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Modern turbomachinery blades have extremely low inher-
ent damping, which can lead to high transient vibrations and
failure through high-cycle fatigue. Smart materials enable
vibration reduction while meeting strict blade requirements
such as weight and aerodynamic efficiency. In particular,
piezoelectric-based vibration reduction offers the potential
to reduce vibration semi-actively while simultaneously har-
vesting sufficient energy to power the implementation. The
placement and size of the piezoelectric material is critical to
the vibration reduction capabilities of the system. Further-
more, the implementation should target multiple vibration
modes. This work develops a procedure to optimize elec-
tromechanical coupling across multiple vibration modes for
a representative turbomachinery blade with surface-mounted
piezoelectric patches. Experimental validation demonstrates
good coupling across three targeted modes with a single
piezoelectric patch. Placing the piezoelectric material in re-
gions of high signed strain energy for all targeted modes en-
ables vibration reduction across all of the targeted modes.

1 Introduction

Improvements in manufacturing capabilities have led to
the increased use of monolithic blisks, which improve aero-
dynamic efficiency at the expense of a significant decrease
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in intrinsic damping. This low damping causes high vibra-
tion amplitudes that can lead to high-cycle fatigue and fail-
ure of the blisk [1]. Recent research investigates integrated
and embedded smart materials, such as piezoelectric mate-
rials and shape memory alloys, to reduce turbomachinery
blade vibration and extend the lifetime of the blisk [2—13].
The electromechanical coupling of piezoelectric materials
enables the tailoring of the structural dynamics of a blade:
the mechanical stiffness depends on the electrical boundary
conditions. Ideal manipulation of the electrical boundary
conditions changes the transmissibility of the structure in a
way that reduces vibration.

Piezoelectric-based vibration reduction requires effi-
cient strain transfer from the structure to the piezoelectric
material to ensure energy is available for conversion to the
electrical domain [7, 8]. Thus, it is critical to place the
piezoelectric material in a region of high strain energy to
maximize the converted electrical energy [9, 10, 14]. How-
ever, the spatial distribution of strain energy depends on the
mode shape. Therefore, the optimal placement for one mode
may not produce good coupling in another mode. This con-
cept extends to the size of the material, as well. Mechan-
ical impedance matching implies that the optimal material
size is different for different modes, even when there is high
strain energy in the same location [15]. Since blade vibra-
tion reduction methods should target multiple modes, ensur-
ing good coupling across the modes of interest requires op-
timization of the location and size of the piezoelectric mate-
rial.

This work develops an assumed modes model of a rep-
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Fig. 1.

resentative blade to produce stiffness and mass matrices that
enable a modal analysis of the system. The model provides
analytical calculations of the natural frequencies (which en-
able calculation of coupling coefficients), mode shapes, and
strain energy at each mode. This information provides a mea-
sure of the quality of the piezoelectric patch topology for a
given mode, enabling optimization of piezoelectric patch lo-
cation, length, width, and thickness. To investigate optimal
blade topology for multiple-mode vibration reduction, this
study introduces a cost function that weights the importance
of each mode. Minimizing this cost function results in the
global optimal placement and size of the piezoelectric mate-
rial across all modes of interest. Thus, a single piezoelectric
patch enables the application of vibration reduction methods
across several vibration modes.

2 Background

Piezoelectric material couples mechanical and electrical
energy [16]. When integrated into a structure, the piezoelec-
tric material provides a means to manipulate the mechani-
cal state of the structure. The coupling coefficient k charac-
terizes the electromechanical coupling of the structure: the
square of the coupling coefficient represents the fraction of
energy converted from the mechanical to the electrical do-
main. The open- and short-circuit natural frequencies (®qc
and mg, respectively) provide a convenient calculation of the
coupling:

, _ electrical energy 02, — 0

oc — Psc
= 1
imposed work 02, M

There are three classes of piezoelectric-based vibration
reduction: passive, active, and semi-active. Selecting the
appropriate class for a given application requires a trade-
off among vibration reduction performance, robustness to
unknown and changing parameters, and size requirements.
Passive techniques connect the piezoelectric material to a
shunt circuit containing only passive circuit elements. The
shunt acts as filter that reduces vibration via the electrome-
chanical coupling. While passive techniques can achieve
very good vibration reduction, their primary drawback is the
need to tune the circuit elements precisely to the targeted

Rotation Speed 2 (rpm)
(b) RFD switching concept

SC oc
Frequency

(c) RFD vibration reduction

Resonance frequency detuning switches stiffness states to essentially detune the natural frequency from the excitation frequency

frequency [2, 3, 17, 18]. Furthermore, the inductors for the
most effective passive shunts are typically very large, pre-
venting passive implementations where size is critical. Pro-
posed circuits for targeting multiple modes require an ad-
ditional branch for each mode, further increasing the size of
passive implementations [19-21]. Active vibration reduction
systems apply voltage to the piezoelectric material to create
a force that opposes the motion of the structure. Active con-
trol provides excellent and robust vibration reduction, but re-
quires a power source [9, 10,22, 23]. Thus, active methods
are not well-suited for applications where it is difficult to in-
clude a power source, such as rotating machinery.

