The Minos Computing Library: Efficient Parallel Programming
for Extremely Heterogeneous Systems

Roberto Gioiosa
Pacific Northwest National Lab
Richland, WA, US
roberto.gioiosa@pnnl.gov

Jeffrey S. Vetter
Oak Ridge National Lab
Oak Ridge, TN, US
vetter@ornl.gov

Abstract

Hardware specialization has become the silver bullet to achieve
efficient high performance, from Systems-on-Chip systems, where
hardware specialization can be “extreme”, to large-scale HPC sys-
tems. As the complexity of the systems increases, so does the com-
plexity of programming such architectures in a portable way.
This work introduces the Minos Computing Library (MCL), as
system software, programming model, and programming model
runtime that facilitate programming extremely heterogeneous sys-
tems. MCL supports the execution of several multi-threaded ap-
plications within the same compute node, performs asynchronous
execution of application tasks, efficiently balances computation
across hardware resources, and provides performance portability.
We show that code developed on a personal desktop automati-
cally scales up to fully utilize powerful workstations with 8 GPUs
and down to power-efficient embedded systems. MCL provides up
to 17.5x speedup over OpenCL on NVIDIA DGX-1 systems and
up to 1.88x speedup on single-GPU systems. In multi-application
workloads, MCL’s dynamic resource allocation provides up to 2.43x
performance improvement over manual, static resources allocation.

CCS Concepts « Computer systems organization — Parallel
architectures; « Computing methodologies — Parallel pro-
gramming languages;

Keywords Heterogeneous systems, system software, task-based
runtime, GPU, asynchronous runtime

ACM Reference Format:

Roberto Gioiosa, Burcu O. Mutlu, Seyong Lee, Jeffrey S. Vetter, Giulio
Picierro, and Marco Cesali. 2020. The Minos Computing Library: Efficient
Parallel Programming for Extremely Heterogeneous Systems. In General
Purpose Processing Using GPU (GPGPU °20), February 23, 2020, San Diego, CA,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3366428.
3380770

1 Introduction

The recent slowdown of growth in realized serial and multi-core
performance of commodity microprocessors has forced vendors
and users to consider more specialized architectures, including

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

GPGPU 20, February 23, 2020, San Diego, CA, USA

Burcu O. Mutlu
Pacific Northwest National Lab
Richland, WA, US
burcu.mutlu@pnnl.gov

Giulio Picierro
University of Rome Tor Vergata
Rome, Italy
giulio.picierro@uniroma2.it

Seyong Lee
Oak Ridge National Lab
Oak Ridge, TN, US
lees2@ornl.gov

Marco Cesati
University of Rome Tor Vergata
Rome, Italy
cesati@uniroma2.it

GPUs, FPGAs, and systems-on-a-chip (SoCs) [3, 9, 17]. Experts
predict that this trend will continue into the foreseeable future [27],
with even more specialized architectures, such as machine learning,
neuromorphic, and quantum accelerators. In fact, the extent of
heterogeneity in other areas, such as embedded systems and phones,
can be extreme: SoCs include dozens of heterogeneous components.
High-performance computing (HPC) systems have quickly evolved
from systems with one accelerator (e.g., Cray Titan) to systems with
multiple devices (e.g., IBM Summit). Although supercomputers are
evolving in many areas, most of the complexity in next-generation
large-scale installations is expected within a single node.

This “extreme” heterogeneity brings many challenges in terms
of productivity, portability, and performance for system software,
programming systems, and applications. In order to address this
complexity, we hypothesize that new programming abstractions
and runtime systems must be developed to program and execute
applications on these heterogeneous systems. The programming
abstractions must be rich enough to represent important applica-
tion control flows and data structures, while hiding architecture
complexity and facilitating performance portability. Meanwhile,
the runtime system must provide a new level of support for dis-
covering and scheduling heterogeneous resources that sometimes
offer a performance difference of an order of magnitude or more
for a given computation. Poor scheduling decisions at runtime on
heterogeneous platforms may devastate overall performance.

The abundance of specialized hardware resources also brings
new opportunities. For example, multiple applications can be co-
scheduled within a single node (e.g., scientific simulation and in-situ
data analytics), reducing the cost of moving data to/from perma-
nent storage before the next stage of the workflows. The same
supercomputer can be used to efficiently execute applications from
different domains (e.g., scientific simulations, data analytics, or ma-
chine learning), amortizing the acquisition cost of a large system.
New runtime systems and programming models need to be de-
signed to take advantage of such new opportunities. Very often the
specific hardware resource to utilize is hard-coded in the program
source (e.g., platform 0, device 0 to indicate the first and only GPU).
Scaling these applications to compute nodes with multiple devices
requires manual modification of the code. Even worst is the case of
co-scheduling applications independently developed by different
users. Coordinating access to hardware resources between such
applications is extremely problematic, if not unrealistic.

GPGPU ’20, February 23, 2020, San Diego, CA, USA

In this paper, we introduce the Minos Computing Library (MCL),
a novel runtime system aimed at providing a new level of capabil-
ity for eflicient parallel programming of extremely heterogeneous
systems. MCL consists of a node-level scheduler, a programming
model, and a programming model runtime. The MCL scheduler
orchestrates and coordinates access to computing resources from
multiple, concurrent applications. The programming model pro-
vides a task-based programming abstraction that simplifies parallel
programming and hides low-level architectural details. The MCL
runtime supports asynchronous execution of tasks submitted by
threads within an application and by multiple applications concur-
rently running in the system. MCL increases performance porta-
bility by transparently scaling applications to systems that feature
heterogeneous resources and by enabling programmers to develop
code on personal desktop computer and execute on large work-
stations or HPC compute nodes. MCL is designed to manage and
schedule CPUs, GPUs, FPGAs, and SoCs efficiently within a com-
pute node. Our proposal provides scalability and high throughput
for co-scheduled applications at a high level of abstraction while
respecting dependencies among tasks. Our results show that appli-
cations can efficiently scale from a desktop AMD GPU to a DGX-1
workstation with 8 NVIDIA Volta GPUs, automatically providing
up to 17x speedup over single-GPU without any code modification.
We envision MCL as a back-end of “domain-specific” languages,
such as OpenMP [8] or TensorFlow [1]. When paired with a dis-
tributed programming model, such as MPI, MCL offers a complete
solution for programming heterogeneous supercomputers.

The goal of this work is to introduce MCL design, key ideas, and
programming model and to demonstrate MCL portability across
a wide range of systems and architectures. We perform a detailed
sensitivity analysis of representative benchmarks in various execu-
tion scenarios across the tested systems. Specifically, we make the
following contributions:

1. describe MCL’s design goals and implementation, highlight-
ing the asynchronous programming model, the scheduling
framework, and the programming abstraction.

2. demonstrate performance and scalability across multiple
platforms, including an NVIDIA DGX-1 workstation and an
ARM/GPU embedded system. We show up to 17x perfor-
mance improvement on the DGX-1 systems and up to 1.8x
on a single-GPU compute node compared to OpenCL.

