skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regression Based Approach for Robust Finite Element Analysis on Arbitrary Grids. LDRD Final Report

Technical Report ·
DOI:https://doi.org/10.2172/1669732· OSTI ID:1669732

This report summarizes the work performed under a one-year LDRD project aiming to enable accurate and robust numerical simulation of partial differential equations for meshes that are of poor quality. Traditional finite element methods use the mesh to both discretize the geometric domain and to define the finite element shape functions. The latter creates a dependence between the quality of the mesh and the properties of the finite element basis that may adversely affect the accuracy of the discretized problem. In this project, we propose a new approach for defining finite element shape functions that breaks this dependence and separates mesh quality from the discretization quality. At the core of the approach is a meshless definition of the shape functions, which limits the purpose of the mesh to representing the geometric domain and integrating the basis functions without having any role in their approximation quality. The resulting non-conforming space can be utilized within a standard discontinuous Galerkin framework providing a rigorous foundation for solving partial differential equations on low-quality meshes. We present a collection of numerical experiments demonstrating our approach in a wide range of settings: strongly coercive elliptic problems, linear elasticity in the compressible regime, and the stationary Stokes problem. We demonstrate convergence for all problems and stability for element pairs for problems which usually require inf-sup compatibility for conforming methods, also referring to a minor modification possible through the symmetric interior penalty Galerkin framework for stabilizing element pairs that would otherwise be traditionally unstable. Mesh robustness is particularly critical for elasticity, and we provide an example that our approach provides a greater than 5x improvement in accuracy and allows for taking an 8x larger stable timestep for a highly deformed mesh, compared to the continuous Galerkin finite element method. The report concludes with a brief summary of ongoing projects and collaborations that utilize or extend the products of this work.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
AC04-94AL85000; NA0003525
OSTI ID:
1669732
Report Number(s):
SAND-2020-9980; 690989
Country of Publication:
United States
Language:
English

Similar Records

Development, Implementation, and Verification of Partially-Ionized Collisional Multifluid Plasma Models in Drekar
Technical Report · Tue Jun 22 00:00:00 EDT 2021 · OSTI ID:1669732

Element free Galerkin formulation of composite beam with longitudinal slip
Journal Article · Fri May 15 00:00:00 EDT 2015 · AIP Conference Proceedings · OSTI ID:1669732

An efficient time-domain perfectly matched layers formulation for elastodynamics on spherical domains
Journal Article · Tue Jul 15 00:00:00 EDT 2014 · International Journal for Numerical Methods in Engineering · OSTI ID:1669732

Related Subjects