Semi-active techniques represent the compromise be-
tween passive and active techniques, offering good broad-
band vibration reduction with extremely low power require-
ments [4-6,24-26]. These semi-active techniques are gen-
erally insensitive to circuit parameters, enabling the use of
small circuit elements. Also, the inherent electromechani-
cal coupling of the piezoelectric material along with the low
energy requirements of the system make it possible to har-
vest enough electrical energy to power the system without
an external power source (which is also why the techniques
are sometimes called semi-passive) [27]. Thus, semi-active
techniques are ideal for turbomachinery applications as they
have the potential to meet the strict size requirements and
target multiple vibration modes.

Semi-active techniques typically rely on switching the
electrical boundary conditions between an open circuit and
a shunt circuit, and most of these techniques require four
switches per vibration cycle [24-26]. This rapid switching
prohibits implementation at high frequencies; in fact, mist-
imed switches can actually increase vibration levels [28].
However, resonance frequency detuning (RFD) is a semi-
active technique designed specifically for turbomachinery
blades [4-6]. Turbomachinery spool-up and -down sub-
ject blades to high vibrations during each transient passage
of resonance. Resonance frequency detuning exploits the
change in stiffness between open- and short-circuit states of
the piezoelectric material to detune the natural frequency of
the structure from the excitation frequency; Fig. 1 demon-
strates this concept. The Campbell diagram illustrates res-
onance frequency crossings during spool-up-down of turbo-
machinery blades. Zooming in on the RFD switch at the two-
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Fig. 2. Representative turbomachinery blade

stripe mode demonstrates the detuning from the resonance
frequency that reduces transient vibrations. Switching states
at the correct time essentially avoids the resonance cross-
ing and reduces transient vibrations. Significantly, RFD only
requires two switching events per resonance crossing com-
pared to the typical four switches per vibration cycle. Thus,
RFD reduces the number of switching events by several or-
ders of magnitude, significantly improving the feasibility of
on-blade implementation.

Resonance frequency detuning offers the potential to
reduce transient vibrations for any resonance crossing, but
only if the piezoelectric material has appreciable coupling
for each vibration mode. Since the energy conversion de-
pends on the transfer of strain energy to the piezoelectric
material, the placement and size of the piezoelectric material
influence the electromechanical coupling at each mode. Pre-
vious research optimizes the topology of unimorph and bi-
morph cantilever beams to maximize coupling in each mode
and finds that each mode has different optimal piezoelectric
sizes and locations [15]. Various optimization approaches for
piezoelectric placement on thin plates draw conclusions for
optimal placement for certain modes, but not optimization
for vibration reduction of multiple modes [29-33].

For turbomachinery blades, it is especially important to
achieve good coupling while limiting the amount of piezo-
electric material due to the high stress and rotation of the
blade. Thus, it is necessary to optimize topology for all tar-
geted modes simultaneously. This paper targets optimal lo-
cation and size of piezoelectric material in turbomachinery
blades for maximizing electromechanical coupling across
multiple modes, extending recent work towards topology op-
timization [34].

3 Representative Blade Model

This paper models a representative turbomachinery
blade to investigate multiple-mode coupling optimization.
Figure 2 illustrates the representative trapezoidal plate with
a surface-mounted piezoelectric patch. The selected geom-
etry represents typical (untwisted) fan blade geometry since

piezoelectric-based vibration reduction primarily targets fan
blades. The representative blade is a flat plate to enable an-
alytical calculations; recent research also explores coupling
with twisted blades [8]. The plate is cantilevered at x = 0
and has span (length) a. The half-chord (half-width) of the
plate b(x) varies linearly from b; at x = 0 to by at x = a. The
plate is isotropic with uniform thickness /, Young’s modulus
E, and Poisson’s ratio v. Figure 2 only illustrates one piezo-
electric patch, but the model admits multiple patches (in gen-
eral, the blade has P piezoelectric patches). The patches
are assumed to be rectangular such that the coordinates x; p>
X2p, Y1p, and y2,, along with the patch thickness £, fully de-
fine the topology of the p™ piezoelectric patch. Each piezo-
electric section has Young’s modulus E,, Poisson’s ratio v,
dielectric permittivity at constant strain €,, and equivalent
thin-plate piezoelectric constant e3;, [35]. Ensuing analy-
ses restrict patch orientation to be aligned with the xy-axes;
however, the model and optimization approach also works
with rotated patches, but with more computational cost due
to nonlinear constraints.

