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Abstract

Predicting performance of parts produced using laser-metal processing remains an out-
standing challenge. While many computational models exist, they are generally too compu-

tationally expensive to simulate the build of an engineering-scale part. This work develops a
reduced order thermal model of a laser-metal system using analytical Green's function solu-
tions to the linear heat equation, representing a step towards achieving a full part performance

prediction in an "overnight" time frame. The developed model is able to calculate a thermal
history for an example problem 72 times faster than a traditional FEM method. The model

parameters are calibrated using a non-linear solution and microstructures and residual stresses
calculated and compared to a non-linear case. The calibrated model shows promising agree-
ment with a non-linear solution.
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Nomenclature

cp Specific Heat

CALPHAD CALculation of PHAse Diagrams

CPU Central Processing Unit

FEM Finite Element Method

GPU Graphics Processing Unit

k Thermal Conductivity

LENS Laser Engineered Net Shaping

MCMC Monte Carlo Markov Chain

P Laser Power

p Density

c Standard Deviation

T Temperature
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1 Introduction

In recent years, there have been many works modeling all aspects of laser metal manufacturing
processes. Models have ranged from detailed, high fidelity models of melt pool physics such
as Trembacki et al. [20] for LENS, and Khairallah et al. [11], Moser and Martinez [13], and
Beghini et al. [2] for laser powder bed additive manufacturing. Such models incorporate detailed
physics at the scale of the laser spot and have had some success in explaining and predicting small-
scale physical phenomena, melt track morphologies, and even residual stress. However, their high
computational cost makes the modeling of even a millimeter laser scan challenging, much less
predicting the performance of an entire part, and very little work has been performed on leveraging
these models to inform faster, larger scale models.

Other groups have purposed simpler models that neglect the complexities of the melt pool and
model heat transfer using conduction only. Often, these models are coupled to solid mechanics or
microstructure models in order to predict mechanical properties, e.g. Johnson et al. [10] who used
a conduction model to predict microstructure and residual stress in the LENS process, Smith el al.
[17] who coupled a conduction model to a CALPHAD microstructure model, and Hodge et al. [9]
who implemented a thermo-mechanical model for additive manufacturing. These models are sub-
stantially faster than melt pool scale models, but still require very large amounts of compute time
due primarily to the fact that the time stepping must be fine enough to resolve the motion of the
laser. This means that a single simulation for a small part build takes days, making multiple simu-
lations to perform design optimization or uncertainty quantification intractable, and simulating the
build of an engineering scale part on the order of several cm3 remains out of reach.

Currently, the only methods that are able to model mechanical performance for engineering-
scale parts require the use of inherent strain methods, in which the heat transfer problem is by-
passed and the solid mechanics problem solved directly by imposing estimated plastic strains, or
heat source agglomeration, in which the fine time-scale motion of the laser heat source is lumped
together in some way to allow larger time steps. Ganeriwala et al. [8] used an agglomerated
heat source mechanism in a thermo-mechanical model of laser powder bed additive manufactur-
ing, whereas Bugatti et al. [4] applied the inherent strain method to the same process. Both
methods can be computationally inexpensive enough to perform multiple modeling iterations for
engineering-scale parts, but accuracy becomes a challenge. Calibration against experimental data
is needed for both methods. However, ranges of model validity are not well defined when models
calibrated on a particular material, set of processing conditions, and part geometry are applied to
make predictions under new conditions, making it difficult to trust their predictive capability.

This work uses an analytic, Green's function based, heat transfer model to calculate thermal
histories of laser metal manufacturing processes. The use of Greens functions in laser process
modeling is not entirely new (e.g. Schwalbach et al [16] and Farwell et al [7] used Greens func-
tions to calculate thermal histories for single layers in laser powder bed additive manufacturing).
However, this work develops a novel framework for applying Greens functions that can be used
to quickly calculate the thermal history of an entire build that can be used on both CPU and GPU
architectures.
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Unlike FEM, a Greens function solution does not need to be sequentially time stepped forward
from an initial condition, but rather can be constructed on the fly at any point in time and space by
numerically evaluating an integral. This property is used to overcome the performance challenges
posed by conventional FEM models with resolved laser source terms. As the fine time scale heat
transfer only occurs in the locality of the laser in time and space, an adaptive space-time grid is
employed to allow the solution to be selectively sampled in these areas with high spatial and tem-
poral fidelity, and sampled only coarsely elsewhere. Thus, a thermal history is constructed using as
few evaluations as possible. Solution evaluations are also embarrassingly parallel, unlike in mesh
and time-step based methods, making the problem amenable to highly parallel GPU computing
architectures. Using the Kokkos performance portability software package [6], this work is able
to achieve a 72 times wall clock speedup as compared to a conventional FEM code on an example
laser processing simulation using GPUs.

