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ABSTRACT

A verification study is conducted for the ALEGRA software, using the problem of an
electrified medium with a spherical inclusion, paying special attention to resistive heating. We do so
by extending an existing analytic solution for this problem [8] to include both conducting and
insulating inclusions, and we examine the effects of mesh resolution and mesh topology, considering
both body-fitted and rectangular meshes containing mixed cells. We present observed rates of
convergence with respect to mesh refinement for four electromagnetic quantities: electric potential,
electric field, current density and Joule power.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
2D Two dimensional
3D Three dimensional
ALEGRA Arbitrary Lagrangian-Eulerian General Research Application
MHD Magnetohydrodynamics




1. INTRODUCTION

The ability of the ALEGRA software (Arbitrary Lagrangian Eulerian Research Application)
[1] to compute Joule heating accurately in mixed-material elements is important for all of its
magnetohydrodynamics (MHD) use cases that use Eulerian meshes. These use cases include pulsed
power systems such as exploding wires [2] and electromagnetically launched flyer plates [3]. Mixed-
material elements are problematic because the evolution of the electromagnetic field is computed in
ALEGRA without regard to subgrid material interfaces. That is, appropriate interface conditions on
the electromagnetic fields are not imposed, nor are even representable by the finite element spatial
discretization used by ALEGRA, unless the interface should happen to fall on a cell boundary.
Instead, mixed-material MHD simulations on Eulerian meshes rely on “averaging out” the spatial
variation of the electrical conductivity to in order to compute the orientation of electromagnetic fields
near interfaces. Without extensive changes to the spatial discretization, this is unavoidable [4]-[5].

Maxwell’s equations would ideally be solved in the vicinity of material interfaces by imposing
interface conditions on the electromagnetic field: continuity across the interface of the normal
component of the magnetic induction B , and of the tangential component of the magnetic field H.
Since this cannot be done in the Eulerian, mixed-material meshes of typical ALEGRA MHD
simulations, some systematic error is inherent to these calculations. Additionally, some error enters
the solution through the approximate values of the electrical conductivity in the mixed-material
elements. These errors can be expected to affect the electric potential, electric field, electric current
density, and magnetic field [6]-[7].

By extension, these errors would also affect the computed rate of Joule heating. This is the
Ohmic or resistive effect whereby material with a finite electrical conductivity gains thermal energy
due to imposed fields that draw an electric current through it. Since Joule heating can affect the
electrical conductivity strongly via phase changes, very large errors can arise very rapidly. These errors
are of concern for MHD applications of the ALEGRA software and should be quantified, along with
the underlying errors in the electromagnetic fields themselves.

y

Figure 1: Conceptual layout of the sphere inclusion verification problem.



A verification problem has been created previously to study Joule heating and other aspects
of transient magnetics models rigorously with mixed-material elements [8]. This problem is shown
conceptually in Figure 1 and consists of a conducting domain, with a voltage ¢ applied across it,
within which an insulating spherical inclusion distorts the electromagnetic fields and flow of current.
Simple closed-form analytic solutions were derived in Reference [8] for the steady-state electric
potential, electric field, current density, and local rate of Joule heating. That improved upon the
previous Joule heating analyses of Elliott and Larsson [9] and Holst ez 4/ [10] by allowing multiple
materials, and that of Rienstra [11] by avoiding a problem involving a corner and the associated

singularity.

In the present work, we extend the verification analysis of Reference [8] for this problem to
include both conducting and insulating inclusions, and examine the effects of mesh resolution and
mesh topology (rectangular versus body-fitted). In Section 2 of this report, details of the analytic
solutions are outlined. ALEGRA simulation configurations for the cases to be studied are described
in Section 3, and their results are examined in Section 4. The complete verification error analysis for
Joule heating and electromagnetic fields and potential appears in Section 5.