3.1 Assumed Modes Method

The assumed modes method provides analytical approx-
imations of the system matrices, which enable calculation
of natural frequencies, mode shapes, and strain energy. As
indicated by Eqn. (1), the natural frequencies enable calcu-
lation of the electromechanical coupling at each mode—the
key parameter for semi-active vibration reduction. Appendix
A contains details about the assumed modes formulation, en-
ergy terms that lead to the system matrices, and the longer in-
tegrals and constants that comprise the system matrices. The
subscripts for the following matrix calculations refer to the
row and column element of that matrix (e.g., [K],u is the m™
row and n™ column of the [K] matrix). Equation (23) relates
r and s to m and, in an analogous fashion, u and v to n.

3.2 Stiffness Matrix

Analysis of the strain energy produces the bending stiff-
ness matrix, which is split into the contribution from the plate
[K,] and the contribution from the piezoelectric patches [K,].
The stiffness from the plate is:

ERW?

v2)

[Ko]rsuv = 12(17—

(h+bh+L+1i+1s) 2)

where Appendix A includes the integrals /; through 5, which
have the form:

Mx)nzdx 3)
a

a
I,' = C,/ x”‘ (bl +
0

The integration over x may be carried out analytically in
MATLAB using polynomial functions. Now, integrating
over the piezoelectric material volume produces:
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The total bending stiffness matrix from the strain energy
is the summation of the plate and piezoelectric patch matri-
ces:

[K] = [KO] + [Kp] (5

In addition to these terms, the stiffness matrix must also in-
corporate the stiffening associated with in-planes loads in-
duced by centrifugal loading. That process follows a similar
approach as shown above and is omitted here for brevity; a
full derivation can be found in Ref. [8].

3.3 Electrical and Coupling Stiffness Matrices

Analysis of electrical energy and coupled energy leads
to electrical and coupled stiffness matrices. The electrical
stiffness matrix is diagonal; the P entries are the equivalent
capacitances of the piezoelectric patches:

€,A
[Ke]pp = Ihpp

(6

The coupled energy produces the coupled stiffness matrix:

K| ie h+hy [r+1 (5, =x1,) (%, = Yi,)
n X = 3
P = P s ar+1b§_1

2 2\ (5—2 52
s—1 (‘xg;)r _x;; )(ySZp _yip )>

r<2 a’“b?'

(7
Note the second term in [K.],, is equal to zero when s < 2.

3.4 Mass Matrix

Analysis of the kinetic energy produces the mass ma-
trix. Similar to the bending stiffness, the mass matrix in-
cludes plate and piezoelectric patch components. The plate
contribution to the mass matrix is:

2ph
(s+v— l)a”“*zb%”*z lu

ar+u+2 by=by \s+v—1
IM:{foxr“ (b1 4+ 22 x)*™dx for s+ v even

®)

[Mo]rsuv =

0 for s +v odd
9

The piezoelectric contribution to the mass matrix is:

P
[Mp} rsuy = Z CMp (XSZM+3 — XT;MJJ ) (y;/;‘/7 f— yi;‘/il )
p=1

(10)
Pphp

C =
Mp (r+u+3)(s+v—1)artut2pstv—2

(11)

Summation of these components produces the mass matrix:

(12)

3.5 Equations of Motion

The energy formulations enable calculation of the equa-
tions of motion via Lagrange’s equation:

%(i;)*

Here, 0W is the virtual work performed by generalized me-
chanical and electrical external forces (F;, and F,, respec-
tively). Inserting energy terms, solving, and adding a damp-
ing matrix [C] results in the equations of motion:

MO| [Gm CO| [gm K —K.| [qu| _ [Fn
e G [oo] {f+ & e - {5)
(14)
where inserting electrical boundary conditions produces a
non-singular mass matrix.

oW

a(Ustrain + Uelec +U coupled) _
{84}

o{q}

13)

3.6 Modal Coupling

The effective stiffness matrix depends on the electrical
boundary conditions. In the short-circuit case, the voltage is
zero (q. = 0) and there is no electromechanical coupling:

[Ksc] = [K] (15)

For the open-circuit case, the electrical charge is zero (F, =
0), which allows the generalized electrical coordinate to be
solved in terms of the generalized mechanical coordinate.
Then the effective stiffness matrix becomes:

[Koe] = [K] + [Ke]'[Ke] ' K] (16)

Solving the eigenvalue problem produces the natural fre-
quencies of the structure, which also yields the coupling co-
efficients via Eqn. (1).

