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ABSTRACT

We propose to develop a computational sensitivity analysis capability for Monte Carlo
sampling-based particle simulation relevant to Aleph, Cheetah-MC, Empire, Emphasis, ITS,
SPARTA, and LAMMPS codes. These software tools model plasmas, radiation transport,
low-density fluids, and molecular motion. Our report demonstrates how adjoint optimization
methods can be combined with Monte Carlo sampling-based adjoint particle simulation. Our goal
is to develop a sensitivity analysis to drive robust design-based optimization for Monte Carlo
sampling-based particle simulation—a currently unavailable capability.
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1. INTRODUCTION

Our goal in this report is to develop the mathematical basis for a sensitivity analysis that
ultimately drives a robust design-based optimization for Monte Carlo sampling-based particle
simulation—a currently unavailable capability. Computational design-based optimization and
uncertainty quantification techniques are well-used tools in science and engineering.
Gradient-based methods crucially depend upon sensitivities, which are synonymous with the
calculation of a derivative that measures the (instantaneous) change in a quantity with respect to
an (instantaneous) change in another quantity. We also demonstrate how adjoint optimization
methods can be combined with Monte Carlo sampling-based adjoint particle simulation.

An important class of optimization problems contain partial integral differential equations as
constraints so that gradient-based methods require sensitivities for the various functionals
involving the solution of these equations. Such problems include models for plasmas, radiation
transport, low-density fluids where the partial integral differential equation is the Boltzmann
equation or the Fokker-Planck equation when molecular motion is of interest. These equations
embody a deterministic model for the aggregate behavior of particles where the solution
represents the density of particles. In lieu of approximating the solution via numerical
discretization of the partial integral differential equation, a large number of particle trajectories
may be averaged via Monte Carlo sampling to approximate the functionals involving the density.
Such a sampling represents a statistical approach and is implemented within the Aleph,
Cheetah-MC, Empire, Emphasis, ITS, SPARTA, and LAMMPS codes.

The link between such a class of partial integral differential equations and particle trajectories is
well-known and is a generalization of the relationship between the diffusion equation and
Brownian motion. This link is also available for the adjoint partial integral differential equation
and the corresponding particle trajectories. Both deterministic and Monte Carlo sampling-based
approaches are useful and the situation at hand dictates whether a deterministic or statistical
approach is selected.

Determining a sensitivity during Monte Carlo sampling for a partial integral differential equation
is fraught with difficulty since a sample, a trajectory, is not differentiable. Our solution is to
exploit tools from probability to develop the needed sensitivities; see for example the book
[Glasserman, 2004, Chap.7] for applications to finance and
Chap.VII] for a general treatment. These tools also include stochastic calculus based Malliavin
estimators and what we introduce as Stein [1973] equation estimators. The former estimators
originated in the mathematical probability literature to obtain regularity estimates of the
probability measure in terms of the stochastic process [Malliavin, 1976]; these estimators have a
well-understood application within mathematical finance; see e.g., [Chen and Glasserman, 2007]
The latter estimators originate in the mathematical statistics literature to obtain bounds on the
distance between two probability distributions. Both Malliavin and Stein equation estimators are
related to likelihood ratio based methods. The thread that binds these three classes of estimators is
that they enable the sensitivity to be directly computed during the Monte Carlo sampling for the
expectation via an integration by parts formula. This was also the pragmatic goal shared by the
application-focused papers [Kid 1994],[0yasunov and Arkin, 2007],[Warren and Allen,

Asmussen and Gl nn 2007

2012a]•
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Our report, in Section 2 demonstrates how adjoint optimization methods can be combined with
Monte Carlo sampling-based adjoint particle simulation. The estimators are briefly introduced via
the vehicle of integration by parts. Section then introduces the Stein estimator and relationship
with a Malliavin estimator. Sections 4—§ provide examples and a general theorem that justifies the
integration by parts formula listed in section 2.

1.1. Mission-critical application

Our approach is general and so enables us to impact a broad spectrum of Monte Carlo particle
simulation codes by a clean separation of the mathematical and the application-specific details. In
contrast to an application-centric approach, we believe that our general approach aims to develop
and demonstrate capability largely unexplored as a Sandia analysis tool, and, if successful, the
results can be leveraged across several distinct mission applications.

A mission-critical application are robust satellite designs that minimize mass so as to lower
launch costs. The papers Adams et al. [2017, M19], Pautz et al. [2017] demonstrate the utility of
sensitivities in deterministic particle transport, i.e. the Boltzmann equation is discretized, particle.
These successes continue to drive the interest in satellite design, where Monte Carlo particle
transport is preferred but yet available. Unfortunately, the current Monte Carlo approach is to fix a
design followed by numerous Monte Carlo simulations, one per geometry constraint. Such a
scheme provides a rudimentary sensitivity analysis by directly comparing two or more designs. A
satellite analysis involves one thousand constraints, taking over three hours on one hundred
compute nodes entailing four billion Monte Carlo samples. Our approach would sever the number
of Monte Carlo simulations from the number of geometry constraints by instead performing one
Monte Carlo simulation, recasting the geometry constraints as sensitivities, concurrently
computed.

2. OPTIMIZATION PROBLEM

The optimization problem of interest is

{subject to R = f q(x)u(t,x)dxdt Rmax ,
t,x

where p is a scalar function, for example the mass of the object subject to radiation. We refer to R
in the constraint inequality as the response functional, an inner product of scalar functions q and
u. The response functional, as we shall see, is proportional to an expected value since u is the
solution of the partial integral differential equation (PIDE)

meinp(O;t,x) t > 0,x E n c

a

II:

(1)

at
u(t,x) — Lu(t,x) = 0 , t >0,x E n c Rd, (2a)
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augmented with boundary and initial conditions

u(t ,x) = g(x) t > O,x E aS2 (2b)

u(0,x) = f(x) xEncRd (2c)

where the backward Kolmogorov operator L is given by

Lu(t ,x) = 
a(t ,

2

x) 
Au(t ,x) + b(t ,x) • V u(t ,x) + a(t,x)u(t,x)

+ f (u(t,y)—u(t,x))n(y,x)dy. (2d)

The PIDE is a model for diffusion, drift, absorption and jump-diffusion so that u(t ,x) is the
density of particles.'

Gradient-based optimization approaches for problem ( ) depend upon sensitivities of the response
functional R in the inequality constraint. Such optimization approaches need response
sensitivities, i.e.,

d 
R = I 

dq(x) 
u(t ,x) dx dt + f q(x)

du(t ,x) 
dx dt .

dO t,x de ,x de
(3)

The challenge is to approximate the second functional, in particular, du/de. One approach is to
approximate the second functional via quadrature using a discrete approximation to du/de. A
second approach is to exploit the probabilistic representation of u, which leads us to the concept
of a particle sensitivity analysis.

