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EIGENVALUE PROBLEMS FOR EXPONENTIAL TYPE
KERNELS

DIFENG CAI AND PANAYOT S. VASSILEVSKI

ABSTRACT. We study approximations of eigenvalue problems for integral opera-
tors associated with kernel functions of exponential type. We show convergence
rate [Ap — M| < Crgh? in the case of lowest order approximation for both
Galerkin and Nystrom methods, where h is the mesh size, Ay and Ay are the
exact and approximate kth largest eigenvalues, respectively. We prove that the
two methods are numerically equivalent in the sense that |)\,(€G;L) — )\,(c]’\;l)\ < Ch?,
where )\,(f;b) and )\,(CJ,\;) denote the kth largest eigenvalues computed by Galerkin
and Nystrom methods, respectively, and C is a eigenvalue independent constant.
The theoretical results are accompanied by a series of numerical experiments.

1. INTRODUCTION

In this paper we are interested in the eigenvalue problem associated with inte-
gral operators Af := [, K(z,y)f(y)dy defined from kernel functions K (z,y) of
exponential type (cf. ) and D is a bounded Lipschitz domain in R

Our approach is general, but driven by practical applications we focus on kernels
K(z,y), z,y € R? of the following particular (exponential) form

(1.1) K(z,y) = e with  p(a) = (|lo1|"/w] + -+ [l /w)7

where s € {1,2},v = lor 1/s,w;(: = 1,...,d) > 0. Examples of such kernel
functions include e"m_y|2, e 1*=ul etc. The kernel defines the integral operator

(1.2 Af(e)i= [ K@) f)dy, o€ D.

Of our main interest is the numerical approximation of the eigenvalue problem
associated with A, namely, Ap = \¢, for some A, ¢.

Eigenproblems of the above type, arise frequently in various research areas such
as geology [8 [7], uncertainty quantification [3, [10} 19], machine learning [16], etc.
The analysis of the underlying eigenvalue problem is beneficial in the derivation of
the error control, algorithm design, and overall numerical practice, etc.

Mathematically, the problem is usually formulated in either the space of con-
tinuous functions or the space of L?-integrable functions. The corresponding dis-
cretizations are the Nystrom method and Galerkin method, respectively.
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For Nystrom method, though various error estimates were derived, e.g., in [12],
25, 2 18, 21, 22], it is not known if they are consistent with actual numerical
results, especially when the kernel function is not smooth enough, for example,
not continuously differentiable. Additionally, the proofs require the mesh size to
be sufficiently small.

For Galerkin method, which generally requires to use certain quadrature rule
to evaluate the double integrals when assembling the matrix, the impact of the
quadrature error to the computed eigenvalues is of practical interest and needs
special investigation especially when the integrand is not sufficiently smooth (for
example, functions with unbounded derivatives). This is the case of the kernels of
the form studied in the present paper.

1.1. Contributions. Our aim is to present a comprehensive study of the eigen-
value problems for integral operators associated with kernel functions of exponen-
tial type as defined in ({1.1)). Those kernel functions are not necessarily smooth,
i.e., they may not have continuous (partial) derivatives. Theoretically, we focus
on the analysis of two formulations of the operator eigenvalue problem in terms
of L*-integrable functions and continuous functions. In the first case we use the
Galerkin method whereas in the second case the Nystrom method is used. We uti-
lize piecewise constant approximation in the Galerkin method and midpoint rule
in the Nystrom method. Numerical experiments were conducted to illustrate and
sometimes to complement the theoretical results.

The contributions are listed below (see Section {4 for details).

Firstly, we present a new framework to analyze the Nystrom discretization. To
obtain the Nystrom discretization error, we show that it is numerically equivalent
to the Galerkin discretization, and thus the error estimate for Galerkin discretiza-
tion immediately carries over, which reads

Ak — Al < Cih?,

where h is the mesh size, A, and Ay j, denote the kth largest exact and approximate
eigenvalues (counted with multiplicity), respectively. To the best of our knowledge,
it is the first result that captures the O(h?) convergence rate of the Nystrom method
when the kernel function is not continuously differentiable, while existing results
(cf. [12] 25, 2 18, 21, 22]) can only yield O(h) convergence rate (see Section
5.3). For the nonsmooth kernel function considered in , for example, when
p(z —y) = |z — y|, the O(h?) convergence rate is known as superconvergence in
[5]. Moreover, unlike existing results, our proof does not require the mesh size to
be sufficiently small.

Secondly, to the best of our knowledge, we prove for the first time that the
Galerkin method and Nystrom method are numerically equivalent in the sense
that

NG =A< e,

where )\,(CG;L) and A,(CJ,\;L) denote the kth largest eigenvalues (counted with multiplicity)
computed by Galerkin and Nystrom discretizations, respectively, and C' is a con-
stant independent of any eigenvalue. The estimate indicates that the convergence



EIGENVALUE PROBLEMS FOR EXPONENTIAL TYPE KERNELS 3

rates for two methods are the same up to a generic constant independent of the
eigenvalues. Also, the result guarantees that the error induced by numerical inte-
gration in the practical implementation of the Galerkin method does not affect the
final convergence rate, and it provides a theoretical foundation for the use of the
more implementation-friendly Nystrom discretization, while maintaining the same
rate of convergence. Numerical results are presented to confirm the claim.

