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We investigate the spatial organization and temporal dynamics of large-scale, coherent
structures in turbulent Rayleigh-Bénard convection (RBC) via direct numerical simula-
tion of a 6.3 aspect-ratio cylinder with Rayleigh and Prandtl numbers of 9.6 x 107 and
6.7 respectively. Fourier modal decomposition is performed to investigate the structural
organization of the coherent turbulent motions by analyzing the length scales, time scales,
and the underlying dynamical processes that are ultimately responsible for the large-scale
structure formation and evolution. We observe a high level of rotational symmetry in the
large-scale structure in this study and that the structure is well described by the first 4
azimuthal Fourier modes. Two different large-scale organizations are observed during the
duration of the simulation and these patterns are dominated spatially and energetically by
azimuthal Fourier modes with frequencies of 2 and 3. Studies of the transition between
these two large-scale patterns, radial and vertical variations in the azimuthal energy
spectra, as well as the spatial and modal variations in the system’s correlation time
are conducted. Rotational dynamics are observed for individual Fourier modes and the
global structure with strong similarities to the dynamics that have been reported for unit
aspect-ratio domains in prior works. It is shown that the large-scale structures have very
long correlation time scales, on the order of hundreds to thousands of free-fall time units,
and that they are the primary source for a horizontal inhomogeneity within the system
that can be observed during a finite-, but a very-long-time simulation or experiment.
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1. Introduction

Rayleigh-Bénard convection (RBC) occurs when fluid confined between horizontal
plates is heated from below and cooled from above in a uniform manner. RBC is
considered an ideal problem for investigating the complex phenomenon of turbulent
thermal convection because the simple boundary conditions make it more manageable to
study without sacrificing the core complexity of thermal convection. The canonical form
of turbulent RBC is defined by a domain with a fixed height that extends infinitely in
the horizontal directions, thus creating a flow field that is statistically homogenous in the
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horizontal direction. The infinite domain makes mathematical analysis more tractable,
but is obviously not achievable in experiments or discrete computational analysis. Thus,
the aspect-ratio (I"), or the ratio of the horizontal and vertical length scales is a parameter
of choice in experimental or numerical investigations. Smaller aspect-ratio domains are
easier to simulate numerically or access during the measurements. However, many RBC
applications are well represented by wide horizontal layers (Adrian et al. 1986), and so
the large I' cases are of significant interest to several different scientific communities.

RBC in large I' domains have been primarily studied to investigate the structure and
behavior of pattern formation and a spiral defect chaos at the onset of convection (Meyer
et al. 1987; Bodenschatz et al. 2000). Recently, an attention has been turned to studying
Rayleigh-Bénard convection in a fully-turbulent regime with large (Fernandes & Adrian
2002; Du Puits et al. 2007; Xia et al. 2008; von Hardenberg et al. 2008; Bailon-Cuba
et al. 2010; Sakievich et al. 2016), and very-large (Hartlep et al. 2003; Stevens et al.
2018; Pandey et al. 2018; Krug et al. 2019) aspect ratio domains. Studies reaching aspect
ratios as large as I' = 128 were able to comment on the size of structures not influenced
by the boundary conditions (Stevens et al. 2018), and the natural sizes of these structures
were reported to be of six to seven times the height of the domain, consistent with the
previous studies of Hartlep et al. (2003) with varying Pr numbers. Despite these emerging
studies devoted to wider aspect ratio cells, there are still a large number of gaps in the
community’s knowledge of the aspect ratio affect on the flow field. This is because the
main body of knowledge of RBC is still drawn from smaller, primarily unit-aspect ratio
studies, which constitute the vast majority of efforts in the field.

One such gap is how I" affects the structure of the flow field because the organization
of structures within the flow field changes dramatically as the domain size is increased
(Du Puits et al. 2007; Sakievich et al. 2016; Stevens et al. 2018; Pandey et al. 2018). These
structures contain a large portion of the field’s kinetic and thermal energy and play an
important role in the transport of these quantities. Furthermore, understanding the flow
field structure creates a fundamental framework for reasoning and comprehension of the
physics.

A prime example is unit I" turbulent RBC. Much of the work in turbulent RBC over
the last several decades has been focused on the unit I' case wherein a single large-
scale circulation (LSC) dominates the flow structure. Identification and dissection of this
structure has led to important theories, models and scaling correlations.

One of the first major studies to focus on the LSC was the pioneering work of
Krishnamurti & Howard (1981) who observed a persistent, large-scale circulation in unit
I’ RBC experiments when the Rayleigh number was greater than 1 x 10%. Repetition of
the experiments showed that the direction of the LSC changed between realizations, but
the LSC was a consistent structure in the flow field. The LSC has often been referred to
as the 'wind of turbulence’, or a 'mean wind’, and this puzzling phenomenon has garnered
much attention over the last several decades. The experimental study by Zocchi et al.
(1990) showed that the LSC is generated by the organization of small scale plumes that
gather and cross the layer depth on opposing sides of the convection cell. Plumes that
form in the central region of the cell are generally swept up by the momentum of the LSC
leading to a behavior that is similar to a canonical boundary layer. This similarity was
harnessed by Grossmann & Lohse (2000, 2001, 2002, 2004) to derive a semi-empirical
theory for predicting the scaling of heat transfer and Reynolds number as a function of
Rayleigh and Prandtl numbers by assuming that the LSC generates a Prandtl-Blasius
boundary layer.

Another field of interest that has stemmed directly from the LSC is its dynamics.
The experimental work by Cioni et al. (1997) was one of the earliest studies to identify a
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dynamic nature in the LSC. Through measuring the horizontal temperature distribution,
which is strongly correlated with the LSC, Cioni et al. (1997) demonstrated that the
LSC wanders dynamically within a cylindrical domain. Mechanisms contributing to LSC
wandering have mainly been attributed to rotations and cessations. The distinction
between these two mechanisms is that a rotation is the gradual change in azimuthal
angle, and a cessation is when the LSC suddenly dies and then reappears with a totally
new orientation (Brown et al. 2005; Brown & Ahlers 2006). The rotation process sees a
wide range of azimuthal drift speeds, and the slowest speeds have been attributed to a
diffusive meandering that is driven by turbulent fluctuations within the flow field (Brown
et al. 2005; Brown & Ahlers 2006). Mishra et al. (2011) studied LSC dynamics via DNS
and found evidence of partial reversals and double cessations in addition to the standard
rotations and cessations, which was also reported by Xi et al. (2006) via experiments.
Mishra et al. (2011) also found that cessation is marked by a distinct rise in the amplitude
of the second Fourier mode when the LSC dies down. Additional studies have also shown
that a) the LSC experiences a torsional mode that causes its flow near the top and bottom
plates to rotate out of phase with one another (Funfschilling & Ahlers 2004; Resagk et al.
2006; Funfschilling et al. 2008) and b) a sloshing mode that causes the entire structure
to shift back and forth with respect to the LSC symmetry plane (Xi et al. 2009; Zhou
et al. 2009; Brown & Ahlers 2009).

Many of the studies cited above have been conducted in unit-I" cylinders, but studies
are also routinely performed in box domains. In boxes the LSC tends to lock into opposing
corners, and it will periodically switch between the two pairs of corners in the domain
(Bai et al. 2016). Stochastic models have been shown to successfully predict the dynamics
of the LSC in the I' = 1 case for boxes and cylinders (Brown & Ahlers 2007, 2008a,b;
Bai et al. 2016); these models are derived with a primary assumption that the 'wind of
turbulence’ or the single LSC is present.

While current understanding of the LSC has been fruitful, it is not the only large-scale
structure that can reside within turbulent RBC. Du Puits et al. (2007) showed that as
I' increases the wind of turbulence concept breaks down. Numerical studies of RBC in
moderate I" cylinders have shown that the large-scale structure organizes into a series of
three-dimensional roll cells (Bailon-Cuba et al. 2010; Sakievich et al. 2016). Qualitatively,
these patterns show clear signs of organization that are similar to the structures seen at
the onset of thermal convection, but the patterns vary with I' and Rayleigh number.
Further more, the dynamic events such as net rotation, cessations and sloshing remain
to be analyzed and quantified in the larger I" cylinders. For example, Vogt et al. (2018)
recently discovered an appearance of a completely new LSC dynamic mode which they
called a “jump rope vortex”, different from both torsional and sloshing modes, ina I" = 2
cylindrical container. The spatial organization, length scales and time scales of wider I”
cases must be quantified before the predictive powers of the current low order models
can be extended to more general cases of RBC in wider domains.

Recent works (Stevens et al. 2018; Krug et al. 2019) performed DNS studies at
very large I" in turbulent RBC, and these studies identified persistent structures whose
horizontal length scales are several times larger than the height of the domain, which
were recently termed as “superstructures”. While these studies provide a valuable insight
into statistical properties of the superstructures, the analysis in these papers was largely
concerned with the temporally-averaged flow-fields, filtering out the temporal dynamics of
the structures. Pandey et al. (2018) have devoted a significant attention to determination
of the averaging time scales to properly capture the properties of the superstructures,
since, evidently, an infinite time-average would smooth out all the large scale structures
and result in a horizontally-homogeneous mean field. They also examined the large-scale
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drift of the structure patterns by measuring the phase change of the temporally-filtered
angular wave number in a sliding time-average, and identified a slow evolution of the
superstructures on a time scale which is of the same order as the filtering time scale
that they identified, i.e. tens to hundreds of free-fall time units, depending on the flow
parameters, such as Pr and Ra numbers. A similar conclusion was reached in Sakievich
et al. (2016) who showed that the time scales required to observe a change in the large-
scale pattern in a I = 6.3 cylinder with Pr = 6.7 and Ra = 9.6 x 107 were on the order
of 600 free-fall time units.

Different from the previous work on RBC in large-aspect ratio domains, which was
mainly concerned with the statistical properties of the structures, this work focuses on
temporal dynamics and evolution of the different structure modes in a moderately high
aspect ratio RBC domain with I" = 6.3, as calculated from Direct Numerical Simulations
using a spectral-element approach. Unlike the previous works, we focus on an individual
structure rather than their statistical representation, so that the dynamical events that
are ultimately responsible for the large-scale properties of the turbulent superstructures
can be understood from the bottom-up perspective. The analysis of temporal dynamics
of the large-scale structure is performed via studying both the temporal evolution and
the statistics of the different azimuthal Fourier modes in a cylindrical RBC domain.
The Fourier decomposition approach allows us to highlight the dynamical processes at
different scales, and their interaction, that accompany the large-scale structure formation
and evolution in a cylindrical RBC cell. In this sense, this is the first study which bridges
the gap between our understanding of the temporal processes in a large-aspect ratio
domain with a well-studied subject of a temporal dynamics of RBC in a unit aspect-
ratio cell, and highlights the similarities and differences between the two cases. The
aspect ratio we consider, I' = 6.3, is about the size of the superstructures naturally
found in larger aspect ratio domains (Hartlep et al. 2003; Stevens et al. 2018). While
the effect of the boundary conditions is present in this study, some of the features of the
large-scale mode organization and dynamics that we observe resonate remarkably well
with both the time-scales (Pandey et al. 2018) and the statistical properties (Krug et al.
2019) of the superstructures found in larger aspect-ratio domains.

The current study is performed at a single value of a Rayleigh and Prandtl number.
It is known that these two parameters have a significant influence on the fluid and heat
transfer dynamics in a Rayleigh-Bénard convection, including the effect on both length
and time scales (Hartlep et al. 2003; Pandey et al. 2018), and the spatial structure of
the flow (Malevsky 1995; Verzicco & Camussi 1999; Breuer et al. 2004). The evidence
that exists of the influence of Ra and Pr on length and time scales is unfortunately
not enough to form a comprehensive picture at this point. For example, previous studies
have shown that the time scales generally increase with Prandtl number while they
seem to be relatively unaffected by Rayleigh number at a fixed Pr = 0.7 (Pandey et al.
2018). It was shown that the length scales monotonically grow with Ra at a Pr =
0.7 — 1 (Pandey et al. 2018; Krug et al. 2019), while this tendency might be reversed
at very high values of Pr (Malevsky 1995). The dependence of length scales on Prandtl
number at a fixed Rayleigh number seem to exhibit a growth with Pr followed by a decay,
with the maximum value around Pr ~ 7 — 10 (Hartlep et al. 2003; Pandey et al. 2018).
In terms of structure, the large-scale flow organization is dominated by rolls at lower
Pr, and by cellular structures at higher Pr, with the transition between the two regimes
happening around Pr = 7 (Malevsky 1995; Verzicco & Camussi 1999; Hartlep et al. 2003;
Breuer et al. 2004). The current study thus can be viewed as an in depth-exploration
of one particular regime, while larger parametric studies are required to achieve a broad
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understanding of a temporal dynamics of the large-scale structures across the parameter
range.

The paper is organizes as follows. In Section 2, we present the problem formulation and
the numerical method; in Section 3, we comment on the mean field of RBC achievable
with the finite-time DNS simulations; in Section 4, the large-scale structure organization
is described via a temporal filtering approach; in Section 5, we analyze the temporal
dynamics and the integral times scales of the azimuthal Fourier modes; in Section 6,
statistical properties of the Fourier modes and their spatial variability are discussed,
while in Section 7, the concluding remarks are presented.