Kolmogorov's representation formula for the initial value problem (
expectation

2a) is the conditional

u(t ,x) = Ex[f (Xt)] = E[f (Xt)1Xo = , t > 0,x = Rd (4)

where we now assume that n = Rd for simplicity. The particle trajectory Xt is distributed
according to the probability measure2 for the expectation E. The density u(t ,x) is then seen to be
the average of f (Xt) over all particles that start at x at time t = O. Unfortunately, for many
problems the probability measure is unknown. However the trajectory Xt can often be sampled
and a Monte Carlo scheme can then be used to approximate Ex [f (Xt)].

Inserting the representation (4) into () leads to

de t
R = 
f

,x 

dq

de 

(x) 
Ex [f (Xt)] dxdt + 

fx de 
q(x) — IEx 
 

[ f PO] dxdt . (5)

1The problem is steady-state when we assume that ar u = 0 so that u(t,x) = u(x) is the equilibrium distribution so
that the initial condition f is unnecessary. Instead the boundary condition g can be identified as a source for the
steady-state problem.

2Also referred to as the transition density, heat kernel or fundamental solution.
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We may now consider three classes of estimators suggested by the equalities

d dX1
—deEx VA)] = Ex k.'0(t) —de 1 = Ex [f (Xt) Yt] *

The above equality explains that the three classes (see e.g.,
chap.VII]) are

Asmussen and G1 nn,

1. a finite-difference approximation to the first expectation;

2007,

(6)

2. a derivative of f and the particle trajectories for the second expectation (also referred to as
infinitesimal perturbation analysis or a pathwise derivative approach);

3. what amounts to a formal integration by parts for the third expectation (also referred to as
likelihood ratio method or a Malliavin estimator or what we introduce as Stein equation
estimators).

The third expectation depends upon the same measure as EX[f (Xt)]. Therefore the Monte Carlo
scheme used to approximate the latter expectation can be reused. The practical impact of this
mathematical statement is significant—the nontrivial understanding involved in Monte-Carlo
approaches for approximating the expectation EX [f (Xt)] can be applied to approximate the
sensitivity. We caution the reader that in practise, the decision on which class of estimators to use
depends upon the sensitivity of interest among several issues; see Sheppard et al. [2012] and also
Section 4.

A standard approach in gradient-based optimization algorithms is to use an adjoint method. For
example, if response sensitivities over a collection of initial conditions f are needed (where we
continue to assume that n = Rd for simplicity), then we can exploit the adjoint relation

R = I q(x) u(t ,x) dxdt = I f (x) w (t ,x) dxdt
t,x t,x

where w is the solution to the adjoint PIDE

{d
„T
t
w(t
'
x) + L* w(t,x) = 0, t > 0 ,x E Rd ,

w (0 , x) = q(x) x E Rd .

(7)

(8)

The forward Kolmogorov operator L* is the formal adjoint operator to L. The adjoint relation (7)
is extremely useful within simulation-based optimization because adjoint (optimization) methods
enable us to calculate numerous sensitivities given the solution of ( ) in lieu of the solution of the
PIDE (2a) for each initial f of interest.

This allows us to approximate the response function sensitivity R with a Monte Carlo scheme
over the particle trajectories 4 corresponding to the adjoint PIDE N so that

—
d
R = I 

df (x) 
le[q(Zt)] dxdt + f f (x) —

d 
Ex[q(4)] dx dt (9)

dO t dO t de

12



since

w(t,x) = le[q(4)] = E[q(4)1Z0 = x] , t > 0,x E R d . ( 1 0 )

The density w(t, x) is then seen to be the average of q(Zt) over all particles that start at x at time
t = 0. We now exploit the equalities ( ) to approximate w within a Monte Carlo method and
hence (®.

3. STEIN EQUATION ESTIMATORS FOR PARAMETER
SENSITIVITY

In order to better understand the estimators that appear in ( ), it is worth exploring some concrete
examples. Through the next few sections, we will derive two estimators for the sensitivity of a
scalar random variable X whose density p(x; 0) depends on some parameter 0 E N. It is natural
to compute the mathematical expectation Ee [f (X)] by Monte Carlo methods when the integral
fR f(x)p(x; O)dx cannot be expressed explicitly. The purpose of this note is to explore multiple
perspectives on how Monte Carlo methods can also be used to simultaneously estimate the
sensitivity of mathematical expectation with respect to the parameter 0, i.e.

J(61; f):= add Et9 [f PO] .

In particular, the conceit of this exploration is that there is some random variable U such that (i) U
does not depend on 0, (ii) U is "easy" to simulate, and (iii) X can be expressed in terms of U
through some explicit monotone (for fixed 0) function 00 : R —> R, i.e. X = Ø61(U)= O(U; (9).
We will show how samples of U can be used to estimate the 0-sensitivity of X, comparing the
efficiency of multiple methods.

In the development of this note, we were motivated by a particular inhomogeneous (two-rate)
absorption problem. Suppose that X represents the location at which a particle is absorbed in a
medium when the initial location is x = 0, the particle is moving to the right with a fixed velocity
of 1. When the particle location is between 0 and some location f, the absorption rate is Xi > 0
and when the particle has moved beyond £ the absorption rate is 2.2 > 0. Our goal will be to assess
the sensitivity of expected absorption with respect to perturbations in the rate-change location £ .
In particular, we wish to compute this sensitivity based on a Monte Carlo method that relies only
on producing a sequence of unit rate exponential random variables U1, U2 1 • • • U,1.

In Section we work through the essential concepts by investigating the rate parameter sensitivity
of a one-rate absorption problem (X ,---, Exp(X)). We encounter four different types of estimators:
Ji a naïve difference estimator that establishes a baseline level of effectiveness; J2 a coupled
difference estimator that has been widely put into practice for continuous-time Markov chains;
and J3 and J3 are two sides of an integration-by-parts formula that comes from two difference
representations of the dependence on O. In method for J3 we encode the dependence on 0 in the
density of X, but in method for J4 we encode the dependence in the mapping 0 described above.

13



Once we see the general strategy for estimators J3 and ./4, in Section 4 we will generalize the
technique in Section 5 to a broader class of random variables where the dependence on e can be
encoded through a map 019. Finally in Section § we address the two-rate absorption problem.

The core of this analysis is in the integration-by-parts formula that arises from encoding the
dependence on 0 in two different ways. This formula is an example of what is called a Stein
equation in the probability and statistics literature. The existence of the integration-by-parts was
first discovered by Stein while studying the mean of a multivariate normal distribution [Stein,

[1981]. The idea was extended to the study of the Poisson distribution by Chen in
collaboration with Stein a few years later , 1975] and the fact that this could be generalized
to a wider class of random variables was observed soon thereafter by Hudson [1978].

