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ABSTRACT

Among the main challenges in shape optimization is the coupling of Finite Element Method
(FEM) codes in a way that facilitates efficient computation of shape derivatives. This is
particularly difficult with multi-physics problems involving legacy codes, where the costs of
implementing and maintaining shape derivative capabilities are prohibitive. There are two
mathematically equivalent approaches to computing the shape derivative: the volume method, and
the boundary method. Each has a major drawback: the boundary method is less accurate, while
the volume method is more invasive to the FEM code. Prior implementations of shape derivatives
at Sandia have been based on the volume method. We introduce the strip method, which
computes shape derivatives on a strip adjacent to the boundary. The strip method makes code
coupling simple. Like the boundary method, it queries the state and adjoint solutions at
quadrature nodes, but requires no knowledge of the FEM code implementations. At the same
time, it exhibits the higher accuracy of the volume method. The development of the strip method
also offers us the opportunity to share some lessons learned about implementing the volume
method and boundary method, to show shape optimization results on problems of interest, and to
begin addressing the other main challenges at hand: constraints on optimized shapes, and their
interplay with optimization algorithms.
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1. Introduction

The importance of shape in engineering is rather obvious: aside from material properties, there's
not much else that can be changed. Using optimization, we can improve some quantitative
measure of design performance until we achieve optimality in a mathematical sense: when
subject to design constraints, no further improvement is possible. When optimization is applied to
"shape," there is a range of different ways to describe the changes under consideration, and
corresponding terminology. Sigmund [2] distinguishes between sizing, shape, and topology
optimization; see Figure 1.
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Figure 1. Figure from [2]. a) Sizing optimization can change a small set of
parameters, e.g., thickness of beams, plates, etc. b) Shape optimization can
make general changes to the shape. For example, a square could become a
circle, but not a donut. c) Topology optimization can make general changes
to both the shape and topology. The square can now become a donut.

Naturally, this distinction is somewhat artificial, as a design could be parametrized via some
hybrid of the above approaches. This is in fact one of our long-term goals, but in order to
understand the present state of the art, we must discuss shape and topology optimization as
somewhat separate things. One might expect that efforts in this area would begin with the
simplest approach and move towards the most general, but in fact, the opposite is the case: Sandia
has invested substantially in topology optimization and has done essentially nothing for shape
optimization (or even sizing optimization). Whether or not this is a sensible course of action, it is
not an aberration. The often-cited shape optimization expert Martin Berggren describes the
situation for shape optimization as follows [3]:

Although the field has developed and matured over the years, it is perhaps fair to say
that the impact on science and engineering practice has been limited. In contrast, the
technique of optimal layout of a linearly elastic structure using the material
distribution method for topology optimization has, indeed, had a noticeable impact
on the design of mechanical components.

The simplicity of the material distribution method and its combination with well-behaved
objectives such as compliance minimization that allow the use of specialized optimization
algorithms have made it possible for topology optimization methods to solve a particular class of
problems without the need to sort out some more basic issues required of a less specialized
approach. Berggren continues:
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One reason for the limited impact can be the complexity of managing a system for
shape optimization: software for parametrization of shapes, mesh deformation,
solvers, sensitivity analysis, and optimization needs to be developed and interfaced in
an intricate way.

Although we must address all of these challenges, the most fundamental is that of shape
sensitivity, which is the differential change in the solution with respect to the shape.

1.1. Shape Sensitivity

In order to use the gradient-based algorithms required to optimize over large numbers of shape
parameters, shape sensitivity is a necessity. It has two mathematically equivalent formulations,
which are related via integration by parts: the volume method (or "weak form"), and the
boundary method (or "strong form"). The names can be confusing: the boundary method has
nothing to do with boundary integral equations or Boundary Element Methods (BEM). The
boundary method has a long history in the mathematics community, but has had minimal impact
on engineering practice. This might be because foundational texts such as [19] are intimidating,
or because practitioners simply were not aware of it. It was not until 2010 that Berggren noted the
connection between the two methods [3], and not until 2015 that Hiptmair et al. [10] did the
careful analysis required to understand the differing behavior of their discretizations. From the
point of view of Numerical Analysis alone, the volume method is arguably superior because its
discretization often exhibits a higher rate of convergence. However, this is not the most important
difference between the two methods — a fact that still has not been recognized in the literature
[17]. The volume method, and implementations thereof such as Automatic Differentiation (AD)
[14] and Finite Differences (FD) are invasive: implementation of these methods requires
modifications to the underlying FEM code because they need to differentiate FEM matrix entries
with respect to shape. To do this for each type of finite element in Sandia's massive code base is
prohibitively expensive. Jeff Cipolla, who is now at Thornton Tomasetti, but previously spent ten
years working at ABAQUS, told us that they had an implementation of the volume method, but
gave up due to the following difficulties:

• They became too dependent on a single developer, who was the only one with the
specialized knowledge required to implement the volume method.

• The developer was unable to keep up with ongoing changes and additions to their FEM

library.

• They concluded that it was better to use a "black box" approach, and make the optimization
routines completely independent of the underlying FEM codes.

The boundary method instead requires data provided by the FEM code plus a collection of
boundary geometry terms. These geometric terms come from the mesh, and are shared over
different types of coupling and physics.

This project began as an effort to evaluate the behavior of the boundary method on problems of
interest to Sandia, beginning with elastic vibration in vacuo. The idea was that reduced accuracy
would be an acceptable trade-off for a method that is less invasive to the code, allowing us to do
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all kinds of previously impossible or intractable shape and topology optimization problems by
leveraging our existing physics code base. Success would result in a capability unique to Sandia:
commercial FEM codes have avoided the issue entirely by using a different method with limited
applicability.

1.2. Optimality Criteria Methods

Many commercial FEM codes, such as ABAQUS, ANSYS, NASTRAN, and COMSOL currently
provide shape and topology optimization capabilities. In addition to the intrinsic limitations of
these capabilities, one major impediment to the applicability of these codes for shape or topology
optimization at Sandia is their poor scaling performance to the enormous problem sizes required
for design and qualification. Furthermore, their workflows often treat shape optimization as a
post-processing step to topology optimization [2, 3]. This is a substantial limitation, as only small
shape changes are allowed or expected. A comprehensive review would be inappropriate here, but
as far as we can tell from publicly available information, these codes rely on FD or optimality
criteria methods [13]. Although slow and inaccurate, FD is suitable for small parameter sets. For
general "nonparametric" shape changes, optimality criteria methods use specific knowledge of the
physical problem (e.g., to minimize tangential surface stresses) to avoid the need to compute
sensitivities. In one of the foundational works, the trade-off for optimality criteria methods is
described [7]:

The basic concept behind optimality criteria is the rejection of generality of
mathematical programming and the utilization of the physical characteristics of the
structural optimization problem to generate an approach of somewhat limited
applicability, but of the greatest computational efficiency.

In reality, the phrase "of somewhat limited applicability" is a serious understatement; e.g.,
optimality criteria methods, based on a simple fixed-point iteration, cannot deal with challenging,
nonlinear shape constraints. At the same time, the phrase "of greatest computational efficiency" is
a serious overstatement; there is no proof that the performance of the fixed-point iteration is
independent of problem size, and there is no evidence that state-of-the-art optimization methods
are inefficient. Therefore, we reject optimality criteria methods in favor of the shape sensitivity
and modern optimization algorithms We believe that shape optimization has a crucial role to play
in design, and that it is not merely a post-processing step for topology optimization: by moving
surfaces without considering topological changes, shape optimization reduces the dimension of
the design space, mitigating problems posed to optimization algorithms by poor conditioning and
local minimizers. Our approach will have excellent performance and general applicability. The
research question addressed in this work is to find a shape sensitivity method that is sufficiently
accurate and is not invasive to FEM codes.

1.3. Shape Optimization Logistics

The ability to compute shape gradients is essential to a workable scheme for shape optimization,
but it is not sufficient. The quotation from Martin Berggren in Section 1 mentions two other
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crucial ingredients: a means of updating the mesh as the domain is deformed, and the issue of
how to constrain and parametrize the design.