2. Problem Formulation and Numerical Method

This section’s purpose is to provide a description of the problem formulation, notation,
governing equations, and numerical methodology used throughout this study. This work
relies heavily on Fourier decomposition to analyze the structure of the flow field, and so
a small primer on Fourier decomposition is included at the end of this section.

2.1. Equations, Computational Domain and Scaling

The computation domain (2 in this study is a cylinder with height H and diameter D.
{2 can be expressed in cylindrical coordinates that are normalized by H and symmetrized
about the mid-plane (H/2 — z = 0) such that normalized (2 is defined as

{02(r,0,2)|r €[0,I'/2],6 € [0,27), z € [-0.5,0.5] } (2.1)

where I is the aspect-ratio (I' = D/H) of the cylinder. {2 is also aligned with the

gravitational vector (g) such that ‘% = —é, where €, is the unit normal in z-direction.

Velocity and temporal units are normalized by the “free-fall” velocity (w; =
VB9gATH) and time (t; = H/wy) where § is the coefficient of thermal expansion,
g is the gravitational constant, and AT is the temperature difference between the top
and bottom plates of the convection cell. AT is used to normalize the temperature
field and the Boussinesq approximation is applied to the incompressible Navier-Stokes
equations for computation and analysis. The reference temperature for the Boussinesq
approximation is taken to be the average mid-plane temperature such that

e

v AT

[~0.5,0.5. (2.2)

Utilizing these scales, the non-dimensional form of the Boussinesq equations for RBC
can be expressed as:

V-u=0 (2.3)
Jdu Pr 2 A
W—f—(u-V)u——Vp—i—wEV u+ve, (2.4)
0V 1
(V) = V2 (2.5)

ot v RaPr

where u, p and ¥ are the dimensionless velocity, pressure and temperature. The Rayleigh
(Ra) and Prandtl (Pr) numbers in equations (2.4) and (2.5) are defined as:

B BgATH?
 av

Ra (2.6)
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Pp= o (2.7
where a and v are the thermal diffusivity and kinematic viscosity respectively.

In this study I" = 6.3, Ra = 9.6 x 107, Pr = 6.7. When presenting the results, the
velocity field is expressed in terms of cylindrical coordinates such that u = {u,, ug,u.}
and wu; represents any of the components {u,,ug,u,}.

Two primary time scales are used in this work. The free-fall time scale (t¢), and an
eddy turnover (t.). t. approximates the mean up and down times for large-scale motions
that span the depth of the domain. It is defined as

2H
fo= ot (2.8)

V< >y,
where <>y, indicates a spatial average over the entire domain volume V' and <>; is an
average in time.
Eddy turnover time can be thought of as the average time it will take for a particle
to cross the layer depth twice driven by a turbulent diffusion. For reference, t. is
approximately 31¢; in this study.

2.2. Numerical Method

The data in this study is obtained by Direct Numerical Simulation (DNS) using the
open source spectral element code Nek5000. Nek5000 is a thoroughly validated research
code that has been used extensively in scientific literature (see Fischer et al. 2008).
The spectral element method uses high-order polynomial approximation of the solution
within each element, while local element solutions are assembled globally through gather-
scatter operations (Deville et al. 2002). A P, — P,_5 (Fischer 1997) spectral-element
formulation is employed herein. Temporal integration is of second-order, utilizing an
implicit backward-differentiation formula for the viscous terms, and an explicit extrap-
olation for non-linear and Boussinesque terms. Pressure decoupling is performed using
the operator splitting method (Karniadakis et al. 1991), and a resulting pressure Poisson
equation is solved by GMRES (Saad & Schultz 1986) with a multigrid preconditioning.
The computational grid is discretized with hexahedral elements and a marginal amount
of biasing toward the upper and lower plates is applied to the element distribution.
The spectral element method (SEM) used in this simulation also applies a Gauss-
Lobatto-Legendre (GLL) quadrature within each element which clusters points toward
the boundaries of each element and greatly improves resolution at the walls. Ninth order
polynomials were used for the quadrature resulting in roughly 44.6 million grid points.
A schematic of the computational domain and the spectral element grid employed is
provided in figure 1 (a). In the experimental work of Fernandes (2001) it is reported that
the Kolmogorov length for RBC at this I', Ra and Pr is approximately 1.2 x 1072H,
and our simulation’s grid had 5 points within this range at the wall. We also determined
that this grid satisfies the spatial resolution criteria of Grotzbach (1983). The temporal
resolution for each time step was approximately ¢, x 10~ with a corresponding CFL
range of ~ 0.6 — 0.7. In our prior work we conducted a a-posteriori analysis to evaluate
the resolution of our results utilizing the techniques outlined by Scheel et al. (2013) and
confirmed that our simulation met the requirements for dissipation continuity across
elements, as well as the resolution with respect to the height dependent Kolmogorov and
Batchelor scales (see Sakievich et al. 2016). Boundary conditions are specified as follows:
no-slip conditions for velocity are set at all bottom, top and side walls. Temperature is
set to a constant value T = T}, at the bottom wall, and T = T,.,4 at the top wall,
with the temperature difference AT = Tjor — Teoiq used for non-dimensionalization
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in equations (2.2) and (2.6), while adiabatic boundary conditions are used for the
temperature at the side walls. Additional details regarding resolution, convergence, and
comparison with experiments for the specific computations in this work can be found in
the prior work of Sakievich et al. (2016).

The total run time of the simulations in the current work is 3054 free-fall time units,
or close to 100 eddy turnover times, which makes it one of the longest Direct Numerical
Simulation studies of turbulent Rayleigh-Bénard convection up to date (Sakievich et al.
2016; Pandey et al. 2018), and perhaps the longest for the considered Rayleigh number.
Note that while the current study undoubtedly pushes the limit in terms of the simulation
time, it still only covers less that one viscous time unit ¢, = \/Ra/Prt; = 3800t;, and
only 10% of a thermal diffusion time unit tq = vV RaPrty = 25460ty for the current
Pr number, once again highlighting the challenges of accessing the longest possible time
scales in the RBC studies at high Ra number. While the total span of the simulations is
more than enough to capture the superstructures (Pandey et al. 2018) and their dominant
dynamics, it might not be enough to capture the effect of slow diffusive processes on their
evolution.

The data for calculating statistical quantities was sampled every 3 free-fall times. This
choice of a sampling rate is a compromise between fine resolution in time and a storage
requirement for a very long temporal study, such as the one performed in the current
work. The sampling rate is more than adequate for studying the long time scales and
slow energetic processes associated with the evolution of the large-scale structures, which
is the focus of the current work. For post-processing, each snapshot is projected onto
cylindrical coordinates using spectral interpolation routines native to Nek5000, and the
velocity components are transformed from Cartesian to cylindrical. This was previously
done on a smaller scale (Sakievich et al. 2016), but in this work the transformation
has been extended to the entire domain. Cylindrical coordinates are the logical choice
for analyzing the current data-set and facilitate operations along the domain’s periodic,
azimuthal direction. The DNS snapshots are re-sampled with [160,2048,64] points in , 0
and z respectively to generate the cylindrical grids used for analysis. Non-uniform, Gauss-
Legendre (GL) quadrature is used to sample in the r and z directions, but the € direction
uses equispaced sampling points to facilitate Fourier transforms. GL quadrature does not
include the end points and is defined on the standard interval x € (—1,1). GL quadrature
is selected to facilitate high accuracy numerical integration and to remove unnecessary
sampling at the walls of the cell where the system is well defined. Boundaries in the z
direction are constrained with Dirichlet boundary conditions, so that sampling on them
for Fourier transforms is trivial. Points along the central axis (r = 0) are at a spatial
singularity in the cylindrical coordinate representation and provide no additional data
when Fourier transforms in € and integration over the r-z plane are applied. The points
along r = I'/2 have Neumann boundary conditions in the temperature field but virtually
no information is lost since the gradient at the wall is zero (adiabatic), and the GL
quadrature samples very close to the boundaries. An example image of a post-processing
grid in cylindrical coordinates is shown in figure 1 (b).

The post-processing grid has a little less than half the number of grid points when
compared with the computational grid, but the change in coordinate system and quadra-
tures leads to non-uniform sampling ratios with respect to the original domain (2. In the
vertical direction this causes the post-processing grid to have approximately twice as
many points in the boundary layer region, and about half as many in the bulk region.
The horizontal sampling is not as straightforward to compare because the coordinate
systems are fundamentally different. However, it is definitely the case that the center of
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(a) (b)

Figure 1: Images of the computational grid using spectral elements (44.6 million grid
points with a 9th order polynomial basis in the spectral elements) (a) and an example
of the cylindrical coordinates post-processing grid with a resolution of [60,512,32] points
in the r, # and z directions respectively (b). The sampling resolution in (b) is reduced
from the actual resolution used for analysis ([160,2048,64]) to improve image quality in
the figure.

the post-processing grid is sampled more finely than the computational grid. The spectral
interpolation used during re-sampling ensured that no wave-number information was lost
on a post-processing grid according to its resolution, but neither is gained, compared to
the original computational grid. Figure 1 provides an example of the two different grids
(computational and post-processing), however, the number of depicted grid points is
reduced in figure 1 (b) with respect to the actual post-processing grid used for analysis,
to make the visualization comprehendible. The spectral element grid in figure 1 (a) does
not require a reduction in sampling for visualization purposes because the GLL points
within each element can be given a different contrast.

2.3. Fourier Decomposition

Fourier decomposition in the azimuthal direction renders insights into the structure
of the flow field. Fourier modes are a natural choice because the azimuthal direction is
geometrically periodic. Fourier decomposition provides additional benefits in this study
that extend beyond the mathematical significance of the modes. For example, azimuthal
motions for RBC in cylinders tend to evolve on extremely long time scales, and the
azimuthal velocity signals are relatively weak (Brown et al. 2005; Mishra et al. 2011).
Performing an analytical decomposition such as Fourier analysis allows the azimuthal
evolution of the flow to be studied in a well understood format with precise measurements.

For a general signal u(r, 0, z,t), azimuthally periodic with a period 2w, the Fourier
series decomposition is given by

oo
u(r, 0, z,t) Z (r,z,t)ed ®o (2.9)
k=0

where j = +/—1, and k is the integer Fourier mode number. Fourier coefficients are given
by the inverse operation

2m
G (r, z,t) = %/ u(r,0, z,t)e 7 %040 (2.10)
0
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The Fourier series representation can be approximated by a finite number of modes, IV,
and a uniform convergence of a truncated series to the original signal u(z) is guaranteed
given the signal is 1) smooth, and 2) periodic. A discrete Fourier transform in this case

can be defined as
N

g (r, 2, t) Z u(r, 0;, 2, t)e k0 (2.11)

=0
Note that in this formulation, k& can be understood as the integer azimuthal mode
number, and, at each particular radius r, the angular wavenumber k could be defined as

P | (2.12)

so that the wavelength, that gives a relation to a physical length of the structures, for
each particular azimuthal mode k at each particular radius is given as

27 27r
Ai(r) = Al (2.13)
where the dependence on r denotes that the wavelength for a certain £ mode have been
calculated at a given radius.
Throughout this work, Fourier coefficients are indicated by the @ accent, and the
Fourier operator (computed with its discrete representation (2.11)) is indicated by Flu].
For each complex Fourier coefficient 1y, its amplitude

x| = /Re(tg)? + Im(iy)? (2.14)
and phase
_q Im(uy,)
&= tn ' 2.15
An Re(ar) (2.15)

can be defined, where Re(1y) and I'm(4y,) correspond to the real and imaginary parts of
U, respectively. All averages are noted by the brackets <> and subscripts are listed by
the order in which the averaging operations are applied. For instance, < u, (7,0, z,t) >g
(r, z) is the vertical profile of the vertical velocity field after averaging in the azimuthal
direction and in time.

Throughout the paper, we also look at the scaled volume integrated values of the
Fourier coefficients defined as

{dix}v /2 (t) = % ///Q g (r, 2, t) dV. (2.16)

Note that the integral defined in equation (2.16) is also equivalent to

{tk v 2n(t) / / t)rdrdz. (2.17)

3. The Mean Field

The primary interest of this study is to investigate the spatial and temporal properties
of the large-scale structures in the flow field. These structures all have a finite life span and
therefore reside in the fluctuating field with respect to Reynolds decomposition. However,
fluctuations must be defined with respect to mean values. Therefore it is essential to
define the mean field and the averaging operators that create the mean field about
which the fluctuations occur. Turbulence analysis typically employs the assumption of
ergodicity to define the steady-state mean field as a time average. In terms of dynamical
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systems ergodicity means that every point in state space is sampled during the system’s
evolution, though in practice it is often sufficient to sample a large number of statistically
independent instances. This has been a challenge in large I" RBC studies (Bailon-Cuba
et al. 2010; Emran & Schumacher 2015; Sakievich et al. 2016) because the large-scale
patterns evolve over very long periods of time, rendering the available samples statistically
correlated, at least with respect to large scales.

Adrian et al. (2017) define these large-scale organization as “super-coherent states”
because the strong spatio-temporal coherence persists over many eddy-turnover times. A
super-coherent state can be thought of as a deep basin of attraction in state space where
the realizations within the basin have a strong similarity (i.e. they are highly correlated)
over a very long period of time. It can seem like the system is converging to a steady
state within one of these basins when in reality the total state space can contain other
deep basins, and transitions between these basins may be triggered by some perturbation
events.