1973

While this work was developed from a statistics point of view, the probability community picked
up on Stein's method and recognized it as a as a tool for measuring the distance between
probability measures (see lVleckes [2009] for a discussion of the Gaussian case). Since Stein
equations can be generated in several different ways for a wide variety of random variables [Ley
et al., 2017], they have been put to use in deriving upper and lower bounds on convergence rates
of sequences of random variables that converge to final distributions that might be different than
the standard Gaussian. One example of convergence to the exponential distribution was derived
by Chatterjee et al. [2011] in a work on random graphs. The particular version of Stein equation
that we derive and work with here has been called a Parametric Stein Equation by [Ley and
Swan M161].

Though this literature on the Stein's method provides a deep context for the work we present here,
the methods we employed borrow more heavily from an approach developed by
[2012b]. Their method, termed trajectory reweighting was in fact an instance of what are called
Malliavin estimators in the stochastic processes community [Warren and Allen, 2014]. The
estimator arises from Malliavin differentiation, which relies on a change-of-measure formula in
path space. The connection between this work and what is presented here is that a
change-of-measure formula is the vehicle through which our integration-by-parts is derived. This
establishment of this connection between Stein's method and the Malliavin Calculus is attributed
to Nourdin and Peccati [2009a] (see also [Nourdin and Peccati, 2009b], [Nourdin et al., 2.010] and
[Nourdin and Peccati, 2012] ) and it has been an active field of research over the last decade. We
expect that as we move to the numerical computation of sensitivities for jump processes, this
connection between Stein's method and the Malliavin calculus will be essential.

Warren and Allen

3.1. Encoding dependence on parameters through a mapping

We take a moment to introduce some notation that will be useful in addressing method (4) for
computing sensitivities, listed above. For one-dimensional random variables, it is, in principle,
always possible to write a random variable in terms of a parameterless baseline distribution. In
fact, this perspective is commonly used in simulation schemes for random variables that are
defined in terms of arbitrary cumulative distribution functions (cdf). For a given value of the
parameter 0, we denote the cdf by

Fe(x) = F (x; e) :=Pe[X .

14



Since a cdf is non-decreasing, it has a left inverse in the following sense:

re- (u) := sup{x E R : Fe (x) u}.

If we define U N Unif([0,1]), then the random variable re- (U) has the cdf Fe (x).

For the exponential distribution, for a given rate value > O, let X Exp(X) and U N Exp(1).
We can use the function OA, (u) = u IA, so that X is equal in distribution to the random variable
UP.,. To see this, note that IP[U > u] = e-u and INX > = e-Xx . It follows that
P[U/2, > x]=P[U > A.x] = e-xx as well.

We can define the inhomogeneous (two-rate) absorption problem similarly. In this case, we can
again let U N Exp(1) and then define

On(u) := u —
 + f, u > A,1f.

Oul'e;
1

A2

where A = (A,1, f). The inverse function will also play a large role. For each parameter set A,
(PA is invertible and has the form

OXV;
igA(x) (A,1 e, x>

Note that it immediately follows that the derivative with respect to x is

w"A(X.)=

(12)

(13)

To see that mapping yields the correct distribution, we first recall the derivation of the survival
function GA (x) := PA[X > x]. We can think of the state of the particle as a two-state Markov
chain {S(x)}xER± that takes its values in {0,1}, which represent the not-absorbed and absorbed
states respectively. Using the standard transition rate method for continuous-time Markov chains,
if the initial condition is s(0) = 0, then the probability of no transition satisfies the ordinary
differential equation

G A(x) = (x) GA (x) , GA(0) = 1,

where

A.(x) := x >

The solution is

exp
GA(x) = exp 2(4)C14) = exp (A,it -0,2(x —0)), x > e.

Comparing to the inverse mapping function, we see the relation

PA [X > = GA (x) = e-wA(x)

15



This form allows us to immediately confirm that OA (U) has the right distribution. Since
P[U > u] = e-", we have

P[On(U) > x] = P[U > IVA(x)] = e-w (̂x),

as expected.

In general, we will make the following assumptions about the functions 0 and V.

Assumption 1. Let the parameter space 0 be an open subset of R. Let 0' C r be the support of a
probability density function p : 6 ' R that does not depend on O. Let 0 : 6 x 0 —> r be an
increasing, continuous function for each fixed 0 E O. Moreover we assume that the image
CI = 0 ( 0 ; 0) does not depend on the choice of e E O. Then we define the function
iy: CI x 0 —>k such that for each 0 E 0, lifo = 0671. For almost every x E 52, we assume that
1v(x; •) and vi(x; .) are differentiable in 0.

4. A MOTIVATING EXAMPLE: EXPONENTIAL RANDOM
VARIABLES

Suppose that X --, Exp(X) for some X > O. Then there are two eqivalent ways to express the
dependence of the expected value of functions of X upon X. The first, and most obvious, is to
write the expected value in terms of the density function for X. Let

p(x; X) = Xe-Xx (14)

Note that p(x; 1) is the density of a unit exponential random variable. When we wish to
emphasize this point, we may write this density as simply p(x).

Dependence through density: Ex [f (X)] = f: f (x)p(x; X)dx . (15)

As shown in the previous section, we can also encode the dependence on the rate parameter in
writing X as a function of U,

X = O(U ; 2L) := U/A,. (16)

Now, if we think of the expectation being taken with respect to U, we have

Dependence through RV: Ex [f (X)] = E [f (0 (U ; 2L))]

= f f (0 (u ; X))p(u)du
0

(17)

Assuming that f is sufficiently well-behaved so that we can differentiate under the integral, we
have two formulas for the sensitivity that appear to be different. Differentiating (131) and then

16



rewriting the equation to that it is in the form of expectations, we get

EX [f (X)] = — dA 
f f(x)Xe-Axdx
0

= f(x)(e-'" - kxe-Ax)clx

= f (x) x) Xe-Xxclx

= E0 [f(X) (11 -X)]

Note that this can be expressed in the following form

EA. [f (x)] = [f (x) - EA. [X])] •

If we wish to express this in terms of a unit exponential U, we substitute X = UIA, and attain

aEA [f(X)] = E [f E[i)]

On the other hand, if we differentiate (171) we have

ad IE [f (X)] = ad f (0(u; X))p(u)du

(18)

(19)

= f:

= f:

So,

EA [f (X)] =a 

f(0(u;

t (lit)

A.)) A))p(u)du

Xx
f (X)-
[

(20)

dax 0(u;

- -E A

p(u)du.

04) U

Equating (n) and (  20 ) very much looks like an integration-by-parts formula:

E[f,(1;,) = E[ f (I/A‘ (1/A‘ E[UA,
(21)

Note that we can also express this purely in terms of X:

Ex[ff (x)I] EA, [ f (X)(X- EA, [X])]. (22)

This is the integration-by-parts formula that Ley and Swan refer to as a parametric Stein equation
F2016]. In Section , we will derive a generalization of this formula that can be

used to generate estimators for the sensitivity to 9 in a broad class of random variables.
Ley and Swan

17



4.1. Monte Carlo estimation of the exponential sensitivities

In this section we demonstrate the performance of four types of estimators for three different
functions f . We choose

(x) _ x2, f(2)(x) = sin(x), f (3) (x) = 1 [3,c0) (X).