Kelley: VIB-19-1477 4



ch|== et K2=0.77%, K}=3.17%, k.=2.74%
s €222 K3m1.32% , K2=2.67%, K2=2.39% |__—]
it €,=3: K3=1.79%, K}=2.27%, k.=1.63%
memem 0= K2=2.01%, K2=2.05%, k2=1.08%
2 1 B 1
) ; i
& 1 !
> 0 1 1
1 1
1 1
1 ]
2 1 1
- h -l
4t
-6 L L L L , .
0 2 4 6 8 10 12
X (cm)
(a) Model

(b) Experiment

Fig. 3. Experimental testing of blade validates analytical model prediction

Table 1. Parameters used in experimental setup
a(mm) | by (mm) | by (mm) | A (mm) | E(GPa) | v | pkg/m?) | & | es (C/m?)
Plate 128 28 55 2.03 68.9 0.31 2750 - -
Piezo 343 44.5 44.5 0.267 59.8 0.31 7500 1953 -23.4
Table 2. Comparison of model and experimental coupling

fis Hz) | k5 (%) | fies (Hz) | k3 (%) | fics (H2) | kg (%) | fies (H2) | kg (%)

Model 607 1.79 1242 2.27 1788 1.63 2553 391

Experiment 549 1.15 1223 1.51 1608 1.45 2458 3.02

4 Optimization

The ability to calculate coupling values analytically pro-
vides a rapid estimation of the quality of the piezoelectric
material placement and size. This quick computation enables
the use of optimization algorithms that minimize a cost func-
tion. While more complex geometries prohibit analytical cal-
culations, analysis of low-order geometry provides insight
into optimization of more complex geometries. The free pa-
rameters for optimization can include any combination of
patch location (x1, and y;,), planar size (Ly, = X2, — X1,
and Ly, = y2, —¥1,), and thickness (h,). Due to the size re-
strictions for turbomachinery applications, the optimization
places constraints on the allowable patch thickness and total
piezoelectric material volume. Experimental blade optimiza-
tion validates the approach.

4.1 Cost Function

Since the goal is to maximize coupling across several
modes of interest, this paper proposes a cost function J that
is the weighted sum of the square of the coupling coefficients
of the modes of interest:

J=—(c1k} +cakd + ... +enk) (17)

In this case, minimizing J optimizes coupling from mode 1 to
mode N. However, it is not necessary to include all modes in
the cost function. For example, a given application might not
require vibration reduction in the second mode, so the second
term of J would be removed to optimize the modes of inter-
est (equivalent to setting ¢ = 0). Also, the weights enable
tuning of the cost function to produce the desired coupling
distribution. For example, higher weight may be placed on
the third mode if it is more important to have good coupling
in that mode. Furthermore, a certain weight may be lowered
if the optimization is favoring that mode too much at the ex-
pense of coupling in other modes. Tuning modal coupling
tunes the vibration reduction at each mode, enabling design
that maximizes the lifetime of the blade.

4.2 Experimental Validation

This study optimizes the patch location for given dimen-
sions of a pre-cut piezoelectric patch to demonstrate the ef-
fect of optimization weights and validate the blade model.
Table 1 presents the parameters of the experimental plate and
piezoelectric patch. Note the analytical investigation in the
following section uses the same plate parameters and piezo-
electric material parameters. The optimization considers
coupling in modes 3, 5, and 6 (second bending, two-stripe,
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and third bending, respectively), with varying optimization
weights for mode 3 to tune the performance. Figure 3(a) il-
lustrates the optimal piezoelectric material placement using
the analytical model while adjusting c3. Tuning c3 results in
a relatively even coupling distribution in the targeted modes.
Thus, a single piezoelectric patch enables vibration reduction
in three vibration modes.

This paper compares the blade model to experimen-
tal results for the case in Fig. 3(a) with the optimization
weights ¢3 = 3, ¢5 = 1, and ¢g = 1. This case corresponds to
piezoelectric patch location x; = 63 mm and y; = —22 mm;
Fig. 3(b) shows the experimental blade setup. A laser vi-
brometer measured the tip corner velocity response to a ham-
mer test to produce the frequency response function of the
system in open- and short-circuit states. Extraction of modal
parameters via circle fit enabled calculation of the coupling
coefficient for each mode [36]. Table 2 presents the experi-
mental short-circuit natural frequencies and coupling coeffi-
cients for each of the targeted modes along with the model
predictions. A by product of optimizing modes 3, 5, and 6 is
very high coupling in mode 8§, so the table also reports results
for this mode. The experimental results show good agree-
ment with the model with frequency errors less than ten per-
cent. The model slightly overestimates stiffness, which may
be due to imperfect clamping of the blade [7]. The model
also slightly overpredicts coupling, which is expected since
the model does not consider the effects of the bond layer and
imperfect clamping can also reduce coupling. Overall, the
analytical model provides a very good qualitative estimate of
the coupling at a low computational cost, making it ideal for
topology optimization.