Adrian et al. (2017) show that in the case of moderate and large I' RBC in cylindrical
domains there are multiple states that have the potential for super-coherency and that
some of these states can be identified by the symmetries of the domain and the boundary
conditions. For example, in our previous work (Sakievich et al. 2016) a large, long-lived
updraft was observed in the central region of the cylinder, and this updraft biased the
statistics in an otherwise stationary system. This updraft could just as likely have been
a downdraft in another realization of the flow, just as an evenly balanced coin has equal
probability of landing on heads or tails over a sufficient number of samples. Another
example of a deep basin is highlighted by the azimuthal symmetry of a cylindrical
RBC cell. Since there is nothing to constrain the orientation of the flow’s structure the
system has an equal probability of assuming any azimuthal orientation, and so ergodicity
demands that over a long enough period every orientation must be sampled. Even if the
large-scale structures are not observed to rotate about the cylindrical domain’s central
axis during a simulation or experiment within the state space that defines the Reynold’s
average these different orientations must be sampled. The key mechanisms that have been
identified for reorienting the large-scale structures are cessations and rotations, but up
to this point they have only been observed in I' < 1 systems (Brown et al. 2005; Mishra
et al. 2011). The challenge for turbulent RBC is that obtaining a sufficient number of
samples, or sufficient averaging time to sample many of these deep basins of attraction
is a non-trivial task since these dynamic events tend to evolve over long periods of time
and state perturbations occur infrequently.

Luckily the symmetries of the RBC system can be employed to account for orientation
changes and directional bias of the large-scale structures. Conventionally employed
azimuthal averaging can be used to account for all possible azimuthal orientations of
an observed structure, while Adrian et al. (2017) define an additional transformation
to account for the vertical antisymmetry imposed by the thermal boundary conditions
and the direction of gravity. This transformation can provide a mean field that accounts
for the equal probability of up- and down-drafts. An unbiased mean is defined as a
mean computed based on the sum of the current state u(r, z,0,t), and a new state
Slu(r, z,0,t)], where &[ ] is the symmetry transformation operator defined by Adrian
et al. (2017), and is described in more details in Appendix A. Due to a commutativity of
the azimuthal and time averaging operators with the symmetry transformation, a new
unbiased mean can be defined as

<u(r,,z,t) >g; +6[< u(r,0,z,t) >¢4

< ufr, 8, z;t) >;Q[ (r2) = 2 : (Bl
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Figure 2: Azimuthal and temporally averaged mean fields. The color plot in (a)
corresponds to < ¥ >¢, and in (b) it corresponds to < ug >¢,; while the vector field in
plot (b) is the two dimensional vector of < {u,, u.} >¢, where the peak vector magnitude
is 0.06 wy. All length scales are normalized with H.

where the superscript “SM” stands for a symmetrized mean. Fluctuating quantities are
then defined with respect to this new mean field,
u; (7"7 07 Z, t) = ui(n 07 Z, t) - [< (% (7'7 91 2 t) >§,wa] (32)
The mean operator <>§é” can also be expressed in terms of Fourier coefficients, as
given below

< Gilr kb = 0,2,1) > +6[< Bilr, kb = 0;2;t) >4

2 k)
since the contribution of any non-zero azimuthal mode will be zero due to azimuthal
averaging. Conversely this also means that the fluctuating field contains the higher-order
modes k > 0, and the mode k = 0 fluctuations.

In this work we have applied the transformation defined by equation (A1) to the
azimuthally- and time- averaged mean fields to construct an approximation based on
equation (3.1) for the Reynolds averaged mean fields from the available finite-time
DNS-sampled data originally containing “super-coherent states” (Sakievich et al. 2016;
Adrian et al. 2017). Figure 2 shows the symmetrized mean statistics for the temperature
and the azimuthal velocity field, with radial and vertical mean velocities superimposed
as vector plots in figure 2 (b). The mean field in figure 2 displays several interesting
characteristics. We note that the transformation (A1), (3.1) is designed to remove the
bias in preferential statistically-significant thermal up- and down-draft congregations,
which primarily targets a symmetrization of the temperature field and the associated
vertical velocity field. Judging by a relative quiescence in both temperature and vertical
velocity non-uniformities in the central region of the cell in figure 2, one can see that
the transformation did successfully achieve that goal. However, starting at the sidewalls
(r = I'/2), two counter rotating roll cells can be observed with stagnation point at z =0
(horizontal midplane) where the two roll cells meet. Additionally, a thermal boundary

< g, 2, 1) >~g§‘4 ()=

(3.3)
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layer can be seen along the adiabatic sidewalls. These roll cells and the accompanying
boundary layers are in-line with the vertical antisymmetry of the mean temperature field
and are not expected to be removed by a proposed transformation, and thus they are
likely to be present in the true Reynolds averaged flow field due to the effect of side walls.
The mean azimuthal velocity component shows that a preferential direction for rotation
or drift is not consistently present across the entire time series i.e. net rotation is not a
product of the mean that has been constructed from this dataset. However, local patches
of weak non-zero azimuthal velocities can be observed in the mean field presented in
figure 2 (b). As noted in the Appendix A, the current transformation is not meant to
mitigate a potential bias in the azimuthal velocities due to a structure drift. Accounting
for the azimuthal symmetry with yet another transformation could further improve the
mean statistics in the azimuthal velocity field shown in figure 2 (b). On the other hand,
the computed mean azimuthal motions are weak and will likely asymptotically approach
zero “in a natural way” as the number of samples is progressively increased.

Finally, we would like to note that the observed corner structures in temperature and
velocity fields are solely due to the effect of side walls, no-slip or stress-free, and thus are
expected to vanish in the situations with periodic boundary conditions and with infinite
aspect ratio I' — oo cells. A mean flow that is identically zero everywhere would thus
be expected for the infinite aspect-ratios. However, one has to be careful with periodic
boundary conditions, since they still impose a non-physical domain truncation and thus
unphysically affect the length scales of the structures that have to be “squeezed” into
a finite-size domain. It is hard to say what effect, if any, it will have on mean flow in
the RBC problem, but unphysical modifications to mean flow due to periodic boundary
conditions were previously reported in the simulations of channel flows due to a “structure
locking” phenomenon (Munters et al. 2016; Chatterjee et al. 2018).

4. Global Description of the Large-Scale Structure

In this section the largest scales of the flow field are investigated using azimuthal
Fourier decomposition. They are of interest because of the important role they play
in transporting energy. It will be shown that these large-scale structures contain the
majority of the energy in the flow field, persist for long periods of time, and are responsible
for much of the flow inhomogeneity. Figure 3 shows the scaled volume integrated (see
equation (2.16) for the definition) and time averaged energy spectra of the three velocity
components, < {|@’ (r, k, z,l‘,)lg}v/QTr >, and temperature (defined analogously).

The spectra in figure 3 indicate that the k£ = 2 Fourier mode is the most dominant mode
over the range of the simulation. The peak is very pronounced in the temperature and
azimuthal velocity fields, but more subtle in the radial and vertical velocity components.
Even though the spectra in figure 3 indicates that the dominant structure over the life-
span of the simulation was the k = 2 mode, it does not provide a clear indication of the
spectra’s evolution in time. In the authors’ previous work (Sakievich et al. 2016) and the
work of Bailon-Cuba et al. (2010) no significant evolution of the large-scale structures
was observed on the time scale of the simulations which was about O(10%)¢s at similar
aspect ratios. However, in the work of Emran & Schumacher (2015) it was estimated
that the large-scale structures would drift on time scales of O(103)ty, albeit for a higher
aspect ratio, lower Pr, and a lower Ra flow field. In the present work, the simulation
time has been extended to the order where a global drift of the large-scale structures
has been predicted by Emran & Schumacher (2015). Note that for the current parameter
range of Ra = 9.6 x 107, Pr = 6.7, the drift time scales might be even higher (Brown
et al. 2005; Pandey et al. 2018).
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Figure 3: Scaled volume integrated energy spectra averaged in time, (¢ € [0, 3054¢]).

Observations of the evolution in the flowfield are provided in this section through
temporal filtering of the dataset. Temporal filtering is defined as a box cut filter
+ tt;JrT G(t') dt’, where the time period T' = 600 ¢ was chosen for the filtering duration,
and the starting times of filtering ¢; were, respectively, 0,600¢7,1200¢7,1800¢; and
2400t ¢. Figure 4 contains the scaled volume integrated energy spectrum of the temporally
filtered temperature field for these time intervals, {|F[< ¥’ (r,0,2.t) >¢][*}v)2x-
Temporal filtering removes the majority of the small-scale structures leaving the highly
correlated large-scale structures clearly visible, and it is a good technique for observing
the slowly evolving large-scale dynamics (Sakievich et al. 2016). The temperature field’s
spectrum is selected for comparison because it contains the most distinguished peak in
figure 3. Visualizations of the temporally filtered temperature field as it evolves in time
are provided in figure 5, and the instances in figure 5 correspond to the energy spectra
plots in figure 4.

Figure 4 shows that over the first 600 ¢ the dominant mode is k£ = 3, which corresponds
to the structure observed in Sakievich et al. (2016). However, in the next 600¢s, the
dominant mode transitions to k = 2. The first instance of the filtered field also shows
a larger distribution of energy in the other low order modes, including the zeroth and
the first mode (see figure 4), but by k = 12 the energy content is about the same for all
instances of the filtered field. The second instance of the filtered field shows higher energy
content in modes k = 1 and 3 (which are likely the remnants of the previous state of
the structure), but by the third instance the energy has concentrated predominantly in
k = 2. One possible interpretation of this transition is that the observed k = 3 dominant
structure is less stable than the structure corresponding to k = 2 because the turbulent
thermal energy is distributed among a larger number of low order modes.

Looking at the individual modes can help explain their contribution to the overall flow
field. The first few low order modes and their cumulative summations corresponding to
temperature fields in figure 5 (a) and figure 5 (e) are provided in figure 6 and 7.

The modes in figure 6 can be interpreted with the following roles: k = 0 establishes a
central, warm column, k = 1 and 2 shift the central column and bias the structure away
from the center breaking its symmetry, and k = 3 finalizes the hub-and-spoke like pattern
that was outlined in Sakievich et al. (2016). A qualitative comparison of figure 6(h) and
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Figure 4: Scaled volume integrated energy spectrum for the temporally filtered
temperature field. Filtering is performed by applying a temporal average with a period
of 600t;. The legend entries refer to the averaging period of each instance in multiples
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Figure 5: Temperature at the mid-plane of the cell and the accompanying in-plane
vorticity represented as a vector field after temporally filtering over a period of 600¢;.
The time ranges covered by each subplot are, in multiples of ¢: (a) [0,600), (b) [600,1200),
(c) [1200,1800), (d) [1800,2400), (e) [2400,3000). Temperature is scaled from [—0.05, 0.05]
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Figure 6: Contribution from individual Fourier modes for the temporally filtered
temperature field (F~'[F[< 9(£2) >¢]x)]) that has been averaged over the interval
t € [0,600), in multiples of ¢;: (a)-(d) corresponding to k = 0 to 3 respectively.
Summation of Fourier modes (F~[>°, F[< 9(2) >,]])) k=0(e), k=0:1(f), k=0:2
(g) and k = 0: 3 (h). Subplots (i) and (j) are three dimensional renderings of subplots
(d) and (h) respectively. Temperature is scaled from [—0.05,0.05] in all subplots and all
horizontal plots are at the mid-plane. All length scales are normalized with H.

figure 5(a) shows that the total structure is well described by the first 4 (k = 0 : 3) Fourier
modes and figure 6(i) and (j) show that three-dimensional representation of these modes
takes the form of large-roll cells that span the entire layer depth.

However, examination of the modes displayed in figure 7 shows that as the simulation
evolves the structure becomes almost fully described by & = 2. This convergence of
energy and structure toward a single mode seems to indicate a stabilization for the
system as a whole. It could be the case that k = 2 is the long term structure of the
flow field at this I", Ra and Pr, but because the k = 3 structure remained coherent for
approximately 1/5th of the total simulation time, nothing definitive can be determined.
It is still possible that the system could undergo yet another transition or modulate back
to a k = 3 dominated structure. For future studies of RBC, it is also worth noting the
length of time in which this transient evolved in moderate to large I'" where multi-roll
cell structures persist, especially since the time scale of this transition is larger than the
entire simulation time in many previous studies. We should also note that even though
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Figure 7: Contribution from individual Fourier modes for the temporally filtered
temperature field (F = [F[< 9(£2) >¢]()]) (Write £2 as (r, 0, z,t)) that has been averaged
over the interval ¢ € [2400,3000), in multiples of ¢;: (a)-(d) corresponding to k =0 to 3
respectively. Summation of Fourier modes (F~1[>, F[< 9(2) >,]]) k=0 (e), k=0:1
(f),k=0:2(g)and k =0: 3 (h). Subplots (i) and (j) are three dimensional renderings of
subplots (c¢) and (g) respectively. Temperature is scaled from [—0.05, 0.05] in all subplots
and all horizontal plots are at the mid-plane. All length scales are normalized with H.

we are using the dominant modes to describe the overall structure observed in this study,
it is entirely possible for the modes to decay and emerge independent of one another. For
example, it is possible that the k¥ = 0 and/or k¥ = 1 modes will reappear while the k = 2
mode is dominant and create a different state which could include global updrafts and
downdrafts observed with the current & = 3 structure, or cause a reversion back to the
k = 3 state. In fact, a slight downward reversal of the k¥ = 0 mode can already be noticed
in figure 5 (e), where a weak connection of cold plumes, as opposed to hot plumes, can
be observed, and in figure 7 (e), where slight negative temperatures in the central region
resulting form k& = 0 mode contribution can be seen.