Thirdly, we perform several numerical experiments to examine various theo-
retical estimates, including the convergence rate, dependence of the asymptotic
constant on A, approximation of eigenfunctions, etc. Our numerical results indi-
cate that the eigenvalue convergence rate is quadratic with respect to the mesh
size and for different eigenvalues, the approximation error is roughly independent
of the eigenvalue magnitude. A detailed discussion relating our estimates and the
ones from [12, 2] 18, 21] is presented.

1.2. Outline. The rest of the paper is organized as follows. In Section [2 we
study the integral operator associated with kernel functions of exponential type
and state the positive (semi-)definiteness of the operator as well as the related
matrices. Section [3| presents abstract estimates for the Galerkin approximation to
the underlying eigenvalue problem. The main results are presented in Section [4]
including convergence rates of Galerkin and Nystrom discretizations, the equiva-
lence between the two discretizations, etc. Section |5 provides a numerical study of
various theoretical results in Section 4| and in existing literature [12, 2], 18] 21]. The
proof for the positive (semi-)definiteness of the operator and the related matrices
is given in the appendix (Section [7]).

2. INTEGRAL OPERATORS WITH KERNEL FUNCTIONS OF EXPONENTIAL TYPE

For notational convenience, for any given bounded Lipschitz domain in R?, when
working with Sobolev spaces L2(D), HY(D) := {f € L*(D) : Vf € L*(D)%}, etc.,
we assume D is open; while for C'(D) - the Banach space of continuous functions
with the supremum norm || f||sup := Supgep |f(2)], D is assumed to be closed. In
this section, unless otherwise stated, we use [|-|| without subscript to denote the
usual L? norm.

2.1. Some auxiliary estimates. The following result is immediate using straight-
forward calculation.

Proposition 2.1. The kernel function K(x,y) defined in (1.1)) satisfies

4 1/2
K (z,y) — K(z,y)] < Ckly —y| with Cx = <Zw{2> :
i=1
Consequently, if A is the integral operator defined in (1.2)), then for each f €
LY(D), Af is Lipschitz continuous over R* with |Af (z) — Af (z')| < Ck||f||lp1py|lz — o).
In particular, Af € H'(D) and |[VAf| < VoK 2oxpy |l fll, YV f € L*(D).

Next we estimate the second derivatives of the kernels of our interest, which is
needed in the error analysis that we provide later on. Let K(z,y) = e ?@~%) with
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p = (Zz 17 w? ) . A direct calculation shows that the second order partial
derivatives of K are unbounded at x = y. More specifically, we have

A _ p*x —y) = (x; —yi)* Jw} (zi — i)
™
0 (i =y —yy) (zi —yi)(z; — y)) o,
8:Ej8xiK(x’ y) = swipd(x —y) K(z,y) + 2202 (x — y) K(z,y), i#}],
and
(2'1) |6°‘K(x,y)| < C’max{l,l/p(x—y)}, |a| =2,

where « is a multi-index and C' is a generic constant depending only on w;.

2.2. Mapping properties. The following well-known mapping properties of in-
tegral operators associated with continuous kernel functions are collected below

(e.g., [14]).

Proposition 2.2. Let A be defined in (1.2). Then (1). A : L*(D) — L*(D) is
compact; (2). A:C(D) — C(D) is compact; (3). A: L*(D) — C(D) is compact.

The above proposition ensures that the theoretical results presented in Section
apply to our particular case of kernels of exponential type.

2.3. Positive definiteness. Define ®(z) = =@ with p in (I.1)). Then K (z,y) =
®(z—y). The main result in Theorem [2.1] asserts that the function ®(z) is positive
definite in the sense below (cf. [26]).

Definition 2.1 (positive definite functions). A continuous function ® : R? — R
is called positive (semi-)definite if for any n distinct points z1,...,z, € R (n =
1,2,...), the matriz a; ; = ®(x; — x;) is positive (semi-)definite.

For bounded continuous functions, the positive semi-definiteness is equivalent to
that of the associated integral operator (cf. [20]).

Proposition 2.3. A bounded continuous function ® : R? — R is positive semi-
definite if and only if [pu [pa ®(x — y)v(z)v(y)dedy > 0 for all functions v in the
Schwartz space

v e C®RY : sup(1+ |v))M Z |0%(x)| < 0o for any integers m, M >0

d
z€eR la|<m

Theorem 2.1. For w; > 0 (i = 1,...,d) and x € RY, let p take one of the
d d
following forms: (1). p(x) = 3 |uilfwii (2). plr) = L aifwis (3). pla) =

p 1/2 =
(Z xf/w?) . Then ®(z) = e *@) s positive definite. Namely, for any distinct

i=1
points xy,...,x, € R, the matriz a;; = ®(x; — x;) is positive definite.
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The proof of Theorem [2.1]is given in the appendix (see Section [7]). The result
below follows immediately from Proposition 2.3l and Theorem [2.1}

Corollary 2.1. Let K(x,y) be the kernel function defined in (L.1)) and A be the
corresponding integral operator defined in (1.2). Then (Av,v) > 0 for all v €
L*(D).