5 Analysis of Optimal Topology

Now this paper uses the analytical blade model to eval-
uate optimization of piezoelectric material location and size
qualitatively for multiple-mode vibration reduction. In par-
ticular, this study illustrates the role of signed strain energy
in targeting multiple modes with a single piezoelectric patch
and demonstrates how to target a wide range of vibration
modes with multiple piezoelectric patches.

5.1 Signed Strain Energy

As previously stated, the piezoelectric material needs an
efficient transfer of strain energy from the blade to enable
vibration reduction, implying that the piezoelectric material
should be located in a region of high strain energy. However,
it is important to consider whether the strain in the material
produces a positive or negative voltage; in other words, is the
piezoelectric material subjected to tension, compression, or
a combination of the two? One must consider the distribu-
tion of the local normal stresses in the piezoelectric patch:
a patch located on a nodal line experiences local tension on
one side and local compression on the other. Since the patch
only has one set of electrodes and tension and compression
produce voltages with opposite signs, the magnitude of the
piezoelectric voltage is lower than with same-signed normal

6
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Fig. 4. Effect of signed strain energy distribution (colors) on cou-
pling
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Fig. 5. Effect of patch thickness on coupling

stress. This concept leads to a new term called the signed
strain energy, which includes the sign (tension or compres-
sion) in the local strain energy calculation. Thus, the signed
strain energy distribution in the blade reflects the distribu-
tion of energy available for conversion to the electrical do-
main. The normal strains and strain energies evaluated at the
plate surface as functions of x and y enable calculation of the
signed strain energy distribution Usgg:

USSE(xay) = Ustrain,x(X,Y)Sgn[gxx(xayﬂ

(18)
FUstrain,y (x,y) sgn[Syy (x,y

Figure 4 demostrates the importance of considering
signed strain energy when selecting the location of the piezo-
electric material. This example targets vibration reduction in
modes 5 and 9 with a single piezoelectric patch (without op-
timization). Placing the patch to cover large regions of high
strain energy (ignoring color in Fig. 4) for both modes results
in very good coupling in mode 5. However, even though
there is sufficient strain transfer, there is zero coupling in
mode 9 because the patch experiences equal amounts of ten-
sion and compression. If tension produces a negative po-

tential, compression produces a positive potential. Since the
patch only has one set of electrodes, the voltage is exactly
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Fig. 7. Four piezoelectric patches enable good coupling for the first ten modes of the blade (colors show normalized signed strain energy)

canceled and there is no electrical energy available for vi-
bration reduction. In contrast, placing the same piezoelectric
patch volume in a region of high signed strain energy for
both modes results in good coupling for both modes. Note
that Figs. 4 and 6 show the signed strain energy for the plate
without piezoelectric material since they display multiple it-
erations of patch locations; the stiffness of the patch typically
only slightly alters the signed strain energy distribution.

In addition to location, the thickness of the piezoelec-
tric patch affects the mechanical impedance of the patch,
and therefore the strain transfer to the patch. Figure 5 il-
lustrates the effect of changing the thickness for vibration
reduction in modes 3 and 8; the location is fixed at a loca-
tion of high signed strain energy for both modes. Each mode
has a different optimal thickness for maximizing coupling,
implying the need to find a compromise between the two op-
timal thicknesses to achieve good coupling in both modes.
However, there is a relatively low loss in coupling near the
optimal thicknesses. Note that the experimental setup had

a volume ratio and thickness ratio of 1.9% and 13%, re-
spectively. Thus, thicker piezoelectric patches could enable
significant increases in coupling. However, size restrictions
of the piezoelectric material for the turbomachinery environ-
ment may restrict the thickness to below the optimal value.
Still, Fig. 5 and the experimental blade show that good cou-
pling (~ k% > 1%) is attainable at very low thickness ratios.

Next, Fig. 6 illustrates optimization of piezoelectric
patch location and size targeting vibration reduction in
modes 5, 9, and 10 using the cost function in Eqn. (17). The
piezoelectric material volume constraint is 5% of the volume
of the plate. The optimized location for the piezoelectric ma-
terial includes regions of high signed strain energy for all
of the targeted modes and the optimal thickness is 31% the
thickness of the plate. Figure 6 also includes the optimized
topology for each mode without consideration of the other
modes (e.g., cog = cjp = 0 for the fifth mode dotted patch).
The individual-mode optimization produces thicker patches:
thickness ratios are 98%, 45%, and 47% for modes 5, 9, and

Kelley: VIB-19-1477 7



10, respectively. Thus, simultaneous optimization of multi-
ple modes sacrifices thickness to cover signed strain energy
for all of the targeted modes. Note that while individual-
mode optimization produces higher coupling for that mode,
it leaves at least one of the other targeted modes with very
poor coupling. For example, the high thickness ratio for the
individual optimization of mode 5 shifts the strain energy
of mode 10 away from the piezoelectric patch, resulting in
nearly zero coupling in mode 10 (recall, the figures display
the signed strain energy for the plate without piezoelectric
material). However, high patch thicknesses are unrealistic
for implementation anyway, further supporting the use of
thin patches for multiple-mode vibration reduction.