The Greens function solution requires making simplifying assumptions to the problem: linear-
ity and a semi-infinite domain. This work uses the Dakota toolkit [1] to calibrate the model param-
eters (material properties and source term) against a non-linear solution using objective functions
based on maximum temperature and temperature norms, and estimate the uncertainties in the so-
lution due to the assumptions. Results from the calibrated model are input into existing models for
predicting microstructure and residual stress and compared to results calculated from a non-linear,
FEM temperature solution. Although differences are found between the two predictions, there are
promising similarities that show the applicability of the developed method for rapidly predicting
detailed temperature histories that can be used as a basis for engineering-scale part performance
predictions.
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2 Methodology

2.1 Green's Function Solution

An analytical Green's function solution is available for partial-differential equations of the form
given in Equation 1 for an infinite domain.

du- ocAtt = S (1)

The heat equation can be cast in this form by assuming constant material properties (p, cp, and

k) and a temperature-independent source, and letting a = pep . The workpiece to be simulated

is assumed to be a semi-infinite medium with the zero-flux boundary condition on the surface
on which the laser is applied (z-direction). This is accomplished by using a source term that is
symmetric across the z-plane. The Green's function for this equation is given in Equation 2.

G=O(t)
4irat

0(0 is the Heaviside step function.

(2)

For this work, we use a general ellipsoidal Gaussian to model the laser source, as given in
Equation 3.

S
3/2

axayaz

(x-x1)2 (y-y1)2 (z-z1)2
2

 e x (3)

and z1 represent the coordinates of the laser center, which can vary with time. This functional
form of the source term is a useful choice as it can be integrated against the Green's function in
Equation 2 analytically in space, leaving an integral in time only to be performed numerically. The
full temperature solution is given in Equation 4.

(x—xj(s))2 (y-37 (s)) 2 (z—z1(s))2

2P ft e +40-s) q+4a(t-s) +4a(t-s)

T =  ds
3 2ir pcp + 4a (t — s)\/a2 + 4a (t — s),Vcr + 4a (t — s)

(4)

Ti is the specified initial temperature of the domain. It is also possible to develop analytical solu-
tions for arbitrary-order derivatives of temperature with respect to spatial dimension and time by
simply differentiating Equation 4 with respect to the variable of interest. Thus, the Green's func-
tion method allows the calculation of analytical temperature gradients and heating/cooling rates
along with temperature.
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Equation 4 is amenable to an adaptive quadrature routine, as the integrand varies rapidly with
time when the laser center is close to the evaluation point in both space and time, but is close
to constant otherwise. Commonly used adaptive quadrature algorithms use interval sub-division
and recursion to calculate a solution. These algorithms perform poorly on the GPU as the sub-
division is a sequential operation and the memory requirements for recursion mean that relatively
few threads can be used.

Instead, an adaptive Clenshaw-Curtis algorithm is applied. Clenshaw-Curtis quadrature is se-
lected as it can be infinitely nested - the evaluation points of an order 2n quadrature rule contain
all the evaluation points of an order n quadrature rule, meaning that function evaluations can be
reused. Additionally, all evaluation points are known ahead of time, so evaluations of the integrand
can be performed in parallel. By parallelizing over both the physical points at which the tempera-
ture solution is to be evaluated and the evaluation points of the integrand, many more threads are
able to be used, improving GPU performance

Adaptivity is achieved by comparing the results of the integral performed using an order n and
order 2n rule. When the results differ by more than a prescribed tolerance, the integral is computed
using an order 4n rule, which is compared to the order 2n result. Refinement continues until either
the tolerance is achieved or a maximum order is reached. For cases where the maximum order is
reached, the interval is sub-divided and the process repeated. Thus, performance can be tuned for
either CPU or GPU by specifying a large maximum order to expose more parallelism for the GPU,
or a small one to reduce the number of integrand evaluations on the CPU.

2.2 Adaptive Space-Time Grid

The computational costs, both in time and disk storage, of representing the temperature history of
an engineering-scale part using uniform grids and time step size at the resolution required to resolve
the action of the laser are prohibitive. Therefore, an adaptive, 4D space-time grid is developed to
reduce computational and storage requirements. The grid begins as a series of uniform hyper-
rectangular cells, with each vertex representing a point in space and time at which the solution will
be calculated and stored. The calculation of the solution at each vertex is done in parallel as there
is no spatial or temporal dependence between solution values with the Green's function method.