3. ABSTRACT RESULTS

In this section, V will be assumed to be a complex Hilbert space with inner
product denoted by (-, -). The theoretical results in this section are developed for
the Galerkin discretization. We use boldface symbols to denote matrices. The
norm on V is denoted by ||-|| and || M || denotes the L? operator norm for a matrix
M. We use Ker and Ran to denote the kernel(or nullspace) and the range of an
operator, respectively.

We use A to denote a positive compact operator on V, where the definition of a
positive operator (cf. [20) [15]) is given below.

Definition 3.1. An operator A on a Hilbert space V is called positive if (Av,v) >
0, Vv e V.

Note that a positive operator is necessarily self-adjoint, i.e., A = A* (cf. [20)]
Theorem 12.32]).

A crucial tool we use in the estimate of eigenvalues is the Courant-Fischer min-
max (or max-min) principle (cf. [15]).

Theorem 3.1 (min-max principle). Let A be a compact, self-adjoint operator on'V
with nonnegative eigenvalues listed in decreasing order (counted with multiplicity):
M>--> A\ > o> 0. Then

Ar = max min (Av, v),
Sk VESK
f[vll=1

where Sy is any linear subspace of V of dimension k.

In this paper, we are interested in positive eigenvalues of A, and the eigenvalue
problem is to find (A, ¢) such that

(3.1) AeR,, ¢eV\{0}, Ap= Ao

Let V}, be a finite dimensional subspace of V. The Galerkin method for (3.1)) is to
find (A, @) such that

(32) )\h € R+, (bh S Vh\{O}, (A(bh,vh) = Ah(gzﬁh,vh), Vvh S Vh.

Let P, : V — Vj, be the projection from V onto Vj,. Then is essentially the
eigenvalue problem of the operator P,AP, on V. Since A is a positive compact
operator, so is P,AP,. We can then list the eigenvalues of the Galerkin approxi-
mation in in decreasing order (counted with multiplicity): Ay, > -+ > Ay s
Theorem implies that the eigenvalues have the following characterization:

Ak, = max min (P,AP,v,v) = max min (P, AP,v,v) = max min (Av,v),

S vESE Sk,h UESk’h Sk:,h ’UESk’h
[lvfl=1 llv]l=1 flvfl=1
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where S; and Sy are k-dimensional subspaces of V and V}, respectively. The
min-max characterizations of A\; and )y ; immediately yield the following.
Proposition 3.1. A\, < A\;. Consequently, 0 < A\, — App < g

Eigenvalue approximations with Galerkin methods have been studied over the
past few decades (cf. [5 I3]). The following result can be easily derived using the
min-max principle (cf. [24]).

Theorem 3.2. Let ¢y, ..., ¢, be orthonormal eigenfunctions associated with eigen-
values A1, ..., \,, respectively. Then
(3.3) Ak = Al < 2 max([(1 — Py) Av[[[|(1 = By )ol],

vEW

[[v]l=1

where Wy, := span{¢1 } @ - - - @ span{ ¢y }.
Corollary 3.1. Under the assumptions in Theorem

k 12 /g
[ Ak = M| <2 (ZH(I - Ph)d)in) (Z NI~ Ph)¢1‘H2>
i—1

i=1

1/2

Proof. By writing v = Zle a;0; € Wy in (3.3]), we can obtain the estimate above
via the triangle inequality and the Cauchy-Schwarz inequality. U

The scaling of |\ — A\gs| and ||(I — Py)¢x|| will be investigated via numerical
experiments in Section [f]

Remark 3.1. Note that if the multiplicity of Ay is greater than 1, then the subspace
Wi may be different for a different choice/ordering of basis functions in Ker(A —
).

4. FIGENVALUE PROBLEMS

For the integral operator A defined in , we present two formulations for its
eigenvalue problem based on V = L?*(D) and V = C(D), respectively. It can be
seen later that the two formulations are actually equivalent. Corresponding the
two formulations at the continuous level, two discretizations are discussed, and it
is shown later (in Section that the two discretizations are also numerically
equivalent.

4.1. Two formulations: V = L*(D) and V = C(D). Recall that A is compact
on both V = L?(D) and V = C(D). For the Hilbert space V = L*(D), the
eigenvalue problem reads:

(4.1) find (A ¢) suchthat A¢=\p, ¢ € L*(D)\{0}.

For the Banach space V = C(D) with supremum norm, the eigenvalue problem
reads:

(4.2) find (A, @) such that A¢p=M\p, ¢ e C(D)\{0}.

From the mapping property of A in Proposition [2.2] it is easy to see that the
two formulations in (4.1)) and (4.2)) are equivalent in the sense below.
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Proposition 4.1. An eigenpair (X, @) satisfies (4.1)) if and only if it satisfies (4.2)).

In addition to being compact on L?(D), it was shown in Corollary that A is
a positive operator on L?(D). Therefore, we know from Proposition and the
spectral theory of self-adjoint compact operators that:

Proposition 4.2. The eigenvalues of A in (4.1)) or (4.2) are nonnegative and can
be listed in decreasing order (counted with multiplicity):

N> o> N> >0 with  lim A, =0,

k—4o00

where the algebraic multiplicity is equal to geometric multiplicity for any A\, > 0.