General shape optimization problems require constraints on surface smoothness, and may also
use constraints to enforce symmetry or manufacturability. Stress constraints or other state
constraints that aren't purely geometric may also be in play. Simple user specification of useful
types of constraints is a research question, although the methods used in commercial software can
provide a guide [6]. An additional class of constraints that seems not to be considered within the
framework of small shape changes is that of contact constraints, i.e., constraints to prevent
disjoint pieces of the structure from coming into contact as the shape is changed. Naturally,
contact constraints are unnecessary for topology optimization. These constraints will be
non-linear, and need to be differentiable. In aggregate, all of these constraints require an advanced
optimization algorithm, capable of handling large numbers of variables, scaling issues, and a
variety of equality and inequality constraints.

Shape optimization that makes substantial changes to the location of boundary vertices must
update the mesh in order to maintain sufficient element quality [3, 13]. We favor methods that
retain a roughly constant element size as the boundary moves, rather than simply stretching
existing elements with harmonic functions or smoothing. This requires the capability to add or
delete elements, and good algorithms can be implemented with the existing STK software [21]
with only moderate effort [11].

The issue of updating the mesh is tied in a surprising way to the choice of the algorithm to be
used for shape sensitivity. Discretizations of the boundary method provide gradient values on the
domain boundary only. Discretizations of the volume method, however, provide gradient values
throughout the domain. Some immediate questions come to mind: what is to be done with the
interior gradient values? Can they be used to update the mesh? Our work in shape sensitivity aims
to provide satisfactory answers to these questions.
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2. The Volume Method for Shape Sensitivity

To our surprise, the volume method turned out to be less difficult to implement than expected.
The use of test-driven development techniques, and the already modular nature of the Sierra/SD
[4] code base led us to the realization that most of the code required for elasticity and acoustics is
in fact independent of the specific element type being used. Only a single specialized function per
element type is required. We started out by implementing the volume method for tetrahedral
elements, and got standard hexahedral elements and subparametric P-elements almost for free.
Scripts can easily be written using, e.g., Matlab, to do the symbolic manipulations required and
write the associated C++ code. This section summarizes these results in the simpler case of the
Laplace operator in two dimensions, tying the mathematical expressions developed in the
discretization to their implementation in code.

2.1. Discretization

We consider the classical PDE-constrained shape optimization problem [5, 15, 19]. Let n c RN,
with 1 < N < 3, be a bounded open set with a sufficiently smooth boundary an. We wish to solve
the problem

mgln ,(n) := I j(u) dx,

where is the shape functional, the integrand j : R R has a locally Lipschitz continuous
derivative ju, and u in (2.1a) solves the PDE

—Au = f in fl

u = 0 on Al,

(2.1a)

(2.1b)

Let {(pi : i = 1, ... ,Nh I be a nodal Lagrange basis for the finite element subspace V h, consisting
of piecewise-linear functions defined on a triangular mesh. Then with

Nh Nh

uh (x) = E (x) , ph(x) = EPio(x),
1=1 i=1

the discrete state and adjoint equations can be written

where

KU = F

KT P = G,

Kii = fK2 v(pi • v(pi dx,

= f fo dx,

Gi = f ju(uh)pi dx.
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t(ll) = 111

112

Assume that there are Sh nodal coordinates, which in two dimensions is Sh = 2Nh, corresponding
to shape variables sk, k e {1, ... ,Sh}. We will denote, e.g., the discrete shape derivative of K for
k E {1,...,Sh} by

(e)ijk =
dSk

Using this notation, the discrete shape derivative of (2.2) is

+ KU' = F' ,
which can be rearranged into the discrete shape sensitivity equation

U/ = K-1 (Fi — Kw) ,
The discrete volume shape gradient is then

dKii

GT ul GTK-1 (F1 Kw) ,

=pT

(2.5)

where we recall from (2.3) that PT = GTK-1. To complete the description, we need to work out
formulas for the discrete operator derivatives lc' and F' in (2.5). It is sufficient to consider their
local assembly, i.e., on a single triangle. Recall that the local contributions to K and F are given in
(2.4).