3. show that MCL can fully utilize the hardware resources in
the system and provide automatic load balancing.

The rest of this paper is organized as follows: Section 2 describes
MCL architectural design and implementation; Section 3 details
our hardware and software test-beds; Section 4 demonstrates MCL
scalability, flexibility, and performance improvement; Section 5
describes related work; finally, Section 6 concludes this work and
suggests future research directions.

2 MCL Design and Implementation

The Minos Computing Library (MCL) is a system software library, a
programming model, and a programming model runtime designed
for extremely heterogeneous systems, i.e., systems that feature dif-
ferent classes of resources (e.g., GPUs, FPGAs, CPUs) and multiple
devices within each class. MCL aims at simplifying programming
heterogeneous systems and increasing performance portability
while providing high performance and system utilization through

R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati

OO KR

Figure 1. Example of hardware/software stacks based on MCL.

Applications

Domain-Specific Language

Hardware

asynchronous execution, intelligent scheduling, and efficient re-
source allocation. MCL supports multiple applications running
concurrently on the same compute node, effectively allocating hard-
ware resources and dispatching tasks to computing devices.

MCL is not meant to replace current programming models used
in high-performance computing, data analytics, or machine learn-
ing (ML). Rather, MCL is a back-end that enables higher level pro-
gramming models to efficiently leverage heterogeneous hardware
resources. Figure 1 shows examples of possible software stacks. We
envision that future heterogeneous systems will have enough hard-
ware resources to accommodate multiple applications co-scheduled
in the same compute node. In HPC, this is desirable to minimize
the cost of moving data to permanent storage and back. For ex-
ample, scientific simulations and in-situ data analytics or a ML
framework could be co-scheduled to avoid storing simulation re-
sults to remote storage and then move them back for data analysis.
In other domains, such as autonomous driving, multiple, indepen-
dent, and competing applications need to be efficiently executed
on heterogeneous SoC hardware.

We assume that each application is written independently, po-
tentially using different high-level programming languages. In Fig-
ure 1, for example, Al and A2 are implemented using OpenMP,
while A3 is implemented using TensorFlow. In general, we consider
the high-level languages above MCL as domain-specific languages
(e.g., OpenMP is a language for the HPC domain, while TensorFlow
is a language for the ML domain). MCL enables programmers to im-
plement their workflow applications independently using domain
languages while the runtime efficiently and transparently manages
heterogeneous hardware resources.

MCL consists of several components: a scheduler that orches-
trates tasks and manages hardware resources, an asynchronous
runtime, a well-defined and compact application programming in-
terface (API), and a set of tools to analyze and debug applications.
The scheduler is a persistent, external process that orchestrates
task executions from multiple applications. The MCL runtime is
a dynamic library linked to each application that implements the
MCL APIs and asynchronously executes tasks on behalf the user
threads. The MCL runtime is process-safe and thread-safe, thus
several multi-threaded applications can co-exist on the same com-
pute node at the same time. The debugger, tracer, and statistic
engines are implemented both in the MCL scheduler and runtime
and provide information, among others, about the tasks” execution,
resource utilization, and load balancing.

Currently, MCL uses OpenCL [26] as compatibility layer but
raises the level of programming abstraction, hides architecture-
specific details to programmers, performs automatic load balancing,
and supports asynchronous task execution. !

Not all OpenCL functionalities are currently supported in MCL.

MCL

mcl_exec (TO0)
mcl_wait (TO)
mcl_exec(T1)
mcl_exec (T2)
mcl_wait(T2)
mcl_exec (T3)
mcl_exec (T4)
mcl_wait(T3,T4)
mcl_exec (T5)
10. mcl_wait all()
11. mcl_exec(T6)
12. mcl_wait(T6)

WOIOUBWNR

Figure 2. Task dependencies.

2.1 MCL Programming Abstractions

Although we envision MCL to be used as back-end for high-level
programming languages, programmers can implement parallel
applications directly with the MCL programming model. MCL
provides a task-based programming abstraction similar to other
task-based programming models, such as Cilk [6], OpenMP [8],
OmpSs [7], or StarPU [2]. MCL task programming abstraction is
closer to Cilk, in that independent tasks can be spawned recursively,
and there are synchronization points that are not necessarily at
loop boundaries. However, MCL tasks are coarse-grained while
Cilk tasks are fine-grained, in the sense that MCL tasks exploit data
parallelism while Cilk tasks are sequential. Also, MCL provides both
global/local synchronization primitives, like the sync construct in
Cilk used to block until all previously spawned have completed,
and point-to-point synchronization mechanisms. The latter allows
users to express data- and control-flow dependencies among tasks.
MCL task programming abstraction provides programmers with
an interface to “implement” an application directed-acyclic-graph
(DAG). Figure 2 shows a simple DAG example and the sequence
of task spawn (mc1l_exec()) and point-to-point (mc1_wait()) and
global (mc1_wait_all())synchronization pseudo-operations. Equiv-
alent non-blocking interfaces (ncl_test()) and mcl_test_all())
are also provided. This simple example shows that a programmer
can easily express a dependency between task T5 and tasks T3
and T4, indicating that task T5 should not start before T3 and T4
have completed. As we will explain in the next section, the MCL
runtime executes tasks asynchronously. The mc1_exec() functions
returns immediately after setting up a task for execution, thus the
control flow returns quickly to the caller. Section 4 shows that this
approach increases the task injection rate and overall performance.

2.2 MCL Asynchronous Execution Model

Application tasks are executed asynchronously by the MCL runtime.
When a task is created, a task handle is associated to the task and
returned to the user. Programmers can query the status of a task
(e.g., RUNNABLE, EXECUTING, TERMINATED, FAILED) by examining
the corresponding task handle. The handle is also used to implement
task dependencies and to set task’s information (Table 1).

When a task is submitted, the MCL runtime sends a scheduling
request to the MCL scheduler, as shown in Figure 3. The control
returns immediately to the user program, which can submit other
tasks or perform other work. The MCL scheduler decides when to
execute a task and where it should be dispatched. As explained in
the next Section, the MCL programming model does not allow users

GPGPU ’20, February 23, 2020, San Diego, CA, USA

1

Dispatch sk
SCH | >
[0 Application
[T scheduter
[Worker tread

Figure 3. An example of MCL execution flow.

to indicate a specific resource device, such as GPU3, but only a class
of devices. Eventually, the scheduler reserves hardware resources
and dispatches the task to a specific device. It, then, sends an active
message back to the original application. The task is executed in
the context of the user application by MCL workers, parallel thread
created by the MCL runtime at initialization time. MCL workers
are in charge of executing active messages, off-loading computa-
tion to heterogeneous resources, checking the status of each task,
and returning a task execution error code to the MCL scheduler.
Executing tasks in the context of the application, rather than in the
context of the MCL scheduler, eliminates the necessity of copying
data back and forth between application and scheduler.