4.2. Galerkin discretization for V = L?*(D). In this section, we consider the

Galerkin discretization of the eigenvalue problem in (4.1)). Let 7 = {7;}’, be a

subdivision of D of maximum mesh size h := max diam(7), where diam(7) denotes
TE

the diameter of 7. Introduce the space of piecewise constant functions
Vi = {v € L*(D) : v|, is a constant, V7 € T}
and let the projection P, : L*(D) — V}, be given by

1
(4.3) Pf]. = m/fdag, Y f e L*(D).
The result below is standard.

Proposition 4.3. Let Py, be the projection defined in (4.3)). Then
I(1 = Pu)fI| < Cp||IVfIl, ¥ fe HY(D),
|1 = PYAF] < Col VoK lxoenhl £l ¥ f € (D),

where C'p comes from the Poincaré constant, depending only on the shape reqularity
of T. In particular, if (X, @) is an eigenpair of A with A > 0, then

(I = P)éll < Coll VK [z A~ Blgl-

Applying Proposition to Corollary yields the following estimate of the
eigenvalue convergence rate with respect to the mesh size h.

Theorem 4.1. Assume Py, is defined in (4.3)) and Ay, = P,AP,. Let A\ and g,
be the k™ largest positive eigenvalues of A and Aj (counted with multiplicity) |
respectively. Then

(1.4) M= Nl < 20BN VoK ) Ce?,

1/2
where Cy, = Vk <Zf:1 )\i_2> and Cp 1s the constant in Proposition depend-
ing only on the shape reqularity of T .
Remark 4.1. In addition to (4.4), an O(h?) error bound can also be found in [5),
Chapter 7], but it is an asymptotic estimate valid only for small enough mesh size

h. [13, Section 18] provides a non-asymptotic estimate but will result in an O(h)
error bound.



8 DIFENG CAI AND PANAYOT S. VASSILEVSKI

4.2.1. The matriz eigenvalue problem. Given a subdivision T = {7}, let x,(x)
denote the characteristic function on 7;. The Galerkin method seeks a nonzero
function ¢p(x) = > 7 | cixn () € Vj, such that

(Apn, 1) = AV, 0n), Vo, € Vi
for some )\ELG) > 0. This yields the matrix eigenvalue problem below:
(4.5) M Ye=\N9D,e,
where

M,sG) = [fn ij K(x,y)dydx]

Here diag(...) denotes a diagonal matrix with diagonal entries (...). By intro-
ducing ¢ = D}*c and multiplying both sides of ([3) by D, "/* on the left, we
convert (4.5)) into a standard eigenvalue problem below.

A9 =2\ with A = D,;'*M D,

¥ Dy, = diag(|n],...,|ml), c:[cl,...,cn]T.

n
iuj:

In practice, for the ease of implementation, we use certain quadrature rule to
compute the double integral of the kernel function K(z,y). For example, since
K(z,y) € C(RY x RY), we may simply use the mid-point rule to evaluate the
integral on each element, i.e.,

(4.6) / / K (2, y)dydz ~ K (21, 2;) |7 |7,

where x; is the centroid of 7;. The resulting linear system of ¢y, ..., ¢, reads
@1 MMe=N"Dye with M" = [K(z;2)|mll7]]
INES

Again, using q = D,ll/ ’c, (4.7) can be transformed into
(4.8) AVg=ANgq with AN =D, MM D,V

The approximation error introduced by the quadrature in (4.6)) will be analyzed
in Section [4.4

4.3. Nystrom discretization for V = C(D). In this section, we consider Nystrom
discretization for the eigenvalue problem in (4.2) with V = C(D). Based on the
mid-point rule applied to the integral in ([1.2)), we define the finite-rank operator:

(4.9) Ap(z) = ZK(x,xmwm z €D, ¢€C(D),

where z; is the centroid of 7;. The eigenvalue problem for Ay is to find )\;LN) and
¢n € C(D)\{0} such that Ap¢, = AgN)gbh. Evaluating the equation at quadrature
nodes x1,...,x, yields the following equivalent matrix eigenvalue problem (cf.
[T, 2]): D,:lM,EN)th = )\ELN)cﬁh, which is identical to . The eigenfunction can
then be recovered from nodal values ¢y, = (¢5(21),. .., ¢n(2,)) by using (£.9).
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The substitution g = D}l/ 2¢h transforms the above matrix problem into a stan-

dard symmetric eigenvalue problem identical to : A;N)q = A;lN)q. Therefore,
we see that, the Galerkin method coincides with the Nystrom method up to quad-
rature errors from ([4.6). We will show in Section (see Theorem that the
quadrature error does not dominate the discretization error in the eigenvalue com-

putation. Therefore, the convergence result for the Nystrom method below can be
obtained with the help of Theorem for the Galerkin method.

Theorem 4.2. Let K(z,y) = e~ (m1-nlP/eittlea=valP/wd)" (n = 1/2 or 1) and T
be a quasi-uniform subdivision in D C RY (d = 1,2,3) with maximum mesh size h.
With quadrature approzimation Ay, defined in (£.9), let A, and Ay, denote the k™

largest positive eigenvalues of A and Ay, (counted with multiplicity) , respectively.
Then

(4.10) M = M| < 20 VoK 172y Cih?,

where Cp is the Poincaré constant in Proposition[{.d and Cj, is the constant defined
in Theorem [4.1]

4.4. Equivalence of Galerkin and Nystrom discretizations. We have shown
in Proposition that at the continuous level the two formulations in and
are equivalent. In this section, we build the discrete counterpart of such
an equivalence. Namely, we estimate the error in computed eigenvalues from two
discretizations discussed in Section 4.2l and Section 4.3l The main result is stated
below.