The last of this is the indicator function on the set [0.3,0.5], recalling that the mathematical
expectation of an indicator function is in fact a probability: 1E9 [lA (X)] = Pe [X E A].

In each of these cases, the sensitivity can be computed explicitly. For reference, we have

2
A,E x[X21 = —• [sin(X)] = 

1 + A.2 ; 
andA‘2 '

It follows that

EX[1[a,b](X)1 = e—A'a 
e—A,b

1 —
; x2) = 

2,3
L±• J(A ; sin(x)) = (1 + X2)2; J(A, ; (x)) = be•—xb — ae—Aa.

Kernel Density Estimation for the fl Sensitivity

— Est 1: FO
— Est 2: CFO
— Est 3: f -side
- - Est 4: f '-side

-38 -34 -32 -30

N = 10000 Bandwidth = 0.145J

-28

Kernel Density Estimation for the f2 Sensitivity

— 1: ED
— Est 2: CFO
— Est 3:f -side
- - Est f

0.3 0.4 0.5 0.6

N = 10000 Bandwidth = 0.007798

0.7

8

Kernel Density Estimation for the f3 Sensitivity

(23)

— Est 1: FO
— Est 2: GED
— Est 3: f -side

N = 10000 Bandwidth = 0.01154

Figure 4-1 The results of a numerical computation for the sensitivity of an
Exp(A) random variable when the rate parameter is A, = 1/2. From left to right,
we show a kernel denisty estimation for the distribution of Jf(A) for the three
functions given in (231). Note that Estimators 2 and 4 are almost identical in
the left and middle panels. This is addressed in Section 5. Note also that the
best performing estimator depends on the function being used.

The estimators we use for these values are as follows. The first is the naïve finite difference
estimator where we take N samples at two different values of A and then estimate the derivative
appropriately. To be precise, let E > 0 be some small positive real number. Let
{l'i±}Nn Exp(A + E) and Exp(A — E) be two sets of independent random variables.
Then the Finite Difference (FD) esimator is defined

ii(A,;f) 2 f(Y„±)-f(Yn-)) •
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A much more efficient finite difference estimator is the coupled finite difference (CFD) estimator.
The idea is to use "the same noise" to generate the A, + E and X — E random variables. What that
means for us, is that for each pair we generate a single unit-rate exponential and then use the
mapping described in the previous section. Therefore, if {Un }n Exp(1), then the Coupled
Finite Difference (CFD) estimator is defined to be

1 N \ (  (In  \
12(X := Lif +e) fU_E))• (25)

We now define the two Parametric Stein Equation estimators are seen on both sides of the
integration-by-parts formula ( ). The right-hand side of (21) will serve as the basis of what we
call the f-side estimator, J3 . Noting the negative sign in (n) we have

21

(Un Un 1)
13(X;f):=--A7 •n=1

Meanwhile, the other side of (21) yields the f-estimator:

N ( (1,2 Un
14(X := Lif ) X2

(26)

(27)

In Figure 4-1, we display a kernel density estimation for the distribution of each of the four
estimators. These simulations are the result of running 1000 independent trials, each producing an
estimate for the true sensitivity based on 5000 independent samples. In all cases, the FD estimator
(blue) has a much wider distribution compared to the others. This shows the efficacy of the CFD
estimator (black), and why coupling (or correlated sampling) is so important for numerical
computation. For the functions x2 (left panel) and sin(x) (middle panel), the CFD and
f'-estimators (dashed, red) are almost identical. We are able to explain this similarity in the next
section. Note that for the indicator test function (right panel), which is equivalent to computing a
probability of being in an interval, the f' -estimator is not well-defined. (This is natural because
the indicator function is not differentiable at the points of discontuity.) The f-estimator (orange)
is well-defined though, and considerably outperforms the other estimators for the indicator test
function. Interestingly, it performs worse than the CFD and ft estimators for the other functions.
This shows the power of the integration by parts formula. Depending on the test function, either
the function itself or its derivative will be better behaved and yield a tighter estimation for the
quanitity of interest. These results are similar to what we will see for the two-rate problem.
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5. SENSITIVITY FOR RVS DEFINED THROUGH
CONTINUOUSLY DIFFERENTIABLE MAPS

Generically, if X is a random variable with density p(x; 0) that depends on the parameter 0 , then
the sensitivity with respect to e can be derived as follows:

d d
—deEe[f(X)] = — f(x)P(x; 15)dxde • n

p

= Isli (x) S1(x ' 6)dx

The general technique for writing sensitivities in terms of mathematical expectation is to multiply
and divide by the factor that is necessary to replace the density. In this case, this results in
appearance of a logarithmic derivative of the density function:

d p .
d

dO 
Ee [f (X)] = ft). f (x) a

;

(x

(x;
' 
0) 

0) 

p(x
; 6)dx

= In f (x) c, ln(p(x; 0))p(x; 0)dx.

= Ea [f(X) (a, ln(p(X; 0))] .

For the exponential random variable, we have A lnp(x; A,) = A (ln A, — A,x)
EA, [X] = 1/2L, this matches right-hand side of (22).

-- 1 — x. Since

(28)

The goal of this note, of course, is to develop a Monte Carlo method for estimating this sensitivity
in terms of samples from some baseline random variable U , whose density p(u) does not depend
on 0. Just as for the exponential case, there are two natural (and equivalent) ways to represent the
dependence of X on 0 through the mapping 0 e and its inverse tve. The connection between the
two is captured by the standard change-of-measure formula

px(x; e) = p(ive(x))14(x).

In terms of mathematical expectation, this can be expressed:

Ee[f PO] = ft2f (x) p (we (x)) we (x)dx

= ff(n) f (00(u))p(u)du.V 

(29)

(30)

When we differentiate these two forms of the expectation with respect to 0, we see that the latter
will result in a derivative on f due to the chain rule, while the other does not. So, the
change-of-measure formula for the density become an integration by parts formula for the
sensitivities. This is the content of the following theorem, and as we saw in the previous section,
the two sides of the integration-by-parts excel for different target functions f .
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Theorem 5.1. Let U be a base random variable with density p(u) that does not depend upon the
parameter e and suppose that X = 019(U), where 0 and lif satisfy Assumption 1. Let

Then

eEe[f (x)] =

= He

d
p(u) := ln(p(u)). (31)

t(X) s,d(1)'9 (woo]
dv Ve(X)))]f(X) (P(Ve(X)) "e 

de ln( 

(32)

Proof. For the first equality, we encode the dependence on 0 through the random variable. To
emphasize that 0 can be seen as a function of both u and 0, we employ the suggestive notation
(u ; 61) : = oe(u). Bringing the differentiation under the integral sign and applying the chain rule

reveals

Ee[f (X)] = —ddeE[f (0(u; 6))] = cv,c1 filf (0 (u 6)) p(u)du

= ft/Wu; 60) dd°0 (u ; 0)p(u)du (33)

= E [t (0, (u)) da9e(0] .
Applying the inverse to express this in terms of X yields the middle expression in (32).