To draw a similarity with a turbulent pipe flow, a concentration of energy in a few
low order azimuthal modes was observed experimentally by Bailey & Smits (2010), and
computationally by Baltzer et al. (2013), with the dominant azimuthal mode being k = 3
in both studies.

Finally, we would like to offer a potential explanation for the dominance of & = 2
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and k£ = 3 modes in the current RBC case with I' = 6.3. Defining a mode wavelength
(normalized with H) as

= (4.1)

and relating this wavelength Aj to a typical size of the superstructures reported to be
around 6 — 7 H in terms of their spectral wavelength for convection in air (Hartlep et al.
2003; Pandey et al. 2018; Stevens et al. 2018), yields £ = 2.8 — 3.3 for the I' = 6.3
case. However, we should bear in mind that the current simulations are performed for
convection in water, with Pr = 6.7, versus convection in air, where Pr ~ 0.7. Pandey
et al. (2018) showed that the structure sizes are supposed to increase for water versus air
by approximately 1.5 times, while Busse (1994) measured the sizes to be around 9—10 H
for his experiments with Pr ~ 7 fluids at Ra = 10° — 10%. For A, = 10, the formula
(4.1) recovers k = 2 precisely, thus hinting that both k& = 2 and 3 modes are consistent
with the previously reported structure sizes. Moreover, for I' = 1, this relationships gives
Ay ~ 3 being the largest possible wavelength fitting into a I" = 1 cell, which is still smaller
than the natural size of the superstructures that would want to be formed, explaining
why k& = 1 mode is dominant in I" = 1 case. Note that the wavelength A; defined in
equation (4.1) is essentially equivalent to \x(r) in equation (2.13) evaluated at r = I'/2
for a given RBC cell.

5. Temporal Dynamics of the Large-Scale Structure
5.1. Temporal Evolution of the Flow Field

In the previous section it was shown that the large-scale flow transitioned from a
structure dominated by a k = 3 Fourier mode to one dominated by a k = 2 Fourier
mode. In this section the temporal evolution of the transition will be investigated in
greater detail using visualization of the unfiltered mid-plane temperature field.

Figure 8 presents snapshots of ¥(r,0,z = 0,t) at times that bracket the transition
each separated by 90¢. In figure 8(a) the flow is dominated by k£ = 3 mode, albeit with
the warm spokes located at 2 o’clock being rather weaker than the other two spokes. In
figure 8(b) the 1 o’clock spoke weakens more as the upward plume at the center of the
cylinder becomes stronger. The process continues in figure 8(c) wherein the warm plume
at 1 o’clock has almost vanished, and the central updraft plume has moved toward the
spoke at 10 o’clock. Finally, in figure 8(d) the central upward plume has merged with
the 10 o’clock spoke and the 1 o’clock spoke has vanished completely, leaving a large
structure that is clearly dominated by the k = 2 mode. Compare figure 8(d) to the pure
k = 2 mode in figure 7(c) and the mixture of k¥ = 0,1,2 modes in figure 7(g). The
process illustrated by the snapshots in Figure 8 requires 270¢¢, or approximately 8.7
eddy turnover times.

A more detailed investigation of the transition is performed by plotting the scaled
volume integrated Fourier coefficients for a given mode defined by equation (2.16).
Volume integration removes the localized spatial variations of the mode and allows
the temporal evolution to be investigated from a macro perspective. Even though the
volume integrated Fourier coefficients only depend on wavenumber and time, they are
still complex variables. The phase and amplitude of the volume integrated coefficient can
simultaneously change with time.

Figures 9 and 10 display the temporal evolution of @, and ¥ fluctuations for the first
five (k =0 : 4) volume integrated Fourier modes in terms of their phase and amplitude.
Note that the & = 0 modes represent an azimuthal mean of the corresponding physical
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Figure 8: Instantaneous snapshots of temperature at the mid-plane during the transition
of the global pattern. Snapshots are spaced 90¢; apart covering approximately 8.7 eddy-
turnover time units.

quantities, and their further integration with equation (2.17) results in volume averaging
in physical space, which is identically zero for %, and u, due to mass conservation. The
reader is cautioned that while interpreting figures 9 and 10 to remember that any phase
jumps of 27 in the plots are continuous in phase space. In general, the modes in figures 9,
10 share some common behavior. The variables and plots are divided into two highly
correlated groups, i, with ¢ in figure 9 and @, with i in figure 10. A strong degree of
correlation between ¥ and 4, dynamics testifies that temperature and vertical velocity
are the signatures of the same large-scale structure, consistent with the findings of Krug
et al. (2019). The 9 and 1, coefficients for the low order modes except for k = 2 show
larger mean amplitudes and smaller fluctuations in phase during the initial part of the
simulation. During the transition from a k = 3 to k& = 2 in the interval 500 < ¢/t; < 1000,
the amplitude of the dominant structures tends to decrease, and the phase fluctuations
tend to increase.

While the signature of the transition from a k = 3 to k = 2 dominant structure around
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Figure 9: Temporal evolution of the scaled volume integrated Fourier coefficients of .,
and 0 for k = 0 : 4 plotted in terms of amplitude (figures on the left) and phase (figures
on the right). Each row of figures corresponds to a separate wave number with the top
row corresponding to k¥ = 0 and the bottom row corresponding to k& = 4. The units of
@ are in radians. The phase plots have been rescaled to cover a range of 47 to highlight
the low frequency cycles that occur in the temporal evolution of these modes.

500 — 1000¢; can be seen in each of the low wavenumber modes, the effects are most
clearly displayed in the & = 2 and k£ = 3 modes. Inspection of the amplitude and phase
for k = 2 and k = 3 shows that the amplitude of &k = 3 starts out at a relatively large
value and, beginning at around 500¢¢, decays steadily to a negligible value over another
500ts, completing the process around 1000t;. Further more, while the amplitude is
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Figure 10: Temporal evolution of the scaled volume integrated Fourier coefficients of 1,
and g for k = 0 : 4 plotted in terms of amplitude (figures on the left) and phase (figures
on the right). Each row of figures corresponds to a separate wave number with the top
row corresponding to £ = 0 and the bottom row corresponding to & = 4. The units of
@ are in radians. The phase plots have been rescaled to cover a range of 47 to highlight
the low frequency cycles that occur in the temporal evolution of these modes.

large, the phase remains relatively constant, but once the amplitude dies down the phase
fluctuations increase. The opposite effects are seen in k& = 2 mode where the amplitude
is initially low but then gradually increases over the same period that k = 3 decays.

A simple analysis of the time scales involved with the dynamical processes occurring
in Rayleigh-Bénard convection can be presented by estimating a “mode turnover time”,
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which is the time it takes a particle to travel one full circuit in a particular mode k. The
full circulation length for each mode (normalized with H) can be defined as

L =2+ Ag, (5.1)

where Ay, is the k’th mode wavelength given by equation (4.1), which yields

L:2<1+%>. (5.2)

The “mode turnover” time therefore can be defined through a classical eddy-turnover

time as
I
= 1 _— . .

Note that in the eddy turnover time definition, equation (2.8), the variance of the
vertical velocity fluctuations is used as a velocity scale. In the represent study, the
magnitude of the horizontal and vertical velocity fluctuations is of the same order,
consistent with the observations in Stevens et al. (2018), so the same velocity scale
can be used in the mode turnover time definition. It can be seen that both the mode
number and the aspect ratio play a role in the calculation of a mode turnover time.
The presented time-scale definition is similar in spirit to the filtering time-scale defined
in Pandey et al. (2018), albeit they use the statistically-averaged structure size in their
definition, while we adapt the mode circulation length as the length-scale, which allows
us to distinguish between the temporal scales of the different modes that contribute to
the overall dynamics of the large-scale structure. Also note that Pandey et al. (2018)
introduce an empirical factor of 3 into their time-scale definition, which “accounts for
the fact that an individual parcel is not perfectly circulating around in such a roll when
the flow is turbulent”. We choose not to introduce any empirical factors, but admit that
the proposed time-scale is only an order of magnitude estimate, and it might take several
of such time scales for a particular event to happen, as discussed below.

Since the mode turnover time reflects the time it takes an information (disturbance) to
propagate across the entire mode, it should be representative of the time scales associated
with the mode destabilization. The time-scale analysis with equation (5.3) predicts, for
an aspect ratio I' = 1, where a single k£ = 1 mode dominates, a time scale of tﬁl) =257
For an aspect ratio I' = 1, Mishra et al. (2011) identified a time scale of 10¢. as the time
scale associated with the LSC reversal, while Brown et al. (2005) reported 30¢. as the
average time between reorientations. However, these time scales refer to the time between
the reorientation events, and not to the duration of the events themselves. If one closely
examines the data presented in, e.g., Brown et al. (2005); Mishra et al. (2011); Ziirner
et al. (2019), one can see that the time scale associated with the process of transition of
the global structure into a state with a new LSC reorientation, i.e. from the beginning
of the mode destabilization to the time when it stabilizes again, is on the order of 2¢.
in Brown et al. (2005) and Ziirner et al. (2019), and on the order of 2.63¢. in Mishra
et al. (2011), well in line with the predicted tgl) = 2.57t, from equation (5.3). Thus, while
cessations in unit aspect ratio cells are often preceived as instantaneous events, they are,
in fact, events of a finite, albeit short, duration. While a phase reversal happens almost
instantaneously during the LSC reorientation, the other accompanied events, such as a
decrease of the £k = 1 mode amplitude preceding the phase reversal (or partial reversal),
and a subsequent increase back to its original value, happen more gradually (Brown
et al. 2005; Brown & Ahlers 2007). For a current aspect ratio of I" = 6.3, the time
scales associated with the destabilization of the modes are about 6 times larger for a
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given k. The corresponding time scales for the first three modes k£ = 1,2,3 would be

t§6'3) = 10.90%,, t(26'3) = 6.00¢., and t§6'3) = 4.30¢., which, if scaled with the free-fall

time units, are t§6'3) ~ 300ts, té6'3) ~200tf, and téﬁ'g) ~ 130ts. Note that the duration

of the observed 3 to 2 mode transition correlates well with these time scales.

One can observe that as the mode number k — oo, the mode turnover time converges
to a constant value of t., irrespective of I'. This perhaps can explain a self-similarity of
higher-order modes, and an apparent lack of dependence on the problem geometry, as
will be illustrated below. This also shows that the time scale of an eddy turnover is still
a valid measure to describe the fast processes in the RBC cell.

The 3 to 2 mode transition in the global structure in the current I' = 6.3 domain
occurs on a time scale of approximately 500¢;, or 16 eddy turnovers, but it involves
not only modes £k = 2 and k = 3, but the other low-order modes, for example, k = 1.

A careful observation of the & = 1 mode behavior in figure 9(c) shows a rather rapid
decrease in its amplitude around the time ¢ = 500t; followed by a relatively rapid
increase back to its original value, with another event of a vanishing amplitude for k = 1
at ¢ = 1000¢y. A rapid decay in amplitude remarkably resembles the cessations observed
in Mishra et al. (2011) where it was shown that the & = 1 mode amplitude rapidly
vanishes during cessation. A close inspection of the phase diagram in figure 9(d) reveals
that this rapid decrease is indeed accompanied by a phase shift close to 180°, pointing
to a reorientation in a mode 1. These mode 1 cessations happen to fall onto the interval
corresponding to the mode & = 3 to 2 transition, which suggests that the two events
might be associated with each other. Interestingly, the duration between the consecutive
cessations correlates well with t§6'3) predicted by equation (5.3), which might signify
that they are associated with the same k = 1 destabilization event and might resemble
double cessations identified in I' = 1 cells (Xi et al. 2006; Mishra et al. 2011), albeit on
longer time scales here than in unit aspect-ratio domains, commensurate with the 6.3
times difference in the aspect ratio. Note that mode 2 also exhibits an event similar to a
cessation at a time of approximately 300t; where its amplitude essentially vanishes and
its orientation rapidly changes. While such cessations in a dominant mode would lead
to a complete reorientation of the structure, they do not result in observable changes
when the modes are not dominant. This once again testifies of a relative complexity of a
wide aspect ratio system, where a global reorganization is a more complex process that
involves the mode interaction.

In general the £k = 2 and k = 3 modes exhibit similar characteristics during the time
periods when each respective mode is the most dominant mode in the flow field. However,
there is one notable difference between the temporal evolution of the phases for these two
modes. While k = 3’s phase remains virtually constant during it’s period of dominance
(albeit showing signs of low-amplitude, low-frequency fluctuations) the k = 2 mode’s
phase changes at a relatively constant rate. This indicates a steady rotation event for the
k = 2 mode that becomes strikingly clear when the scaled volume integrated coefficients
are plotted on the complex plane. Plotting on the complex plane (see figures 11, 12)
is another intuitive way to view the changes in amplitude and phase for a given wave
number.