2. SUMMARY OF ANALYTIC SOLUTION

In Reference [8], we evaluated exact solutions for an insulating sphere in a conducting medium
with a uniform current density. An exact solution was derived in an explicit, closed form for the
system with fixed current applied to a linear isotropic electroconducting material with a spherical
(Equations 32-37) or circular-prismatic (Equations 57-60) inclusion. For convenience and brevity, we
choose to study the case of a sphere with radius R, and chose X as the direction of the fixed current
imposed at the far boundaries. In this case, if the domain has a fixed electrical conductivity, then
Ohm’s law implies that boundary conditions prescribing the far-field current density J¢q, at infinity
are interchangeable with an ambient electric field E¢g,. If the material conductivity is isotropic, then
cylindrical symmetry is ensured.

Within these limitations, the solution reduces to simpler forms. For constant, isotropic
conductivities 0, inside the inclusion and 0y, outside (in the ambient matrix), the solution is
axisymmetric. Choosing X as the direction of the ambient electric field, the solution fields are
functions of only x and 7, the normal distance from the x-axis. For any radial location g inside or
outside the sphere (measured with respect to its center), the electric potential reduces to the following
equations, normalized to the undisturbed potential field, Efqyx:

r,X); —30
d)( )m — out , p S R (11)
Efarx Oin + 2O-out
_ 3
¢(T, x)out — Oin — Oput R_3 -1}, p >R (1.2)
Efarx Ont+ 2O-oulf p
The solution for electric field (E = —V¢@) can be reduced to these two normalized equations:
E(T' x)in — 3O-outf f, p <R (1'3)
Efar Ot 2O-out
E(r x Gy — Ot B x (X T (L.4)
( )out:Q_'_ in out_s_/)a+3_<_+_> ,p>R
Efar Oin+ 200u p p\p P

Notice that x/p = sin @ and r/p = cos 0 where 0 is the angle from X to p. Hence, X/p +
7/p = p (the unit vector).

The Ohmic current density field is simply f = gE. Split explicitly by region and normalized
to Jfar = OmatEfar, we get the following equations:

J2)m _ 30w
= X, <R 1.5
]far Oin + 2O—out £ ( )
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j(r, Zout E(T: X) out

]far Efar

, p>R (1.6)

We introduced field distortion factors due to the sphere’s presence that depend only on the
conductivity of the inclusion (0;,) relative to the ambient (0,y¢), as follows:

30
D. — out 1.7
m Oin + zaout ( )
Oin, — 0
D — in out 18
out Oin + 2O-out ( )

It’s clear in Equations 1.2 and 1.4 that the outside field distortions caused by the inclusion
decay as (R/p)3.

11



3. FINITE ELEMENT SIMULATION SETUP

As described in References [1], [6], and [7], ALEGRA is a multiphysics, multimaterial finite-
element simulation code that can be used to model resistive magnetohydrodynamics and
electromechanics in two or three dimensions (2D or 3D). Similarly to the previous verification studies
in References [6] and [7], here we use only the “transient magnetics” module from the 3D
electromagnetics portion of the code, leaving any concept of material motion or mechanics out of the
simulation. In this portion of ALEGRA, the transient eddy-current diffusion equation is solved using
implicit time integration on a 3D mesh of hexahedral finite elements. The spatial discretization places
magnetic flux on element faces and electric field circulation on elements edges, forming a “mimetic”
or “compatible” discretization that allows the physical and mathematical properties of Maxwell’s laws
to be preserved more rigorously. This discretization has been described and evaluated elsewhere.

The simulation is created as an initial boundary value problem in Cartesian (X, y, z) space. We
chose to have the far-field electric field and current density lie along the x-axis. The electrical
conductivity o is specified everywhere in the domain, associated with the local material composition.
The x = 0 plane of symmetry is defined as ground (¢ = 0), and a fixed driving voltage ¢y =
—EfqrXmax 1s applied to the maximum-x boundary for all time. On these _s)peciﬁed—voltage surfaces,
the electric field is constrained to be everywhere normal to the boundary: E X fi = 0. On the lateral
(_)—y, +y, —z, +Zz) boundary surfaces, the electric field is constrained to be tangent to the boundary:
E-i=0.

