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Abstract 
Traditional linear subspace reduced order models (LS-ROMs) are able to accelerate physical 
simulations, in which the intrinsic solution space falls into a subspace with a small dimension, 
i.e., the solution space has a small Kolmogorov n-width. However, for physical phenomena not 
of this type, e.g., any advection-dominated flow phenomena such as in traffic flow, atmospheric 
flows, and air flow over vehicles, a low-dimensional linear subspace poorly approximates the 
solution. To address cases such as these, we have developed a fast and accurate physics-
informed neural network ROM, namely nonlinear manifold ROM (NM-ROM), which can better 
approximate high-fidelity model solutions with a smaller latent space dimension than the LS-
ROMs. Our method takes advantage of the existing numerical methods that are used to solve 
the corresponding full order models. The efficiency is achieved by developing a hyper-reduction 
technique in the context of the NM-ROM. Numerical results show that neural networks can 
learn a more efficient latent space representation on advection-dominated data from 1D and 
2D Burgers’ equations. A speedup of up to 2.6 for 1D Burgers’ and a speedup of 11.7 for 2D 
Burgers’ equations are achieved with an appropriate treatment of the nonlinear terms through 
a hyper-reduction technique. Finally, a posteriori error bounds for the NM-ROMs are derived 
that take account of the hyper-reduced operators. 

Background and Research Objectives 
Physical simulations are influencing developments in science, engineering, and technology 
more rapidly than ever before. However, high-fidelity, forward physical simulations are 
computationally expensive and, thus, make intractable any decision-making applications, such 
as design optimization, inverse problems, optimal controls, and uncertainty quantification, for 
which many forward simulations are required to explore the parameter space in the outer loop. 

To compensate for the computational expense issue, the projection-based reduced order 
models (ROMs) take advantage of both the known governing equation and the data. ROMs 
generate the solution data from the corresponding physical simulations and then compress the 
data to find an intrinsic solution subspace, which is represented by a linear combination of basis 
vectors, i.e., LS-ROMs. This condensed solution representation is plugged back into the 
(semi-)discretized governing equation to reduce the number of unknowns, resulting in an over-
determined system, i.e., more equations than unknowns. Note that the full governing 
equations are used to constrain the LS-ROM through this substitution. Therefore, this can be 
considered as a physics-informed surrogate model. Additionally, the existing numerical 
methods for the corresponding full order model (FOM) is utilized in the LS-ROM solution 
process. Therefore, the LS-ROM fully respects the original discretization of the governing 
equations that describe/approximate the underlying physical laws, unlike black-box 
approaches.    



In spite of its successes, the linear subspace solution representation suffers from not being able 
to represent certain physical simulation solutions with a small basis dimension, such as 
advection-dominated or sharp gradient solutions. This is because LS-ROMs work only for 
physical problems in which the intrinsic solution space falls into a subspace with a small 
dimension, i.e., the solution space has a small Kolmogorov n-width. Unfortunately, even though 
problems that are advection-dominated or have sharp gradient solutions are important, they 
do not have small Kolmogorov n-width. Such physical simulations include, but are not limited 
to, the hyperbolic equations with high Reynolds number, the Boltzmann transport equations, 
and the traffic flow simulations. 

In order to overcome the issues that arise from LS-ROM, we have developed a fast and accurate 
physics-informed neural network ROM with a nonlinear manifold solution representation, i.e., 
the nonlinear manifold ROM (NM-ROM). The NM-ROM is able to accelerate advection-
dominated simulations with a small latent space. It has a great solution representability due to 
the transition from linear subspace to nonlinear manifold.  

Scientific Approach and Accomplishments 
The detailed description of the technical approach can be found in [1]. Briefly explaining the 
technical approach here, a parameterized nonlinear dynamical system is considered, 
characterized by a system of nonlinear ordinary differential equations (ODEs), which can be 
considered as a resultant system from semi-discretization of Partial Differential Equations 
(PDEs) in space domains. The state variable is represented by the nonlinear manifold, i.e.,  
 

(1)                                                
 

where w is a state variable and g is a nonlinear function that maps from the low dimensional 
latent space to full space dimension. The nonlinear map is constructed by training an 
autoencoder, using solution data from high-fidelity model. Figure 1 depicts an autoencoder, 
which compress the original high-fidelity model data to a latent space via an encoder and 

decompress it back to an 
approximate output via a 
decoder. Notice that the 
decoder maps the latent 
space dimension to a full 
order model dimension, 
which we use as a 
nonlinear manifold 
solution representation. 

w ⇡ w̃ = wref + g(ŵ),
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Figure 1: A schematic description of an autoencoder.   



A crucial development of our NM-ROM is the structure of the decoder. We use a shallow 

masked neural network in order to achieve a sparsity structure that is required for the 
successful hyper-reduction technique. Figure 2 compares a shallow and deep neural network in 
the context of sampled hyper-reduced outputs. The orange disks and edges represent the 
active paths that are actually used to compute the selected outputs. The gray nodes and edges 
are completely ignored in the computation. Note that the shallow network is able to provide 
much sparser structure than the deep one, which explains why we use a shallow neural 
network as a decoder.  

The nonlinear manifold solution representation in Eq. (1) is plugged into the governing 
equation, resulting in an over-determined system, i.e., more equations than unknowns. There 
are two ways of closing the system: i) Galerkin (denoted as NM-Galerkin-HR) and (ii) least-
squares Petrov–Galerkin (denoted as NM-LSPG-HR) approaches. The Galerkin approach first 
projects the over-determined ODE to the reduced continuous ODE, i.e.,  

(2)          . 