The trajectory of the k = 2 mode for the temperature J in figure 12 (c) begins near
the origin and as time progresses it tracks up along the imaginary axis and then begins
to drift into quadrant 2 of the real-complex plane. The rate of rotation manifested by a
steady increase in the phase angle @ is measured to be 1.1 degrees per eddy-turnover by
employing a least-squares fitting of the k = 2 phase in figure 9 (f) from a time of 1800t
to the end of the simulation. Careful inspection of figure 5 also shows that a very slow
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Figure 11: Temporal evolution of the scaled volume integrated Fourier coeflicients plotted
on the complex plane for &k = 2 (a,c) and k = 3 (b,d) where (a),(b), o = 4,, and (c),
(d), @ = dg. Markers are color-coded according to their time, from blue (start of the
simulations) to red (finish).

clockwise rotation is starting to occur in the large-scale structure. However, it is hard to
discern by just looking at visualizations of the flow field because the individual lobes of
the large-scale structure modulate and shift in size. Figure 12 (a) and (c) give a more
clear indication that rotation is indeed occurring in the large-scale structure of the flow.

The trajectory of J for k = 3 in figure 12 (d) begins in quadrant 3 of the real-
complex plane. Low-amplitude fluctuating azimuthal motions of this mode manifested
in a swinging shift in phase are noticeable in the early parts of the trajectory. As time
progresses the ¥ coefficient moves toward the origin and upon arrival it begins to fluctuate
about the origin.

As a general observation, when the mode is the dominant mode in the large-scale
structure, its complex Fourier coefficient drifts away from the origin, and when it loses
its dominance it becomes centered around the origin with a rapidly changing amplitude
scattered between zero and some threshold value. The same can be said about the
behavior of u, and 1y coefficients, even in the modes 2 and 3, shown in figure 11, which
reflects the fact that these variables do not play an active role in the global structure
dynamics. The key observation here is that active components of the dominant modes
display persistence in terms of phase and amplitude of their Fourier coefficients, while the
supporting modes display chaotic behavior with zero mean in all their Fourier coefficients.
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Figure 12: Temporal evolution of the scaled volume integrated Fourier coeflicients plotted
on the complex plane for k = 2 (a,c) and k = 3 (b,d) where (a),(b), O = 4., and (c),
(d), A = 9. Markers are color-coded according to their time, from blue (start of the
simulations) to red (finish).

Even though there appears to be no net rotation when the £ = 3 mode is dominant on
a time scale while it persisted, a rotation event is occurring in the £ = 1 mode. Figure 9
(d) shows a steady change in phase for the first 1500¢; of the simulation, after which it
suddenly begins to see large fluctuations in phase like the k£ = 3 mode.

During the first 500¢¢, the £ = 1 mode rotates approximately 60 degrees with a least
squares fit providing a rotation speed of approximately 3 degrees per eddy turnover.
The phase jumps up down during the period 500 — 1000 t¢ between the two cessations
(marking the period of mode 3 to 2 transition), when at the time of 1000¢s, a sudden
acceleration occurs, and a higher value of rotation velocity persists until 1500¢, at which
time the phase randomizes. Interestingly, the moment of sudden acceleration in k = 1
rotation coincides with a second cessation of this mode, and a completion of £k = 3 to
k = 2 transition. Brown & Ahlers (2007) reported a similar phenomenon of a rapid
acceleration of motion in the azimuthal direction accompanying a cessation predicted by
their stochastic LSC model which was explained by the fact that when the amplitude
becomes small, the azimuthal motion becomes fast, due to a reduction in the LSC angular
momentum. The above observations indicate that there may be a connection between
the dynamics of the £ = 1 mode, i.e. rotation and cessation, and the transition of the
flow’s global structure. The k£ = 1 mode rotation and cessation supports our observation
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that the transition is marked by the movement of the central column, while the phase
fluctuations of the £ = 3 mode can explain the azimuthal shifts of the large scale structure
lobes along the edge of the domain (see figure 8).

The rotation rate of 3 degrees per eddy turnover corresponds to a time scale of rotation
of approximately 40 — 60 eddy turnovers (per 1/2 revolution). A rotation rate of 1.1
degree per eddy turnover observed for mode 2 corresponds to the time scale of 160 eddy
turnovers (per 1/2 revolution). Interestingly, very different time scales associated with
the rotation were also observed in Brown et al. (2005). Fast rotation typically classified
as a reorientation seemed to scale with the time of about 10 eddy turnovers for I' = 1,
which is approximately 3.6 tgl), while much slower drift that was not associated with a
reorientation event would occur on time scales of an order of magnitude larger. Similar
time scale discrepancy in a duration between different reorientation events was observed
with I" = 1 in Sreenivasan et al. (2002). The current I" = 6.3 cell is shown to exhibit a
similar dynamics, where the rotation of mode 1 accompanied by a mode transition scales

on a mode turnover time 3.6 — 5.5t§6'3), while a slow rotation in a persistent mode 2,

not undergoing a transition, is approximately 26.61526‘3). Brown & Ahlers (2006, 2007)
attributed slow rotations, or drifts, to diffusive processes. Viscous time scale is given
by t, = \/Ra/Prts; (Pandey et al. 2018), which, for given flow parameters, is equal to
3800ts, or 120¢t., while a thermal diffusion time scale is t4 = VRaPrt; = 25460ty =
804 t. for the current Pr = 6.7 case. It is seen that the slow mode rotation events
(“azimuthal jitter”) are expected to occur on very long time scales in the current case,
and a slow rotation observed in mode 2 indeed falls in between these time scales.

So far virtually all of the discussion for the volume integrated Fourier coefficients has
centered on the ¥ and 4. fields. These two fields are highly correlated, and they tend
to describe the events that are oriented in the inhomogeneous, vertical direction, and
provide a profound amount of information regarding the time scales and dynamics that
are associated with the large-scale structure’s transition.

Figure 10 shows that the amplitude of @, changes rapidly in time, but the magnitude
of these fluctuations stays within a specific band for each wavenumber. Meanwhile, the
phase of 4, for each wavenumber tends to evolve at a slower pace with several low
frequency components. These time scales are measured by performing an FFT analysis
of the @, and gy signals in figure 10 (using time as the abscissa). This analysis allows us
to identify the temporal frequencies and their accompanying periods that are associated
with the consistent phase oscillations in these fields. Since these temporal signals are
not strictly periodic, a Blackman window function is multiplied with the signal prior to
taking the FFT to improve peak detection by limiting spectral leakage (Blackman &
Tukey 1958). The measured peaks are not consistent between wave numbers, but the
general trend is that the 4, and @y amplitudes fluctuate with time scales on the order
of 1 eddy turnover time, while the phases change at a much slower rate with time scales
of O(10) eddy turnovers. This is consistent with the behavior that is exhibited by 1.
and 9 in the non-dominant modes. Non-dominant modes are characterized by the mode
numbers k below 2, and k greater than 3. The k£ = 2 mode is non-dominant at time below
500t;, and k = 3 mode is non-dominant at time above 1000¢;. The primary difference
between {a.,9} and {i,, g} groups of variables is that the {@,, s} coefficients of the
non-dominant as well as the dominant modes show no noticeable change in the behavior
of their phase and amplitude throughout the course of the simulation, and thus seem to
be unaffected by the large-scale mode transition, as was previously observed in figure 11.

The distinction between the coefficients of the horizontal velocity components and
. and U becomes less clear at higher wavenumbers. The temporal evolution of two
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Figure 13: Temporal evolution of the scaled volume integrated Fourier coefficients of 4,
0 (left pane), and ., iy (right pane) for k = 5 (a-d), k = 10 (e-g) plotted by amplitude
(left) and phase (right). The phase plots have been rescaled to a cover a period of 47 to
highlight the low frequency cycles that occur in the temporal evolution of these modes.

additional modes (kK = 5 and k = 10) is plotted in figure 13 to show how the phase
and amplitude of the volume integrated coefficients are affected by increasing Fourier
wavenumber. Figure 13 shows that as the wavenumber increases, so do the frequen-
cies associated with the temporal evolution of the coefficients, consistent with the g
prediction in equation (5.3). The rapid oscillations and lack of distinction between
the behavior of the individual variables indicates that the high-wavenumber fields are
becoming increasingly random in nature, and less descriptive of the physical system
as a whole. Also, it is worth noting that the amplitudes of the high-frequency modes
are higher for the vertical and radial velocities as opposed to the temperature and the
azimuthal velocity. Stronger high-frequency contributions to the energy content for the
vertical velocity rather than the temperature were also previously observed by Krug et al.
(2019).
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5.2. Integral Time Scale

In this section, we attempt to quantify the temporal behavior of the modes by
measuring the classical integral time scale, 7. T is normally interpreted to be the
coherence time of the flowfield. It is defined in terms of the autocorrelation function,

Rm’(Q,T) =< ¢i(97t+ T)wi(Q,t) > (54)

where 1 is a vector containing variables of interest and 7 is the temporal offset between
the two instances of the flow field, or snapshots. v is usually taken to be the turbulent
velocity field (¢ = {u/., up,u.}), where the prime indicates the fluctuating portion of the
velocity. An autocorrelation based on this particular vector will determine a correlation
based on the turbulent kinetic energy. A summation over the indices i = 1...d where
d is the dimension of the vector is then implied in the definition of the autocorrelation
function in equation (5.4).

The interest of this work includes the global correlation times as well as the time
scales of the individual Fourier modes, since the large-scale structures have been shown
to contain a relatively small number of Fourier modes. In terms of the Fourier coefficients

[ee] [eo)
Rii(r,0,2,7) =< > Y dhi(r,kzt+7)hi(r, K, 2, 1)l >, (55
k=—o0 k/=—o00
averaging equation (5.5) over 6 gives,
< Rii(r,0,2,7) >9 = Ryi(r,2,7)

Z Z << hir, ky 2, t+ T (r K 2, 8)ed B0 5 50

k=—o0 k'=—00

Z Z < Izji(rvkazat—i_T)l&i(rv k/7z7t) < ej(k+k/)9 >9>¢

k=—o0 k/=—o0

2 Z =4 T,Zi(T,k,Z,t—i-T)ZZ)i(T, k/azvt)(sk,—k/ = tv

k=—o0 k'=—00

(5.6)

Op,—k is the Kronecker delta function, in which statistical stationarity in 6 requires
k=—FK.

Since all the flow variables are real signals, the negative Fourier mode —k can be ex-
pressed as the complex conjugate of the positive Fourier mode k. Therefore the dirac-delta
function in equation (5.6) shows that all wave numbers will contribute to the correlation
when multiplied by their complex conjugates. This also ensures that the correlation will
be comprised entirely of real numbers which is required since the dependent variables
are all defined in real space. The discrete representation of equation (5.6) is

Np/2—1

Rii(r,z,7) = Z < &i(r, k,z,t+ T)ZL:(’T’, k,z,t) >, (5.7)
k=—Np/2—1

where Ny is the number of samples for the Fourier transform in the 6 direction, and *
indicates the complex conjugate. Defining an autocorrelation function per wavenumber

Rk, Bor). == 1,31(1 k,z,t+ T)L7,*(1 k.2 8) S (5.8)
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and recognizing that
Riilry—=k; 2, 7) = Ri(ryki2,7)s (5.9)

which follows from the corresponding properties of the Fourier coefficients (Canuto et al.
1988), one can see that equation (5.7) can be rewritten as

Ng/2—1

Rii(r,2,7) = Ry(r Z Rii(r,k, 2,7) + Ris(r,—k, 2,7) =
Ng/?—l
Rulv.0.2,7) + Z Ri(r k2, 7))+ R3(r, k, 2,7) = (5.10)
k=1
N9/2~1
Ryi(r,0,2,7) + Z 2Re{Ry(r, k,2,7)},
k=1

where Re{R;;(r,k, z,7)} is the real part of the autocorrelation (5.8).
Utilizing equations (5.7) and (5.8) the total integral time scale (7)) and the integral
time scales for each wave number (7) are

> Rii<r7zv7—)
= b i ek A1
T('ra Z) /() Rii(ra z, 0) dT7 (5 )
o R“(T’.]"J,Z T)+Ri'i(r,_kvz>7—)
s b ’ ir, k>0, 5.12
71(,7 ) 0 RII(T kv 70)+RU(T —k,z O)(T’ ( )
which is equivalent to
= Re Ru 3 l‘ 2y
Tine)= [ RellalnhaDly 4oy (513)

o Re{Ri(r k,z0)}

The quantity under the integral in equation (5.11) can also be referred to as a normalized
autocorrelation,

— oy Rui(r, 2,7)

R”(T’ = T) a Rz'j(’l‘, Sy 0) ’
These integral time scales depend on the field ¢ that is chosen. ¢ = {u]., up, u.}, ¥ = {9}
and 9 = {u, up, u,, '} were all used to perform proper orthogonal decomposition in the
study of Bailon-Cuba et al. (2010) on data from turbulent RBC simulations at various
I'. ' We shall also, likewise, be referring to the norms of these fields as the turbulent
kinetic energy, thermal energy and total energy, respectively. Thus, in the definition of
the autocorrelation functions in equations (5.4)—(5.14), the values i = 1 : 3 are assumed
for the turbulent kinetic energy, ¢ = 4 for the thermal energy, and i = 1 : 4 for the total
energy.

Figure 14 (a),(b) and (c) shows T for the entire field when 1) is defined as the turbulent
kinetic energy, the turbulent thermal energy and the total turbulent energy respectively.
The r-z plots of T also give insight into the structure of the flow field by indicating
which regions of the flow field have longer correlation times, and also by how much the
correlation times vary.