As Figure 3 shows, task execution is deferred to a later point
in time when hardware resources are available and the sched-
uler has selected the task for execution. Programmers can use the
mcl_wait_all() and mcl_wait() to force the application thread
to block until specific tasks have completed their execution.

MCL is a back-end programming model and runtime. It allows
programmers and high-level domain languages to express tasks de-
pendencies, but does not automatically determines data or control-
flow dependencies. This design choice has been made for two rea-
sons: first, to maintain the low-level runtime slender and efficient;
second, because some of the information available to compilers
and domain-specific languages are not available at MCL level. We
envision that a domain-specific compiler and language can be used
to determine task dependencies.

2.3 MCL Scheduling Framework

Designing efficient task scheduling algorithms is difficult and may
require domain information. Many scheduling algorithms have
been proposed in the literature, from random work stealing in Cilk
and static/dynamic task scheduling in OpenMP, to the completely
fair scheduler (CFS) used in modern Linux OS kernels. Task schedul-
ing is even more complicated in the context of MCL, which is meant
to facilitate porting and co-scheduling applications from different
domains, each with its own characteristics and assumptions. Rather
than developing a “holistic scheduler” that performs reasonably
for all domains, we developed a scheduling framework in which
developers can plug in their own scheduling algorithms, taking
advantages of domain-specific knowledge and requirements. For
example, a scheduler for self-driving cars may employ priorities to
ensure that critical tasks meet their hard real-time deadlines, while
a scheduler for the OpenMP runtime may consider that all tasks
have the same priority, reducing design complexity.

GPGPU ’20, February 23, 2020, San Diego, CA, USA

Table 1. MCL APIs

[Name [Description [Return |
mcl_init(nworkers, flags) Initialize MCL library Error
mcl_finit() Finalize MCL library Error
mcl_task_create() Create a new task Handle
mcl_task_set_kernel(hdl,src,name,nargs) Set task kernel Error
mcl_task_init(src,name,nargs) Create and initialize task Handle
mcl_task_set_arg(hdl,id,addr,size,flags) Set task argument Error
mcl_exec(hdl,pes,lpse, flags) Submit a task for execution Error
mcl_wait(hdl) ‘Wait termination of a task Error
mcl_test(hdl) Test termination of a task Status
mcl_wait_all()) Wait termination of all tasks Error
mcl_hdl_free(hdl) Release handle Error
mcl_dev_getn() Return the number of resources | Error
mcl_dev_info(id, dev) Provide device characteristics Error

Developers can implement sophisticated scheduling algorithms
that leverage domain knowledge. MCL provides an application bi-
nary interface (ABI) which consists of a set of methods that need to
be implemented by each scheduling algorithm. These include ini-
tialization/finalization of the algorithm data structures, the next()
method to select the next task to dispatch, and the put () method to
remove a completed task. Moreover, each algorithm can implement
specific data structures, from simple FIFO queues to complex red-
black trees, to queue runnable tasks. As an example and without
loss of generality, in this work we implemented a FIFO scheduling
algorithm under resource constraints. New tasks are queue in a
general FIFO queue on the scheduler side. The next () method ex-
tracts the first task from the list and verifies that there are available
resources. The task is scheduled if there are enough resources (mem-
ory and processing elements) available, otherwise the next task
in the queue is analyzed. Although this algorithm is a best-effort
implementation, Section 4 show promising results. Moreover, this
best-effort implementation introduces negligible runtime overhead,
which allows us to understand all other MCL sources of overhead.

We have taken a similar approach for the load balancing algo-
rithm. In many cases, a two-level, round-robin algorithm works
well to balance the load among device classes and among the de-
vices in each class. However, since heterogeneous devices may be
very different from one other, more sophisticated algorithms may
achieve better performance. For example, one may want to dis-
tribute more work to GPU-class devices than CPU-class devices
because of the larger number of processing elements, introducing
some imbalance between the two classes but potentially achieving
higher performance. Scheduling and load balancing frameworks
are de-coupled but cooperate to achieve efficient resource manage-
ment and fair scheduling. In this work, we paired the scheduling
algorithm with a two-level round-robin algorithm that balances the
load across classes first and then among devices of the same class.

2.4 MCL Programming Interface

MCL provides a compact set of application programming interface
(APIs) through which programmers can create, execute, and check
the status of a task. Compared to OpenCL, the list of MCL APIs is
considerably shorter. This is intentional, as the user is not required
(nor allowed) to specify architectural details, such as which GPUs
should be used to execute a task. Table 1 shows the MCL API
names, a brief description, and the return value. Functions are
divided into classes: the first class (nc1_init() and mcl_finit())
includes utility functions to initialize and finalize MCL. Applications
are required to insert these functions to register/de-register with
the MCL scheduler before submitting any tasks for execution.

R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati

Table 2. Experimental Test-beds

[System [[Type PEs Mem Dev |
NVIDIA Xavier ARM Cortex A57 8 16 1
NVIDIA Volta 512 - 1
Apple iMac Pro Intel Xeon W-2140B 16 32 1
ATI Radeon P Vega 14,336 8 1
GPU Compute node Intel Xeon E5-2680 20 768 2
NVIDIA Tesla P100 3,584 12 8
NVIDIA DGX1 V100 Intel Xeon E5-2698 20 256 2
NVIDIA Tesla V100 5,120 16 8

The second class consists of functions to setup tasks, while the
third class includes functions to submit and monitor the execu-
tion of a task. A task is created through the mc1l_task_create()
function, which returns a new and unique task handle. The han-
dle represents the task in the application space. Programmers can
query the status of a task, or check whether or not the task has
executed correctly, by monitoring the appropriate task handle.
mcl_task_set_kernel() and mcl_task_set_arg() are used to
setup the task’s kernel and arguments, respectively. The first func-
tion takes the source code, the name of the kernel, and the number
of parameters. mc1_task_set_arg() takes the address and the size
of argument id, as well as a set of flags that can be used to indicate
whether the argument is an input, an output, an input/output, or
whether is a scalar value or a buffer. Scalar values are passed by
value to the MCL runtime, while buffers are passed by reference.
This avoids expensive memory copies for large buffers between
application and library space.

mcl_exec() submits a task to the MCL scheduler. Programmers
can pass a set of flags that indicate which class of resources they
want to use for the execution of the task (e.g., MCL_CPU, MCL_GPU,
MCL_ANY). Specifying MCL_CPU or MCL_GPU poses a strict constraint
to the MCL scheduler on the execution of a task, and it is meant
for those cases where the programmer is certain that a class of
resources is better suited for executing the task. Programmers can
specify softer constraints by using MCL_ANY with a preference (e.g.,
MCL_FAV_GPU). This indicate to the MCL scheduler that the task
can be executed on any resource but it would be better to execute
it on a GPU-class resource.

mcl_exec() is not blocking and returns immediately after check-
ing possible errors. Programmers can, thus, continue the execution
and submit more tasks, perform other computation, or prepare the
next input buffers. Note that programmers are not free to release
input buffers after a call to mc1_exec() and until the task has been
completed. In fact, the asynchronous nature of MCL implies that
task execution is deferred to an unpredictable time in the future.
Users can check the current status of the task by querying the task
handle (see Figure 3). mc1_test() and mcl_wait() check the ter-
mination of a task. The difference between the two functions is that
mcl_wait() blocks until the task has terminated. mc1_wait_all()
is a variant of mcl_wait() that blocks until all submitted tasks
have completed. Most API calls return an error code that expresses
whether the function has completed correctly or why it has failed.