For the second equality, we write the density function of X in terms of Ivo and the density of U
through the change-of-measure formula (29). We then pass the derivative under the integral,
minding the product rule:

cfleEe[f (X)] = de Lf(x)p(we(x))14(x)dx

= (x) P (Ve(x))d: (x) (x)C1X

fnf (x)P(IVe(x))a dWis/r (x)dx

Similar the what was done in the general case in Equations 28, we multiply and divide each
integrand by the factors that are necessary to recover the density for X:

Ee[f (X)] = f f (x)11(1116 (x)) (x)px(x)dx
de p(ve(x)) d

ty'e

+ f (x)p(ve(x))Tifev(xx)) px(x)dx.

Recognizing these ratios are logarithmic derivatives and writing in terms of mathematical
expectation with respect to X, we have the third expression in (
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For the exponential random variable, recall that OA, (u) = ul and IA (x) = Xx. The quantities we
need are

du 

a IA 
ln(p(u)) = —1,  (x) = x, and dx (x) = 

1

Substuting these quantities into the third expression in (32) yields (WI) as expected. Meanwhile,

()OA, u OA,
(u) —p, so ,(lif(x)) =

which recovers the left-hand side of (22).

It is now easier to see why estimators 2 and 4 were so similar in the exponential random variable
experiments displayed in Figure 4-1. The coupled finite difference estimator is, in fact, a
discretization of the "f-prime estimator. Indeed, using the expansion

f (0(u; +E)) = f (0(u; 0) ± 
d 0

0(u; 0)E + 0(E2))

= f(0(u; 0)) + t(0(u; 0)) a 00(u; 0)E + O(E2),

we find that

—2E (E[f (O(v; 0 + E)) — f(0(u ; — E))]) =E[t(ow»d:: (0] + 0(E). (34)

The left-hand side is coupled finite difference estimator and the mathematical expectation on the
right-hand side is the estimator derived in Theorem 5.1

6. EXTENSION TO THE TWO-RATE ABSORPTION PROBLEM

We return to two-rate absorption problem. Here, the mapping function OA is defined piecewise
with the split appear at a location X = f. Importantly, the two functions that comprise OA can
depend on as well. In order to understand the result we will eventually derive, we first present a
version of Theorem 5.1 and that addresses the sensitivity of piecewise defined random variables
with respect to changes in the location of the change. The terms involving mathematical
expectations will look the same, but there are boundary terms that emerge.

Theorem 6.1. Suppose that X = 00(U), where 0 = 02,£) and 0 is a piecewise differentiable
(expressed in terms of everywhere-differentiable functions 01(u; 01,f) and 02(u; 02,0),
continuous and non-decreasing function. Let igi(• ; 01,f) and tv2(• ; 02, £) be the inverse functions
of 01(•,01,£) and 02( ; 02, f) for each choice of parameter vector O. And suppose that 0 is
differentiable in Oi , 02, and P everywhere except for the set {x = 0. So,

o(u;0),= f 01(u; 01,4
t 02(u; 02,4

22
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If p(u) is the density of U, and we recall the notation p (u) := 11n(p(u)), we have

-c;lEoff (x)1 = f (t)p(Iv(t)) (Iiii(t; + T(t; t)
02,0 dayft2 (t; e2,

▪ E® Lf (X) T(V,p0)1{,„,}]

▪ Eo [f(x)T (1v2(X))1,,,,ed
= f(t)p(iv(e)) — e2,

+Eo [f(x) (13 (1 (x)) Tp0+;1n(vioc»)

+Eo[f(x) (11,2(x)) a÷e2(x)± jed in (11/2(X))

(36)

(Recall that, when there is no risk of ambiguity, the notation' refers to differentiation with respect

to x.)

Proof. The proof proceeds similarly to Theorem 5.1 beginning by encoding the dependence on

in the random variable. We need to take special care though, when looking at the limits of

integration. The breakpoint can be expressed as the inverse of the location x = t, i.e. ly(t), since

tv is continuous. But since it is not required to be (and indeed in our two-rate absorption problem,

it will not be) differentiable, it is worth expressing in terms of the piecewise-defined functions tv1

and lif2:

EID[f (X 
; re)

)] = f (01(u ; Oh t)p(u)du

CO

+Li ce; ei,t) 
f (02(u; 02, t))p(u)du.

When applying the Leibniz rule for differentiation of this integral, we will encounter total

derivatives of the type

Tevfi(t;eht)= (x; 01,e + w(t t)

= vii(t ; Oh t) a~e(f ; 01, f)

where i E {1 , 2} anda 1 t refers to differentiation in the third coordinate. We note that, for the last

equality, this is only a change of notation.

We now calculate the sensitivity, differentiate the mathematical expectation with respect to t,
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minding the chain rule and total derivative that appears in each term:

at dr
i V 

1E0[f (X)] = f (f)p(tv(t)) (114(t ; ei,t) + 
a  

(f ; 01,f)

lif
—tv'2(f; 02,f) — —at

2
 (f; (92A))

iv(t) (301 
+ j f/(0i(u;oi,,o) (u; oh Op(u)duat

r..

— j t(02(u; 192, t)) d°: (tt ; 021 f)p(u)du
lg(f)

Changing variables to x = 0(u) yields the f-prime estimator.

For the other side of the integration by parts, we express the integral in terms of x instead of in
terms of u. We have

Eo[f(X)] = ji(x)p(vi (x; 0)1X(x ; 01, 0dx

rf (x)p(v2(x ; 02, t))112(x ; 192, f)dX
Applying the Leibniz rule is more straightforward this time:

t Eso[f (X)] = f (f)p(V(t)) (Vi(t ei,t) - ; 02, f))
d

+ cpx) e VOVi(x; 19i,t)) (x; 01,,e))clx

' d (
+

f 
f(x)Te V(V2(x; 192,t))V (x; 02,t))dx

The remainder of the argument for both of these integrands proceeds exactly as it did in the proof
of Theorem 5.1. We multiply and divide each term appropriate to recover the densities for X
when it is less than or greater than t, respectively.

Corollary 6.2. Let U Exp(1) and X = On(U) where the parameter set A = , f) and
functions OA and li/A are as defined in Section 3--4 Then

eEA[f (X)] = (1— E [t(L+f)]

e-x1f (X1 — A2) (AO (T2u + t)])
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Figure 6-1 Sensitivity of a two-rate absorption problem when the rate pa-
rameters are A.1 = 1/3, = 2 and .e = 2. From left to right, we show a kernel
denisty estimation for the distribution of Jf(2) for the three functions given in
(23). Note that the CFD and f estimators (2 and 4, respectively) are no longer
almost identical like they were in the exponential case. This is due to the use
of importance sampling, which improves the efficiency of the f-prime esti-
mator. Note also that, again, the best performing estimator depends on the
function being used.