Then, the time domain is discretized by a time integrator. For example, if the backward Euler 
time integrator is used, then the fully discretized reduced system for Galerkin approach 
becomes 

(3)         . 

On the other hand, the NM-LSPG-HR discretize the time domain first, resulting in the following 
nonlinear residual function if the backward Euler time integrator is used, 

(4)         . 

˙̂w = ((ZT�r)
†ZTJg(ŵ))†(ZT�r)

†ZTf(wref + g(ŵ), t;µ)
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ŵn = ŵn�1 +�t((ZT�r)
†ZTJg(ŵ))†(ZT�r)

†ZTf(wref + g(ŵn), tn;µ)
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r̃nBE(ŵn; ŵn�1,µ) ⌘ g(ŵn)� g(ŵn�1)��tf(wref + g(ŵn), tn;µ)
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Figure 2: Illustration of the effect on the sparsity of the active path for shallow network 
vs deep network. The shallow network provides a sparser network than the deep 
network in the subnet. Therefore, the shallow network is expected to achieve a higher 
speed-up than the deep network. 
 



Then, the nonlinear residual in (4) is closed by minimize the norm of the residual, i.e.,  

(5)         . 

Here Z is a sampling matrix and f is a nonlinear function from the underlying governing 
equation. It turns out that the NM-LSPG-HR is more robust than the NM-Galerkin-HR in term of 
accuracy. For example, we apply our NM-ROMs to 2D viscous Burgers equation, which can be 
described by  

(6)      ,  ,  

where we take Reynolds number, , in order to make the problem advection-
dominated. The corresponding full order model is solved using the finite difference with spatial 

degrees of freedom of 3,600 
and the backward Euler time 
integrator. Figure 3 shows the 
comparison among four 
different reduced order 
models, i.e., LS-Galerkin is the 
LS-ROM with Galerkin 
projection, LS-LSPG is the LS-
ROM with the least-squares 
Petrov–Galerkin projection. It 
also shows two projection error 
curves, i.e., LS proj. error is the 
error level, where LS-ROM can 
reach at best. On the other 
hand, NM proj. error is the 
error level, where NM-ROM 
can reach at best. The reduced 
dimension varies from 3 to 20, 
and the corresponding 
maximum relative errors are 

reported in Figure 3. Note that NM-LSPG is the best performed model. Note that the maximum 
relative error for NM-LSPG is even lower than the LS proj. error, exemplifying the great solution 
representability of the nonlinear manifold for the advection-dominated problems.  

The speed-up of the NM-ROM is also achieved by applying an efficient hyper-reduction. Table 1 
compares both accuracy and speed-up between NM-LSPG-HR and LS-LSPG-HR for the 2D 
viscous Burgers equation. Although LS-LSPG-HR achieves a great speed-up (e.g., around 27), but 
its solution is very inaccurate (e.g., a relative error greater than 30%). On the other hand, our 
NM-LSPG-HR is able to achieve both a great speed-up (e.g., greater than 10) and accuracy (e.g., 
a relative error less than 1 %).  

ŵn = argmin
v̂2Rns

1

2
k(ZT�r)

†ZT r̃nBE(v̂; ŵn�1,µ)k22
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Re = 1/⌫ = 10, 000
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Figure 3: reduced dimension vs. maximum relative error  
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 NM-LSPG-HR LS-LSPG-HR 

Residual basis dimension 55 56 51 59 53 53 

The number of residual samples 58 59 54 59 58 59 

Maximum relative error (%) 0.93 0.94 0.95 34.38 37.73 37.84 

Wall-clock time (sec) 12.15 12.35 12.09 5.26 5.02 4.86 

Speed-up 11.58 11.39 11.63 26.76 28.02 28.95 

Table 1. The performance comparison between NM-LSPG-HR and LS-LSPG-HR. 
 

Our NM-ROM can also predict the solution of a parameter point that was not used to build the 
ROM. Figure 4 shows how the maximum relative error of NM-ROMs varies as the parameter 
values vary. The NM-ROM is generated by using the full order model data from the parameter 
values, 0.9, 0.95, 1.05, and 1.1. The NM-ROM is able to generate good approximate solutions at 
the parameter points that were not used in the training phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mission Impact  
Reduced-order modeling is specifically named as an R&D priority in the following core 
competencies: the high-energy-density science, high-performance computing, simulation, and 
data science, and advanced materials and manufacturing in Investment Strategy for science and 
technology. N program will support this technology to be applied to hydrodynamics problems.  

 
Figure 4: The comparison of the NM-LSPG-HR and NM-
LSPG on the maximum relative error over the parameter 

variation. 
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Conclusion  
The feasibility study has successfully demonstrated that the nonlinear manifold representation 
enables a reduced order model to achieve both accuracy and speed-up for small-scale 
problems. This verified methodology needs to be tested for large-scale problems with the 
funding in LDRD ER scale. Our flop count calculation shows that the NM-ROM will produce even 
higher speed-up if it is applied to a larger scale problem. See Figure 5. 
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Figure 5: Computational cost vs full order model size. The figure shows that the higher 
the speed-up will be achieved; the larger the underlying full order model problems is.  
 