Once the solution is computed at all vertices, each cell is split into 16 child cells by bisecting
the parent cell evenly along each of the 4 dimensions. The solution is then computed at all newly
created vertices using the Green's function. An approximation of the solution is also computed
by using linear interpolation to estimate the value of the solution at each of the new vertices using
only the solution values at the parent vertices. If the approximate solution value differs from the
Green's function value by more than a prescribed tolerance, each of the 16 child cells are split. The
process repeats until no further refinement is required or a specified maximum refinement level is
reached.

The developed grid allows local adaptivity in all 4 dimensions, including time, allowing it to
reduce the number of required vertices beyond what is achievable even with adaptive time stepping
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Figure 1. 2D (x-t) grid showing local time refinement

and adaptive spatial grids. With these schemes, the adaptive time step size must be selected for
the entire domain, meaning that some points will be unnecessarily represented at a finer time scale
than is required since the entire domain must be stored at each time step. With the 4D grid, the
solution can be sampled at different time increments at different places in the domain. This is
shown in Figure 1 for a 2D (x-t) grid. The red dots represent vertices. Note how not all time steps
need to include the extent of the x-domain

2.3 Calibration and Uncertainty Quantification

In order to approximate the solution to a non-linear problem with a linear solution, the input pa-
rameters to the Green's function model are calibrated using the n12sol method of the Dakota toolkit
[1]. This employs a generalized Levenberg-Marquardt algorithm to find a set of model parameters
that minimize a set of objective functions. Two objective functions are used in the calibration:
the maximum temperature and the L 1 norm of the difference in temperature solutions outside the
melt region. These are chosen as the maximum temperature is important for predicting the forma-
tion of porosity, and the temperature in the solid region governs residual stress and microstructure
development.

The Green's function model is calibrated against a non-linear, FEM temperature solution for
a laser raster on a flat plate computed using the Aria module of the SIERRA code suite [19].
The non-linear model includes temperature-dependent material properties, latent heat of fusion,
and convective/radiative boundary conditions on the surface on which the laser is applied. A
single time slice is taken from both the Green's function and Aria models to compute the objective
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functions. A time is chosen after the laser has completed several rasters, as this is found to give the
best calibration results. Five input parameters are chosen for calibration: k, P, p cp, crz, and crx/cy,
which are constrained to be the same value.

For purposes of performing uncertainty quantification, a Bayesian calibration of the input pa-
rameters is also performed using a MCMC method [1]. Due to the large number of samples re-
quired by the MCMC technique, an inexpensive surrogate of the Green's function model is con-
structed using a Gaussian Process [1], which is sampled in lieu of the full Green's function model.
The Bayesian calibration provides an estimate of the probability distribution of the input param-
eters given the calibration data. Uniform priors are used for all input parameters. The resulting
input parameter probability distributions are propagated through the Green's function model to the
output predictions using a Latin Hypercube sampling technique [1] for an estimate of the uncer-
tainty in the temperature prediction due to the assumptions required in using the Green's function
solution.

2.4 Microstructure and Residual Stress

Temperature histories computed by both the Green's function and non-linear Aria models are used
as inputs to existing, Sandia-developed, models for microstructure evolution and solid mechanics
in order to predict as-built microstructures and residual stress profiles. The microstructure model
uses the SPPARKS Kinetic Monte Carlo software package [15]. An under-cooling based approach
is used to simulate the solidification of microstructural grains and a kinetic Monte Carlo method
used to simulate grain growth.

The solid mechanics model uses the SolidMechanics module of the SIERRA code suite [18].
A temperature-dependent Bammann-Chiesa-Johnson isotropic elasto-viscoplastic material model,
as described in [10], is used to simulate the evolution of the residual stress and distortion.
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Table 1. Timing Data

Solver Platform Nodes Time
Aria Eclipse 10 6 hrs
Green Eclipse 5 2.9 hrs
Green Eclipse 10 33 mins
Green Eclipse 20 22 mins
Green Vortex 4 4.3 mins

3 Results and Discussion

3.1 Timing Data

Wall clock timings are compared between the Green's function model and the Aria model on two
platforms. The first of which is Sandia's Eclipse machine, which has two 18 core 2.1 GHz Intel
Broadwell processors per node. The second is Sandia's Vortex machine, which has two 22 core
IBM Power9 processors and four NVIDIA Tesla V100 5120 core GPUs per node.