Theorem 4.3. Let K (z,y) = e~ (lor-unlP/eittlea—val® /D) (v = 1/2 or 1) and T =
{7}, be a quasi-uniform subdivision in D C R (d = 1,2,3) with mazimum mesh
size h. If /\I(lG) and )\ZN) are the i largest eigenvalues (counted with multiplicity)
of AgG) and AEZN), respectively. Then

\A,@ - AgN)‘ < CR?,
where the constant C' is independent of any eigenvalue.

To prove Theorem , we first analyze the quadrature error in (4.6)).

Lemma 4.1. Let T = {n}}", be a quasi-uniform mesh with mazimum mesh size
h.

o If K(x,y) € C*(1; X 75), then

(4.11) < Cy|7il|7;]h* max max|0* K.

|a|=2 7 X7

/m y)dydz — K (z*, y*)|7||7;]

o I[f K(x,y) € C(D x D) is Lipschitz continuous, then

//Ka: y)dydr — K (z*, y")|7]| 7]

(4.12) < Calril|751h.
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Here a is a multi-index, Cy,Cy are generic constants independent of i, 7, ** and
y* are centroids of 7; and 7;, i.e., |mi|a* = [ xdx and |7;|y* = [ ydy.

Proof. The Taylor expansion of K (x,y) over 7; X 7; reads
(4.13) K(z,y) = K(z*,y")+V,K(z",y")-(z—2")+V, K(z*, y")-(y—y" )+ R(z, y),
where the remainder satisfies

|R(z,y)| < Cih*max  max |0“K(z,y)|.

|a|=2 (z,y)€Ts XT§

Since z*, y* are centroids, it follows that

/ V.K(x*y") - (x —2")dr =0 and / V, K" y")  (y—y")dy = 0.
Ti Tj

Hence (4.11]) can be obtained by taking double integrals of the equation in (4.13|)
over 7; X 7;. (4.12)) can be proved similarly by integrating

K(z,y) = K", y") + [(K(z,y) — K(2%,y)) + (K(z%,y) = K(2", y"))],

where the summands in the bracket are estimated using the Lipschitz condition.
O

The error HA;LG) — AgN) ||l can be estimated as below.

Proposition 4.4. Under the assumptions in Theorem E;, = AELG) — A;N)
satisfies

(4.14) |Exll = O(R?), d=1,2,3.

Proof. Without loss of generality, assume D = [0,1]¢. Tt suffices to prove (4.14)
for the following three cases: (1). d > 2; (2). d =1 and K(z,y) = e~ @ ¥°/%%; (3),
d=1and K(x,y) = e"l#7vl/«,

Case 1. In this case, we illustrate the proof for a uniform rectangular mesh and
the same idea applies to the general case. For Ej, = [e; ;]; ; with

_1 _1
e = Il H Iy ( / / K(x,y>dyda:—K(xi,xmum),

we estimate for each fixed i the quantity » 7, [e;;|. By first partitioning the
elements into consecutive layers centered at 7;, we can evaluate the contribution
layer by layer.

The 0th layer is 7; itself. The 1st layer contains elements that share a vertex
with 7;. In general, the kth(k > 1) layer is composed of elements outside layer
k — 1 that share a vertex with layer £k — 1. See Figure [1| for an illustration in one
and two dimensions.

Next we estimate |e; ;| layer by layer. We use C' to denote a generic constant
independent of 7, j. The assumption on 7 = {7;}I; yields

(4.15) n=0h" and |7|=0(0h%), VreT.
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Note that for each 7; in layer k > 2, K(z,y) € C?*(1; x 7;) and (2.1)) implies that
max max|0°K| < C(kh)™', V7 in layer k > 2.

| =2 73 XT;
Together with (4.15) and Lemma[4.1] it can be deduced that
leij| < CRMY Vo7 in layer 0,1, and |e;;| < Ck™'A%! V75 in layer k > 2.

The number of elements in layer k > 11is (2k+1)¢— (2k—1)% < 26k?"!. Therefore,

n L
el <ChT L0 YT 26k ETIRTT = O(R?), d=2,3,
Jj=1 layer k=1

where L denotes the maximal number of layers and obviously L < 1/h.
Since Ej is symmetric, it follows from Gershgorin’s Circle Theorem that

|Bullo = max| A ()] < max Y Jey| = O(h?),
j=1
which completes the proof of Case 1. The inequality above can also be shown

via the following argument: since E}, is symmetric, || Ey||2 is equal to its spectral
radius, which is bounded by any matrix norm (cf. [II, Theorem 5.6.9]), and the

n
quantity max ) |e; ;| is the /o, matrix norm of Ej,.
7 ]:1
Case 2. In this case, K € C*°(D x D) and there exists a constant C' such that

‘m&)z(HaaKHLoo(DxD) <C.