5.2 'Wideband Vibration Reduction

The previous examples show that placing piezoelectric
material in regions of high signed strain energy for multi-
ple modes enables good electromechanical coupling in those
modes. However, it is not possible to target all vibration
modes with a single piezoelectric patch due to the distribu-
tion of signed strain energy in the blade. For example, Fig. 7
shows that the signed strain energy for modes 1 and 5 are on
opposite ends of the blade; a piezoelectric patch would have
to span the entire blade length to have appreciable coupling
in both modes. Optimization with multiple patches is diffi-
cult due to the additional constraints to prevent patch over-
lap and the dependence on the initial conditions. However,
single-patch optimization provides insight into cases where
optimization is difficult or costly: the signed strain energy
distribution alone provides a tool for location selection while
patch thickness and volume are limited by turbomachinery
constraints. The signed strain energy distribution of the tar-
geted modes drives the minimum number of patches required
to achieve appreciable coupling in those modes.

To demonstrate the ability to achieve significant cou-
pling across a wide range of modes, Fig. 7 presents a setup
that uses four piezoelectric patches to reduce vibration across
the first ten blade modes. The patch geometries and loca-
tions were manually selected based on the signed strain en-
ergy distribution in the ten modes with total volume limit
of 5% the volume of the plate. The two patches at the root
have thickness ratios /1, /h = 0.25 and the other two patches
have h,,/h =0.12. Each piezoelectric patch covers regions of
signed strain energy for multiple modes; some modes have
up to four patches contributing to their coupling. The root
patches demonstrate the importance of the signed strain en-
ergy: torsional modes require a split root patch due to op-
posite signed strain energy at each edge, but bending modes
benefit from root patches regardless of whether they are split.
This configuration results in higher coupling than with a sin-
gle patch for many of the modes while achieving sufficient
coupling for more than twice the number of modes as num-
ber of piezoelectric patches.

Consider the application of RFD to the blade setup in
Fig. 7. Assume the limiting case of zero sweep rate and a
damping ratio of 0.1% for all modes. The torsional modes
have the lowest coupling, ranging from 1.4% to 1.7%, which

corresponds to maximum vibration amplitudes that are re-
duced by 73% and 77% from the baseline case. Chordwise-
bending modes have coupling between 2.5% and 4.5%, re-
sulting in vibration reduction of 84% and 91% of the open-
circuit amplitudes, respectively. Finally, spanwise-bending
coupling values range from 4.5% to 6.4%, producing a vi-
bration reduction as high as 94% of the open-circuit ampli-
tude. While physical implementations will experience de-
creased performance compared to this limiting case, these
results demonstrate the potential to achieve vibration reduc-
tion in a relatively high number of modes with a relatively
small amount of piezoelectric material.

6 Conclusions

This work develops a low-cost model to predict the elec-
tromechancial coupling of low-order representative turboma-
chinery blades, enabling optimization of piezoelectric ma-
terial location and size. Tuning of optimization weights in
the cost function enables prioritization of certain modes or
compensation for modes that dominate the cost function.
The signed strain energy is a significant factor in optimizing
piezoelectric material location: the optimal location has rel-
atively high signed strain energy in all of the targeted modes.
This fact can be used for location optimization with more
complicated geometries where analytical approximations are
not possible. Strain energy predictions via finite element
analysis of the blade alone may be used to find areas of high
signed strain energy for all of the targeted modes as a starting
point for design.

