Stokes equations. The direct-adjoint
marching procedure is equivalent to performing power iterations on the eigenvalue problem
above. Sub-optimal disturbances can be found using Krylov sub-space iteration to approximate
the eigenvalues.

3.3. Spatial Analysis / Boundary-Value Problem

In the spatial analysis, the linearized Navier-Stokes equations are cast as a boundary-value
problem of the following form:

—i0Eq Lq = Bf

q(xin) = f
where f denotes a time-periodic boundary condition and B is forcing function coefficient
matrix.

The Lagrange functional is very similar to the temporal case (Equation 3.11) except that a
boundary condition is used rather than an initial condition:

(3.22)

(3.23)

J = f (q, q)dV — f (v, — iol[q Lq — Bf) dV — X (f 
(fs~ti
,f) dA — 1) (3.24)

Here Dni represents the inflow surface area.

Just as in the temporal case, setting to zero the first variations of J with respect to v produces the
linearized Navier-Stokes equations:

Lq — kol[q = Bf (3.25)

To compute the variation with respect to the other variables, the relationship provided by
integration by parts is used to replace the second term in Equation 3.24, which can be written in
the form:

(v, —ioliq Lq) = f (L±v — f (v, (3.26)

where L+ is again the adjoint linear operator and the last terms are the boundary terms. Setting
the variation of J with respect to q generates the condition of the adjoint equation

L±v = 2q

Setting the variation of J equal to zero with respect to the boundary value of f results in the
following conditions:

2Xf = v

The last variation of J with respect to X recovers the normalization condition

fan,(f',f)dA = 1.
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3.4. Numerical Adjoints

Following discretization, the linearized Navier-Stokes equations can be represented as a large
linear system of the semi-discrete form:

aq A—at = lig
With the addition of explicit or implicit time discretization, the system takes the form:

Bqn+i = Cce

where the superscript n represents the time level. Some examples of values for the B and C
matrices for different time discretizations are the following:

Explicit Euler:

Implicit Euler:

B = IE

B = IE — AAt

C = (ff+ AAt)

C = IE

(3.28)

(3.29)

(3.30)

(3.31)

Similar expressions can be written for other higher-order discretization schemes. For a given time
discretization scheme, the term in the Lagrange functional corresponding to the linearized
Navier-Stokes equations takes the form:

T Ivil ( ±:la — A q ) dt (3.32)0 at
where v is the adjoint function and superscript H denotes the Hermitian transpose. Application of
the time discretization leads to the following result:

N
T _.,.,.,_, E vn (Bqn±i _ Cqn) (3.33)

n=1

N= E [vnBqn+l+vn+1Cqn+l _ vn+lcqn+1 — vncqn] (3.34)
n=1

N= E (vnB _ vn+1C) qn+l+ (vn+icqn-F1 — vNcqn) (3.35)
n=1

N= E (vnB — vn+10 qn+1 + vNue — v 1 Cql (3.36)
n=1

This result is the discrete analogue of integration by parts, producing a discrete system of
equations for the adjoint along with boundary terms. For first order explicit and implicit time
discretizations, the adjoint system can be written:

Explicit Euler: vnff 
= 

vrt+1(1+AAt) (3.37)

Implicit Euler:

These can be re-cast as:

vn (li — AAt) = vn+111 (3.38)

n+1 n
V — V 

= Avn+ 1
At

n+1 n
V — V

= Avn
At

These can be viewed as explicit and implicit integration in the negative time direction.
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3.5. Finite Volume Formulation

The nonlinear equations of compressible fluid mechanics can be represented in conservation form
as:

au+ R = 0 (3.41)

where U is the vector of conserved variables and R is the residual vector composed of the inviscid
and viscous flux terms. In the steady base flow calculation, the residual vector R is driven to
zero.

The unsteady, linearized equations of motion are then written as:

aoi aRi aRi+E—u•+E —Gk =0at au • aGkk

(3.42)

Here Oi is an element of the perturbed state vector, aRi/au; is the sensitivity of the residual at cell
i to perturbations in the solution at cell j, and aRi/aGk is the sensitivity of the residual to
perturbations in the kth ghost cell. The values Gk are the perturbation boundary conditions.