Proof. For the two-rate absorption problem, note that we have the following partial derivatives:

d d 02 A•1
;(u; f) = 0, d f(u; = 1 - 2

d f

de 
(x; Xi,t) = 0, — 

t (x; = (A,1 - A2);

dig1 (x; Al. f\ d1112 ; 2.2,
dx ) d

We look first at the f-prime estimator, and find that, remarkably, the boundary terms cancel.

Moreover, the property = 0 eliminates the mathematical expectation for X values less than f.
As a result, the sensitivity with respect to the location of the rate change is

d f 
EA [f (X)] = - (1- EA [t(x)l{x,„]

= _ (1- ,A,A)E [f,(U A1f f)1111>Â1f1) .
4,2

The simulation effort associated with the right-most term is wasteful though, in the sense that all
samples of U that are less than A,1f are simply discarded. With a simple substitution we can use
importance sampling in order to focus only on values that matter. Indeed, letting v = u — Ale, we
have

E [f, (U A2A4 1{U>Aiff] = u A•1 t e-"du
\

= 
0 (A,2 

) + t)e-(v+AA ay.
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Relabelling and factoring out e—At , we have a final form

d
—
d

e 
EA [f (X)] = —e-4e (1 — ,x1) [t(,+.0].

Meanwhile, we can compute the other side of the integration-by-parts as follows. In terms of U ,
we have p (u) = lnp(u) = (flu (—u) = —1, and so

de
—
d 
EA [ f (X)] = f (f)e—Xl'e — Aa) — EA [f(x)(2,1 — 2,2)1 fx>tl]

The quantities in Corollary
Figure 6-1

6.2

e—A'it(A4 AQ)(f (e) — E [f CIA2 +0] )

(38)

yield natural estimators, and their performances are displayed in

7. LANGEVIN AND BROWNIAN DYNAMICS

In this section, we consider the task of computing the sensitivity of expectations (or averages)
with respect to model parameters for Langevin and Brownian dynamics. We consider both static
(or equilibrium) and dynamic (or non-equilibrium) averages. The results generally follow prior
work by Rief [1994] on static averages and work by Warren and Allen [2.12.2a], ? on dynamic
averages.

The Langevin equation for a system of N particles is a stochastic differential equation on a 6N
dimensional phase space (position and velocity in 3 dimensional space). In the physics literature,
the equation is compactly written as

ti

mivi = (k',t; e) + V2yikBT (t) , = (39)

where A, vi E le are the positions and velocities of the ith particle, mi E R is the mass, and Po is
the deterministic force. The friction parameter, y, is assumed to be positive, and kBT is product of
Boltzmann's constant and the temperature. The random force on the ith particle, Ri, is a white
noise process with zero mean, unit variance and uncorrelated in time,

E [Pi(t)]= 0, Coy [iii(t),PT(t')] = (t — ti)ff. (40)

Note that here we have assumed that the deterministic force is not a function of the velocity,
which is a typical, but not a necessary simplification.

Given a function on phase space, A : 3N X N 3N
as

1" , we can write the expectation of A at time t

E [A(Z(t; = A(Z)p(Z,t; 6)dZ,
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where Z = V] and p is the probability density of finding the system with configuration Z at time
t for parameter O. The function p can be estimated by generating an ensemble of trajectories, or
by solving the associated Fokker—Planck equation. The sensitivity (or derivative) of the
expectation with respect to 0 is,

—
d

0 dO 
E [A(Z(t; 0))] = f A(Z)—

d
p(Z,t;O)d.Z,

d 

= f A(Z) (
dO

lnp(Z,t;0)) p(Z,t;0)c1Z,

= E [A(Z(t; 0))
dO

lnp(Z,t; 0)] ,

= E[A(Z(t;0))(.0(Z,t;0)].

where CO is a scalar weight. Hence, the sensitivity of the expectation can be viewed as an
expectation with a non-constant weight.

As mentioned above, the function p can be estimated by generating an ensemble of trajectories.
In the remainder of this report, we provide practical algorithms for estimating the sensitivity
computing the weight, (0.

If we assume that the inertial component is small (which is a valid assumption over large time
scales, for relatively small masses, or relatively large friction coefficients) the miVi term can be
neglected, and we obtain the Brownian dynamics equations,

or

0 = Pc ,i (Y,t; 0) + V2yikBT (t) , z~=vz,

= Pc,i t; + V2yikBT (t) . (41)

If the deterministic force is conservative, then Po = _4U for a conservative potential, U, one
can show that the dynamics of Brownian and Langevin dynamics are ergodic, and that the
stationary distribution is the Boltzmann distribution,

p (Y; e) = c(e) exp[— kBTU (Y; 61)1 ,

where C(0) is a normalization constant.

7.1. Analytic results: 1D harmonic well

We start by considering the problem of a single walker in a one-dimensional harmonic well. In
this case, the deterministic force is Fc (x; 0) = —U/ (x; 0) = —0(x— where
U (x; 0) = 2 0 (x — [)2 . The harmonic well is centered at position µ, and the parameter 0 is the
"spring constant" which controls the expected range of motion of the walker.
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For this problem, Brownian and Langevin dynamics are ergodic, and the stationary distribution
is

1 0 (x — kt)2p (.77; 0) = C(0)exp 2  kBT 

with C(6) = 0 1 (27rkBT).

7.1.1. Brownian Dynamics

The Brownian dynamics equation for this example is

= -0 (x - kt)-F V2ABT R(t) ,

If we let a = 0/y and c = V2kBT 1 y, then we can rewrite this as

dXt = -a (Xt - /.2)dt + adW

(42)

(43)

(44)

which is the well-known Ornstein-Uhlenbeck equation. In this notation, Wt is a Wiener process,
a is a positive dissipation parameter, and a is a positive fluctuation parameter. This stochastic
differential equation has an exact solution

X(t) = Cat (X(0) - /1)+41.2 + a4
1 _ e-2at

2a
(45)

where 4 is drawn from a unit normal distribution. Note that in the literature, this exact solution is
also known as an "autoregressive model of order 1" or an "AR(1) moder. Since we know the
distribution for 4 we use simple algebraic manipulation to derive the distribution for x for an
ensemble of trajectories starting from the same initial condition, x(0) = xo,

p(x,t;61) = 
2t,g2 (1 

a (x - e-at (xo - kt) -12)2
e-2ott) 

exp a  
62 (1 e-zat)

Note that this is solution of the associated Fokker-Planck equation

d p d cy2 d2p

dt 
= a

d x 
((x p)+  

2 ax2

(46)

(47)

with the appropriate initial and boundary conditions. Taking the limit as t goes to infinity results
in the stationary limiting distribution in (42).

