EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-815070

Nonlinear manifold-based
reduced order model

Y. Choi

September 29, 2020



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



FULL TECHNICAL FINAL REPORT

Nonlinear Manifold-based reduced order model
Youngsoo Choi
20-FS-007

Abstract

Traditional linear subspace reduced order models (LS-ROMs) are able to accelerate physical
simulations, in which the intrinsic solution space falls into a subspace with a small dimension,
i.e., the solution space has a small Kolmogorov n-width. However, for physical phenomena not
of this type, e.g., any advection-dominated flow phenomena such as in traffic flow, atmospheric
flows, and air flow over vehicles, a low-dimensional linear subspace poorly approximates the
solution. To address cases such as these, we have developed a fast and accurate physics-
informed neural network ROM, namely nonlinear manifold ROM (NM-ROM), which can better
approximate high-fidelity model solutions with a smaller latent space dimension than the LS-
ROMs. Our method takes advantage of the existing numerical methods that are used to solve
the corresponding full order models. The efficiency is achieved by developing a hyper-reduction
technique in the context of the NM-ROM. Numerical results show that neural networks can
learn a more efficient latent space representation on advection-dominated data from 1D and
2D Burgers’ equations. A speedup of up to 2.6 for 1D Burgers’ and a speedup of 11.7 for 2D
Burgers’ equations are achieved with an appropriate treatment of the nonlinear terms through
a hyper-reduction technique. Finally, a posteriori error bounds for the NM-ROMs are derived
that take account of the hyper-reduced operators.

Background and Research Objectives

Physical simulations are influencing developments in science, engineering, and technology
more rapidly than ever before. However, high-fidelity, forward physical simulations are
computationally expensive and, thus, make intractable any decision-making applications, such
as design optimization, inverse problems, optimal controls, and uncertainty quantification, for
which many forward simulations are required to explore the parameter space in the outer loop.

To compensate for the computational expense issue, the projection-based reduced order
models (ROMs) take advantage of both the known governing equation and the data. ROMs
generate the solution data from the corresponding physical simulations and then compress the
data to find an intrinsic solution subspace, which is represented by a linear combination of basis
vectors, i.e., LS-ROMs. This condensed solution representation is plugged back into the
(semi-)discretized governing equation to reduce the number of unknowns, resulting in an over-
determined system, i.e., more equations than unknowns. Note that the full governing
equations are used to constrain the LS-ROM through this substitution. Therefore, this can be
considered as a physics-informed surrogate model. Additionally, the existing numerical
methods for the corresponding full order model (FOM) is utilized in the LS-ROM solution
process. Therefore, the LS-ROM fully respects the original discretization of the governing
equations that describe/approximate the underlying physical laws, unlike black-box
approaches.



In spite of its successes, the linear subspace solution representation suffers from not being able
to represent certain physical simulation solutions with a small basis dimension, such as
advection-dominated or sharp gradient solutions. This is because LS-ROMs work only for
physical problems in which the intrinsic solution space falls into a subspace with a small
dimension, i.e., the solution space has a small Kolmogorov n-width. Unfortunately, even though
problems that are advection-dominated or have sharp gradient solutions are important, they
do not have small Kolmogorov n-width. Such physical simulations include, but are not limited
to, the hyperbolic equations with high Reynolds number, the Boltzmann transport equations,
and the traffic flow simulations.

In order to overcome the issues that arise from LS-ROM, we have developed a fast and accurate
physics-informed neural network ROM with a nonlinear manifold solution representation, i.e.,
the nonlinear manifold ROM (NM-ROM). The NM-ROM is able to accelerate advection-
dominated simulations with a small latent space. It has a great solution representability due to
the transition from linear subspace to nonlinear manifold.

Scientific Approach and Accomplishments

The detailed description of the technical approach can be found in [1]. Briefly explaining the
technical approach here, a parameterized nonlinear dynamical system is considered,
characterized by a system of nonlinear ordinary differential equations (ODEs), which can be
considered as a resultant system from semi-discretization of Partial Differential Equations
(PDEs) in space domains. The state variable is represented by the nonlinear manifold, i.e.,

(1) W N W = Wret + g(W),

where w is a state variable and g is a nonlinear function that maps from the low dimensional
latent space to full space dimension. The nonlinear map is constructed by training an
autoencoder, using solution data from high-fidelity model. Figure 1 depicts an autoencoder,
which compress the original high-fidelity model data to a latent space via an encoder and
decompress it back to an
approximate output via a
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Figure 1: A schematic description of an autoencoder.



A crucial development of our NM-ROM is the structure of the decoder. We use a shallow
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Figure 2: lllustration of the effect on the sparsity of the active path for shallow network
vs deep network. The shallow network provides a sparser network than the deep
network in the subnet. Therefore, the shallow network is expected to achieve a higher
speed-up than the deep network.

masked neural network in order to achieve a sparsity structure that is required for the
successful hyper-reduction technique. Figure 2 compares a shallow and deep neural network in
the context of sampled hyper-reduced outputs. The orange disks and edges represent the
active paths that are actually used to compute the selected outputs. The gray nodes and edges
are completely ignored in the computation. Note that the shallow network is able to provide
much sparser structure than the deep one, which explains why we use a shallow neural
network as a decoder.