3 Experimental Environment

This section describes the software and architecture environments
used for the experiments presented in the next section. To demon-
strate MCL portability and adaptability, we used a variety of differ-
ent heterogeneous platforms, ranging from an embedded system

MCL

all the way up to powerful workstations. Table 2 lists the platforms
used in this work and their heterogeneous characteristics.

The Xavier system is a power efficient system equipped with an
8-core ARM processor, a Volta GPU with 512 CUDA cores, and a
16GB of high-bandwidth on-chip memory (HBM) in a single SoC.
NVIDIA does not support OpenCL on embedded platforms, hence
we used the Portable Computing Library 2 (POCL) version 1.4 [12]
with LLVM 8.0 to access the ARM cores as OpenCL devices. MCL
and all benchmarks are compiled with GCC 4.8.

The Apple iMac Pro system is a desktop system equipped with
one 16-core Intel W-2140B processor and one 14,336-core ATI
Radeon GPU. MCL and all the benchmarks are compiled with Apple
LLVM compiler version 10.0.0 and linked against the Apple OpenCL
library, compliant with OpenCL 1.2.

The NVIDIA DGX-1 V100 is a powerful workstation developed
by NVIDIA primary for machine and deep learning workloads.
The system consists of two 20-core Intel Xeon E5-2698 processors
attached to 256 GB of DRAM main memory. Eight NVIDIA Tesla
V100 (Volta) are connected together through an NVLink bus [28].
Each GPU consists of 5,120 CUDA cores connected to 16 GB HBM
stack. MCL and all the benchmarks are compiled with GNU GCC
5.4.0 and NVCC from the CUDA 9.1 SDK.

Finally, the GPU compute node is a traditional HPC compute
node equipped with an NVIDIA P100 with 12GB of on-board mem-
ory and interconnected to Intel x86 processors through PCle bus.
The system features 768 GB of DRAM memory. We use the NVIDIA
OpenCL library for the NVIDIA GPUs and POCL version 1.4 for
the CPU sockets. POCL is supported by LLVM 8.0.

The tests performed in this paper are based on a double matrix-
matrix multiplication (DGEMM), which serves as the basic block of
many scientific and ML applications. This test is representative of an
application that performs a large matrix-matrix multiplication and
divides the work in T tiles of size NxN. Unless otherwise specified,
the execution time reported is taken between the time the first task
is submitted and the time the last task has been executed (we do
not account for the initialization time). The results reported in the
next section are the average of ten runs.

The benchmark implementations do not change across platform.
The MCL implementations naturally scale on each system and use
all available resources. The MCL scheduler is in charge of schedul-
ing tasks within each class of resource, or across all classes if the
user has so specified. The OpenCL implementation is a “best-effort”
implementation in the sense that kernels are submitted to the device
queue as long as there are slots available in the OpenCL queue, after
which the benchmark blocks. Buffers are properly managed in order
to allow concurrent execution of multiple kernels, and just-in-time
(JIT) compilation of the GEMM kernel is cached to reduce run-
time execution overhead. However, we have not implemented any
load balancing algorithm nor a dynamic scheduler that automati-
cally discovers the available resources and effectively dispatches
tasks. Although it is certainly possible to implement a sophisticated
OpenCL benchmark, our goal is to compare a benchmark that has
comparable programming complexity, and the current implementa-
tion of the OpenCL GEMM benchmark is already twice the size of
the MCL implementation.

The MCL version is much simpler than its OpenCL counter part
and about half the size. Most of the host code for parsing arguments
and computing metrics is shared between the two implementations.
Additionally, the MCL version allows the user to specify the number

GPGPU ’20, February 23, 2020, San Diego, CA, USA

N OCL B MCL Sync BB MCL tw CIMCL2w [CCOIMCL4w HEEEEMCL 8w HEES MCL 16w

2

1 = - - (- - - —

05

Throughput Speedup w.r.t. OCL

64/4096 1024/512
Size/Tasks

Figure 4. MCL performance compared to equivalent OpenCL im-
plementation on NVIDIA Pascal P100 (higher is better).

of worker threads and whether the execution should be synchro-
nous or asynchronous. Programming in MCL is much easier than
OpenCL. There is no need to specify which device should be used
when submitting tasks (as opposed to specifying the OpenCL device
queue), nor to implement load balancing algorithms and resource
discovery. Not only the MCL code is shorter and more readable,
it also does not include architecture-specific information on the
target device.

4 Experimental Results

This section evaluates MCL performance compared to equivalent
OpenCL implementations on a variety of systems and scenarios.
We highlight the benefits of using MCL and the MCL program-
ming model and show how MCL scheduler adapts to the available
hardware resources and achieves excellent utilization even with
small tasks. This is done transparently to the user, which greatly
increases program and performance portability. Our goal is to show
MCL performance and flexibility across a variety of systems and
scenarios. To reduce the number of experiments, we focus on one
kernel that serves as the base of many scientific and ML applica-
tions. To make a fair comparison, we use the exact same OpenCL
kernels code for both the OpenCL and MCL implementation.

MCL Performance Analysis In the first set of experiments, we
analyze the overhead introduced by MCL over OpenCL when using
similar hardware resources. The goal of this test is to evaluate MCL
scheduling overhead, the parallelism exploited by the MCL workers,
and the benefits of asynchronous execution. We conduct these tests
on the GPU compute node platform, as this system only features
one high-performance GPU, thus both OpenCL and MCL will use
the same hardware resources.

Figure 4 shows MCL performance with respect to OpenCL (first
bar) in terms of throughput (tasks executed/s). In order to highlight
runtime overhead we perform tests with small and medium tasks.
Runtime overhead is relatively higher with small computational
tasks where the amount of computation is not enough to amor-
tize the cost of moving input data to the device, setup the kernel
execution, and move output data back to main memory.

We evaluate different scenarios in these experiments. In the first
scenario, we configure MCL to execute synchronously and with
only 1 worker thread.This means that no new task is submitted until
the preceding task has terminated and that MCL cannot leverage the

GPGPU ’20, February 23, 2020, San Diego, CA, USA

parallelism provided by additional workers. This scenario restricts
MCL’s abilities and forces MCL to operate similar to the OpenCL
version of the benchmark. As the second bar (MCL Sync) in Figure 4
shows, MCL synchronous performance is close to OpenCL. For
larger tasks (1,024x1,024), where the execution time is dominated
by computation, MCL performs slightly worse than OpenCL. For
small tasks (64x64) where the execution time is dominated by data
movement, MCL performs slightly better than OpenCL. This is
due to the implicit parallelism introduced by the MCL workers:
Even with one worker, the application thread and the MCL worker
execute in parallel.