With exterior boundaries sufficiently far from the inclusion, this sets up a uniform electric
field equal to Ef4, outside of the region distorted by the inclusion. The electric current is initially zero
everywhere. The simulation runs until a steady-state flow of current is reached, and this solution is
compared to the analytic solution described above. A constant time step size of 0.5 s is used, but
for these cases, the steady state is reached in the first time step.

Two simplifications are made to the model here. First, we apply the “low magnetic Reynolds
number” (“low R.,”) approximation in ALEGRA [12]-[14]. In this approximation, the contribution to
the current density due to a time-changing magnetic field is assumed to be small relative to the
contribution due to the electric field gradient. The magnetic field can then be dropped from the
system completely, and instead of the eddy-current diffusion equation, only this equation is solved on
each timestep:

V.oV =0 2.1)

This equation is much less computationally expensive to solve and allows the use of more convenient
electric-potential boundary conditions (“potential drive”) for the present case. The electric field is
then derived from this approximation as E= —V¢. Without this approximation, boundaty conditions
on the magnetic field would be required. This approximation still allows one to calculate Joule heating.
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The second approximation is that axial and lateral symmetry is applied when choosing the
domain for simulation. The “low R, approximation is only available in 3D in ALEGRA, so the
simulation cannot take advantage of the inherent axisymmetry of the problem. Instead, symmetry
about all three coordinate-aligned midplanes of the spherical inclusion is assumed. Thus, the
simulation domain need only enclose a 1/8 sector of the sphere inclusion, along with the outer region
extending to one of the far boundaries.

Figure 2: Computational grids: Conformal Grid at left; Brick Grid at right

Two hexahedral meshes are generated for the simulations: a conformal grid and a brick grid.
The conformal grid has block boundaries conforming to the spherical surface of the inclusion, so
every element contains only pure material. Mixed-material elements are completely avoided. A coarse
version of this mesh is shown in Figure 2 on the left. Numerical errors (details below) at high enough
resolution become comparable to boundary condition errors at modest distances. To avoid this, the
+x boundary of the mesh is additionally made conformal to equipotential curves from the exact
solution, and the +Yy and +Zz boundaries are made conformal to the electric field lines from the exact
solution. This is done even for the nominally rectangular “brick” grid. These adjustments to the mesh
are on the order of microns in magnitude for the geometry used here. They are not visible in this
macroscopic view of the mesh, where the boundaries appear to be flat. Without these subtle
adjustments, a prohibitively large distance may be required between the exterior boundaries and
distorted-field region around the inclusion. With these adjustments, the boundary conditions can be
made correct within numerical accuracy, even for relatively close boundaries.

A simpler brick grid is more typical of routine production ALEGRA simulations, because it is
easier to generate. However, mixed-material elements are then unavoidable. The conformal grid, on
the other hand, is less practical to generate, but provides much better accuracy. Comparisons then
provide insight into and metrics of the effect of mixed material elements on the quality of computed
results. Both grids above are at a resolution of 8 elements per radius, and both relax the mesh interval
linearly toward the far boundaries.

13



4, FINITE ELEMENT SOLUTIONS

Using the meshes and simulation settings described above, ALEGRA simulations are
performed for insulating and conducting inclusion cases. We use a sphere radius R = 1 m, with the
coordinate origin at its centet, and the three exterior boundaries at 5 meters. A driving voltage ¢ =
=500 Vatx = 5 m effectively imposes an exterior electric field Efq = 100 V/m. The exterior has
a conductivity of 1 S/m, and the inclusion has either 10” or 10" S/m, representing a neatr-perfectly
insulating or conducting sphere, respectively.

The mesh resolution is designated by the number of elements N spanning the sphere radius.
A linear bias extends outward from the sphere surface to the boundaries. The meshes shown in Figure
2 are for N = 8 (elements per radius) for legibility, but calculations are performed for resolution as
high as N = 64.

The results of the ALEGRA simulations with conformal grids at N = 64 are shown in Figure
3. This view shows the z = 0 plane, reflected about the other two symmetry planes in order to
visualize four solution parameters. Included in this plot is the volumetric rate of Joule heating, f -E.
This quantity has units of power per unit volume, and it describes the rate at which heat is deposited
locally due to current flow through material with finite conductivity. The ALEGRA simulations here
are done with Joule heating disabled, to preserve the stationary nature of the final solution. (Thermal
conduction is also excluded.) Instead ] Eis computed here as a post-processing step for comparison
to the analytic solution.