Figure 2. Mapping from unit triangle reference element with coordinates ri E
R2 to a triangle T with vertices qi,q2,q3 E

The mapping of the reference element to a mesh triangle with vertices q1,q2,q3 E R2 (see
Figure 2) is given by

x(n) = ql (q2 ql q3 q1)

I 172) *

We define the standard piecewise-linear basis functions via the mapping : R2

)
1 — 171 — 112

and express them in mesh coordinates via

4411)) = -On).
12
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We thus obtain the local quantities

R3 x3 3 Kloc =

R3 x 1 Floc

fT Vi r dx
= f if(x)dx

f 1 fl-Tli
ViJ-1J—TVIrdetJd112d11i,Jo Jof1 ft—ni

Jo Jo ff(x(17))detjdn2chli,

(2.7)

(2.8)

recalling the definition of the Jacobian matrix J in (2.6). Differentiation of Ki0c with respect to the
six local degrees of freedom (two per vertex) on the triangle T is thus a matter of differentiating
the terms J-1 and detJ. Differentiation of hoe requires differentiation of the the argument x(n) in
f (x )) , and differentiation of detJ.

Recall than J can be expressed (c.f. (2.6); the subscript denotes the first and second
components)

(
qq2 

2 
— q 

1 
q 
3 
— q 

1\
j = , i ) 7

— q2 q2
l 
— q2

so that

(2.9)

det./ = — qi)(q3 — — (q3 — qD(q— q1). (2.10)

Next, we shall compute the shape variations of the detJ and J-1. Consider a perturbation
(3 q 1 3q27 3q3) of the vertices (q1, q2, q3) of an element T . The change in detJ in (2.10) is given
by

(det./)'3,7 =(3qi — 41)(q3— ql) — (43 — (M)(qi— qp+

— qi)(3q3— 41)— — 41).

Thus, if we arrange the local shape parameters into a vector

R6 9 q=(.5q1,41,3qi,3qi,oq,3q3)T , (2.11)

then we can express the discrete shape derivative via

1 x 1 x 6 (det../)1 =

— — (q3 —
— qi) — — qi)

(.73 —
— — qi)
— (q3 —

— ql)

(2.12)

For the matrix J E r 2 x 2, this gets a little harder to visualize. Using the same ordering (2.11), and
recalling equation (2.9), we have

d Jii 
(J)ijk=

dqk
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Sqi

3q{

Sq3

Sq

Figure 3. The discrete shape gradient c R2x2x6.

which is depicted in Figure 3. Recalling that we required the shape derivative of J-1 rather than
of J, we must make use of the identity JJ-1 = I:

J1J-1 .41-1),

which implies that
(2.14)

These Jacobian transformations are applied to local state and adjoint vectors before contraction
against J. . It then remains to translate the six components corresponding to the local shape
parameters into a global gradient vector.

2.2. lmplementation

In Section 2.1, we identified two main shape gradient operations related to the Jacobian matrix
(2.6): (det./Y, and (J-1Y. Both of these can be expressed in an element-independent way in terms
of the shape gradient of the Jacobian itself. We can thus write the following functions:

• JacobianDeterminantShapeGradient to compute (det./)', the shape gradient of
the Jacobian determinant (2.12).

• JacobianInverseShapeGradient to compute (J-1)', the shape gradient of the
inverse Jacobian matrix (2.14).

These functions then call a C++ virtual function JacobianShapeGradient, which must be
implemented for each element type. It implements J' , which is depicted in Figure 3 for a
piecewise-linear triangle. For more general element types, this operation becomes more complex;
the entries depend in general on the quadrature point, but this part can be completely separated
from the implementation of JacobianDeterminantShapeGradient and
JacobianlnverseShapeGradient, both of which must call
JacobianShapeGradient.
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3. The Boundary Method for Shape Sensitivity

The boundary method is known to be less accurate than the volume method for computing shape
derivatives [10]. We demonstrate via a numerical experiment in Section 3.1 that this reduced
accuracy can in fact cause optimization algorithms to converge much more slowly. The optimistic
interpretation of this result is to note that the optimization still converges to a plausible answer.
However, determining appropriate criteria for convergence is challenging in general, and at any
rate, there is a more serious problem.