The next five bars on Figure 4 represent scenarios in which MCL
executes tasks asynchronously with varying number of worker
threads. When employing asynchronous execution, MCL does an
excellent job at hiding the latency of runtime scheduling and data
movement. More tasks can be dispatched per unit of time, hence,
more tasks can be executed concurrently. For small tasks, MCL
achieves 1.45x, 1.52x, 1.67x, 1.88x, and 1.61x speedups over OpenCL
for 1, 2, 4, 8, and 16 workers, respectively. The graph shows that
MCL efficiently hides data movement latency by executing tasks
while moving data for the next computations. Hiding data move-
ment latency is extremely important for small tasks, where data
movement dominates the execution time. Our results clearly show
that OpenCL suffers in this scenario, which means that users have
to manually implement efficient mechanisms to overlap computa-
tion and data movement in the applications. MCL, instead, handles
computation/communication overlap automatically.

For larger tasks, dominated by computation, OpenCL performs
better. In this case, there is enough computation to amortize the cost
of data movement. Although, the importance of overlapping data
movement and computation is lower, MCL performance matches
OpenCL, which indicates that the runtime overhead introduces is
relatively small. We note that using more than 8 MCL workers, on
this system, does not provide additional performance. As the plot
shows, MCL performance with 16 workers is lower than with 8
workers. This happens for two reasons: first, 8 workers are suf-
ficient to saturate the system and fully utilize the GPU. Second,
in addition to the MCL workers, there is one application thread
and two MCL scheduler threads (receiver and scheduler). Using 16
workers induces additional OS context switches among threads.

We remark that, although MCL leverages internal concurrent exe-
cution (Figure 3), both the OpenCL and MCL user benchmarks used
in these experiments are sequential. While it is certainly possible
to implement an OpenCL multi-threaded version, this introduces
further complexity when programming heterogeneous systems, as
discussed in the next section. MCL, instead, leverage the internal
parallelism of the workers and the asynchronous execution while
still allowing programmers to reason in terms of a sequential para-
digm. On the other hand, MCL is thread-safe and process-safe, thus
it is possible to implement a multi-threaded application where each
thread submits MCL tasks, or even a multi-processes application.

In summary, the experiments shown in Figure 4 shows that
MCL asynchronous execution and internal parallelism achieves
considerable speedup (up to 1.88x with a single GPU) over OpenCL,
high system utilization, and excellent overall performance.

System Utilization MCL’s main objective is achieving full sys-
tem utilization and efficient use of heterogeneous computing re-
sources. In this section, we demonstrate that MCL indeed achieves

R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati

——GPU0 —— GPUI GPU2 ——GPU3 —— GPU4 GPUS —— GPUS —— GPU7

Resource utilization
@
g

0 5000 10000 15000 20000 25000 30000 35000

Scheduling event

Figure 5. DGX-1 V100 system utilization running 16k tasks of size
1,024x1,024.

these goals. We use the NVIDIA DGX-1 V100 system for this test,
as this is the system with the largest number of computing devices
and, thus, the most challenging. To collect the necessary data, we
configure MCL to provide execution statistics. In particular, the
MCL scheduler reports the number of available logical processing
elements (PEs) on each device after a scheduling event, i.e., a task
is dispatched to a device or a task previously running on a device
has terminated.

Figure 5 plots the system utilization as a function of time. The x-
axis represents scheduling events while the y-axis indicates utiliza-
tion. Each line in the plot represents a GPU device on the NVIDIA
DGX-1 V100. The plot shows that, as more tasks as submitted by
the application, the utilization of each resource increases until all
PEs on each device have been allocated and the tasks are being
executed. Notice that all the computing devices are fully utilized,
as MCL effectively balances the load across the devices. As tasks
terminate, new runnable tasks are dispatched to the devices with
available PEs until there are no more runnable tasks.

We observed full resource utilization on the other systems as
well, though the non-DGX1 systems only feature one GPU, thus
there is no need to perform any load balancing. In the interest of
space, we only report the most significant case.

Application Performance The graph in Figure 6 compares MCL
and OpenCL performance in terms of throughput (tasks/s) on
the systems described in Table 2. For the evaluation we used the
GEMM application described in the previous section with matrix
size 1,024x1,024 (Figure 6) and and 64x64 (Figure 7), varying the to-
tal number of tasks. Both MCL and OpenCL versions submit tasks
to GPU-class devices. The execution time is taken between the
submission of the first task the time the last task has been executed.

The red and blue lines in Figure 6 show OpenCL and MCL
throughput, respectively, as the number of tasks increases. The
black lines in the plots show the achieved speedup (right y-axis)
of MCL over OpenCL for a certain number of tasks. The plot in
Figure 6a shows that the performance of the OpenCL version flat-
tens already for 64 at 67 tasks/sec for the NVIDIA DGX-1 V100
system. This is because all hardware resources on the first GPU are
used and the OpenCL queue is full. As tasks complete, the OpenCL
runtime submits more work to the GPU, keeping its utilization
around 100% throughout the execution of the application. The MCL

MCL

~@~ OCL Throughput—@= MCL Throughput=@= MCL Speedup

400 8

300 6

Throughput (tasks/sec)
N
IS
dup w.r.t. OCL Thr

100 2

[
[
L
[
q

L x x Ao
2000 4000 6000 8000
Number of Tasks

(a) DGX-1 V100 (GPUs)

~@- OCL Throughput=@= MCL Throughput=@= MCL Speedup

80 T T T r ™2

-

3

o
3 5
© 60 15 D
@ g
0 =
X [~
© P
= o
o AOE 2 2 10
a]
5]
H :
e S
£ 20 053

Q

Q.