90000. —
80000. —

Conducting Sphere — 7
in Conformal Grid
64 elements/radius—

Figure 3: ALEGRA solutions computed on a Conformal Grid, where PHI is the electric potential, ECIRCE
is the electric field and JE is the current density.
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Shown in Figure 3 are these variables from the ALEGRA simulation (in clockwise order from
the top left): electric potential ¢, electric field magnitude |E|, current density magnitude | 7| and rate
of Joule heating, ] E. (These are noted as PHI, ECIRCE Magnitude, JE Magnitude, and Joule Power
in the figure.) For the electric field and current density, streamlines of the vector fields are overlaid as
well. For the electric potential, a discrete stepped color mapping is used so that equipotential lines are
visible as boundaries between color gradations.

For each of these two cases, the ALEGRA solution is visibly indistinguishable from the
analytic solution. For the insulating sphere, current streamlines diverge around the inclusion, and
equipotential lines bunch up into it. For the conducting sphere, equipotential lines diverge around the
inclusion, and current streamlines bunch up into it. In both cases, the electric field and current density
are uniform within the inclusion, and the electric potential is a function of x only, as expected from
the analytic solution discussed above.

We have confirmed that, under refinement of the mesh, the interior field magnitudes and the
maximum exterior values approach the analytical values for the two cases: E = 1.5Ef,, for the
insulating sphere, and | = 3/, for the conducting sphere. The Joule heating maxima approach the
analytical limits for both cases. For the insulating sphere, it approaches UlE E | = 1.5% aoutEfar =
22.5 kW/m’ concentrated in a region immediately exterior to the “equator” of the insulating sphere.
For the conducting sphere, it approaches 32 JoutEfzar = 90 kW/m’ concentrated just outside the
“pole” of the conducting sphere.

Notice that in the limit 0y, < 04y (petfect insulator), Ji; = 0 but Ej, — 1.5 E ;.
Conversely, in the limit 0y, > 04y (petfect conductor), Ey, = 0 but Ji;; = 3 Joue.  Both of these
results are compatible with Equations 1.3 and 1.5. The electric field is discontinuous (in the interface
normal direction) at the sphere surface. It is only definable as the limit of ratios of one-sided
differences. However, continuity of the current density is never violated.

The numerical solutions for the brick grid are shown in Figure 4 using the same format as
Figure 3. Color bars are modified to indicate regions where the analytic maximum has been exceeded,
by shading them pink. We see that across all of the interior of the sphere, and in elements on its
surface, the electric field magnitude (insulating case) and current density magnitude (conducting case)
both exceed the analytic value. The mixed-material elements are also evident near the sphere surface
as tiny irregularities. However, the qualitative features of the solution are preserved, and the results
are approximately correct away from the surface, exterior to the sphere. To quantify these
observations, we define error norms so that a convergence analysis can be conducted.

15



I~a's
-

90000, M

g
2 50000. _.
L
3 — 2 ;
- Conducting Sphere———— —
P e inBrickGrid———___— _———————
- us 0 —0 0. 44 elements/radius = -

Figure 4: ALEGRA solutions computed on a Brick Grid, where PHI is the electric potential, ECIRCE is the
electric field and JE is the current density.
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5. ERRORS IN THE FINITE ELEMENT SOLUTIONS

5.1. Error norms

For a global error metric, we define the normalized second-order error norm for any solution
field, F, as follows:

f |Fcalc - Falde

5.1
[ E2dv e

Lz(F) =

where F,g4 is the calculated field and Fj is the analytical (exact) solution at any position in the domain.
This definition of the L, norm is consistent with the continuous and discrete L, error norms defined
in References [15]-[17], except that the denominator has been introduced in Equation 5.1 to obtain a
normalized, dimensionless error. The volume integrals are evaluated over the entire domain for global
metric, and calculated discretely as the sum of contributions in each element. For vector fields (E and
f), the difference (error) is also a vector, but only its magnitude is considered here.