In the spatial problem, we seek to determine the perturbation boundary conditions Gk that
maximize the energy of the disturbance U. This optimization problem is expressed in terms of the
objective function 9:

[ _  ~ aR9 = ECJi*WiCh — E —1[(oUi+E 
a
—•+E Eozvykok-E, (3.43)

i i i 

aui 
uj ; k 

aci 
Õk -x k k

The first term is the energy of the disturbance, which is computed as an inner product of the
solution variables IA against the weights Wi. The second term is the linearized Navier-Stokes
equations from Equation 3.42, multiplied by the Lagrange multipliers Vi, which can also be
interpreted as adjoint variables. The third term is a constraint that the energy of the boundary
values Gk, integrated against the weights Wk, must be equal to a specified value E, (usually taken
to be 1.0). This term is multiplied by a Lagrange multiplier A,.

To maximize the objective function 9, the derivative with respect to each unknown is set to zero.
Taking the derivative with respect to the adjoint variables 17i yields Equation 3.42:

aRi aRiay = 0 = RoUi +  u.+Yr Gkau• —aG,avi j J k

Taking the derivative with respect to the state variables Op yields the condition:

ay =0= 20*W
P 
-E

aUp P 
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where 8ip i the Kronecker delta. This equation can be transposed to form the adjoint equations of
motion:

aRi
Vl — iowp = 2vvpopaup

Taking the derivative of y with respect to the ghost cells leads to the optimization condition:

which is rearranged to form:

ay aRi= 0 = Evi*— + 2x047k•aGk aGk

Gk
aRi)

=   Vi*2A147k aGk
The final criterion is to minimize y with respect to the Lagrange multiplier X:

OJ
= 67,147kok-E,ax,

This is merely a normalization condition on the boundary values Gk.

3.6. Implementation details

(3.46)

(3.47)

(3.48)

(3.49)

To generate the Jacobian matrices aU and Z, an automatic differentiation approach is used. The
floating point data type in the SPARC CFD code is replaced by an automatic differentiation data
type as implemented in the Sacado package of the Trilinos software suite [20]. This data type
supplies an overloaded implementation for each standard numerical operation, and the overloaded
operator applies the chain rule of differentiation to each successive operation to track the overall
derivative of a function call with exact numerical precision. This technique is used to compute the
derivative of the residual (R in Equation 3.41) with respect to the state variables in the interior
cells U and ghost cells G. Furthermore, the Jacobian "colorine technique is used to reduce the
computation expense of the Jacobian matrix calculation [9]. With this method, the sparsity of the
Jacobian matrix is exploited to compute multiple rows of the Jacobian matrix using a single
evaluation of the residual.

The automatic differentiation (AD) data type is also used to store both the mean-flow solution and
the perturbation quantities. For the temporal approach there is only one linearized perturbation
quantity. For the spatial approach we use two perturbation quantities to separately store the real
and imaginary parts of the complex-valued perturbation. Calculations performed using the AD
data type then produce an AD-valued result with both mean and linearized perturbation
components. This allows us to compute the linearized perturbation component of the the flux
residual R without modifying any of the flux routines within SPARC.
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Both the temporal and spatial analyses have been implemented in SPARC. The temporal analysis
uses a standard BDF time integration scheme to solve for the resulting linearized flow solution
when a perturbed initial condition is specified. The spatial analysis solves directly for the periodic
steady state flow solution when periodic forcing is applied at the boundaries. Solving the spatial
analysis problem would typically involve solving a complex-valued linear system. We avoid this
by representing the complex-valued system by an equivalent real-valued system [8].
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4. MODEL DEMONSTRATION AND VERIFICATION

4.1. Optimization Solver

In this section we overview how the optimization solver is used for flat plate boundary layer
problems. This is a demonstration of the capabilities developed during the course of this project.
For simplicity, we are looking only at the initial value problem rather than the spatial problem.
Application of the spatial problem will be shown in the next section for sharp and blunt cone
geometries, sections 5.3 and 5.4 respectively.

4.1.1. Optimization Algorithm Demonstration

Guess the
disturbance

(doesn't have to be
a good guess)

No

is the solution
converged?