The premise of this research was that the boundary method could be a viable alternative to the
volume method despite reduced accuracy because it is not invasive to the code. Although the idea
that it does not require direct modification of the code assembling FEM matrices is correct, we
found that it does require information that was not readily available in Sierra/SD; in Section 3.2,
we show that evaluation of the boundary method for general elasticity problems requires
evaluation of the stress and strain on the domain boundary. Prior to this project, Sierra/SD
provided the stress and strain only at element centroids, but not on the surface. To provide the
capability to evaluate stress and strain on the surface was a long-standing request of analysts, who
value the greater accuracy with which peak values can be determined when surface evaluation is
available. Thus, the cost of implementing surface stress and strain evaluation was split equally
between this project and other funding. The upshot was that we provided a useful capability that
is now being used in production analysis cases. On the other hand, the high cost relative to the
original budget provided for this project undercuts the notion that the boundary method can be
implemented cheaply and in generality; the mathematical manipulations shown in Section 3.2 that
have to be repeated in general are also a significant part of the cost of the boundary method.

3.1. Accu racy

We have discretized the optimization problem (2.1), choosing the domain shape, objective
function, and boundary conditions in such a way as to make the problem challenging for the
boundary method. Note that our model problem (2.1b) has Dirichlet boundary conditions, which
is known from [10, § 4] to be the more challenging case.

We have chosen the initial domain to be no = (0, 1)2 and aim to recover the circle 51, that
circumscribes no:

n,, = {x E R2 : x - (1 DT '\/,

2 < 2} •

Turning the square into a circle via optimization requires smoothing out its corners, which poses
challenges for mesh quality.

The integrand j in the objective function (2. 1 a) is chosen to be

1J(u) = i u - u,:)2,
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where
u.(x) = Jo x — T

solves (2.1b) on ak with forcing function

f (x) = X2 u.(x).

In the above, Jo is the order-zero Bessel function of the first kind, and is chosen so that the first
zero of Jo occurs at the boundary of the circle, i.e., the smallest positive real number such that

10-1

; 10-4

LT _5
0 io

10-60

Jo (A. 
2 

— O.

- volume
- boundary

10 20 30 40 50 60 70 80 90
iterations

10-2

c
a>

cc>
t:a
O

—10-4
O

2)

le
o 10 20 30 40 50

iterations
60

Figure 4. Convergence of the objective function and gradient values (.0-
norm) for both the volume and boundary methods. The stopping criterion
is a minimum step size of 10-10. The volume method reaches the objective
function value achieved by the boundary method much faster, and subse-
quently continues to reduce it, by a factor of three.

70

—.—volurne
boundary

80

Results on this model optimization problem are shown in Figure 4. After about 10 iterations, the
volume method reaches an objective function value comparable to the final objective value
attained by the boundary method after 30 iterations. Moreover, the volume method continues to
reduce the objective function until it is approximately three times smaller. Since the boundary
method gradient is inconsistent with the discretization, we choose to stop at stagnation of the
method rather than using a gradient tolerance.

3.2. Elasticity - Theory

90

This exposition uses the expression for the shape derivative of the solution to the linear
elastostatics problem from [19, §3.5]. We combine this with a general definition of our
PDE-constrained optimization problem and corresponding adjoint equation in order to derive the
expression for the boundary shape gradient.

Let n c R3, be a bounded open set with a sufficiently smooth boundary F = ro U Fi, unit normal
n, meas(Fo) > 0, f E L2(04R3), and p E Hi (ri ; R3).
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We consider the minimization problem

mnin (SI) := j(u) dx, (3.1a)

where is the shape functional and the integrand j : R3 -> R has a locally Lipschitz continuous
derivative ju. Moreover, u in (3.1a) solves the state equation

where

—V • a(u) = f in n{
u

a (u) • n 

= 0 on F0

= p on F1.

a(u)=C : e(u)

1
eii(u)= 

2
(diu • ± .u.)

3

(V. 6)i = L
.i=1

and C satisfies appropriate conditions on symmetry, boundedness, and positive definiteness.

The weak form of (3.1b) is

ftl(C" : e(u)) : e(9)= inf
We define the adjoint equation

with the corresponding weak form

(3.1b)

± f P • (1), G E H1(0,;R3) = 0 on Fol. (3.2)
rl

—V • a (q) = ju in n{
a (0 . n == 00 on roq

on ri,

(3.3)

11(C : e(q)) : e((p) = I ju • + f (a(q) • n) • (p. V(p E Hi (S2; R3). (3.4)

The set grl := gl(R3;R3) consists of functions that are continuously differentiable in R3 with
compact support. For a shape variation v E gi such that v = 0 on ro r1F1, the shape sensitivity
equation [19, (3.160)-(3.162)] is