Figure 14 (a) and figure 14 (b) show very different behavior between the correlation
of the turbulent kinetic and thermal energy fields. The two fields have little overlap
between regions with very long correlation times. The kinetic energy field has its longest
correlation times in the boundary layer while the turbulent thermal energy field has its
longest correlation times in the bulk region. Regions where the fluctuations change sign

(5.14)
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Figure 14: Spatially-varying, azimuthally-averaged integral time scales 7 (7, z) based on
the kinetic energy (a) (min: 12.9t;, max: 617¢;); temperature fluctuations (b) (min:
10.5ty, max: 663ty); and total turbulent energy (c) (min: 13.8¢y, max: 569¢;). White
boxes (O) and circles (o) indicate the locations of minimum and maximum integral
scales, respectively. 7 is in multiples of ¢;. All length scales are normalized with H.

frequently tend to have lower correlation times while regions where fluctuations maintain
the same sign for long periods of time have longer correlations.

Further understanding of these correlation times can be gained by reviewing the
variance of the various components that comprise the correlation metrics. Variance of the
velocity and temperature fluctuations is plotted in figure 15 to show where the strongest
fluctuations most frequently appear. Variance is defined as azimuthally and temporally
averaged turbulence fluctuations o, (r,2) =< ul(r, 0, 2,t)* >y ;. The peak variance of
the velocity components are aligned with the shape of the large scale structures. The
horizontal components (u, and up) have a strong variance in the boundaries where the
large-scale roll cells will have the strongest horizontal velocity contributions. Like wise
the vertical velocity (u,) has a larger variance in the bulk region where the large-scale
structures are principally up or down-drafts. This is where the opposing plumes pass
one another as they cross the layer depth (see figure 15 (d)), and this appears to be the
factor that is driving the correlation times of the turbulent kinetic energy field down in
the bulk region, due to a prevalence of the opposite sign fluctuations in this region.

The variance of u, also shows a peak in the central region near » = 0 which can
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be attributed to the time period when & = 3 was the dominant structure, and the
uncertainty as the lobes of the k = 2 structure dance back and forth across the center of
the convection cell.

The peak variance of the temperature near the boundaries in figure 15 (a) and 16 (b)
highlights how well mixed the thermals are in the bulk region. Note that the variance of
the total energy (figure 15 (f)) has its peak values in the thermal boundary layers, the
same as the variance of temperature, showing a noticeable contribution of the thermal
fluctuations into a variance of the total energy field. However, in the bulk region, the
variance of the total turbulent energy is similar to the variance in kinetic energy. This
also explains while integral time scales shown in figure 14 are similar for the total and
kinetic turbulent energy fields in the bulk region, but different from the thermal energy
field: the large integral time scales for the temperature in the bulk are generated by
relatively small temperature fluctuations divided by a small variance (the denominator
of equation (5.11)), which account for a negligible contribution to the time scales when
added to the velocity field with larger values of the fluctuations and the larger variance
in the bulk. However, an increase of integral times scales for the total turbulent energy
on the side walls due to a thermal field contribution is pronounced.

Figure 15 also shows the skewness of the temperature field defined as

< Vi 0,5, 8)® Sa
ay(r,z)3/2

which is a measure of asymmetry of the probability distribution of a fluctuating tem-
perature field about its mean. It can be seen that the skewness of temperature peaks
just as the variance begins to increase, and the two quantities are anti-correlated as
they approach the wall (see figure 16 (b) and (c¢)). The skewness profile shows that even
though the fluctuations about the mean are very small in the bulk region, the lower half
of the domain is still biased toward warmer fluid and the upper half toward colder.

When the integral time scales are averaged over the volume the differences between
the three metrics narrows (see Table 1). Following equation (2.16), volume integrated
integral time scales (scaled with 27) are defined as

{Tetvien = // Talrs 2)dV = /Z-/rﬁ,(nz)’r‘drclz. (5.16)

The turbulent kinetic energy shows the correlation time averaged across all Fourier modes
that is about 50% longer than the turbulent thermal energy, but the total turbulent
energy shows about the same correlation time as the turbulent thermal energy. This
means that there are regions where correlation among the velocity components cancels
out correlation from the thermal region. Table 1 and figure 17 further demonstrate the
effect of the dominant Fourier modes where the scaled volume integrated integral time
scales are shown per mode number, {77,,}‘//%. Here it can be seen that correlation times
for the low order modes, and specifically the £ = 2 mode increase in magnitude in all
the presented metrics. It is also noteworthy to see that the correlation time of the k = 2
mode is dramatically larger than the other modes with the second longest mode (k =0
for thermal energy and k = 3 for kinetic and total energy) being almost 5 times shorter.

Table 1 and figure 17 clearly show that the low frequency modes are responsible for the
large integral time scales, and that the majority of the correlation time can be attributed
to the & = 2 mode. Further evidence of this can be seen by comparing the spatial
distribution of the integral time scale for k = 2 (figure 19 (¢)) and the entire system
(figure 14 (c)). Figure 17 also shows that 7T; decays to a value of approximately 3t; for
all three energy vectors after the first 12 Fourier modes. This is the minimum limit that

Sy(r,z) = (5.15)
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Figure 15: Variance o =< u'2(r,0, 2,t) >+ of ¥ (a) (min: 5.48 x 1073, max: 2.29 x 1071),
u, (b) (min: 0.0, max: 6.80 x 1073), ug (c) (min: 0.0, max: 9.82 x 1073), u, (d) (min:
0.0, max: 8.12 x 1072), turbulent kinetic energy (e) (min: 0.0, max: 1.68 x 10~2), and
total energy (f) (min: 2.33 x 1073, max: 2.29 x 107!) in the r — z plane. White boxes
(O) and circles (o) indicate the locations of minimum and maximum values, respectively.
Also, note that the variance for the velocity components and turbulent kinetic energy is
analytically 0.0 at the walls. All length scales are normalized with H.

Mode (k) Total Turb. Energy Turb. Kinetic Energ Turb. Thermal Energy

P = {ur,up,uz, %y Y = {ur,uo,uz} P = {9}
All 213 217 331
0 100 90.2 267
1 20.3 17.8 93.2

2 787 742 1048.421
3 184 184 228
4 46.6 46.9 34.3
5 16.1 16.8 11.3
6 46.6 48.1 48.2
7 10.9 11.4 8.86
8 7.52 7.3 6.37
9 11.1 11.5 7.19
10 11.1 11.6 6.61
11 7.13 7.33 4.95
12 5.23 5.20 4.39
13 3.54 3.57 3.03

Table 1: Scaled volume integrated integral time scales (in multiples of t¢) for the total
field {7 }v/2~ and a selection of Fourier modes {74 }v/2r-

can be obtained with this data set since the snapshots were sampled 3t; apart. Shorter
Ti’s are probable for the higher wave numbers.
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Figure 16: (a) Skewness of temperature, equation (5.15), in the r — z plane; line plots of
variance (b) and skewness (¢) of temperature at select radial locations. All length scales
are normalized with H.

6. Effects of the Spatial Inhomogeneity

In the previous sections the effects of spatial inhomogeneity have been seen in the mean
flow and integral time scales. In this section the effects of spatial inhomogeneity will be
analyzed more carefully by looking at the r-z variations in the normalized autocorrelation,
the integral time scale, 7, and the Fourier spectra.

6.1. Spatial Variability of the Integral Time Scales

In the previous section we presented the integral time scales for three different quan-
tities. Moving forward we will restrict our analysis to the integral time scale of the total
turbulent energy since it is an aggregate of the other two. The normalized autocorrelation
for the total turbulent energy field, R;;(r,z,7), i = 1 : 4, is plotted vs snapshot spacing
in figure 18 at a selection of points in the r-z plane. While the entire simulation time is
over 3000, only about half of that period is used to calculate the autocorrelations, due
to the large values of the maximum time separations.

By definition (see equation (5.11)), T (r, z) is equal to the area under each of the plots
in figure 18 (a). Figure 18 (a) shows that while fluctuations at points C' and D in the
highly correlated viscous boundary layer monotonically decay, they remain correlated
over the entire data set. Linear extrapolation of the lines in figure 18 can be used to
estimate the time it will take for R; i(r,z,7) at points C and D to reach a value of zero.
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Figure 17: Scaled volume integrated integral time scales (in multiples of t;) for each
mode number, {7 }y/2,. Modes are plotted vs k + 1 to make the £ = 0 mode visible on
the log-scale plot and w; is a shorthand reference for all three velocity components. This
data includes the values listed in table 1, and all the additional wavenumbers that were
not included in table 1.

This time turns out to be approximately 90 — 100 eddy-turnovers (= 2700 — 3000¢y).
Based on the measured rotation rate of 1.1 degrees per eddy-turnover, a rotation during
the decorrelation time is ~ 90 degrees, corresponding to the k¥ = 2 mode changing
from positive to negative vertical velocity. k& = 2 mode’s up- and down-drafts will
exactly cancel one another. This suggests that de-correlation of the most persistent
structures in this flow is caused by the observed, global rotation. The other two probes
are taken at the mid-plane. The probe at point B is at a local minimum in 7 and shows
sufficient decay in R;;(7, z,7) to indicate that the values become uncorrelated during this
computation. The other probe at point A is near a local maxima in 7. It shows signs
of a weak long-lived transient as the correlation decays to zero with a separation time
of approximately 800t;, but then begins to grow again. Some possible sources for this
transient include the low-amplitude, low-frequency transient in the magnitude of V' for
k = 0 (see figure 9 (a)), which can potentially be associated with a time scale of up- and
down-draft reversals (Sakievich et al. 2016).

Note also the higher-frequency oscillations in the correlation function at all the probes
A,B,C and D. The time-scale of these higher-frequency processes stays very close
between all the probes and varies between 84 — 94 t;, which corresponds to roughly
3 eddy turnovers. This time correlates well with the mode turnover time for the high-
order modes that converges to a scale of an eddy turnover. Since the correlation functions
here include the representation of all the modes, it is probable that higher-order modes
are responsible for these high-frequency oscillations. Similar oscillations in a correlation
function have been observed in Xi et al. (2006); Mishra et al. (2011) in unit aspect-ratio
cells with a time scale close to an eddy turnover time. This suggests a similar origin of
these oscillations in different aspect ratio cells, coming from the contribution of high-order
modes which are independent of geometry.

Additional insight into the spatial variance of T (r, z) can be found by investigating the
contribution from the individual Fourier modes. Recall that R;;(r,z,7) can be defined
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Figure 18: Temporal normalized autocorrelation based on total turbulent energy at
select points throughout the domain. Subplot (a) shows the normalized autocorrelation
Rii(r,2,7),i = 1 : 4, equation (5.14), and subplot (b) marks (r,z) points where the
temporal normalized autocorrelations are calculated. 7, 7 are in multiples of t¢. All
length scales are normalized with H.

as a summation of Ry(r, k,z,7) over all k’s. A Ti(r,z) field (equation (5.13)) can be
calculated for each Fourier mode giving an indication as to how the individual modes
contribute in the total correlation. Plots of the total turbulent energy based Ty (r, z) for
a selection of Fourier modes is provided in figure 19. Note that the values of the integral
time scales for some modes can be negative, which explains why the modal values at some
locations exceed their cumulative value in figure 14 (c). Only low wavenumber plots are
included in figure 19 due to the short correlation times of modes k > 10 (see figure 17
and table 1).

One observation of the subplots in figure 19 is that the globally dominant, highly
correlated modes (subplots (¢) and (d), and also subplot (a)) show a high level of
symmetry about the mid-plane with long correlation times covering a substantial portion
of the r-z plane, but the other modes do not. Subplots (b),(e) and (f) also show much
smaller peak values for 7. The long correlation times in the dominant modes support
our previous observations that the k = 2 and £ = 3 modes are the primary sources for
the long-correlation times, and the high level of symmetry indicates that the shapes of
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Figure 19: Spatially varying integral time scale based on total turbulent energy for modes
k=0 (a) (min: —0.939¢;, max: 397ts), k = 1 (b) (min: —2.05t, max: 77.0ty), k = 2
(c) (min: 0.083t¢, max: 1260ts) , k = 3 (d) (min: 0.015¢¢, max: 392t¢), k = 4 (e) (min:
—1.02t¢, max: 1050¢¢) and 10 (f) (min: —7.07¢ ¢, max: 45.3t¢), where white boxes () and
circles (o) indicate the locations of minimum and maximum integral scales, respectively.
Time scale 7 is in multiples of ¢;. Note the difference in maximum 7 in each subfigure.
All length scales are normalized with H.

these modes do not see much spatial variation over time. It is interesting to see that the
peak in the correlation time 7 for the mode k£ = 0 (subplot (a)) is the same as for the
mode k = 3 but the spatial locations of the highly-correlated events are different. This
supports an earlier observation that the modes k£ = 0 and k = 3 co-existed when the
mode k = 3 was strong, where mode k = 0 was dominant in the central region and the
mode k = 3 was responsible for the formation of the side plumes. The lack of spatial
symmetry and smaller range of 7 in the non-dominant modes indicate that these modes
see a large amount of variation in their spatial structure and could contain rare energetic
events in the flow field which have life spans much less than the length of the simulation,
but much longer than the sampling rate of 3¢;.