For the problem we are considering, the volume integrals of the fields (¢, f , E , and f . E) in
the denominator of equation 5.1 are unbounded as one chooses farther and farther boundaries.
However, the distortions of the fields due to the inclusion decay as 1/p3, so their volume integrals
are finite even to infinity. The error norm of the field distortion becomes

Ly = [ Feate = Frar) = (Fo = Frar)* 4V (52)
(o) = T 1By = Fror I av |

The numerator is unchanged, but the integral in the denominator is now finite even for
infinitely distant boundaries. The integrand decays as 1/p®. This metric is insensitive to the choice
of domain limits beyond a modest distance.

Separating the numerator and denominator, Equation 5.2 becomes this:

N = F, —E |?dV N
f I calc al LZ(Fd) — o (53)
D = [ |Fy = Fror|” dV D

The volume integrals are calculated discretely as the sum of contributions in each element.
The calculated electric potential, (]5 1s hnearly interpolated between nodes. However, all element-
centered variables in ALEGRA (] E and ] E here) are spatially constant across the element [18].
The elementary error for these variables is the element-centered value, F,;, minus the analytical value,
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F,(#), which may vary across the element. The elementwise contribution to the numerator integrand
in Equation 5.3 therefore requires its own integration, written as

55(F) = f |y — By () [2dV (5.4

el

This integral is evaluated in each element using Gaussian quadrature with 3% = 27 points. (A
single-point quadrature would degenerate to the simple differences at element centers.) The global
numerator is then calculated discretely as

N = ; 6, (F) (5.5)

where the sum is taken over all elements. The integral in the denominator can be evaluated discretely
using the same numerical process.

5.2. Spatial distribution of errors

For visualization of the spatial distribution of errors, we plot the volume-average element
errors, defined as follows:

€et(F) =/ 62(F)/Ve (5.6)

For element-centered fields, the volume-average errors are normalized by the ambient or
“far” value. For example, the ] - E, error has units of W/m’, which can be normalized by , J¢qrEfqgr-

For node-centered ¢, we plot the simple difference ¢oq;c — @Pg at each node, which can be
positive or negative, and is interpolated between nodes. There is no finite “far” value of ¢, so we
normalize by Efq,R.

Error distributions for conformal grids at N = 64 are seen in Figure 5. We scale all errors by
far-field values, as if we had chosen Erg, = 1 and Jfq, = 1. Hence all errors are dimensionless and
we expect to see values much less than one.

We see in Figure 5 that the largest errors are concentrated near the sphere surface, and decay
away from the sphere. The scaled error magnitudes on the conformal grids at N = 64 are exceedingly
small for the electric potential — on the order of 0.01%. The other variables mostly show errors on
the order of a few percent in this normalization.

18



Figure 5: Error distributions for a Conformal Grid.

The exception in the conformal grids is the Joule heating in the conducting case, which shows
maximum etrrors on the order of 10% of the far-field value, even in the absence of mixed-material
elements. For perspective, the analytical maximum f -E value is 2.25 JrarEfqr for an insulating
sphere, and 9 JrqrEfqr for a conducting sphere. ~ We note that the errors can have either sign—
overheating or underheating—even though €(F) is always positive. We also note that errors are
preferentially located near the sphere surface in both cases. The presence of these errors is remarkable
for several reasons. On one hand, these errors are expected, because ALEGRA does not allow for
the appropriate interface conditions on the normal and tangential components of the electromagnetic
fields to be imposed locally in the domain interior. This was also observed and discussed in Reference
[7].  (Such conditions would be impractical for MHD simulations with motion, particularly for
Eulerian meshes.) On the other hand, in Reference [7], similar errors were attributed to mixed-
material elements. But in this mesh, there are no mixed material elements. Thus, we observe that
even with pure materials, and a mesh that is conformal to interfaces, there are considerable errors in
the local rate of Joule heating.