1 Yes
Done

integrate LNSE
forward from
t = 0 to t

I

Determine IC at
t = t for

adjoint

I

I nteg rate adjoint
LNSE backward
from t , to t = 0

I

Compute a new
IC at t = 0

Figure 4-1. Flow chart of the optimization loop.
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A flow chart of the optimization loop is shown in Figure 4-1. The first step is to make an initial
guess. The initial guess does not have to be good, and can often just be random noise. The next
step is to solve the direct (or forward) linearized Navier-Stokes problem for this given
disturbance, integrating forward in time until the end of the simulation. Then, the appropriate
mapping of the final forward solution to the adjoint initial solution is made, and the adjoint
problem is solved integrating back in time. The final adjoint solution (at t = 0) is then
appropriately mapped to the initial condition of the next forward solution, and the loop continues
until the energy growth in the domain converges to a steady solution, as shown in Figure 4-2. In
this case, the solution converges in about 5 iterations.

— Opt. Pass 1

Opt. Pass 2

Opt. Pass 3

— Opt. Pass 4

— Opt. Pass 5

— Opt. Pass 6

0
0 00 0.01 0.02 0.03 0274 0.05 0.06 0.07

Time (rns)
0.08

Figure 4-2. Energy growth (normalized by the initial energy) as a function of time.

Each line represents a different optimization iteration.

A more detailed example of the optimization steps outlined earlier are displayed in Figure 4-3. In
this case, we are considering a Mach 6 flow past a flat plate which is an adiabatic wall. The
Reynolds number along the plate length spans from Re = 3 x 106 —> 17 x 106. The random noise
initial condition is shown in Figure 4-3(a), and the final solution after the first optimization step is
shown in Figure 4-3(b). Here, we can start to see the emergence of the most dangerous wave form
leading to the maximal energy growth in this particular case. The first adjoint solve in the first
optimization loop is shown in Figures 4-3(c-d). Here, the initial condition is mapped from the last
iteration in the direct solve shown in Figure 4-3(b). The adjoint equation is stepped backwards in
time until we arrive back at t = 0 in Figure 4-3(d). Skipping ahead, the final solution of the direct
solve in the last optimization loop is shown Figures 4-3(e-f). The most dangerous initial wave
packet is shown in Figure 4-3(e), which shows a cluster of waves on the boundary layer edge.
This then perturbs the boundary layer and the most dangerous, highest energy growing
disturbance is highlighted in Figure 4-3(f). This is a "2nd mode" transition mechanism common in
these types of flat plate hypersonic flows. What's important here is that the optimization method
was able to identify the initial condition (or wave packet) that is responsible for this growth.
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Figure 4-3. Example optimization problem for a Mach 6 flow past a flat plate with an

adiabatic wall. Re = 3 x 106 -> 17 x 106. (a) Initial condition in the first opt. step for the
direct solution (random noise). (b) Final direct solution for the first op. step. (c) Initial

condition of the adjoint variables in the first opt. step. (d) Final adjoint solution for the

first opt. step. (e) Initial condition for the direct solution at the last opt. step. (f) Final

direct solution for the last opt. step. Contours colored by streamwise disturbance
velocity u
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4.1.2. Constrained and Unconstrained Optimization

The previous section demonstrated the results of an unconstrained optimization problem. By
unconstrained, we mean that both the initial condition and the objective function were allowed to
be evaluated anywhere in the domain (inside or outside the boundary layer). For the case
described above (and shown again in Figure 4-4), the optimized initial disturbance was located on
the boundary layer edge, and the most amplified disturbance arising from this initial disturbance
was found to grow in the boundary layer near the end of the solution domain. Unconstrained
optimization works well, but it is rather trivial to add constraints to the optimization problem, the
most straightforward constraint is to limit where the initial condition and objective function are
evaluated in the domain This allows us to fine-tune the optimization to exact areas of interest in
our given problem.
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Figure 4-4. Example of an unconstrained optimization problem where the initial con-
dition and objective function are unconstrained. (a) Optimized initial condition. (b)
Optimized final disturbance. Contours are colored by the streamwise disturbance
velocity u
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An example of a constrained optimization problem where the initial condition is constrained, but
the objective function evaluation domain remains unconstrained is shown in Figure 4-5. The
optimized energy was approximately 83% of the unconstrained optimization problem in
Figure 4-4, but allows us to enforce that the initial condition comes from some specified region
(outline in black in Figure 4-5(a). We do not place any restrictions on the objective function
evaluation, and the most amplified disturbance again grows in the boundary layer (although
further downstream than in the unconstrained case), shown in Figure 4-5(b).