The nonlinear manifold solution representation in Eq. (1) is plugged into the governing
equation, resulting in an over-determined system, i.e., more equations than unknowns. There
are two ways of closing the system: i) Galerkin (denoted as NM-Galerkin-HR) and (ii) least-
squares Petrov—Galerkin (denoted as NM-LSPG-HR) approaches. The Galerkin approach first
projects the over-determined ODE to the reduced continuous ODE, i.e.,

o = (279, 27T, () (27%,) 2" f(w,es + gli). ),

Then, the time domain is discretized by a time integrator. For example, if the backward Euler
time integrator is used, then the fully discretized reduced system for Galerkin approach
becomes

(3) Wy, = Wp—1 + At((ZT(I)T)TZTJg('LAU))T(ZT‘I)T)TZTf('wTef +g(wn), tn; 1),

On the other hand, the NM-LSPG-HR discretize the time domain first, resulting in the following
nonlinear residual function if the backward Euler time integrator is used,

(4) 'F%E(ﬁ)nSﬁJn—lau) = g(ﬁ)n) - g('ﬁ)n—l) - Atf('wref +g('wn)atn;/~”)_



Then, the nonlinear residual in (4) is closed by minimize the norm of the residual, i.e.,

o, = argmin > (27 ®,)! 2" #0651, )3
(5) DERNs
Here Z is a sampling matrix and f is a nonlinear function from the underlying governing
equation. It turns out that the NM-LSPG-HR is more robust than the NM-Galerkin-HR in term of
accuracy. For example, we apply our NM-ROMs to 2D viscous Burgers equation, which can be
described by

@ +u% +v% =v
(6) dt ox oy
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where we take Reynolds number, £t = 1/v = 10,000 ijn order to make the problem advection-

dominated. The corresponding full order model is solved using the finite difference with spatial
degrees of freedom of 3,600

100 o —-—-—-@----@ and the backward Euler time
L’ - ) integrator. Figure 3 shows the
3 “e” -0-LS-Galerkin comparison among four
o) «-LS-LSPG different reduced order
., 1 o --- —D;_Lé _I'_Oq_ _er_I‘O—I'_D models, i.e., LS-Galerkin is the
S 10 proj. e LS-ROM with Galerkin
= -0-NM-Galerkin projection, LS-LSPG is the LS-
. ROM with the least-squares
s Petrov—Galerkin projection. It
Lj 1 0'2 also shows two projection error
» ~-v-~— "~ v curves, i.e., LS proj. error is the
CEG error level, where LS-ROM can
reach at best. On the other
-3 ‘ ‘ ‘ ‘ hand, NM proj. error is the
10 5 10 15 20 error level, where NM-ROM
. . can reach at best. The reduced
reduced dimension dimension varies from 3 to 20,

and the corresponding
maximum relative errors are
reported in Figure 3. Note that NM-LSPG is the best performed model. Note that the maximum
relative error for NM-LSPG is even lower than the LS proj. error, exemplifying the great solution
representability of the nonlinear manifold for the advection-dominated problems.

Figure 3: reduced dimension vs. maximum relative error

The speed-up of the NM-ROM is also achieved by applying an efficient hyper-reduction. Table 1
compares both accuracy and speed-up between NM-LSPG-HR and LS-LSPG-HR for the 2D
viscous Burgers equation. Although LS-LSPG-HR achieves a great speed-up (e.g., around 27), but
its solution is very inaccurate (e.g., a relative error greater than 30%). On the other hand, our
NM-LSPG-HR is able to achieve both a great speed-up (e.g., greater than 10) and accuracy (e.g.,
a relative error less than 1 %).



NM-LSPG-HR LS-LSPG-HR
Residual basis dimension 55 56 51 59 53 53
The number of residual samples 58 59 54 59 58 59
Maximum relative error (%) 0.93 | 094 | 0.95 | 34.38 | 37.73 | 37.84
Wall-clock time (sec) 12.15|12.35|12.09 | 5.26 | 5.02 | 4.86
Speed-up 11.58 | 11.39 | 11.63 | 26.76 | 28.02 | 28.95

Table 1. The performance comparison between NM-LSPG-HR and LS-LSPG-HR.

Our NM-ROM can also predict the solution of a parameter point that was not used to build the
ROM. Figure 4 shows how the maximum relative error of NM-ROMs varies as the parameter
values vary. The NM-ROM is generated by using the full order model data from the parameter
values, 0.9, 0.95, 1.05, and 1.1. The NM-ROM is able to generate good approximate solutions at
the parameter points that were not used in the training phase.
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Figure 4: The comparison of the NM-LSPG-HR and NM-
LSPG on the maximum relative error over the parameter
variation.

Mission Impact

Reduced-order modeling is specifically named as an R&D priority in the following core
competencies: the high-energy-density science, high-performance computing, simulation, and
data science, and advanced materials and manufacturing in Investment Strategy for science and
technology. N program will support this technology to be applied to hydrodynamics problems.
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Figure 5: Computational cost vs full order model size. The figure shows that the higher
the speed-up will be achieved; the larger the underlying full order model problems is.

Conclusion

The feasibility study has successfully demonstrated that the nonlinear manifold representation
enables a reduced order model to achieve both accuracy and speed-up for small-scale
problems. This verified methodology needs to be tested for large-scale problems with the
funding in LDRD ER scale. Our flop count calculation shows that the NM-ROM will produce even
higher speed-up if it is applied to a larger scale problem. See Figure 5.
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