Extending this to the brick grid (with mixed-material elements), we see much greater errors
than were seen in Reference [8], or in the conformal-grid cases. These are shown Figure 6 for the
analogous N = 64 simulations. Color bars are modified, shading in pink those regions where the
error magnitudes are particularly large. In these plots we see that the errors are especially large in or
near the mixed-material elements, and they extend into the pure-material elements as well. Unlike the
conformal-grid solutions, here we see errors on the order of a few percent in the insulating case for
all variables, including ¢p. For the conducting sphere, the errors are considerable — reaching as large
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as 10% or more of the far-field value for the electric field, current density, and Joule power, even on
this relatively fine mesh.

Figure 6: Error distributions for a Brick Grid.

These errors are concerning in MHD simulations, where electromagnetic fields are coupled to
the dynamics and thermodynamics of moving media. Particularly in simulations with materials that
may act as nonlinear thermistors, the local heating can affect the local electrical conductivity, which
may lead to intense, localized Joule heating that is spurious. Therefore, the behavior of these errors
under mesh refinement needs to be understood.

5.3. Global error analysis with mesh refinement

To complete a global measure of the error, we must evaluate the denominator in Equation
5.3. It is not straightforward to evaluate the volume integral of the disturbances outside the sphere
analytically. Hence, we evaluate the denominator numerically from the most accurate simulation
(conformal grid at highest resolution).

We find that for far enough boundaries, the contributions to the integral outside the finite
domain can be neglected. The values shown in Table 1 are calculated using the conformal grid with
N = 64 clements/radius. The numerator values (also shown in Table 1) suggest the precision of
these denominator calculations is excellent.
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Table 1: Integrals of distortions (Denominators) compared to errors (Numerators) normalized to far
(ambient) values, calculated for N=64 Conformal Grid.

Insulating Sphere Conducting Sphere
Denominator Numerator For Denominator Numerator
35160.98 R3 1.68 R3 ¢ / ErarR 35233.22 R? 1.73 R3
0.827621 R? 1.13 x 107*R3 ]/ Jfar 3.310526 R? 452 X 107*R3
0.413132 R® 1.13 x 107*R3 E [ Efor 1.652572 R3 451 x 107*R3
0.936859 R? 1.71 x 107*R3 ] E/JfarEfar 4.07748 R® 2.62 x 107*R3

For the element-centered fields, the reference values normalized to far values squared (as
shown in Table 1) can be interpreted as characteristic volumes for the octant modelled. Notice they
are of order 1 —large fractions or a few R3. No similarly intuitive interpretation for the ¢ denominator
is apparent. There is no finite “far” value for ¢; we chose Efg,R somewhat arbitrarily.

There is one set of references for an insulating sphere and another for a conducting sphere.
The denominator values are the same for either the conformal or the brick grids for all resolutions.
The values in Table 1 are the most accurate estimates. Hence, we used the same set of denominator

values.

With this framework, the convergence of the global error is studied for spatial refinement of
the Conformal and Brick meshes from N = 8 to N = 64. Using the Table 1 denominator values for
all resolutions, the ranges of all relative error norms fall in comparable decades. Convergence plots
for conducting spheres are shown in Figure 7. Results for the conformal grid are on the left, brick
grid on the right. Convergence plots for insulating spheres are shown in Figure 8 in the same format.
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Figure 7: Convergence of global error norm for Conducting Sphere.
By inspection of the convergence plots in Figure 7 and Figure 8, it is apparent that the use of

the Brick grid, with its mixed-material elements, strongly degrades both the accuracy of the solution
at each resolution, and the rate of convergence over all resolutions. For all fields except the electric

21



potential, error magnitudes are roughly 10X larger, and the convergence rate drops from roughly 1
(the ideal value) to roughly 0.5. Also, at the coarsest mesh resolutions, the error in the electric field
and Joule power is enormous — approaching the “far” values themselves.
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Figure 8: Convergence of global error norm for Insulating Sphere.

The slopes between pairs of resolution (factors of 2 apart) yield the actual convergence rates,
which are listed in Table 2. The errors converge monotonically for all cases.

Table 2: Convergence rates for global error norm.