An example of a constrained optimization problem where the initial condition is unconstrained,
but the objective function evaluation domain is now constrained is shown in Figure 4-6. Here, the
final optimized energy was approximately 93% of the unconstrained problem. The ability to fine
tune where the objective function is evaluated can be quite powerful, as it can potentially allow
you to "tune out" or "turn off' turbulent regions of the flow that you do not care to evaluate the
objective function (in this case fluctuation energy).
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tion is constrained but the objective function is unconstrained. (a) Optimized initial
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Figure 4-7 shows a case where the initial condition is constrained only to exist in the freestream
(e.g. outside of the boundary layer). This is an important distinction from the example shown in
Figure 4-5, where only the streamwise location of the initial disturbance was constrained. The
initial disturbance generated from that constraint still originated from the edge and within the
boundary layer. However, if we want to consider a "receptivity" problem, we want to constrain
the initial condition to exist outside of the boundary layer. In this case (Figure 4-7(a)), we can see
that the initial disturbance resides outside of the boundary layer and is actually a 2nd mode wave
(an acoustic wave) that travels parallel to the boundary layer edge. While the disturbance energy
growth is only about 19% of the unconstrained optimization problem (receptivity is inefficient in
this case), it is essential to predict transition in this fashion as receptivity may be the only way to
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introduce disturbances in the boundary layer (usually through freestream forcing).
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5. MODEL VALIDATION

In this chapter we validate the optimization method using numerous test problems of increasing
complexity. Where available, details regarding the nature of the disturbance (such as frequency,
wavelength, transition pattern) are compared with the predictions of the method. In other cases,
particularly for flight comparisons, only transition locations are available for comparison with the
optimization method.

5.1. Simulation Conditions

To test and demonstrate the transition prediction method, several experiments involving flow over
a sharp or moderately blunt seven degree half-angle cone at zero angle of attack are selected. The
simulation conditions are listed in Table 5-1. For each case, a two dimensional, axisymmetric grid
was generated using approximately 12,000 streamwise points and 200 wall-normal points.
Systematic grid convergence checks were performed for each case with both the laminar base
flow and the linearized fluctuations recomputed for each grid refinement level. Convergence of
the mesh was established by checking that the wall pressure magnitude differed by less than 2%
between meshes.

5.2. Base Flow Calculation

This paper attempts to predict laminar-turbulent transition on sharp cones at zero angle of attack.
This calculation is attempted for two different wind tunnels: the AEDC Tunnel 9 facility
operating at Mach 10 [15-17] and the Sandia National Laboratories Hypersonic Wind Tunnel
(HWT) operating at Mach 8 [4]. In the Tunnel 9 facility, the test article is a 1.5 m long cone with
a half-angle of 7° and a nose tip radius of 152 ýilla. In the HWT, the test article is a 0.5 m long 7°
cone with a nose tip radius of 50 pm.

Table 5-1. Wind tunnel test conditions. M- is the freestream Mach number, Re- is the
unit Reynolds number, and Ri, is the nose radius.

Facility Mco Recx, (1/m) R, (mm)

AEDC Tunnel 9 10 1.8 x 106 0.152
AEDC Tunnel 9 10 6.4 x 106 0.152
AEDC Tunnel 9 10 15.0 x 106 0.152
AEDC Tunnel 9 10 17.0 x 106 5.0
Sandia HWT 8 7.0 x 106 0.050
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Prior to conducting the transition analysis, laminar base flows are computed using the fully
non-linear SPARC code; that is, driving the right hand side of 3.41 to zero. The mesh used during
this process is the same as the mesh used to simulate the instability waves, and therefore the grid
resolution is more than sufficient to capture the details of the laminar flow.