»

0 0
200 400 600 800 1000
Number of Tasks
(c) Apple iMac Pro (GPU)

GPGPU ’20, February 23, 2020, San Diego, CA, USA

~@~ OCL Throughput—@= MCL Throughput=@= MCL Speedup

50 2

&
=)

1.5

@
=)

Throughput (tasks/sec)
1F
b
®
dup w.r.t. OCL Thr

N
=3

0.5

=)

. . L Ao
2000 4000 6000 8000
Number of Tasks

(b) GPU Compute node (GPU)

~@~ OCL Throughput=@= MCL Throughput~@= MCL Speedup

8 2
-
3
Qo
i)
96 1.5
8 g
£ (=
[} &
v -1
£ 3]
5 ¢ ' 9
=3 -
5 =
2 3
3 e
= 3
£ 2 053
3
-3
n
0 0
200 400 600 800 1000
Number of Tasks
(d) NVIDIA Xavier (GPU)

Figure 6. MCL throughput (tasks/sec, left y-axis) when executing GEMM tasks with size 1,024x1,024 and varying number of tasks. The right
y-axis reports MCL speedup over OpenCL. In both cases, higher is better.

performance, instead, increases thanks to the ability of the MCL
scheduler to distribute tasks across all available GPU devices. Per-
formance eventually flattens for the MCL version as well when all
GPUs are fully utilized (around 4k tasks) but the achieved through-
put is much higher (about 400 tasks/sec) compared to the OpenCL
version. MCL achieves 6x speedup over OpenCL when submitting
8k tasks on the NVIDIA DGX-1 V100 system. We remark that this
is the same MCL code that runs on a laptop or desktop and that
we have made no additional effort to leverage the eight NVIDIA
V100 GPUs available in this system. The plot in Figure 6 shows
another interesting point: MCL is able to achieve good performance
with a relative small number of tasks submitted to the system. For
example, Figure 6a shows that MCL achieves an average of 368.52
tasks/s (5.40x speedup over OpenCL) already with 512 tasks, which
on a system with eight GPUs means an average of 64 tasks exe-
cuted per GPU. Combined with the result presented in Figure 4, this
excellent performance at small scale demonstrates that 1) MCL run-
time overhead is contained and can be amortized by asynchronous
execution, 2) current MCL scheduler and load balancing algorithms
already provide good performance and load balancing, and 3) MCL
is capable to achieve excellent performance even when the ratio
computation/communication is low, which is a traditionally difficult
point to optimize when running on heterogeneous devices.
Similar results are observed on the other systems. On the Apple
iMac desktop (Figure 6c), the Xavier embedded system (Figure 6d),

and cluster compute node (Figure 6b) (all systems feature only one
GPU), MCL performs similarly to OpenCL, with MCL running a
little faster than OpenCL on the desktop (1.04x speedup). In all
cases, the computation is large enough to saturate the hardware
resources even with 64 tasks.

The experiments in Figure 6 are conducted with large computa-
tional tasks (1,024x1,024 GEMM). With large kernels the overhead
of moving data to/from a device and setting up a kernel for execu-
tion can be amortized by the length of the computation. However,
when the computation is small, such overheads cannot be easily
amortized. Small tasks are common in irregular and/or sparse com-
putations and pose important challenges. Figure 7 shows the same
experiments performed in the previous plots but with 64x64 GEMM
tasks. The results show that, as the computation becomes memory-
bound, MCL greatly outperforms OpenCL. On the compute cluster
node, MCL achieves up to 1.88x speedup compared to OpenCL (Fig-
ure 7b) with 1,024 tasks, before slowing down until 1.73x with 4096
tasks. The results on the Figure 7a show how important is to prop-
erly manage data transfer, computation/communication overlap,
task scheduling, and load balancing on heterogeneous systems with
multiple devices. On the 8-GPUs DGX-1 V100, MCL achieves 17.75x
speedup over OpenCL, reaching up to 17,410.02 tasks/s compared
to 980.68 tasks/s achieved by the equivalent OpenCL implemen-
tation. This super-linear speedup shows the effectiveness of MCL

GPGPU ’20, February 23, 2020, San Diego, CA, USA

~@~ OCL Throughput—@= MCL Throughput=@= MCL Speedup

/—/15

20000

15000

10000

Throughput (tasks/sec)

o
=3
=3
=3

dup w.r.t. OCL Thr

S < S

2000 4000 6000 8000
Number of Tasks

(a) DGX-1 V100 (GPUs)

0

~@- OCL Throughput=@= MCL Throughput=@= MCL Speedup

3000 T T T ™ 5

2500

»
=1
=3
=)

1500

=)
=3
=3

Throughput (tasks/sec)
Speedup w.r.t. OCL Throughput

0
2000 4000 8000

Number of Tasks
(c) Apple iMac Pro (GPU)

6000

R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati

~@~ OCL Throughput—@= MCL Throughput=@= MCL Speedup

6000 5
/.g s
5000
~ 4
[*]
[
g 2
@ 4000 =
x [
[7] o ©- 3
H * 8
5 3000 o
g =
3 2000 Y
2
S 4 E
1
2
1000 s
o i i 1 i S
2000 4000 6000 8000
Number of Tasks
(b) GPU Compute node (GPU)
~@~ OCL Throughput=@= MCL Throughput=@= MCL Speedup
2000 T T - ™5

a
=]
=3

1000

Throughput (tasks/sec)

a
=3
=3

=

Speedup w.r.t. OCL Throughput

o

0
1000 2000 4000

Number of Tasks
(d) NVIDIA Xavier (GPU)

3000

Figure 7. MCL throughput (tasks/sec, left y-axis) when executing GEMM tasks with size 64x64 and varying number of tasks. The right
y-axis reports MCL speedup over OpenCL. In both cases, higher is better.

asynchronous execution and load balancing and their impact on
overall performance.

The other two single-GPU systems (Figure 7c and Figure 7d) do
not show similar results. Although on the Xavier system MCL and
OpenCL perform similarly, this value is far from what observed on
the other systems. A single ARM core does not provide sufficient
ingestion rate for MCL to completely hide data transfer latency
and fully utilize the GPU. On the desktop system, instead, MCL
performs worse than OpenCL. We have analyzed MCL internal
execution events and traces and realized that the Apple OpenCL
libraries is more sophisticated than the other ones used and already
performs some of the optimizations implementd in MCL.

Overall, the results in Figures 6 and 7 show that MCL does not
suffer large slowdown on systems with one GPU compared to
OpenCL implementations thanks to its asynchronous task engine.
On multi-GPU systems, MCL manages the architecture-specific
features, thus user code automatically scales to use all available
resources and automatically provides performance improvements,
without the need of modifying the existing source code.

Multi-application workload Both MCL and OpenCL support
multi-application workload execution, i.e., multiple independent
processes sharing the same pool of hardware devices. However,
OpenCL code must explicitly be designed to avoid hardware con-
tention with other applications, for example if all applications at-
tempt to execute work on device 0. We designed a multi-application

m— OCL mmmmm MCL

Execution Time (Seconds)

08 17 2-6

Application distribution

Figure 8. Multi-application workload overall execution time (lower
is better): 8 processes concurrently submit tasks of different sizes.

workload experiment in which multiple, independent processes sub-
mit tasks of different sizes. Figure 8 shows the results obtained on
the NVIDIA DGX1 V100 system (8 GPUs) when executing eight
processes in parallel. In this experiment there are two type of pro-
cesses: small-task processes submit 8,192 64x64 GEMM computa-
tions while large-task processes submit 512 1,024x1,024 GEMM

MCL

computations. We have timed the number of tasks/process so that
the single-process execution takes about the same time. The pairs
on the x-axis in Figure 8 represent the number of small- and large-
task processes, respectively, e.g., 2-6 indicates that there were 2
processes submitting small computations and 6 processes submit-
ting large tasks. For the OpenCL case, each process is statically
associated to a separate GPU. This means that for the cases 0-8
and 8-0, the load for the OpenCL experiment is perfectly balanced
across the available GPUs. All processes are submitted at the same
time and the the y-axis in Figure 8 reports the total execution time
of the experiments, i.e., the execution time of the last process.