Now, suppose we want to compute the sensitivity of the expectation of A at time t for parameter
O. From the first section, we know that

—E[A(x(t; = E [A(x(t; 0)*(x,t; 6)]
d 0

where
d ,

co(x,t;t ) = 
d
-
0 
lnpv,t;
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Inserting the distribution function p for this problem, we obtain

1 e-2at e-at (xo au) tt )2 e—oct
CO(X,t; (9) = 

20 
t
7(1 e-2at) 

+2t a 762(1_ e-2at)2

(x — e—at(xo — µ)— µ)2+2at(x — e—at(xo — µ)— µ)e—at(xo — µ)

,ya2(1 e-2at)

7.1.2. Langevin Dynamics

Langevin equation is

nfi = —yv — 61(x — /.1) V2ABT R (t) , = v,

where the parameter 0 is a "spring constant" that controls the width of the harmonic well.

If we let Z = [x — v] then we can rewrite this as a linear first-order SDE,

(48)

Z
. 
= — 

d

[ x [ 
v r 

—1 0 [ 
0/m [

x 0 
[ V20 kBT 

0
0

(t), (49)
dt 

or more compactly,

with

cat = —AZtcit + SdWt, (50)

A := [ 
—1 19/0

11/ S := 
[ \/20kBT 00]

' 0

The solution for this system is

t
Z(t) = e—AtZ(0) + fo

using the standard definition of the matrix exponential.

7.2. Numerical methods

The Euler—Maruyama approximation to the solution of the general Brownian dynamics equations
in (g) is

-
At
—Fc 4;0) ±

2kBT At

where Y7 is the position of the ith particle at time tn = nAt. Each 4in is a random number drawn
from a standard normal distribution.

Given an ensemble of trajectories, we can estimate the expectation of A at time tn with

1 Nsim
E [A(x(tn;0))1 11,,,,L1,4(-4(19))
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where xk is the numerical solution at time t, for the kth simulation. To estimate the sensitivity of
this expectation, we note that the probability of a point on the trajectory is the product of
conditional (or transition) probabilities,

Pr (4(0)) = Pr (4(6)4-1(6))pr (4-1(9)14-2(0)) ...Pr (4(0)) .

Since the are drawn from a standard normal distribution, we can compute the transition
probability with simple algebraic manipulation,

1
 exp 

[ 11Xn-Fl — Xn — 7 1 FC(Xn; 61)At112]
Pr (Xn-rilXn) =  (47 rr At)3N 4r1kBTAt

where we have assumed that all the y's are the same. Now, the sensitivity weight, (0, for
parameter 0 at time tn+1 is just

(tn+i; 0) = 1nPr (Xn+i) = d—cie lnPr (X2+11X,) + (tn; 0) .

Inserting the definition for the transition probability and applying the derivative results in

(Dn + 1 = Con +
At d n

2kBT y''n deFcAXn;u
\

where Fc. is the 3N dimensional force vector, and 4n is the 3N dimensional vector of random
numbers used to advance the solution from X, to Xn+1.

7.3. Numerical experiments

7.3.1. Harmonic well

Recall that the harmonic well potential and force are

U (x; 0) = ie (x Fc(x;O) = — µ)

For the first numerical experiment, we compute the e-sensitivity of the time-dependent
mean-square displacement of x from IL The mean-square displacement is defined as

MSD(t) := E [(x(t) — µ)2]

Applying results from the previous section, we know that for Brownian dynamics

—
MSD(t) = e-20t/7(x(0) — /2)2 + 

1 _ 
e0

20t/y 
kBT

The exact 0-sensitivity for this problem is

dOMSD(t) = 29th (x(0) µ)
2 
+ 

—2t/7) — (1 — e-2610') 

02 kBT
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Figure 7-1 Using reweighting to estimate the derivative of the mean-square-
displacement quantity of interest for the harmonic well. The blue curves are
computed using 20,000 independent walkers, with a spring constant of 0 =3,
and using the trajectory reweighting scheme. The red curves are the analytic
(exact) solution. On the left, the mean-square-displacement as a function
of time. On the right, the sensitivity of the mean-square-displacement to
changes in the spring constant, 0. The green curve on the right shows the
result from using simple centered finite differencing with 0 =2.9,3.1.

3

In Figure TI, we show the results from an Euler—Maruyama simulation of the Brownian
dynamics of 20,000 independent walkers in a potential well. For this simulation, we used the
following parameter values: 0 = 3, kBT = 1, µ= 1, 7 = 1, and At = 0.001. On the left, we show
the evolution of the quantity of interest (the mean-square-displacement) as a function of time
from t = 0 to t = 4. Due to the large number of walkers, the Euler—Maruyama result (in blue)
closely matches the exact solution (in red). On the right, we show the sensitivity of the
mean-square-displacement to changes in the spring constant, 0, using the trajectory reweighting
scheme (in blue) and the analytic solution (in red). The numerical result matches the analytic
result very closely for short times, with increased variance at longer times. To compare the
reweighting estimator to a "black box" approach, we use simple (uncorrelated) centered finite
differencing with 01 = 2.9 and 02 = 3.1. The result is the high-variance green curve on the right
in Figure 7-1. In this example, the centered difference estimator has higher variance and is
computationally more expensive, requiring two additional simulations. In addition, the centered
difference estimator requires selecting a parameter step size to optimally balance the truncation
error with the statistical error (something we did not do in this example). In contrast, the
reweighting scheme has no "step size parameteC, is lower variance, requires less computational
effort, and has a higher floating point operations to memory access ratio.
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Figure 7-2 Using reweighting to estimate the derivative of the virial pressure
with respect to the Lennard—Jones attractive constant, 0. On the left, the
time-dependent virial pressure for B= 0.95, 1.00, and 1.05. On the right, the
sensitivity of the virial pressure to e estimated using centered finite differ-
ences and trajectory reweighting.

7.3.2. Lennard-Jones gas

The Lennard—Jones potential is well-known molecular-dynamics pair potential. The total
potential can be expressed as a sum over all pairs of atoms in the system,

N N
=- 
2 
L L

. 
Uu(rij)

. .i=l

Uu(r) — 4E ((ri3 
12 e /13 6

r J r I

where rij is the minimum distance between a pair of atoms. The core potential is parameterized
by E, ro, and O. The parameter 0 controls the strength of the attractive component of the force.
The reduce boundary effects, we use periodic boundary conditions, and truncate the potential at
half the box length, so an atom does not see its periodic image.

A standard observable computed in molecular dynamics simulations is the pressure,

N N
P = 

V 
—
1 
(NkBT  L L rijUlj(rii))

6 i

where V is the volume of the periodic cell and ULI is the derivative of the Lennard—Jones pair
potential.