Finally, this paper demonstrates the potential to achieve
significant vibration reduction across a wide range of modes
with a relatively low number of piezoelectric patches that
only occupy a small volume of the blade. Strategically plac-
ing piezoelectric patches in regions that cover signed strain
energy for many modes results in large coupling due to the
combined effects of each patch. While surface-mounted
patches are not suitable for real turbomachinery blades,
further investigation using embedded piezoelectric material
may lead to suitable implementations (e.g., piezoelectric-
coated fibers in composite blades).
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Appendix A: Assumed Modes Energy Formulation

The assumed modes method approximates the trans-
verse displacement w as a summation of assumed shapes
weighted by generalized coordinates ¢, [37]:

R S
W()C,y,t) = Z Zq”(t)(PX,r(x)(pY,S(y)

r=1s=1

19)

For this study, the assumed shapes in the x- and y- directions
are:

r+1
oxr)=(2)" (20)
s—1
Ora(x) = (%2) 1)

The model includes R shapes in the x-direction and S shapes
in the y-direction. These assumed shapes in each direction
form M combined assumed shapes for the entire plate:

(Pm<x7y) = (PX,r(x>(pY,x(y) (22)
m=(r—1)S+s (23)
M
w(x,y,t) = Z G () Pm(x,y) (24)
m=1

Although other assumed shapes might provide better
convergence, these shapes offer the capability of perform-
ing analytical integration [37]. An analytical solution results

in much faster computation, which is crucial for rapid pre-
diction of coupling for optimization.

Each piezoelectric patch also requires analysis of the
electrical state. The assumed shape for the voltage V), of each
patch is a linear variation through the thickness of the patch
with generalized electrical coordinate g, :

z—h/2
Vp(z»t) :CIeph—/
P

(25)
Strain Energy

The assumed modes method derives mass and stiffness
matrices from energy terms. To start, the strain energy Ugain
is the integral over the volume of the stress tensor ¢;; multi-
plied by the strain tensor €;;:

1
Ustrain = 3 /VGijﬁijdV (26)

Stress-strain relations allow stress to be written in terms of
strain and material constants:

Ev
Oxx 2o =t 12 Eyy (27
Ev
ny 1— V2 XX + 1 2€yy (28)
E
ny 1 + vexy (29)

Classical plate theory provides the strain-displacement rela-
tions:

€y = €D — Zaa%v (30)
eyy—egyzg?; (3D
Exy = €9y — zsj—awy (32)
Here, ng, 8;)y, and egy refer to the midplane strains. With-

out any piezoelectric material, the plate is symmetric about
the midplane and there is no bending-extension coupling.
In practice, the piezoelectric material volume should be
much smaller than the plate volume; therefore, assume any
bending-extension coupling from the piezoelectric material
is negligible. Thus, the midplane strains are zero for pure
bending (e, = sgy = 8%, =0).

The stress-strain and strain-displacement relations along
with the assumed displacement allow the strain energy to be
written in terms of the generalized coordinates and deriva-
tives of the assumed shapes. In fact, the strain energy may
be written in the form:

Usnain = 3 {0} [K}{a} (3
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Here, {q} is a vector of the mechanical generalized coordi-
nates and [K] is a matrix with elements calculated by inte-
grating over the volume of the blade:

EZ?

Ko = | 77
r(r+ Du(u+1) ({>r+u72 ( y >S+V—2

at a by

+(S_ D(s—=2)(v-1)(v—2) (f)r+u+2 ( y )S+v6

b‘z‘ a b_z
_ v— X s+v—4
+vr(r+1)(;2b%1)( 2) (;) + <b12>
Fi 4z s+v—4
+Vu(u+1)(:2b%1)(s2) (g) + <b12> g
r+D)u+1)(s—1)(v—1)

+2(1-v) pere

GG e

(34)

Equation (34) calculates the m™ row and n'" column of the
[K] matrix, where Eqn. (23) relates r and s to m and, in an
analogous fashion, # and v to n. The volume integral for the
[K] matrix is more tractable when broken into the volume
integrals over the plate volume V,, and piezoelectric material
volume V.

a rb(x) ph/2
Jo o= Jy Lo
Vo 0 J-bx)J—n/2

P rxy vop  fh/2+h
/ av :Z/ o ® gyl
Vp p=1 Xip Y V1p h/2

dz dy dx (35)

(36)

Integrating over the plate volume produces Eqn. (2) with the
integral terms:

I Cy f§xT=2(by + @x)”"’ldx for s+ v even
"o for s +v odd

(37)

for s + v even;

s, v>2

for s+v odd

ors<2orv<2
(38)

for s +v even;
v>2
for s +v odd
orv<2

(39)

5 féle"”'z(bl + by—b; X)H'V_de
L=
0

C3 f(;lxr+u(bl + bz;blx)s+v—3dx

0

Ca [ x4 (by + @x)s””dx fors+v (;V>en2;
e 0 for s +v odd
ors <2
(40)
4 = s+v— for s +v even;
L C5f5x+”(bl+”2a—blx)‘+‘ 3dx yeven
T 0 for s +v odd
ors=1lorv=1
41)
= 2r(r+ Du(u+1) )
(S+V— l)ar+u+2b§+\/72
o = A= D(s=2)(v-1)(v—2) )
2 (S+v—5)ar+"+2b§+v_2
C=2v rr+1)(v=1)(v=2) )
) (s+v—3)artut2pstv—2
Ci=2v wu+1)(s—1)(s—2) )
(s+v_3)ar+u+2b%+v72
1 1 —1 -1
Cs = 41—y YFDEFDE=D0-1) (46)