5.3. Sharp Cones

5.3.1. Transition prediction validation

A comparison between our spatial optimization method and several sharp cone experiments is
made in this section. To make an apt comparison, our solution method is to constrain our inflow
using the measured freestream power spectra in Figure 5-1(b). To predict the location of
transition, we use the minimum of the data collected in the experiments for the threshold pressure
fluctuation of transition in Figure 5-1(a). Once we have a converged solution, we calculate the
root-mean-squared wall pressure fluctuation and calculate the location where this RMS pressure
exceeds the threshold pressure fluctuation measured in Figure 5-1(a).
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Figure 5-1. Experimental measurements of (a) Transition threshold pressure Marineau

et al. [17] used to predict transition location, (b) Pressure power spectra at inflow

used to constrain inflow optimization problem Marineau et al. [16].

The results of our comparison of the four different experiments is shown in Figure 5-2. In Figures
5-2(a,c) we fall within the experimental range of transition (red lines) for both experiments. In
Figures 5-2(b,d), we slightly over-predict the transition location (we observe faster energy growth
than the experiments), but our prediction still falls within an acceptable range. In all, the
comparisons show that our spatial optimization method works well in predicting the transition
location of 2nd mode disturbances when compared to experiments on sharp cones

In Figure 5-3, we compare the experimental results with the STABL (Stability and Transition
Analysis for hypersonic Boundary Layers) transition prediction software. Here we compute the
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Figure 5-2. Comparison of optimized wall pressure RMS measurements compared
to experiment Casper et al. [4], Marineau et al. [15] for (a) Sandia HWT M = 8 and
Re = 7 x 106/m. (b) Tunnel 9 M = 10 and Re = 1.7 x 106/m. (c) Tunnel 9 M = 10 and
Re = 6.4 x 106/m. (d) Tunnel 9 M = 10 and Re = 15 x 106/m.

"N" factor N ln(pw 1 pwi) where pw is the wall presure fluctuation and pwi is the wall pressure
at the neutral point as calculated in STABL. Transition is said to occur at some threshold "N"
factor (e.g. some expected growth of disturbance pressure). In this case, we fit the solution
obtained from STABL to match the transition location for the HWT experiment (shown in
Figure 5-3(a)). This computed N factor was selected as N 5.4 and then used in the rest of the
comparisons to the Tunnel 9 experiments. This is a typical method of predicting transition
location using LST software. It can be seen that STABL has a difficult time correctly predicting
transition. Sometimes it under-predicts the energy growth and doesn't even transition
(Figure 5-3(b)), or over-predicts the energy growth an transitions too early (Figure 5-3(d)). It is
noteworthy that N factor at transition increases from 4.2 to 7.2 for the range of Tunnel 9 cases
presented above, indicating that a constant N factor in the eN method is not accurate for this wind
tunnel and flow field. The current transition method, on the other hand, captures the "unit
Reynolds number effect by accounting for the freestream noise levels. In any case, the ability of
traditional methods (N factor correlations) to predict transition locations compared to experiments
is lacking when compared to our optimization model.
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Figure 5-3. Comparison of STABL to predict transition using N-factor N = 5.4 (chosen
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5.3.2. Detailed transition data

To highlight some key features of the transition prediction method, the Mach 10, sharp cone
experiment at a Reynolds number of 1.8 x 106 m-1 is described in detail. Figure 5-4 shows the
variation of the magnitude of wall pressure with distance along the cone for several different
frequencies. An example of the full pressure field corresponding to 80 kHz is shown in
Figure 5-5. In this image, the contour levels are set to 0.05 times the maximum pressure on the
inflow boundary so that the details of the flow field are visible (although the contour levels
corresponding to the boundary layer instability are saturated). Interaction between the instability
wave and the oblique shock is visible. It should be noted that this method does not include
perturbation of the shock location, as is often done when treating shock-disturbance interactions
[18]. However, despite being linearized, the current method uses exactly the same numerical
schemes as a shock capturing finite volume code and thus the ability of our method to handle
shock-disturbance interactions is identical to that of standard finite volume code (see, for
example, Chaudhry and Candler [6, 7]).