The plot in Figure 8 shows several interesting points. First, the
overall execution time of the OpenCL case increases when increas-
ing the number of processes that submit small tasks. We have per-
formed several additional experiments (not shown here for brevity)
and verified that the contention on the NVLink bus increases signif-
icantly with a higher tasks ingestion rate. This is, obviously, more
evident with a larger number of processes that submit small com-
putations, as the number of tasks submitted per second increases.
Second, we notice that OpenCL and MCL perform similarly for
the 0-8 case (all large-tasks processes), which is consistent with
what shown in Figure 6 for single-GPU systems. Third, overall,
MCL performs better than OpenCL and, in some case, MCL out-
performs OpenCL by a factor of 2.43x (case 7-1). For the case 8-0
(all small-task processes), MCL outperforms OpenCL by a factor
of 2.71x, which is consistent with the results shown in Figure 7.
There are two main reasons that contribute to this performance
improvement. MCL asynchronous execution enables better com-
munication/computation overlap, resulting in higher performance
especially when executing small tasks (see Figure 4). Moreover,
MCL scheduler dynamically allocates computing resources on de-
mand and performs automatic load balancing. This means that 1)
if a process has terminated its execution, that GPU can be used to
execute tasks submitted by other processes and 2) MCL scheduler
may decide to co-schedule tasks submitted by multiple processes
on the same computing resource, possibly leaving enough room
on other GPUs for the execution of larger tasks that, otherwise,
might have to be queued. Finally, we notice that, to the contrary
of the OpenCL case, MCL suffers less from resource contention on
the NVLink bus. As we are conducting experiments on the same
hardware platform, contention on the bus still occurs, but MCL
does a better job at hiding it and removing it from the critical path.

Summary and Performance Portability The experiments in
this section demonstrate that MCL can efficiently leverage hard-
ware devices in heterogeneous systems, balance the load across
such devices, and run on a variety of very different systems, from
small, power-efficient embedded systems, to powerful distributed
workstation. While it is always difficult to quantify portability and
we do not offer a precise metric in this work, we highlight that
in our development model we write MCL applications on a per-
sonal desktop (the Apple iMac). We then re-compile the code on the
other systems and let the MCL manage heterogeneous hardware
resources. Our applications automatically scale on all computing
devices. We also remark that it might be possible to achieve bet-
ter performance than OpenCL, for example using the CUDA [18]
language and runtime. However, using a vendor-specific language
considerably reduces portability, which is one of our main goals.

GPGPU ’20, February 23, 2020, San Diego, CA, USA

5 Related Work

There exist many task-based programming models [2, 4-7, 10, 13-
16, 20-25]. Cilk [6] is a task-focused programming model based on
a fork-join parallelism and a work-stealing scheduler. Threading
Building Blocks (TBB) [11] is a C++ template library that manages
and schedules tasks to be executed in parallel. Both Cilk and TBB
target shared memory systems such as traditional multicore CPUs
and Intel Xeon Phi manycore processors. StarPU [2] targets asyn-
chronous heterogeneous architectures; similar to MCL, applications
written in StarPU submit computational tasks implemented for a
given target device, and StarPU schedules these tasks and handles
necessary data transfers among the target devices. Legion [4] is
a data-centric programming model and runtime system that ex-
presses both locality and independence of program data using logi-
cal regions, from which necessary decision about data placement
and task scheduling is made. On the other hand, MCL offers simple
global/local synchronization primitives, which allow users to ex-
press dependencies between any two tasks. Like other distributed
programming models that use OpenCL or CUDA back-ends, Legion
is orthogonal to MCL. In fact, MCL can be used as back-end of
Legion, enabling users to co-schedule several distributed applica-
tions on the same cluster, with multiple applications within each
compute node. MCL has the distinct capability of allowing several
multi-threaded applications to co-exist on the same compute node.
As shown in our experiments, this is an important point, especially
when applications developed by different programmers need to be
coordinated.

OpenMP [8] is a directive-based programming model, which
consists of compiler directives, library routines, and environment
variables. The directive-based approach in OpenMP allows to in-
crementally parallelize existing sequential programs. OpenMP was
initially designed as an open standard for portable shared memory
parallelization but has recently adopted offloading constructs to
support accelerator-based heterogeneous computing, which may be
a suitable candidate to be used as a front-end programming model
for our MCL program system. OmpSs [7] is a programming model
that extends OpenMP with task-based asynchronous parallelism
supporting data dependencies, targeting heterogeneous architec-
tures. Directive extensions in OmpSs allow to automatically handle
task dependencies and necessary memory transfers between the
host and device. Similar to OpenMP, OpenACC [19] is the first
standardization effort to provide portability across device types and
compiler vendors using directive-based high-level programming.
Both OpenACC and OpenMP can be used to program heteroge-
neous systems, but they are designed as an intra-node programming
model based on the host-accelerator computing model. Therefore,
efficiently utilizing multiple, heterogeneous devices at the same
time can be cumbersome and error-prone. Like most programming
systems, StarPU, OmpSs, OpenMP, and OpenACC target a single
application with exclusive ownership of all hardware resources,
while MCL supports concurrent tasks from multiple applications.

Sycland Intel DPC++/OneAPI are recent efforts to develop single-
source compiler toolchain for C++ code that needs to be executed on
heterogeneous resources leveraging the OpenCL stack. While the
compiler approach greatly simplify writing applications, program-
mers are still required to manage platforms, devices, and queues.
Compared to MCL, applications do not automatically scale on multi-
device systems, there is no support for multi-applications workloads

GPGPU ’20, February 23, 2020, San Diego, CA, USA

beyond what OpenCL provides, and asynchronous execution and
load balancing need to be orchestrated by the programmer.

CUDA [18] and OpenCL [26] are two dominant low-level accel-
erator programming models for heterogeneous computing; both
provide a set of APIs to offload compute regions into heteroge-
neous devices and manage the device memory, providing similar
execution and memory models. While CUDA is a vendor-specific
model targeted toward to NVIDIA GPUs, OpenCL is an architecture-
independent model, offering functional portability across diverse
architectures. These low-level accelerator programming models
require significant rewriting and restructuring of existing applica-
tions written for traditional CPU-only machines. Moreover, CUDA
is specific to NVIDIA GPUs. MCL uses OpenCL as the compatibility
layer and abstracts library interfaces to hide most of the low-level
programming complexities of OpenCL for the host side.

We have demonstrated that MCL can efficiently execute tasks on
a variety of very different systems, provide performance portability
and high throughput.