+v—2
(s-+v—3)artu+2pst

Integration over the piezoelectric material region pro-
duces Eqn. (4) with integral terms:

Iip = Crp(ey ™ =2 D~ =) @D
by = Cop(xyp " =2 ) () 7 =y ) 48)
Ly, =Cs, (xZ’rqul _xi;;uﬂ)(y%;v% _ysl;v—3> (49)
Lp = Cap(xy, ™ =20 D5 =377 (50)
Isp = Csp (o =2 D (2 =yt 2) (51

These piezoelectric integrals do not depend on whether s+ v
is even or odd since the piezoelectric material is not, nec-
essarily, symmetric with respect to the coordinates. How-
ever, each integral is zero for the same s and v values corre-
sponding to zero-valued derivatives as written explicitly for
the plate integrals (e.g., I3, = 0 for v < 2). The constant co-
efficients in the piezoelectric integrals are equal to the corre-
sponding coefficients for the plate divided by twice the power
of x in each integral solution, while also replacing v with v,

: __ G —_ G
(e, Cip= =)’ Cyp = A+ut3) etc.).

Electrical and Coupled Energy

Analysis of the electrical energy and coupled energy
captures the effect of the electromechanical coupling. The
electrical energy Ugec is:

E | v, \?
Uelec = Z 5 V,, €p <_a—Z) de (52)

p=l1

Here, €, is the dielectric constant of the piezoelectric mate-
rial at a constant strain. Integrating over the volume of the
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piezoelectric material produces:

P
1, ¢gA
Uelec = Z Eq%g% (53)
p=1 P

Here, A, is the in-plane area of the p'" piezoelectric patch.
Now the electrical potential energy may be written in the
form:

{qe}’[ el{ge} (54)

elec =

Thus, the elements of the electrical stiffness matrix are in the
form of Eqn. (6)

The piezoelectric material also results in a coupled en-
ergy Ucoupled that includes the mechanical strain and the elec-
trical potential [38]. While Ucoupted = 0, it provides a mecha-
nism to couple work and energy across domains. Most piezo-
electric patches exhibit in-plane isotropy (e3; = e33), so the
coupled energy is:

E. 1 v,
Ucoupled = Z 5 V <_ B3z >e31p(€xx+8w)dvp

(55)
av,
= Z 3 631[; 8xx+£yy) a—z de
Substituting for the strain and voltage produces:
1
Ucoupted = 5 {de}' [Kel{am} — —{qm}’[ JJ{ge}  (56)

Here, the coupled stiffness matrix elements are:
prs Z / €31p7— h

x ()
(s—1)(

s—2) rx\r+ [y 3
WS A) (X 2 v
* b3 (a) <b2> P

(57)

Integrating over the volume produces Eqn. (7).

Kinetic Energy
Finally, the kinetic energy 7" leads to the mass matrix for
the representative blade:

1 ow\ 2
—z/vp(ﬂ dv

The kinetic energy may be rewritten to define the mass ma-
trix [M]:

(58)

T = Y MIa) (59)

This form of the kinetic energy produces the integral for the
mass matrix:

r+u+2 y stv—2
(—) av  (60)
by

rsuv /V

Integrating the mass matrix over the plate volume produces
Eqn. (8).

Rotated Piezoelectric Patches

The previously calculated system matrices correspond
to piezoelectric patches with zero rotation about the z-axis.
Inclusion of rotated piezoelectric patches requires a change
in coordinates to calculate piezoelectric contributions to the
system matrices. The coordinate transformation from the xy-
to o-system via a counterclockwise rotation 6 of the piezo-
electric patch about its centroid is:

(-t 1)

Looking back at the previous analysis, all of the integrals are

of the form:
1= //x"-"y"»" dy dx

Using the coordinate transformation, this integral becomes:

(61)

(62)

o By
= / / (0tcos® — Bsin®)™ (ousin® + BcosB)™ df da

(63)
Here, 0., 0.y, B_, and B are the bounds of the piezoelectric
patch in the af-system, which may be calculated from the
bounds in the xy-system by applying the coordinate transfor-
mation in Eqn. (61). Applying the binomial theorem allows
the integral to be solved analytically:

ny My o
I = Cz nx+m i—j+1 ayix+n},_t_j+l)
IZ(’”Z : (64)
x ( I++J+1 _szﬁl)
. mdny(=1)i(sin@)" I (cos )"
tj_i!j!( —l)|(ny j)!(nx—f—n},—i+j+l)(i+j+l)

(65)
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