Hence Lemma [4.1] implies
|ei,j‘ < Ch37 VZ,]

Then the same argument as in Case 1 yields the desired estimate:

[ En|2 < m?XZ lei il = O(h?).

J=1

Case 3. In this case, K(x,y) = e_pc%,\’ z,y € [0,1]. Let h; denote the length
of the ith interval 7; = [t;_1,t;] and recall that z; is the center of 7;. We estimate
le; j| as follows. When i = j, it can be computed that

ti tj o—y i
/ / 67‘ w ldydx = w(Zhi + 2UJ67% — 2&1) = h? + O(h3)7
ti—1 Jtj—1

where the last identity follows from the Taylor expansion:

v =1-- L 3.
e w+2w2+0(h)

Then



12 DIFENG CAI AND PANAYOT S. VASSILEVSKI

When i # j, since K(z,y) = K(y,z), assume without loss of generality that
ti1 >t;. Then K(z,y) =e'= for (v,y) € 7; x 7; and we deduce that

—t;

i t; . ; hs _—y
/ / ¢S dydx = —w2(e% —1)(e = — 1)etjT
ti—1 Jtj—1

hi  h? h; h? it
= —u? <; + 5+ O(h3)) (_ZJ + 5+ O(h3)) e v

2w 2w
— hahy(1+ hiz_whj)et’l” oY
and
K (20, 2,)|7l1] = hihye % e ™5 = huhy(1 + h";whf)e”ﬁ +O(hY).
Therefore,
(4.17) leij| = b PR PO(RY) = O(RP), Vi j.

We conclude from (4.16) and (4.17) that

[ Erll2 < m;dXZ lei il = O(h?).

J=1

The proof of the theorem is complete. [l

Il layer |
Il layer2

FIGURE 1. Partition of D into layers with respect to 7; (left: 1D;
right: 2D).

Theorem E follows readily from Proposition and Weyl’s inequality [27, 4]

Lemma 4.2 (Weyl’s inequality). Let A and B be n-by-n Hermitian matrices with
eigenvalues )\gA) >0 > A%A) and )\gB) >0 > )\%B), respectively. Then

max AV =27 < | A~ Bl
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4.4.1. Numerical illustration. To show that the O(h?) error bounds in Proposi-
tion [4.4] and Theorem [4.3| are attainable, we perform a numerical experiment
with K(x,y) = e ¥ 2z y € D = (0,1), so the integrals in the Galerkin ma-
trix AELG) can be evaluated exactly. Uniform meshes are used and by varying
the mesh size h, we compute the corresponding eigenvalue errors measured by

MaXxk<1000
can be seen from Figure [2| that both errors are O(h?).

/\,(ﬁl) — /\,(6]7\2)‘. The matrix errors HA;LG) — AéN)H are also computed. It

k,h “kh

max,_ 000l \o-A ) and |A{D-AM)|, - mesh size h

G)_\(N)
oo
-a-(|A%-AN,

error

reference line: slope = 2

r%esh sizgh : SR x‘c‘)mlo
FIGURE 2. maxy<1000 \)\gﬁz — )\l(j,\z)\ (blue line) and HAELG) — A;LN)H
(red line) v.s. h.

5. NUMERICAL EXPERIMENTS

We perform various numerical tests for the integral operator Af := [ K(x,y)f(y)dy.
We use piecewise constant approximation in the Galerkin method and midpoint
rule in the Nystrom method. Also, uniform triangular meshes are used in the two
dimensional case. In Section the actual eigenvalue convergence rates com-
puted by Nystrom method are shown. Section [5.2] investigates the eigenfunction
approximation. Section [5.3| presents a comparison of our error bounds with the
ones from [12| 2} 18, 21], etc.

Example 1. We first consider an example with known eigenpairs from [9]

K(z,y)=e¢ o=l 2 9y e D=(0,1)¢ (d=1,2).

If d =1, the exact eigenpairs of the integral operator A are given by

(5.1) A = %, or(x) = By(sin(wgx) + wy, cos(wgx)),

where wy(k = 1,2,...) are positive solutions of the equation tan(w) = w221ﬁ1 and

By, is chosen such that [|¢y|r2(py = 1. The decay rate of eigenvalues is known
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to be A\ = O(k™2). If d = 2, the exact eigenvalues/eigenfunctions are the tensor
products of eigenvalues/eigenfunctions in one dimensions, i.e.,

Akl,kz - )‘kl)\kza ¢k‘1,k2<x) = gblﬁ (x1)¢k2($2), €r = (l‘th) S R2-

Example 2. We consider in this example the kernel function associated with
the L? norm in two dimensions.

K(z,y)=c l#=vl2 2 4y c D=(0,1)%

Since the exact eigenvalues are not known, we use the computed eigenvalues over
a finer mesh with mesh size h = 1/2/200 as reference eigenvalues to evaluate
the errors of approximate eigenvalues derived from much coarser meshes(h =

V2/25,1/2/50).

5.1. Rate of convergence. The results for Example 1 are shown in Figure |3| —
[ The results for Example 2 are shown in Figure [5] - [6] which are similar to those
in Example 1.

The log-log plots in Figure 3l and Figure [6] indicate the convergence rate:

A= Aul = O(h?).