—V • a' (u){

a' (u) • n 

= 0 in SI

u = _vn ( ii, on ro

= vuf + vu Icp + divr (vnar) Oil I-1,
17
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where vn = v • n. Note that there is a typo in [19, (3.162)]. The trouble begins in (3.157), which
should read:

a' 
•
• e(cP)dx = f diva' • + f n • a' • OF =

tO divr (vn a) — vn lcn • a • 0 + vnf •• 0 + vnK p • OldFIF (3.156) (3.155)
The term coming from (3.156) in the second line of (3.157) has its sign flipped in the original
text. Following it through correctly, the sign of the divr term in (3.162) flips. It should read:

a' • n = vnf +-vnIcp + divr(vnaT)

The weak form of the sensitivity equation (3.5) is

(C : e(u')) : e(49) = f vnf • go + vnxp • (p +divr(vnaT) • 49

= f vnf • cp + vnKp • (p—vnat V.
ri

The gradient calculation proceeds as follows:

u = (C : e(q)) : E(d ) — f (a (q) • n) • u(3.4) 52 
= vnf • q + vnicp • q— vn(ar(u) : Vrq) + I (a(q) • n)vn Nau(3.6) r1 r o

Adding in the volume term vnj(u), we obtain the boundary shape gradient

(3.6)

(3.7)

D, (SI; = vn(j(u)+ f • q+ xp • q— ar(u):Vrq)+ f 
vndn

u 
(a(q) • n). (3.8)
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4. The Strip Method for Shape Sensitivity

As described in Section 3, we encountered some difficulties in implementing the boundary
method. The lower accuracy can cause optimization algorithms to converge significantly more
slowly, and to worse answers. Quantities such as surface stress and strain that one might assume
would be readily available in a structural dynamics code were not. The analytical work required
to derive the boundary method expression 3.8 is somewhat involved, and would need to be
repeated for different physics and boundary conditions. And yet, the volume method still suffers
from the problem of being invasive to the FEM code: the details are shown in Section 2.1, where
we see that the derivatives of the FEM matrix entries require access to the same routines that are
used to assemble the FEM matrices themselves. We also have not yet answered the questions
posed at the end of Section 1, namely what to do with interior gradient values computed by the
volume method, and how to update the mesh during shape optimization.
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T T. -
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h

10............../.....-- 0(h)

gios ...
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Figure 5. L2 error in the shape gradient with mesh refinement. Since we are
evaluating the improvements that can be made relative to a given discretiza-
tion, all refined solutions are projected back to the coarsest mesh prior to
error computation. The "exact" solution is computed on a much finer mesh.
In blue: the volume method as its single mesh is uniformly refined. In red:
the strip method, where each dashed curve indicates the sequence of mesh
refinements shown in Figure 6. In cyan: the boundary method.

All of these considerations motivated the development of the strip method for shape derivatives.
Our paper has been submitted to Computer Methods in Applied Mechanics and Engineering, and
is available as a preprint [9]. The Hadamard structure theorem [5, Ch. 9, Th. 3.6] tells us that
shape gradients are fully supported on the boundary of the domain. In our paper, we show that the
volume method gradient values computed on the interior of the domain tend towards zero as the
mesh is refined, and that they are at best unhelpful, and at worst detrimental to updating the mesh
as the domain boundary is moved. Therefore, we can restrict our computations to a narrow strip
(usually just one element wide) at the domain boundary. The real advantage of the strip method,
however, comes not just from throwing away the interior values; the primary cost in gradient
computation is typically the computation of the state and adjoint solutions rather than evaluation
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of the gradient itself. What is important is rather the realization that the strip method need not be
implemented on the same mesh, nor even in the same code. Like the boundary method, all that is
required is the ability to query the original simulation code for the state and adjoint solutions and
their spatial gradients evaluated at quadrature points. This flexibility provides other advantages:
the mesh used for gradient computation can be independently refined (the example shown in
Figure 5 uses bilinear quadrilateral elements for the state and adjoint computations, and linear
triangles for the shape gradient), allowing us to match the accuracy of a higher-order code for the
state and adjoint without having to implement the shape calculus for higher-order elements. The
strip method code could even implement the shape calculus using Automatic Differentiation,
avoiding the need to go through the work described in Section 2.1.
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Figure 6. From left to right: successive Ievels of refinement of the strip mesh.
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In the paper [9], we also demonstrate that error estimates developed in [10] can be extended to the
strip method, i.e., that we retain the accuracy of the volume method.
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5. Regularization of Surfaces