A comparison between the measured RMS of surface pressure fluctuations from several sensors
in the experiment to the calculated data show good agreement along the cone, shown in
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Figure 5-6a. In this figure, a threshold value from the middle of the breakdown range from
Figure 5-1, 25%, is used to estimate the transition location. With this value, the predicted
transition location of xt, = 0.89 m determined by RMS pressure exceeding the breakdown
threshold lies on the downstream end of the measured transition window, comparing favorably
with the center of experimentally measured window of xt, = 0.84 m [15].

While it is encouraging to match the RIVIS value of the surface pressure fluctuations, it is
important to also verify that frequency range of the disturbances accurately reflects those
generated in the wind tunnel. This is accomplished by comparing the PSD's of surface pressure
fluctuation at several different sensors on the body, shown in figure Figure 5-6b. As seen in the
figure, the most amplified frequency calculated with the current method lies within close
proximity to measure value for several different sensors. The peak PSD value calculated at each
location lies higher than the measured value, while the bandwidth of amplified frequencies is
narrower than the measure bandwidth. The latter characteristic is common in modern stability
analysis calculations in that the bandwidth discrepancy between experiments and computations
has yet to be explained. The combination of a higher peak with a smaller bandwidth results in a
similar RMS value shown in figure Figure 5-6a. However, the agreement between the calculation
and the experiment in the PSDs is good.

Optimized vs not optimized

To quantify the value of optimizing the inflow boundary condition, flow over the cone is
simulated using a variety of imposed boundary conditions, as well as the optimized boundary
condition determined by the input/output analysis. Five sets of imposed boundary conditions are
considered. The first four are two dimensional vorticity waves, entropy waves, slow acoustic
waves, and fast acoustic waves, all traveling parallel to the cone axis. The fifth imposed boundary
condition is a slow acoustic wave that is oblique with wavefronts oriented 60° to the cone axis.
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Figure 5-7 compares the resulting wall pressure distribution from all of these different types of
forcings for an 80 kHz forcing. In all cases, the waves at each point along the inflow boundary are
normalized to have an energy of 1.0 according to the Mack energy norm. This normalization is
used, as opposed to normalizing the pressure, because vorticity and entropy waves do not have a
pressure component. As shown in the figure, for different types of waves having identical
fluctuating energy, slow acoustic waves oriented along the cone axis are much more efficient at
exciting boundary layer instabilities than oblique waves or vorticity/entropy waves. Very similar
behavior is observed if the fluctuating energy in the boundary layer is plotted instead of the
pressure at the wall. The optimized inflow disturbance is even more efficient than the slow
acoustic wave, producing about twice the fluctuating amplitude in the boundary layer as the slow
acoustic wave.

5.4. Blunt Cones

The results just presented are typical of sharp cones; for these geometries the slow acoustic wave
parallel to the cone axis is highly effective at exciting boundary layer instabilities and thus
captures the transition behavior observed in wind tunnels. On the other hand, for blunt cones the
slow acoustic wave is not as close to optimal. As a result, transition predictions based on slow
acoustic waves, as conducted by Balakumar and Chou [3], predict transition too late. In that
paper, simulations of slow acoustic waves passing over the cone were conducted with wave
amplitudes that matched the wind tunnel spectrum, similar to the approach used here. Transition
was predicted using RIVIS amplitudes in the same manner used here, but the predicted transition
location was far behind that which was observed in the experiment.

In this work, we allow the optimization procedure to select the type of disturbance flowing over
the model. Figure 5-8 compares the wall pressure fluctuation obtained using the optimized
disturbance to that of a slow acoustic wave. The Mack energy norm of the inflow is equal to 1.0 in
both cases at every inflow cell. In this case the data is plotted on a logarithmic scale for clarity. At
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the aft end of the cone, the same slope is seen, indicating that both types of forcing are exciting
the same instability mode with the same growth rate. However, the optimized case exhibits a large
increase in between 0.2 < x < 0.4 m which boosts the overall amplitude of the instability by more
than an order of magnitude.