Conducting sphere in Conformal grid Conducting sphere in Brick grid

Res ¢ f E JE Res ¢ j’ E JE
8/16 0.9970 | 1.0103 | 1.0000 | 0.9826 | 8/16 0.9976 | 0.7395 | 0.5254 | 0.4498
16/32 1 0.9993 | 1.0025 | 0.9999 | 0.9953 | 16/32 | 1.0004 | 0.5905 | 0.4813 | 0.4386
32/64 |0.9924 |0.9889 |0.9882 |0.9859 |32/64 |0.9870 |0.5838 | 0.5044 | 0.4801
Insulating sphere in Conformal grid Insulating sphere in Brick grid

Res ¢ j E JE Res ¢ f E JE
8/16 0.9891 | 0.9456 | 0.9496 | 0.8966 | 8/16 0.9978 | 0.5326 | 0.4530 | 0.5333
16/32 1 0.9992 |0.9990 | 0.9997 | 0.9972 | 16/32 |0.9995 |0.4979 |0.4757 | 0.5121
32/64 |0.9927 |0.9882 | 0.9882 |0.9874 |32/64 |0.9862 | 0.4968 | 0.4960 | 0.5072

Several options were exercised in the ALEGRA code to determine if better results could be
obtained for the Brick grid cases. These included a scheme that adjusts the electrical conductivity of
mixed-material elements to account for the orientation of E with respect to the subgrid, reconstructed
material interface [19]. None of these options improved or significantly changed the error magnitudes

Or convergence rates.
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5.4. Sphere interior error analysis

As an alternative metric for solution accuracy, we can limit error norm calculations to the
sphere interior. Inside the sphere, the exact fields are uniform, so the denominator calculation is
trivial. We prefer to normalize errors to the analytical values in the sphere interior, e.g. Ejp, = 1.5Ef4,
for an insulating sphere and Ji, = 3/fq, for a conducting sphere.

In Equation 5.1, the numerator has units of F 2 times volume, and the denominator reduces
to the analytical value squared times volume. We compute the interior error norm as

L2 ( F ) _ fin (Fcal;: - Fa)de (5'7)
FinVin

where the numerator is evaluated discretely as before, but the denominator is now trivial. The interior
L, errors for Conformal grids are seen in Figure 9. The errors normalized by analytical inside values
are identical for E and j , since they are exactly related by conductivity. Joule heating errors normalized
by analytical inside values are comparable, even though the numerators are very small (~10718),
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Figure 9: Volume-average interior error norms relative to interior solution for Conformal Grids.

For Brick grids, we considered any element with non-zero volume fraction of sphere material
to be “inside,” thus including all mixed-material elements. Those partial errors are dominated by the
mixed-material elements, so we chose a different normalization. The enhanced interior field values
(1.5 X the “far” value for the insulating sphere, 3 X the “far” value for the conducting sphere) are
also the maximum values just outside the sphere. (See Figure 3.) If we normalize by the maximum
values, even for nominally negligible fields, we get a meaningful, comparable error metric for Joule
heating errors. So, we define the error norm relative to maximum field values as follows:
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L ( F ) — fin (Fcalc - Fa)z dV (58)
g B FmaxVin

Fmax

The results are shown in Figure 10 for Brick grids. Because we use the error norm relative
to the maximum field value for Brick grids, all three curves are again numerically comparable.
Otherwise, the curves for | - E and either | or E would be 9 decades higher.

. 100{ .......... i
mEe— e e My
‘Z‘ ........ Z —::::é i e
S Y e £ e i 5 107 P B o
R R e
E T B
S L T =
- =
Y {102 pres e
’\x .............................................. "x ............................................
P e e+
: £
i =
s =, 103
I
» . ) 10 l :
8 16 32 64 8 16 32 64
N, elements per radius N, elements per radius
Figure 10: Volume-average interior error norms relative to maximum field values for Brick grids.
5.5. A closer look at mixed elements

To gain a clearer understanding of the nature of errors in mixed-material elements on Brick
grids (which are typical of end-user simulations), we examine these errors using scatter plots. Scatter
plots showing individual elements at slant ranges near p = 1 are obtained from the low-resolution

cases, for easier visualization.