6.2. Statistics of the Fourier Modes and their Spatial Variability

In this section, the temporally-averaged statistics is presented for the Fourier modes
which allows one to judge about the spatial variability of modes and the contribution of
different length scales into the overall flow structure. This is achieved by evaluating the
time-averaged energy spectra of the modes at different r-z locations. Up to this point
in the paper all data has been presented with respect to the azimuthal Fourier modes,
which, as discussed in Section 2.3, are simply the integer mode indicators and are not
directly related to the structure sizes. Therefore examining Fourier coefficients at different
radii corresponds to different physical length scales and energy densities per unit length.
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A more consistent way to compare the flow structure at various locations in the flow
field is to normalize the energy spectra and frequency with respect to a geometric length
scale, which is the wavelength A\i(r) = 27r/k defined in equation (2.13). This is done
by premultiplying the energy spectra with the radial location and plotting against the
inverse of the wavelength 1/A,(r). A sampling of the spectra at 7 different locations is
provided in figure 20. These locations are at various points within the boundary layers
(bottom plate and side walls), and bulk region of the flow field; regions where different
physical phenomena dominate. z = —0.45 and r = 3.1 are within the viscous boundary
layers for the bottom and side walls respectively while z = —0.4 is just outside the viscous
boundary layer in the vertical direction.

6.2.1. Variations in Radial Location

Spectra of 9, ug and u, evaluated at various radial locations with a fixed height z =
—0.4 (left pane of figure 20) show a good collapse across virtually all length scales. ¥ and
ug collapse less well for length scales that are greater than I' = 6.3 (k/27r $2-1071),
and this behavior is also seen in the u, plot. From the plots, it can be concluded that
the effect of the side wall boundary conditions is rather small and is mostly prominent
in the u, variable. It is not unexpected, since u, analytically must tend to zero at the
wall. In fact, the same can be said about the centerline location, where w, is, again,
analytically zero, and a lack of collapse in wu, is again observed at low wavenumbers.
The same behavior is manifested in ug. Other than w,., the side walls influence the large
length scales in all the variables but w,, which shows an almost perfect collapse across
all radii.

Failure to collapse in the larger length scales can be attributed to the dominance
of low order Fourier modes that describe the flow field’s large-scale structure. Since
Fourier mode k& = 2 contains a large amount of energy throughout the entire domain it
will disrupt the collapse of the spectra by affecting different length scales at each radii.
In fact, if the spectra were to collapse across all length scales for all variables then it
would be horizontally homogenous as in the canonical form of RBC with infinite I.
In a sense the side walls of the convection cell act as a high pass filter because they
limit the size of the largest length scales that can be observed in the flow. The fact
that the £k = 2 mode dominates the energy spectra at multiple length scales indicates
that the underlying structure has a modal nature, and that it is the principle cause for
radial inhomogeneity. This is most likely due to the confining, geometric effects of the
cylinder. Table 2 illustrates this point by providing the time averaged energy values for

the first several Fourier coefficients at several different radial locations at z = —0.4. For
a reference, the scaled volume-integrated value of [J;|? corresponding to the values in
figure 3 is also provided. This data complements the data in figure 20 for z = —0.4.

Table 2 shows that the ¥ = 2 mode is indeed energetically dominant at 2 of the 3
tabulated radii, and is responsible for the peaks in energy observed in figure 20. The
k = 0 mode is approximately 40% more energetic at r = 1.0, z = —0.4. This is most
likely due to the residual effects of the central updraft early in the time series combined
with geometric effects. Careful observation of figure 20 (a) shows that as the radius
decreases, the strength of the energy peak associated with the £ = 2 mode decays. Due
to a singular nature of approaching » = 0, an azimuthal alignment of the most dominant
energetic structures might break, contributing its energy to an azimuthally invariant
k = 0 mode. However, it is worth noting that the & = 2 mode is still larger than the
k=1 and k£ = 3 modes at r = 1.0, z = —4.0 thus breaking a monotonic decay of the
energy spectrum and displaying a level of dominance as the second most energetic mode.
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Figure 20: Time averaged energy spectra for each of the components in the total turbulent
energy vector at various locations in the flow field. Subplots (a) and (b) are for the
temperature field, (¢) and (d) are for the radial velocity component, (e) and (f) are for
the azimuthal velocity component and (g) and (h) are the vertical velocity component.
Subplots on the left, (a),(c),(e) and (g), are at a fixed height of z = —0.4, and various
radii. Subplots on the right, (b),(d),(f) and (h), are at a fixed radius r = 2.0 and various
vertical locations. All length scales are normalized with H.
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k < {|7§;\.(r,z,f)|2}ﬁ\; >0 < |Ok(r, 2,0)]2 >0 < |Ok(r, 2,1)]2 > < |[Ok(r, 2,1)]? >

r= I r=2 h= &
0 1.334e-06 8.202e-05 1.789e-05 4.186e-05
1 7.648e-07 4.068e-05 2.003e-05 1.986e-05
2 5.097e-06 5.862e-05 1.480e-04 2.490e-04
3 1.102e-06 2.693e-05 3.358e-05 4.376e-05
4 5.367e-07 2.484e-05 1.608e-05 1.495e-05
5 4.496e-07 2.274e-05 1.404e-05 1.121e-05
6 4.416e-07 2.116e-05 1.321e-05 1.170e-05
7 3.991e-07 2.017e-05 1.222e-05 1.031e-05
8 3.761e-07 1.845e-05 1.114e-05 8.766e-06
9 3.597e-07 1.856e-05 1.092e-05 8.432e-06
10 3.497e-07 1.717e-05 1.067e-05 8.157e-06
11 3.334e-07 1.636e-05 9.976e-06 7.570e-06
12 3.215e-07 1.551e-05 1.034e-05 7.876e-06
13 3.112e-07 1.502e-05 1.002e-05 7.575e-06
14 2.980e-07 1.450e-05 9.528e-06 6.963e-06
15 2.910e-07 1.382e-05 9.394e-06 7.204e-06

Table 2: Time averaged energy of Fourier coefficients from the temperature field with
variations in the radial location for the first 16 modes at z = —0.4.

6.2.2. Variations in Vertical Location

When spectra are sampled at various heights at a fixed radius the behavior is virtually
opposite to the fixed height, varying radius situation (see figure 20 (b), (d), (f) and (h)).
In the previous case ¥ and u,’s spectra showed the best collapse, but when the vertical
location is varied their collapse is considerably worse than w, and wugy. Additionally,
u, and ug show the best collapse at the lowest frequencies, and a poorer collapse at
higher frequencies. In fact, divergence at high frequencies is seen for all three velocity
components and the temperature, and their energy content decreases as the vertical
position approaches the mid-plane. This is because there are more small-scale fluctuations
for all the variables in the boundary layer region.

The spectrum of ¥ shows a strong collapse at the frequency associated with the k = 2
Fourier mode, indicating the dominance of k = 2 mode in the temperature field across the
entire depth of the domain but a decay with increasing distance from the wall for all other
frequencies, commensurate with the presence of stronger high-frequency fluctuations in
the near-wall region. A persistence of a dominant low-order mode all the way down to
the wall presents an evidence of the influence of the large-structure organization on the
boundary layer flow, observed in previous studies (Sakievich et al. 2016; Pandey et al.
2018; Krug et al. 2019).

The spectrum for u, in figure 20 (h) shows some special characteristics that deserve a
discussion of their own. Perhaps the most notable is that at the mid-plane the smallest
energy among the heights occurs at high frequencies and the largest energy among the
heights at lower frequencies. The point in the spectrum where the energy in the mid-
plane is no longer smallest occurs at a non-dimensional frequency of approximately 8.5
corresponding to a physical length scale of 0.118H. For lower frequencies (larger length
scales) there is a region where the spectrum collapse for the vertical positions that are
outside the viscous boundary layer. This region of collapse starts to break apart at a
non-dimensional frequency of 2 corresponding to a length scale of 0.5H and the energy
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in frequencies lower than 2 increases with the distance from the wall. The absence of a
clear peak at £ = 2 mode for the vertical velocity spectrum can perhaps be explained
by more effective mechanisms of energy transfer from large to small scales in this field,
which also amounts to a larger amplitude of higher-order modes in the vertical velocity
(as opposed to, e.g., temperature) observed in figure 13. A similar phenomenon of a higher
small-scale contribution to the energy associated with the vertical velocity fluctuations
as opposed to the temperature is discussed in Krug et al. (2019). In general, a collapse
of the temperature spectrum in the large scales across z planes, and the vertical velocity
spectra in the intermediate scales, but not large or small, is commensurate with the
findings of Krug et al. (2019).

7. Discussion and Conclusions

It has been shown that I" > 1 turbulent RBC has dynamics that occur on much longer
time-scales and affects more spatial Fourier modes than RBC in a I" = 1 cell. A general
explanation for the increase of time scales in wider aspect-ratio cells can be provided that
is due to the increase of the length scales of the coherent motions that are able to settle
in larger aspect-ratio domains. The long correlation time scales of coherent structures
observed in the current study resonate well with the recent studies of Pandey et al.
(2018) who examined the evolution of times scales of turbulent superstructures in the
square domain with I" = 25. While previous works on the large-scale patterns in Rayleigh-
Bénard convection in wide aspect ratio cells were primarily concerned with the statistical
analysis of the flow field, and thus the properties of the “average” flow structure (Hartlep
et al. 2003; Pandey et al. 2018; Stevens et al. 2018; Krug et al. 2019), the current study
focuses on the individual structure and a detailed analysis of its temporal dynamics. This
is achieved via investigating each spatial Fourier mode independently. The individual
modal analysis shows that the correlation times of the dominant Fourier modes are
substantially longer than the other modes and that these individual modal correlation
times can exceed the total correlation time of the system (see table 1). Further more,
the spatial variation of integral time scales shows an alignment between the location of
maximum temporal correlation for the entire system (figure 14) and the individual modes
(figure 19). This is a noteworthy observation since the integral time scales have been
shown to vary by three orders of magnitude across the r-z plane (figure 14). Examination
of the temporal correlation in the regions where the integral scale is largest provides a
further connection between the system’s behavior and the dominate modes. The rate at
which temporal correlation decays was found to match the measured rate of rotation for
the most energetic Fourier mode (k = 2) at 1.1 degrees per eddy turnover. From these
observations we can conclude that the dominant Fourier modes leave a strong signature
on the temporal scales of the system.

While mode 2 has clearly emerged as being a dominant mode after approximately 1000
ty of the simulations, it is not the only mode that influences the overall organization
of the structure. In general, the dynamics of the large-scale structure in the current
study exhibits a complex interplay between several low-order modes. For example, the
transition of dominant mode from k = 3 to k = 2 occurs gradually over approximately
1000ts. This event can be observed in the time averaged field (figure 5) and through
careful observation of instantaneous fields (figure 8), but becomes blatantly obvious when
analyzing the dynamics of the individual Fourier modes (see figures 6 ,7, 9). Interestingly,
dynamics of the first, k = 1, Fourier mode, also play a role in the overall organization of
the structure and the mode interplay observed in the current study, at least for the first
1000 ¢¢, including the rotations and the cessations of the k = 1 mode, similar to k =1
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dynamics in the unit-I" cells (Brown et al. 2005; Mishra et al. 2011). However, this mode
never dominates the overall structure dynamics, as opposed to the I' = 1 case.

The dominance of the modes 2 and 3 in a I' = 6.3 aspect ratio cell can potentially
be explained by considering the “natural” sizes of the superstructures, reported to be
on the order of 6 — 7 of the domain height as deduced from numerical studies in the
domains with I" = 10 — 60 and Pr ~ 0.7 (Hartlep et al. 2003; Pandey et al. 2018;
Stevens et al. 2018), while the sizes up to 10 H can be expected for Pr = 6.7 (Busse
1994; Pandey et al. 2018). The sizes reported in these studies, however, correspond to
the spectral wavelength, which equals to Ay = 7nI'/k (normalized with H) according to
equation (4.1), thus giving k ~ 2 — 3 when the sizes of Ay = 6 — 10 are substituted into
this equation for I = 6.3. Following the same logic, in a unit aspect ratio cell, the longest
mode that can settle (k = 1) gives the wavelength of A; = 7" ~ 3, which is still smaller
than the size of a natural superstructure, thus explaining why the mode k =1 is clearly
dominant in a unit aspect-ratio case, since higher-order modes would have even smaller
wavelengths. In this sense, the existence of the £k = 1 mode in the current I' = 6.3 case
is interesting, since it manifests an existence of the correlated structures of even larger
length scales than an average size of the superstructures.

The concept of a “mode turnover time” has been introduced in this study as an initial
hypothesis for explaining the interactions between the mode number, I', and the time
scales. Conceptually a mode turnover is the time it would take a particle moving at the
rms velocity to traverse a modal structure at a given I'. The observed time scales of
the mode transition, on the order of 20 — 30 eddy turnovers, were shown to correlate
well with the introduced concept of a mode turnover time. Moreover, the concept of the
“mode turnover time” also predicts similar time scales associated with the duration of
destabilization events associated with reorientations observed in I' = 1 cells, see Brown
et al. (2005); Mishra et al. (2011). We note that the time scales are not expected to
grow indefinitely as the aspect ratio increases, due to a saturation of the sizes of the
superstructures. Indeed, time scales identified in larger aspect ratio studies (Emran &
Schumacher 2015; Pandey et al. 2018) are similar to the time scales observed here, and
not 5 to 10 times larger which would be commensurate with the considered aspect ratio
sizes.