While more general classes of shape constraints must be considered in order to make a robust
shape optimization capability that can handle design and manufacturing constraints, it seems that
a reasonable starting point is to be able to maintain smoothness of the surfaces produced by
gradient-based optimization algorithms, where the gradient is computed on the underlying
simulation mesh. Most design problems of immediate practical interest could be attacked with a
parametrization approach. However, this turns out not to be so simple. Aside from the simplest
cases, it is impractical to parametrize meshes after the fact. Instead, what is needed to make this a
workable strategy is a differentiable mapping from CAD geometry or some other geometric
description to the mesh. In effect, this would require low-level interfaces between the CAD and
meshing software, the optimization algorithm, the simulation code, and the shape gradient code.
In other words, it requires close collaboration of at least four different teams in different
organizations, which sounds unrealistic absent a major effort. However, some nice results have
already been achieved using parametrization on problems of interest in specialized cases. These
efforts are described in Section 5.1.

Figure 7. Shape optimization on a split-ring resonator without smoothness
constraints results in localized, but severe, reductions in mesh quality. Val-
ues closer to 1 indicate better mesh quality.

Another approach that must at least be considered is to regularize or constrain some notion of the
smoothness of the surfaces, treating the coordinates of each surface node as optimization
variables. We've done initial investigations using estimates of the surface curvature computed on
triangular surface meshes, but didn't have time to try it on realistic examples. The general ideas,
as well as some interesting technical issues encountered are described in Section 5.2.
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5.1. Parametrized Surfaces

Brett Clark and the Plato [20] team have implemented a nice demonstration capability for
parametrized shape optimization that uses the shape calculus code developed in Sierra/SD by this
project. Their purpose is to design mass mocks that, in addition to matching center of mass and
moments of inertia, also match modal properties to some extent. The same machinery can be used
for the problem of fixture design, where they have found that objective functions based on mode
shapes and frequencies are better behaved than simple frequency response function (FRF)
matching. The objective function that worked well was developed by Tyler Schoenherr [18]. The
other key ingredients are the open-source code Engineering Sketch Pad (ESP) [8], which builds
differentiable maps from CAD parameters to nodal mesh coordinates, Plato, which manages the
problem description and communication between all of the moving parts, and the existing code in
Sierra/SD that solves eigenvalue problems and provides a specialized linear solver for the singular
adjoint system that arises.

to,
Figure 8. At left, the initial guess for the geometry of the fixture. Geometric
parameters were length, height, radius, etc. At right, the target configuration
on which the reference modal data was generated. The final result was very
near to the original dimensions; see the data in Table 1.

ESP has some limitations: it handles only single blocks, generates only tetrahedral meshes, and
doesn't work with existing CAD descriptions. Thus, it isn't practical to use this approach with a
large existing CAD model or mesh. However, the results are quite good. The starting guess and
target geometry are shown in Figure 8. After optimization, the results are visually
indistinguishable from the target configuration. Numbers are given in Table 1.

We have also implemented a simple parametrized capability natively within Sierra/SD. It allows
the association with a given mesh sideset of a perturbation in a particular Cartesian coordinate

22



Parameter Before After Target

cylinder pos x 2 2.48 2.5
cylinder pos y 2 2.51 2.5
cylinder height 1 5.01 5
cylinder radius 0.5 1.51 1.5
weight width 2.1 3.92 4
weight height 2.1 4.11 4
weight depth 2.1 3.97 4
boss width 1 3.02 3
boss height 1 6.97 7

Table 1. Geometric parameters for the structure shown in Figure 8: before, after, and target values.

direction. This allows us, for example, to move around planar surfaces, which is already enough
to provide a much nicer solution the problem shown in Figure 7. However, the inability to connect
the CAD descriptions through the mesh to the optimization limits the utility of this approach.