From Figure 4] and Figure |5| (with fixed mesh size in each plot), we see that (for
leading eigenvalues) the error |\ — A4| is roughly independent of A. Hence we
deduce that there is a constant C' independent of A such that

(5.2) A= Au|/h* < C, VA

We then examine the magnitude of the constant C'. For the four problems shown
in Figure [4 and Figure [ the maximal approximation errors maxy, [\, — A/ are
bounded by 5 x 1078,3 x 107%,3 x 10752 x 107*, respectively. Hence it can
be computed that the constant C' < 0.1. That is to say, we have |A — \;| <
0.1h2, VA, for the above four experiments.

max|A-), | over the first 1000 eigenvalues -- mesh size h in 1D max|A-Ah| over the first 500 eigenvalues -- mesh size h in 2D
10 T T T T : — ‘l 1073 .
L d
-~
L d
107 -~ ,/n
I:/ -
= Py _ /¢
< - = .
b - < -
~< R D Pis
=3 - _ = 10*F . -
© -~ P = ” -
£ - - ] - -
—u ,,/ £ d g
- R - 7 -
g - 7 -
- - -
- - " R Rl
R reference line: slope = 2 P d ne
i "
-~ -
- i
T . reference line: slope = 2
-9 L L L 1 L L
10 2 5 6 7 8 810 105

3 4 . . . . . . .
mesh size h %10 0.01 0.015 002 0025 003 0035 0.04 0.0450.05
mesh size h

Ficure 3. Example 1 - Rate of convergence. Left: 1D; Right: 2D
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A and | Mg — Apz| in 1D(h = 1/2000)

A and |\, — Mgy in 2D(h = 1/2/25)

10% 10°
102t
1072
107
10
106}
8| 10°®
10°0
10710 : : 108 : :
10° 10" 102 10° 100 10" 102 10°
k k
FIGURE 4. Example 1 - A\, and |\, — A\ | for 1 <k < m. Left: 1D,
m = 1000, h = 1/2000; Right: 2D, m = 500, h = \/5/25
o A and |\, — Agy| in 2D(h = v/2/50) o A and [\, — Ay in 2D(h = v/2/25)
10 : : 10 : :
O )\k O Ak
0o * Al 0o * ANl
1072 1 102t
107} 1074F
v 3
10°® 10 ¥ *
*
108 ; : 108 ; :
10° 10" 102 10% 100 10! 102 103
k k

FI1GURE 5. Example 2 - A\, and |[A\p — App| for 1 < & < 500.

h = /2/50; Right: h = /2/25

Left:

max|)\-)\h| over the first 500 eigenvalues -- mesh size h in 2D

10°
a
10 o
-
_ .~
< -~
) -
= - _.-
= ,‘ -
o - -
£ /" P
105} - e
s fi line: slope = 2
I’" reference line: slope =
10—5 L L L L L L L
0.01 0.015 0.02 0025 003 0.035 0.04 0.0450.05

mesh size h

FIGURE 6. Example 2 - Rate of convergence.

15
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5.2. Eigenfunction approximation. Since all theoretical error bounds for eigen-
values are expressed in terms of certain approximation errors of eigenfunctions, we
compute the actual approximation error of the eigenfunctions in this section using
Example 1 with d = 1. In the Section [5.3, we insert it into the eigenvalue estimates
(in [2, 18] and (4.4)) to investigate the scalings with respect to A (exact eigenvalue)
and h (mesh size).
Numerical observations: and Figure [7]imply that
(5.3)
16kllsiw = OO, llill = OO and  [[(I = Pu)exl| = O(kh) = O(A;"2h).

Theoretical estimates: Proposition 4.3 implies that ||(I — Py)éx| < CA;'h,
which differs from the numerical observation in (5.3). This may indicate that
using Poincaré’s inequality to estimate the approximation error ||(I — Py)¢|| is not
accurate enough.

110-P )6, ]I =k (5, is an eigenfunction of unit length for the k™ largest eigenvalue) - II6 - Pyo Il ~ mesh size h (¢ is an eigenfunction of unit length for the 10 largest eigenvalue)
T T F T T

1i0-p,

FIGURE 7. ||¢r — Pnox|| with respect to k (left) and h (right)

5.3. Comparison of existing theoretical estimates. Using the exact eigen-
pairs in Example 1, we compare different error estimates, e.g., in [12} 2 [I8] 21]
and , to true errors in the eigenvalue computations. It will be seen that all
theoretical error bounds overestimate the true error by a large margin of various
degrees and the error bound in is more accurate.

Estimates in (£.10). Now we compute the error bound in Theorem (or
Theorem . With Ay = O(k™?), it can be computed that the constant Cj in

Theorem [4.1{is Cy = O(k?) = O(/\,;?’/Q). Hence the error estimate is
(5.4) A= M| = O(N32R?),

where the scaling h? is correct while the factor A=%/? is redundant compared to
=)

Estimates from [12, 2] 18] 2T]. Existing estimates for the Nystrom discretiza-
tion are all asymptotic and more or less of the form: |A — \,| = O(quadrature
error). For example, the estimates in [12] 2] [I8] roughly say that

A — | < C, mngAgzﬁ — Apdllsup if A is sufficiently small,

where Aj, is the quadrature operator in (4.9)), ¢ € Ker(A — AI) is an eigenfunction
of unit length, C, is a constant that may (in [2, [I8]) or may not (in [I2]) depend
on A\. The quadrature error A — A, corresponds to the operator @), in [21] and
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was used in [2I] to obtain the convergence rate. In Example 1, we deduce that
|Ad — Apdllsup = O(||¢'|suph) = O(A"'h). Hence those estimates give rise to the

convergence rate
A= M| < C AR if ks sufficiently small,

which is inconsistent with the O(h?) scaling observed in Section . Moreover,
in [2, [18], due to the use of spectral projection operator and an estimate of ap-
proximate resolvent in [I, Theorem 1], it can be deduced for Example 1 that
C. = O(A\77/?), which gives |\ — \y| = O(A™%/2h).