What should we compare these to? The analytical values at element centers would resemble
step-functions for p < R versus p > R. A more reasonable reference for comparing discrete values
in mixed elements is the volume average of the analytical values in the mixed elements. We estimate
those using volume fractions as weights applied to the interior and exterior formulas. (We use the
element center location for the major portion, but we limit p/R to < 1 or > 1, respectively, to avoid
evaluations on the “wrong” side.) The “interior” and “exterior” labels refer to values in either material
separately. For f and E , we approximate the volume integral of the exact solution in each element by
forming a volume-weighted sum of the interior and exterior solutions. Because the volume fractions
vary between 0 and 1 for mixed elements (p = 1), these reference values are continuous, intermediate
values. They are plotted as green points in Figures 11-13, to provide a visual “sanity check” of the
calculated values.
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Figure 11 compares the X-components the current density vector computed by ALEGRA to
the estimated volume averages of the analytical solution. (The transverse components are smaller
except in small areas.) We see that ALEGRA current density in the mixed elements is reasonable for
the insulating sphere, but noticeably distorted for the conducting sphere. On the right-hand plot,
ALEGRA over-estimates [, even in pure elements inside the sphere, and under-estimates it in most

pure elements just outside.
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Figure 11: ALEGRA element-centered current density compared to volume-averages of

analytical values in mixed elements.

Figure 12 compares the x-components of the electric field vector computed by ALEGRA to
the estimated volume averages of the analytical solution. For the insulating sphere, ALEGRA’s
discrete values are lower than the volume averages in the mixed elements. For the conducting sphere,

the discrete values are many orders of magnitude lower than the volume-averages.
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For f -E , we keep the interior and exterior components separate to compare with ALEGRA
calculated Joule heating in each material. In Figure 13, we see that the ALEGRA interior and exterior
values for ] E are comparable to the analytical estimates for the 1nsulat1ng sphere, but not for the
conducting sphere. For the latter, the estimated analytical values for ] E interior and exterlor to the
sphere are less than or equal to 9 Jf4,Ef gy outside the sphere, and a small constant ~107* inside, as
expected. The calculated Joule power in the sphere interior is close to the expected value for p < 1,
but increases by as many as eight orders of magnitude for p > 1—a significant over-estimation of
conductor heating where its volume fraction is small. The calculated exterior heating is seriously
under-estimated in the mixed elements, but reasonable orders of magnitude for pure exterior-material
elements at p > 1.1. Furthermore, the total Joule heating in the mixed elements is underestimated by
many orders of magnitude.
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Figure 13: Interior and exterior Joule power computed by ALEGRA, compared to analytical values
weighted by volume fraction.

We believe this reveals fundamental issues with ALEGRA’s mixed-cell MHD model. This
might relate to the absence of continuity conditions at material interfaces. Alternatively, it might have
to do with the relationship between the electrical conductivity and the relative volume fractions of
materials in mixed elements. Advanced techniques and/or discretizations need to be developed to
overcome this, and concepts such as the “network linkage” concept of Reference [20] may need to be
considered. As mentioned in Section 5.3, some advanced techniques already available in ALEGRA
have been used here, to no avail. We anticipate further research into this area as development of
ALEGRA and other MHD models continues into the future.
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6. CONCLUSIONS

We have presented a verification study conducted for the ALEGRA software on a problem
of an electrified medium with a spherical inclusion. The numerical solution on a conformal mesh at
high resolution is visually indistinguishable from the exact solution. The maximum errors are near the
interface, even for the conformal mesh. On a brick mesh, however, mixed-material elements
introduce large errors that dominate global error norms. We have demonstrated that the electric field,
current density and Joule power all converge at first order on a conformal mesh and at order one half
on a brick mesh, which introduces mixed-material elements, while the electric potential converges at
first order on both meshes. Analysis of errors limited to inside the sphere show the same convergence
rates, except for potential—it converges to order one half on a brick mesh. We have also looked in
detail at the field values which exist in the mixed-material cells, noting rough agreement with element
volume-averages of the analytic solution in the insulating inclusion case, but orders-of-magnitude local
differences from the analytic solution in the conducting inclusion case.
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