5.2. Surface Curvature

The ability to make more general free-form changes to the surface shape is potentially very
useful, particularly in vibration problems where seemingly subtle changes can result in dramatic
changes in physical behavior, e.g., [1]. One obvious approach is to penalize or constrain mean
surface curvature. Ryan Viertel led the work in comparing our implementation of the curvature
estimation algorithm of Rusinkiewicz [16] to the results produced by fancier algorithms in libigl
[12]: the Laplace-Beltrami, and quadric fitting methods. The Laplace-Beltrami method was on
par with Rusinkiewicz's method but quadric fitting performed the best. However, the results of
Rusinkiewicz's algorithm were reasonable, and its relative simplicity made implementation of
shape derivatives (i.e., differential change in the surface curvature estimate with changes in
surface coordinates) a tractable task. Based on these efforts, the ability to estimate both mean and
GauBian surface curvature and their shape derivatives was added to the shape optimization
capabilities in Sierra/SD as an optional penalty term. There was not enough funding left to try it
out in earnest on real problems, but it is thoroughly unit tested. Some experiments have been done
looking at the integral of these curvature quantities vs sums over nodes. The integral formulations
were found to be better-behaved in the sense of giving a gradient that is zero for a planar surface
and that points perturbed planar surfaces back toward being planar.

Rusinkiewicz's algorithm estimates a "normar vector at each mesh vertex, based on a
Voronoi-area-weighted average of the neighboring triangle normal vectors. Thus, it is essential to
be able to compute the Voronoi area in each triangle associated with a given vertex, and to
compute its derivatives with respect to the Cartesian coordinates of the triangle's vertices.
Computation of the Voronoi area proceeds differently in the cases of acute, right, and obtuse
triangles. In the acute case, the circumcenter is inside the triangle, and the interior of the triangle
can be divided into six triangles formed from the vertices, midpoints, and circumcenter. For a
right triangle, the circumcenter lies on the hypotenuse, and the interior can be divided into four
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Figure 9. Constructions for Voronoi area: collapsing the acute and obtuse
cases into the right case. The gradient computation in the right case is done
using the colored triangles.

triangles formed from the vertices, midpoints, and circumcenter. For an obtuse triangle, the
circumcenter lies outside the triangle, and the interior can be divided into five triangles formed
from the vertices, two midpoints, and the points of intersection of their perpendicular bisectors
with the opposite side of the triangle. See the illustrations in Figure 9. Shape calculus for the
Voronoi area is tricky for a right triangle; the acute formulation is used for the right vertex, and
the obtuse formulation is used for the other two vertices. This results in continuity of the triangles
used to compute the associated Voronoi area in each case as the triangle passes through right to
either acute or obtuse.
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6. Conclusions

The main impact of this project is that we have developed knowledge of how to choose
problem-appropriate shape derivative algorithms, laying the groundwork for a shape optimization
capability that can meaningfully improve existing designs. We still wouldn't argue that any one
algorithm for shape sensitivity is always superior, and rather we now have a toolkit that can be
brought to bear on a variety of problem types. However, the new strip method is likely to be the
best option in most cases, combining the accuracy of the volume method with the
non-invasiveness into the code of the boundary method. Our paper, The Strip Method for Shape
Derivatives has been submitted to Computer Methods in Applied Mechanics and Engineering,
and is available as a preprint [9]. Work on this paper fostered an ongoing collaboration with Prof.
Harbir Antil at George Mason University.

Through collaboration with ongoing projects, a significant set of new capabilities has been
developed under the umbrella of this project:

• Shape calculus in Sierra/SD [4] for directf, r f, e igen, and t r an s i ent solution cases

• Implementation of Tyler Schoenherr's Modal Projection Error objective [18] in Sierra/SD

• Support of Plato [20] mass mock, fixture design capabilities; interface to Engineering
Sketch Pad (ESP) [8]

• Surface Curvature code for regularization and constraints in shape optimization problems

• Matlab-based code and examples used for research paper

There has already been significant mission impact via the development of shape optimization
methods to be used for fixture design in normal mechanical environments testing, i.e., helping
ground-based tests to replicate real environments. Additionally, these capabilities are expected to
be useful for vibration control applications. In the future, we would like to leverage the shape
sensitivity capabilities for verification and validation purposes: they make possible
characterization of the uncertainty associated with variations in manufactured shapes, and open
the possibility of working with new tools being developed for optimization under uncertainty to
produce robust designs.
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