6 Conclusions and Future Work

This work introduces the Minos Computing Library (MCL), a novel
system software to facilitate programming extremely heteroge-
neous systems that increases performance and application portabil-
ity. MCL leverages asynchronous task execution to automatically
overlap computation with data transfer and provide a framework
to develop and integrate custom task schedulers and load balanc-
ing algorithms. Compared to current state-of-the-art task-based
programming models, MCL perform dynamic resource allocation
across applications, which further increases performance in multi-
application workloads. We showed that code developed on a normal
personal desktop automatically scales up on multi-GPU systems
and down to embedded systems. Our results show speedups up to
17.5x over OpenCL for multi-GPU systems and even up to 1.88x on
a single-GPU system. As future work, we plan to perform leverage
MCL to investigate novel task schedulers, resource managers, and
data orchestration algorithms, as well as demonstrate how MCL
can be integrated with MPI applications by replacing OpenMP.

Acknowledgements

This research is supported by the Department of Energy (DOE) Ad-
vanced Scientific Computing Research (ASCR) LAB 19-2119 and De-
fense Advanced Research Projects Agency (DARPA) HR001117S0055,
Program Area Domain-Specific System on Chip (DSSoC).

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heteroge neous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. 2011. StarPU: a

unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience 23, 2 (2011), 187-198.

D. F. Bacon, R. Rabbah, and S. Shukla. 2013. FPGA programming for the masses.

Commun. ACM 56, 4 (2013), 56-63. https://doi.org/10.1145/2436256.2436271

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing

locality and independence with logical regions. International Conference for High

[3

[}

4

fla’

R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati

Performance Computing, Networking, Storage and Analysis, SC (2012). https:
//doi.org/10.1109/5C.2012.71

[5] M.E.Belviranli, L. N. Bhuyan, and R. Gupta. 2013. A dynamic self-scheduling
scheme for heterogeneous multiprocessor architectures. ACM Transactions on
Architecture and Code Optimization 9, 4 (2013), 1-20. https://doi.org/10.1145/
2400682.2400716

[6] R.Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. 1995.

Cilk: An efficient multithreaded runtime system. In ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming (PPOPP). ACM New York, NY,

USA, 207-216.

J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and J. Labarta.

2012. Productive Programming of GPU Clusters with OmpSs. In Parallel &

Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. 557-568.

https://doi.org/10.1109/IPDPS.2012.58

[8] L. Dagum and R. Menon. 1998. OpenMP: : An Industry-Standard API for Shared-
Memory Programming. IEEE Computational Science AND Engineering 5, 1 (1998),
46-55.

[9] B.Dally. 2010. GPU Computing to Exascale and Beyond.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The implementation of the
Cilk-5 multithreaded language. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM Press New York, NY, USA,
212-223.

[11] Intel. [n. d.]. Threading Building Blocks. [Online]. Available: https://software.

intel.com/en-us/intel-tbb. (Accessed Feb. 1, 2019).

Pekka Jadskeldinen, Carlos Sanchez de La Lama, Erik Schnetter, Kalle Raiskila,

Jarmo Takala, and Heikki Berg. 2015. pocl: A Performance-Portable OpenCL

Implementation. International Journal of Parallel Programming 43, 5 (01 Oct

2015), 752-785.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. 2014. HPX: A task

based programming model in a global address space. In Proceedings of the 8th

International Conference on Partitioned Global Address Space Programming Models.

ACM, 6.

[14] L.V.Kale and S. Krishnan. 1993. CHARM++: a portable concurrent object oriented
system based on C++. Vol. 28. ACM.

[15] J. Kim, H. Kim, J. H. Lee, and J. Lee. 2011. Achieving a single compute device
image in OpenCL for multiple GPUs. In 16th ACM symposium on Principles
and practice of parallel programming. ACM, San Antonio, TX, USA, 277-288.
https://doi.org/10.1145/1941553.1941591

[16] M. Kotsifakou, P. Srivastava, M.D. Sinclair, R. Komuravelli, V. Adve, and S. Adve.
2018. HPVM: heterogeneous parallel virtual machine. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, Vienna, Austria, 68-80. https://doi.org/10.1145/3178487.3178493

[17] S. Mittal and J. S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous Computing
Techniques. Comput. Surveys 47, 4 (2015), 1-35. https://doi.org/10.1145/2788396

[18] J.Nickolls and I. Buck. 2007. NVIDIA CUDA software and GPU parallel computing
architecture. In Microprocessor Forum.

[19] OpenACC. 2015. OpenACC: Directives for Accelerators.

[20] J.Planas, R.M. Badia, E. Ayguadé, and J. Labarta. 2013. Self-Adaptive OmpSs Tasks
in Heterogeneous Environments. In IEEE 27th International Symposium on Parallel
and Distributed Processing. 138-149. https://doi.org/10.1109/IPDPS.2013.53

[21] N.Ravi, Y. Yang, T. Bao, and S. Chakradhar. 2013. Semi-automatic restructuring
of offloadable tasks for many-core accelerators. (2013), 1-12. https://doi.org/10.
1145/2503210.2503285

[22] CJ. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. 2011. PTask:
operating system abstractions to manage GPUs as compute devices. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM,
Cascais, Portugal, 233-248. https://doi.org/10.1145/2043556.2043579

[23] C.]J.Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. 2013. Dandelion.
(2013), 49-68. https://doi.org/10.1145/2517349.2522715

[24] T.R.W.Scogland, B. Rountree, W. C. Feng, and B. R. De Supinski. 2012. Heteroge-
neous task scheduling for accelerated OpenMP. Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, IPDPS 2012 (2012),
144-155. https://doi.org/10.1109/IPDPS.2012.23

[25] K. Spafford, J. Meredith, and J. S. Vetter. 2010. Maestro: Data Orchestration
and Tuning for OpenCL Devices. In Euro-Par 2010 - Parallel Processing, Pasqua
D’Ambra, Mario Guarracino, and Domenico Talia (Eds.), Vol. 6272. Springer
Berlin Heidelberg, 275-286. https://doi.org/10.1007/978-3-642-15291-7_26

[26] J. E. Stone, D. Gohara, and G. Shi. 2010. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in Science and
Engineering 12, 3 (2010), 66-73.

[27] J.S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. Antypas,
D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D. Bernholdt,
S. Byna, K. Cameron, F. Cappello, B. Chapman, A. Chien, M. Hall, R. Hartman-
Baker, Z. Lan, M. Lang, J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey, P. Peltz Jr., T.
Peterka, M. Strout, and J. Wilke. 2018. Extreme Heterogeneity 2018 - Productive
Computational Science in the Era of Extreme Helerogeneity: Report for DOE ASCR
Workshop on Extreme Heterogeneity. Technical Report. USDOE Office of Science
(SC) (United States). https://doi.org/10.2172/1473756

[28] Wikipedia. [n. d.]. NVLink. [Online]. Available: https://en.wikipedia.org/wiki/
NVLink. (Accessed Feb. 1, 2019).

—_
)

[12

(13