Remark 5.1. For smooth kernel functions like e le=v* and the piecewise con-
stant Galerkin discretization, the numerical results in [24] indicate that | A — | =

O(AR?).

5.4. A conjecture of a sharp bound. Following the investigation in Section |5.2
on the actual approximation error of eigenfunctions, we derive a similar estimate in
two dimensions and then propose a conjecture concerning the actual convergence
rate. With ¢g, k, (21, 22) = ¢k, (1) Pk, (22) in Example 1, for simplicity, we consider
a tensor product mesh in [0,1]%. Let PP and P?P denote the projections defined
in ([4.3) over [0,1] and [0, 1]?, respectively. It follows that

P5D¢k1,k2 = P}}D¢klpi1D¢k2 and ‘|P3D¢klyk2u[20,1]2 = HpﬁD@m H[2071] HP;%D%H%;]-
Using the one dimensional result in , we deduce that
||([ - PED)¢k1,kz| [20,1]2 = ||¢k:1| [20,1] |¢k2||[2071] - ||P5D¢k1 ||[20,1]||Pi1D¢k2||[20,1]
= (1 = PiP) a1 wa I + 122 0w, P11 (1 = i) |2
= O (A + 207 < OXL 1P

in accordance with the one dimensional counterpart in (5.3]).
The numerical results lead us to the following conjecture:

Let A and A\, denote the exact and approximate kth largest eigen-
value, respectively. Then

I(I = Pu)gll < C1A™%h, V¢ € Ker(A—AI), ¢l =1,

and

A=\ | < o I— P)ol|?
A=Al < CoA | max I = o
ll6ll=1

where the constants C, Cy are independent of A or h.

6. CONCLUSION

We obtain eigenvalue error estimates of second order for the lowest order Galerkin
and Nystrom discretizations. The equivalence between the two discretizations is
established, which makes the analysis of the Nystrom method a consequence of
the Galerkin one. The resulting estimates appear more accurate than the previ-
ously available ones. Numerical experiments illustrate and complement the new
and previously existing theoretical results.
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7. APPENDIX

To prove Theorem [2.1] some technical tools are needed, where the Schoenberg
Interpolation Theorem relates positive definiteness to completely monotone func-
tions (cf. [6]).

Definition 7.1 (completely monotone functions). A function f is called com-
pletely monotone on [0,00) if f € C[0,+00) N C®(0,+00) and (—1)FfF) () >
0, Vt>0,k=0,1,....

Theorem 7.1 (Schoenberg Interpolation Theorem). Let ||-|| denote a norm in-
duced by an inner product on R If f is completely monotone but not con-
stant on [0,+00), then for any n distinct points xy,...,r, € R, the matriz

aij = f(||lz;i — x;||?) is symmetric positive definite.
The Bernstein-Widder Theorem shows that the Laplace transform of a nonneg-
ative L'(R,) function is completely monotone (cf. [6]).

Theorem 7.2 (Bernstein-Widder Theorem). A function f : [0,+00) — [0, +00)
1s completely monotone if and only if there is a nondecreasing bounded function &
such that f(t) = 0+°° e StdE(s).

Proposition lists two completely monotone functions that are needed in the
proof.

Proposition 7.1. The following two functions are completely monotone on [0, 00):
(1), f(t) = s (2). f(t) = eV

Proof. f(t) = e' is completely monotone from the definition. For f(t) = eVt

G
we show that f(¢) satisfies the assumption in Theorem |7.2| with £(s) = —erf( Q\I/E),

where erf(z) denotes the error function. In fact, it can be computed that

/0 et (s) = eV = f(1).

Hence f(t) is completely monotone according to Theorem and the proof is
complete.
OJ

Now we are in a position to carry out the proof of Theorem [2.1]

Proof of Theorem[2.1. If p is the weighted L' norm, then ®(z) = e @) can be
written as the inverse Fourier transform of a positive function in L*(R%). In fact,
we have
1 . N .
O(z) =C (Hizl ﬁ) edy =C | D(y)e™dy
R4 kak + wk R4
where C' > 0 and ®(y) = Hi:l#' For n points x1,...,z, in RY and a
WrYpTWE
nonzero vector (ci,...,¢,), we have

> Y (e ) =C [ )

k=1 j=1 R4

2
dy > 0.

n

LiTiy
E c;e

=1
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Thus the matrix a; ; = ®(x; — z;) is positive definite.
For the rest two forms of p, the result follows from the Schoenberg Interpolation
Theorem and Proposition [7.1} 0
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