To better understand the performance of the current method a comparison is made to the
simulations of Balakumar and Chou, shown in Figure 5-9, In this figure, Balakumar and Chou's
DNS data are plotted as a snapshot, thus showing the full value of pressure across the wavelength
of the disturbance wave. The PSE calculation and the current method only plot the maximum of
the fluctuation pressure along the surface. As seen in the figure, current simulations have a 2nd
mode neutral point further downstream than Balakumar and Chou. The cause for this is currently
undetermined. However, the first half of the cone compares well to Balakumar and Chou. This
confirms that our method adequately handles the shock-disturbance interactions, since the
comparison results were conducted using an unsteady, weighted essentially non-oscillatory
(WENO) scheme that fully captures the non-linearities present at the shock.

For the first part of the cone, the optimized disturbance maintains a higher value of pressure than
that of the slow acoustic simulations. This difference in amplitude could explain the inability of
the slow acoustic method to capture the transition behavior of the blunt cone case. To demonstrate
the difference between the slow acoustic inflow and the optimized inflow, the pressure fluctuation
contours are shown in Figure 5-10. While the optimized disturbance, in Figure 5-10b, is similar to
the plane wave of the slow acoustic case, in Figure 5-10a, the optimized disturbance excites a
significant portion of the forward shock layer.

Figure 5-9 also shows results from the current simulations using several different mesh sizes. The
comparison of these results shows that the 12000x200 grid is sufficiently grid resolved. Similar
grid convergence checks have been carried out for the other simulations reported in this paper.

To predict the transition location using the wall RMS pressure, thirty-two frequencies are sampled
between 100 kl-lz to 300 kHz. The simulation and experimental RMS pressure is shown in
Figure 5-11a. Following the analysis presented in the sharp cone section, it is assumed that the
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transition occurs at a breakdown threshold of 25%. In this case, the simulation fails to reproduce
the experimental data points. This could be due to insufficient mesh resolution causing numerical
dissipation. Another possible explanation for this discrepancy is that thirty-two frequency
samples is not enough to converge to the true RMS pressure. Remember, the RMS pressure
fluctuations is calculated by integrating the frequency samples power spectrum. As a result, it is
likely that more frequency samples are necessary to improve the RMS pressure, which will lead
to a viable transition prediction.

A comparison between experimental measurement and simulation pressure spectra at the surface
is shown in Figure 5-11b. The calculated surface pressure deviates from the measured values by
two orders of magnitude, however, the peak frequency agrees well. This is generally an indication
that the base state reasonably matches the experiment and the the grid resolution may be
insufficient where the disturbances are amplifying. As with the previous case, the simulation
shows a narrower frequency band peak when compared to the experimental data from Marineau
et al. [15].
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6. CONCLUSION AND FUTURE STEPS

A new computational method for predicting laminar-turbulent boundary layer transition was
developed and presented. The method has several advantages over the current
state-of-the-practice, which uses empirical correlations, by directly computing disturbance
amplification using the compressible Navier-Stokes equations. This allows for general application
of the method rather than one confined to a specific geometry and flight condition and for
continued confidence with the inclusion of other vehicle surface temperatures and ablation. The
method also has advantages over the current state-of-the-art, which uses a linear stability analysis,
by relieving some of the effort of subject matter experts through optimization of disturbance
growth as well as an embedded solver within the framework of the CFD code that generates the
base flow field. Additionally, this method is able to compute disturbance receptivity, thus
allowing for an reliable means of predicting transition over freestream noise levels ranging from
conventional wind tunnels to quiet wind tunnels to flight. Lastly, the method does not make any
restricting assumptions, as is common in stability analysis, and should be capable of computing
transition due to complex transition mechanisms on complex, 3D shapes.

In the paper, the optimization method was derived and details were provided about the
implemention within a CFD code. The method was verified in code by demonstrating the
optimization process by calculating an optimal disturbance for various scenarios involving flow
over a flat plate. Next, the approach was validated by computing the transition location on sharp
cones in two different wind tunnels and across four different flow conditions. The current method
outperformed stability analysis in predicting the experimental transition location.

The method was also evaluated on a blunt cone. While there remains some work to replicate
previous simulations as well as better match the measured transition location, the method showed
promise in explaining the reason acoustic wave simulations were unable to properly predict the
measured transition location.