We would like to compute the sensitivity of the pressure to changes in the attractive force
constant, O. We start by performing a series of simulations with 256 particles in a periodic box
with number density of 0.95, kBT = 1.5, and 0 = 0.95,1.00, 1.05. On the left in Figure 7-2, we
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show the pressure as a function of time over 10000 time steps with a step size of 0.05. As
expected the pressure decreases as 0 increases. On the right in Figure 7-2, we show two different
estimates for the sensitivity of the pressure to changes in O. The first is the simple uncorrelated
centered difference estimator shown in cyan. The second is the reweighting estimator (also known
as the maximum likelihood estimator) shown in red. For this problem we find that the reweighting
estimator has lower variance when compared to the centered difference estimator, and requires
less computational overhead, using one simulation instead of the two additional simulations
required for centered differencing. It is also worth mentioning that the additional overhead for the
reweighting scheme is one dot product between the conservative force and the random force (two
quantities already required for a standard simulation). This additional dot product is of negligible
cost compared to the cost of a full N-body force calculation, and can be computed in tandem with
the forces.

8. PARTICLE TRANSPORT WITH TRANSITIONS BETWEEN
PURE ABSORBERS

In this section, we connect the work of this report with the application area of radiation transport.
We build upon the work accomplished in Bond et al. [2019] that related the differential operator
approach IZiefl [1994] and the Malliavin derivative. The former had the goal of determining an
approximation to a sensitivity by reusing samples used within the existing Monte Carlo method.

For a purely absorbing problem with no time-dependence and no internal source, the Boltzmann
transport equation simplifies to the ordinary differential equation

{ (30(x,p,)
,t,t + ca(x)0 (x, I.1) = 0

dx
OA II) = 00(P) 0 0041)

x > 0 , —1 < µ < 1
(51)

where 0 is the angular particle flux, µ = cos( 0) is the particle direction, and cra is the absorption
cross section. The flux is defined as the density of particles passing through position x traveling in
direction II prior to absorption given an initial density.

We consider a problem consisting of two regions with different interaction cross sections, such
that

a,(x) 
al , 0 < x < f

=
(72, t < x

(52)

We note that Eqs. Oil) and (52) are similar to problems analyzed in section 4, with the
introduction of our physically motivated parameters of x to denote an axial position and an angle
variable µ that relates axial distance traveled to total particle distance traveled, the basis on which
interaction probability cra is expressed.

We are interested in obtaining sensitivities of the particle flux 0 with respect to the boundary
location f. More generally, we are interested in reaction rates that are an inner product with the
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particle flux, and we are interested in boundary locations that characterize the geometry
dimensions of a system. In the following we demonstrate that we can calculate these sensitivities
directly using Monte Carlo simulations while simultaneously solving Eq. (51). The value in this
approach is the capability to leverage gradient-based design and uncertainty quantification tools,
as discussed in the introduction.

The solution for this transport problem can be written directly as

0(x,,u) =
{00(P)exp (— at ,,-,,) , 0 <x<f

(53)
(Po(µ) exp ( cr2) exp a2 , f < x

and so provides the survival probability when we also suppose 00 = 1. If X denotes the random
variable distributed with respect to the flux 0, then the survival probability can be written as
(x, p) = 111(X > x/p,). We remark that the identity

IP(X> it
x
—) = E(11x>x/P) (54)

explains that the survival probability is equivalent to the expected fraction of particles absorbed
beyond x/p. The Monte-Carlo simulation approximates the expectation by sampling X and
tallying the fraction of times it exceeds xlµ.

The sensitivity of the flux to the position of the geometry boundary at is

d
dfT(x,i-t) = — a2 (x, ti)it 

This can then be cast as a relative sensitivity:

1 d 

o, 0(x„u)decP(x'11)' crl

(55)

(56)

This factor for relative sensitivity due to change in a boundary location appears as the total cross
section in the expression [Burke and Kiedrowsk1, 1'2018, Eq. (68)] derived using the differential
operator. That is, in the absence of a scattering cross section, the total cross section is that same as
the absorption cross section and the two expressions become identical.

Eq. (56) makes physical sense. The sensitivity of the particles transmitted to some depth x beyond
the material boundary at is proportional to the change in the cross section at the material
boundary. If the cross section of the second material is larger than the cross section of the first
material and the material boundary is shifted so that there is less of the second material (that is,
is increased), the transmission is increased. The sensitivity is inversely proportional to the cosine
of the angle with respect to the material boundary surface. This follows simply from the effect on
the particle pathlength in each material (the basis on which survival probability is defined) relative
to the shift of the boundary in the axial direction x (the basis on which position is defined).
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It should be noted that as a particle path approaches a direction tangential to the surface (i.e.,
µ —> 0), the expected value for the sensitivity is unbounded. A similar problem arises with surface
flux estimators in Monte Carlo simulations. An ad hoc solution is to modify the estimator by
using an approximate contribution for particles that are nearly tangential, as discussed in

]and Fraley 12002
Dupree

Here we have considered an exponentially distributed random variable. We are interested in more
complicated problems, in which Monte Carlo simulations provide the random process through a
set of sampling procedures designed to simulate physical processes.

8.1. Numerical Results

We constructed a test problem with cri = 1.0, 62 = 2.0, and t = 1.5. All particles were simulated
in direction µ = 1. We used a simple Monte Carlo code representative of particle transport codes.
The algorithm samples distance to absorption from an exponential probability distribution
function parameterized by the absorption cross section, moves the particle to the nearer of either
the next boundary or the absorption location, and repeats until the particle is absorbed or passes
the last geometry boundary. The particle flux was tallied at each boundary crossing. The tally is
an indicator function, with a tally weight of 1 for each boundary crossing versus an implicit tally
of 0 if the particle is absorbed before the boundary crossing. Results are normalized by the total
number of particles simulated. The statistical average and standard deviation of each boundary
flux were estimated. Simulations used 107 particles.

Sensitivities were calculated using three methods. The analytical sensitivites are given by (55
Sensitivities were sampled using an in-line implementation of (56), such that when a particle

).

crossed the boundary a relative sensitivity weight was incremented by the difference in the cross
sections. At each boundary crossing the flux sensitivity was tallied as the product of the flux tally
and the sensitivity weight. Finally, sensitivities were also estimated using a finite difference
approach in which an independent simulation was performed with the transition between cross
sections £ shifted from a depth of 1.5 to 1.49. The sensitivity was estimated as the difference in
results divided by the difference in boundary location.

Results for the boundary fluxes are provided in Table 8-1, and results for the sensitivities of the
boundary fluxes to the location of the cross section transition are provided in Table 8-2. All
results for the in-line sensitivity method are within reasonable statistical agreement of the
analytical results, and since the cross section difference is 1.0, estimated flux sensitivities are in
exact agreement with the estimated flux and have the same statistical uncertainty.
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