We also propose to separate the influence of “fast” and “slow” time scales on the
processes observed in turbulent RBC at Ra = 9.6 x 107 and Pr = 6.7. “Fast” time scale
correlates with the mode turnover time, while “slow” time scale is based off the diffusion,
or viscous, time scale. Viscous time scale can be estimated as t, = \/Ra/Prt; (Pandey
et al. 2018), equal to t, ~ 3800tf ~ 120t. in the current case, while the diffusion time
scale tg = VRaPrty ~ 25460ty ~ 804t. is even larger. The current results indicate
that the effects associated with the mode transition, as well as the fast rotation observed
in the first mode both scale with the mode turnover time (“fast” time scale), while the
slow azimuthal drifts, reported previously for unit aspect ratio cells (Brown et al. 2005;
Brown & Ahlers 2006) and also observed here in a mode 2 once it stabilized, occur on time
scales that are at least an order of magnitude larger (“slow” time scale). We hypothesize
that the difference in the time scales can be explained by the difference in the physical
mechanisms that cause these events. The slow rotations, or drifts, are associated with the
slow diffusive processes (Brown & Ahlers 2006, 2007), while the fast rotations, as well as
the mode cessations and transitions, are related to the destabilization processes, which
has been previously linked to the interaction between buoyancy and friction (Sreenivasan
et al. 2002; Brown & Ahlers 2007).

In a conceptual model of an LSC reversal by Sreenivasan et al. (2002), the reversal
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is explained as a loss of equilibrium in the dynamics associated with the ascending and
descending plumes within the LSC circulation cycle. Their model fits very well with the
current hypothesis that such a process would occur on a mode circulation time scale.
Previous studies demonstrated a stochastic nature of the reorientation processes, caused
by the perturbations. These perturbations, likely appearing locally, need to propagate
through an entire mode to cause a mode destabilization, which would require a time
scale on the order of the mode turnover time. We would like to stress once again
that the mode turnover time scales, on the order of 2.75¢. for Kk = 1 in I' = 1 cells,
correspond to the duration of the transition events (such as an LSC reorientation), from
destabilization to re-stabilization, following the origination of the perturbation. The
origin of the perturbations themselves is stochastic, so the time scales between events
are much larger, e.g., reported to be around 10 ¢, to 30 t. in I" = 1 cells (Sreenivasan
et al. 2002; Brown et al. 2005; Mishra et al. 2011). Brown & Ahlers (2007) elaborated
on the physical processes accompanying the dynamics of the LSC reversal by showing
that a destabilization can also lead to an onset of a fast azimuthal motion, ultimately
responsible for the structure reorientation. The reason for the increased rotation rate
during the mode destabilization is a reduction of an angular momentum of a weakened
mode associated with a reduction in the mode’s amplitude (Brown & Ahlers 2007).
Both cessations and rotations were shown to be accompanied by this fast azimuthal
drift (Brown et al. 2005; Brown & Ahlers 2007; Mishra et al. 2011), the difference
being that the mode amplitude essentially vanishes during the cessation, but stays finite
(although often reduced) during the rotation-led reorientations. Similar cessation-like
events accompanied by fast rotations of the modes were observed twice in mode 1 and
once in mode 2 in this study, all during the global structure transition process. Even
though cessations are perceived as instantaneous events, the processes that lead to it and
follow it until a mode stabilization is completed, are finite-scale, an evidence of this can
be seen in time series presented in Brown et al. (2005); Mishra et al. (2011); Ziirner et al.
(2019), as well as in the current DNS results. It is conjectured here, that both cessation-
led and rotation-led reorientation events have a similar origin and operate on similar time
scales, and are, in fact, just different manifestations of the same destabilization process.
Moreover, it is likely that, during the process of destabilization, multiple rotations,
cessations (double cessations), as well as the mode transitions in wider aspect ratio
systems, can occur simultaneously as a signature of the same destabilization process
that leads to an eventual reorganization of the structure. Since destabilization events are
caused by stochastic perturbations, the duration between them is random (Sreenivasan
et al. 2002; Brown & Ahlers 2007). We were only able to observe one destabilization event
over the 3000 ¢¢ duration of the simulation. Note, once again, that due to a high aspect
ratio, the relevant times scales are several times larger in our system than in unit aspect
ratio cells, which significantly reduces the probability of observing the reorganization
events in higher aspect ratio systems, experimentally, or numerically.

The current study is also in a position to contribute to the discussion initiated in
the previous works of Pandey et al. (2018); Stevens et al. (2018); Krug et al. (2019)
on whether the vertical velocity and temperature fields correspond to the signature of
the same large-scale structure, or whether there are structures of different sizes that
are formed by the temperature and the vertical velocity components. The results in the
current study and in our prior work (Sakievich et al. 2016) support the conclusion of
Krug et al. (2019) that ¢ and u, correspond to the same structure for several reasons: 1)
temporal dynamics of the low-order Fourier modes of temperature and vertical velocity
is highly correlated, which illustrates that they undergo through the same processes of
transition and reorganization testifying their link to the same large-scale structure, 2)
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the imprint of the low-order modes on the spatially and temporally-averaged spectra
of ¥ and w, is similar and seems to produce a clear peak at k = 2 wavenumber,
albeit this peak is stronger in temperature than in vertical velocity, 3) visualizations
in our previous work (Sakievich et al. 2016) show a high-degree of coherence between
the spatial location of the thermal updrafts and downdrafts, and the velocity roll cells
identified by a visualization of the 3D velocity field, illustrating that both temperature
and velocity fields are effected by the the same large-scale organization. Similar to the
study of Krug et al. (2019), we also find that there are more small-scale fluctuations in
the vertical velocity rather than in the temperature field, manifested by the fact that
the amplitudes of the higher-order modes are larger for the vertical velocity than for the
temperature manifested in figure 13. This abundance of small-scale energy contribution
in the vertical velocity is responsible for the shift of the spectral peak towards higher
frequencies compared to the temperature in the works of Pandey et al. (2018); Stevens
et al. (2018); Krug et al. (2019). Similarly, it results in weakening of the k = 2 peak in the
volume integrated spectra of u, in the current work (see figure 3), and eliminating it from
the local (in 7, z) azimuthal spectral plots (see figure 20). Again, commensurate with the
findings of Krug et al. (2019), we see a good collapse of the spectra of the temperature in
the low-order modes across the vertical planes in the RBC cell (also showing a clear k = 2
peak across all vertical locations), while the vertical velocity collapses in the intermediate
scales, but not in large and small scales. This striking similarity of the current data and
the results of Krug et al. (2019) testifies of the similar principles of a spatial organization
of structures between the current I' = 6.3 case and the superstructures found in the
larger domains.

While the length scales, time scales, and the principles of spatial organization similar to
the properties of the superstructures have been observed in the current work, cylindrical
geometry and the side wall boundary conditions in the current I" = 6.3 case do influence
the organization of structures observed in this study. It is mostly manifested via the fact
that the structures organize themselves in line with the azimuthal Fourier modes. It also
influences the length scales in the core of the cylindrical cell, which do not correspond to
the same-size motions, but rather to the same wavenumber motions, which shortens the
physical length scales as one tends toward the center of the cell (see figure 20). Similar
azimuthal mode organizations have been observed for large-scale-motions (LSM’s) and
very-large-scale-motions (VLSM’s), otherwise known as superstructures, in pipe flow. For
example, studies of Bailey & Smits (2010); Baltzer et al. (2013) showed that VLSM’s
have large streamwise scales that concentrate around a single azimuthal mode, with
the dominant azimuthal mode being k = 3 in both studies. It remains to be answered
whether this concentration of energy towards the same azimuthal modes found in pipe
flow and in the current RBC case has far-reaching consequences, or whether it is a pure
coincidence, given that the k£ = 2,3 modes are likely emerged in the current study due
to a spatial fit of the natural RBC superstructures into the given cylinder size. Further
studies of the mode dynamics in cylindrical and other shape domains in the turbulent
Rayleigh-Bénard convection with even larger aspect ratios would be of interest in this
respect, so that the principles via which superstructures are organized geometrically and
are evolved dynamically can be investigated with a minimum influence of the confining
geometry.

Finally, since only a single regime of Ra and Pr numbers has been investigated in the
current study, it naturally leads to a question: what is expected to change, and what will
likely stay the same, for different parameter values? It can be said almost for certain,
that the time scales when defined with respect to a free-fall time will change when other
Ra and Pr are considered (Pandey et al. 2018). However, the mode destabilization time
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scales as defined through the eddy turnover time, see equation (5.3), and the role of the
aspect ratio and the mode number in the global structure dynamics across different Ra
and Pr is expected to be robustly represented by this scaling. The reason is that the
dependence on Ra and Pr is already encoded in the rms value of the turbulent velocity
fluctuations < u? >y+, while the role of the individual mode dynamics with respect to
< u? >y is solely reflected by the mode circulation length, which is only a function of
k and I'. Indeed, a robust scaling of ~ 2 eddy turnovers for the duration of the LSC
reorientation process in I = 1 cells was observed, at least, for the ranges of Pr numbers
from 0.029 (Ziirner et al. 2019) to 0.7 (Mishra et al. 2011) to 4.4 (Brown et al. 2005).
The time scale of the azimuthal meandering (slow azimuthal rotation) is likely to change
with Pr, both in free-fall and eddy turnover scaling, favoring longer rotation time scales
at either very low or very high Pr, due to a large difference between viscous and diffusion
time scales (Pandey et al. 2018; Ziirner et al. 2019). A spatial organization of the modes in
a container of a given size will also likely change with Ra and Pr. This is due to a different
length scales of the favored structures observed at different Ra and Pr regimes (Hartlep
et al. 2003; Pandey et al. 2018). Due to a difference in length scales, the mode numbers
which will settle in a given container, will be different, which will determine the overall
appearance and dynamics of the global structure. Additionally, apart from the length
scales, a striking difference of the spatial convection patterns at different Ra and Pr
numbers might also play a role. For example, at a low Pr, the Rayleigh-Bénard convection
was found to be dominated by rolls, or elongated “rivers”, while at high Pr, the convection
pattern takes a form of cells connected by ridges (Malevsky 1995; Breuer et al. 2004;
Pandey et al. 2018). Interestingly, the current Pr = 6.7 case is near a transitional regime,
where the convection pattern changes from rolls to cells, and, according to Hartlep et al.
(2003), both styles of convection may coexist. It would be interesting to explore if the 3
to 2 mode transition observed here and the disappearance of the central column (k = 0
mode) might be related to a potential switch in a convection pattern.

Extension of the presented study to other parameter regimes and other aspect ratios
would be a natural important direction for a future work. It must be realized, however,
that the time scales of interest, considering the findings of the current study and similar
works, are extremely long. For example, it would be of interest to increase the temporal
duration of the current DNS by another decade, to observe even longer-term dynamics of
the structure which we just started to uncover, such as: will the structure be destabilized
again, and how a newly formed structure will look? Will it transition back to a 3 mode?
Will a central column reappear or reverse its direction? Will a structure rotate around
a full circle? Similar long-time studies must also be performed at different I', Re and
Pr regimes. In this context, it would be important to evaluate whether other, lower-
fidelity, but computationally more efficient approaches, such as Large Eddy Simulations,
would be able to predict the important dynamical events in Rayleigh-Bénard convection.
While formulation of reliable subgrid closure models for turbulent heat transfer problems
remains to be challenging, the current physical problem presents a clear motivation and
the need for these efforts for be undertaken on a large-scale basis.
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Appendix A. Symmetry Transformation

In this section, a symmetry transformation &lu(r,0, z,t)] proposed in Adrian et al.
(2017) is described. The transformation defines a new complementary flowfield con-
structed according to the following rules:

Slur(r, 0, 2,t)] = up(r,0,2¢ + 24 — 2,t)

Glug(r, 0, 2,t)] = up(r,6,2: + zp — 2,t)
Sluy(r,0,2,t)] = —u,(r,0,2: + zp — 2,t)
S(r,0,z,t)] =9+ 39y —I(r,0,2: + 2 — 2,1)

Here, the subscripts ¢t and b refer to the values at the top and the bottom boundaries,
respectively. What this transformation essentially does is that it converts the hot plumes
rising from the bottom into the cold plumes descending from the top, while recasting
the velocity field accordingly. The transformation preserves the governing equations for
the Rayleigh-Bénard convection exactly. It was shown in Adrian et al. (2017) that if
the transformation given by equation (A 1) is applied to an instantaneous flowfield, the
simulations run with the transformed flowfield as the initial conditions will produce
statistics that is complementary (in terms of the problem symmetries) to the statistics
of the original field. Le., if the original field’s statistics had a bias due to preferential
large-scale updrafts, the simulations starting from a transformed field will give statistics
commensurate with the prevalence of the downdrafts (over the same run-time). The sum
of the two statistics produced an essentially unbiased statistics in a very good agreement
with carefully conducted long-time experiments (Fernandes 2001; Fernandes & Adrian
2002). Since the transformation defined by equation (A 1) commutes with the azimuthal
and time averaging operators, in this paper, instead of running new simulations starting
with the transformed field, we are applying a symmetry transformation onto a computed
< >4+ averaged field directly, so that the sum of the two statistics presented in Section 3
is unbiased to the extent possible given the finite time of the simulations. Note that the
transformation described here is geared towards removal of a bias due to a formation of
the preferential thermal plumes and the associated large-scale vertical motions. There
are other potential symmetries in the RBC problem, for example, associated with a
preferential direction of an azimuthal rotation of the structure in the RBC cell, which
the current transformation would not be able to mitigate.

(A1)
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