From a practical perspective, the spatial method proved to be more useful for the current work.
The convective instabilities considered in this paper are easier to simulate with a boundary
condition that grows through space, rather than properly timing when a particular initial condition
would achieve its greatest amplitude in simulation. As mention previously, the temporal method
is required for properly modeling absolute instabilities. In those cases, the temporal method is
predicted to be more useful.

One issue that was not explored in the paper is the question of realizability of the optimal
disturbance. The method was able to demonstrate the ability to restrict the origin of a disturbance
to the freestream, whether or not such a disturbance could exist in the freestream has yet to be
determined It is promising to see the increased pressure amplitude of the optimal disturbance in
the blunt cone case as compared to the acoustic case. However, one must be cautious in applying

46



this method when it computes an input disturbance that cannot occur in the physical world. This
is an issue that will be addressed in future work, when the method is more mature.

Additional future work for this transition prediction method includes application to cones at
non-zero angles of attack, flight transition cases, and complex 3D geometries. The extension to
three dimensions naturally occurs in the formulation of the method. However, the additional
dimension adds a significant computational cost as well as increased complexity due to the
increase in volume over which disturbances could potentially amplify. The scalability of the
linear system solver will be stressed as the complexity of the flowfield increases and the physical
model will be stressed as the flow enthalpy increases to flight cases.
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7. APPENDIX: STABILITY EQUATIONS

7.1. Continuity equation

The full continuity equation is:

ap + uap vap + (au ay) =oat ax ay 13 -Ez + ay)

The linearized version is:

(7.1)
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7.2. X Momentum Equation

The full x momentum equation is:
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The linearized version is:
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a av ap a9 a2p 
+ Lay ax j ay + aT2 ay I')
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7.3. Y Momentum Equation

The full y momentum equation is:

p (Dv av al) ap _ ±aum a (2,u+vav ±xaui
at 

u
ax
+v 

ay ) ay ax ax ay ) j
+ 

ay ) ay ax

The linearized version is:

(yact + aaxi7 ,aavy' +17.7a17) + (aaal7 +,aayl aapy

a2v a2a a217

PW, + (P+ aZ; + (2P +
)
ay2

a2. at/ a2a at/ ax) a217 ap ax)+ ax2 aT + axay aT + aT u+ ay2 aT —aT u

ap ap a p aa ap al7 a a a+ -- + + 2— + — — --axax ax ay ay ay ay ay ax
av ap aõ a2p ar n-) (ax a22, aT n-)

+ z, — —  —V
ay aT ay aT2 ax ay aT ay aT2 ay

+(av aa) aõ a2p aT
ax.-F ay) aT ax aT2 ax-

7.4. Energy Equation

The full energy equation is:

aT aT aT au av) a (aT) a 
ay

( aT) aui
pCv + u  ax + + pRT

ax 
= k

ay 
 +
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The linearized version is:

(—" +a—" +9—" +9— 
aT 

ap) +pc, (a—a1 +9—aT)at ax ay ax ay ax ay
+ (pRO + PR ) ± +pRT (:+ 

avI
(a26 a261 ak ( a2T +a2T) e+ + aij
ax2 ay2 ) aT ax2 ay2 ) axax ay ay
aT ( ak a6 a2k aT e) ± ( ak a2k aT+
ax 

+ 
ax aT2 ax ) ay 7' ay 

+ 
aT2 ay )

_ aui at7 vaa +xan + at7 [ 2ap + at7 + ax 15
+t,jax; Yx (2 + )ax ayj ax aT aT ) ax aT ay j

+ rp (act +al-y + ap (a5 +a,7
ay [ ay ax ) aT ay ax j
+a9 [p + ap (a17 +a5)-1
ax [ ax ay ) aT ax ay ) j

a9 [ _ a9 au 
ax 

ap ax) a9 aa
+ 7 (2µ+X)—+X—+ 2 +— aT ay9+ aT aT ax— —--9 (7.9)
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The equations of motion (2.2) can be linearized to produce the linearized Navier-Stokes
equations:

—
at 
+ v • (up + = 0 (7.10)

(afi
p 

at 
 +/-ifi•vo+v,6=V•ti (7.11)

pc, (—a? + fit • v +fiL • vi-') + prim' • vT +p-v • fii+pv •fi = v • ei + (7.12)at
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