The results of the timing study are show in Table 1. The Green's function model is over 10
times faster than the Aria model on the same platform and number of nodes. Increasing the number
of nodes on Eclipse beyond 10 results in only a moderate decrease in wall time due to inadequate
parallel load balancing. Some processes get stuck on "hare portions of the grid requiring lots
of refinement. Future work will implement dynamic load balancing, which should improve this
issue. As expected, the Green's function model performs particularly well on the GPU machines,
achieving a 72 times speedup as compared to the Aria model. This is due to the massively parallel
nature of the Green's function solution in which evaluating the solution at any point in space and
time is independent of all other evaluations. This highlights the need for the development of GPU-
friendly solution algorithms in order to take full advantage of these emerging systems.

3.2 Temperature Comparison

The Green's function model is calibrated against the Aria non-linear model for a range of laser
parameter inputs: laser power from 18-28W and speed from 0.05-0.13 m/s. A total of nine calibra-
tion points are chosen within this range: {P = 18, 23, 28 W} x {v = 0.05, 0.09, 0.13 m/s}. Using
the two chosen objective functions, maximum temperature and L1 norm of temperature in the solid
material, this gives a total of 18 objective functions for the optimization. A narrow parameter range
is chosen for this test case, although the eventual goal is to calibrate over a range of process inputs
representative of what is achievable in a given machine.

The non-linear material properties used in the Aria model as well as the laser parameters are
summarized in Table 2. The simulated build is a 2mm x 2mm square on a flat plate. The time
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Table 2. Material Properties

Property Value
k

p
CP
Solidus Temperature
Liquidus Temperature
Latent Heat of Fusion

axlay
az
Hatch Spacing

20 W/(m K)
3715 kg/m3
320.3+0.379T J/(kg K)
1648 K
1673 K
270000 J/kg
100 pm
200 pm
70 pm

Table 3. Calibrated Parameters

Parameter Mean Standard Deviation
k
PCp
P

ax /ay

12 W/(m K)
45000 J/K
40 W
198 pm
181 pm

4.5 W/(m K)
16000 J/K
23 W
68 pm
67 pm

plane selected for calibration is t=0.1s, a time at which at least one down and back laser scan is
completed for all speeds. A Gaussian Process is constructed for each of the objective functions
using a total of 1000 samples from the Green's function model. These surrogates are then sampled
in the MCMC Bayesian calibration procedure using 100000 samples. The estimated distributions
of the calibrated parameters are given in Table 3. The means represent the most likely values of
the parameters and correspond to the values found using the Levenberg-Marquardt optimization
algorithm. The standard deviations represent the uncertainty in the parameter values due to the
inability of the non-linear result data to fully inform them.

The calibrated Green's function model is tested against the Aria model for a parameter set that
is within the calibration range, but not one of the calibration points used: P= 20W, v = 0.1 m/s.
First, the average values of the calibrated parameters are used and the difference in temperature
fields between the Green's function and non-linear model are computed for a time t=0.1s. The
results are shown in Figure 2. As is expected, the largest errors occur in the melt region trailing
the laser, as the large temperature gradients lead to a highly variable specific heat as well as latent
heat effects that the linear model is not able to capture. The linear model results improve moving
away from the laser where temperature gradients are less pronounced.

In order to assess the estimates of parameter uncertainty, a Latin Hypercube study is performed
using 32 samples drawn from the calibrated input parameter distributions. Temperature histories

14



— 6.1e-01

a
— 1 .9e-08

o

Figure 2. Normalized temperature difference between non-linear
and Green's function models

are calculated for each parameter set and means and standard deviations of the temperature at each
point are calculated by averaging across the sample results. Figure 3 shows the field of tempera-
ture differences between the two models now normalized by the computed temperature standard
deviation at each point. As can be seen, the uncertainty estimates do account for the difference in
temperature prediction between the two models, as all results lie within two standard deviations.
However, the computed standard deviations are quite large, indicating a large uncertainty in the
Green's function model prediction. Further work is needed on improving the calibration procedure
to reduce this uncertainty.

3.3 Microstructure Comparison

The temperature history computed using the average values of the calibrated parameters is used
as input to microstructure model and a predicted microstructure is calculated along with a mi-
crostructure computed using the non-linear Aria model results. The two predicted microstructures
are shown side-by-side in Figure 4. Results look qualitatively similar and show a very fine grain
structure typical of a small melt pool with limited re-melting between scan lines. For a more quan-
titative comparison, grain size distributions are shown for the two cases in Figure 5. The Green's
function model shows a slight shift towards larger grain sizes as compared to the Aria model. This
is likely due to differences in thermal gradients close to the melt pool where latent heat and vari-
able specific heat effects are greatest. However, given the large differences in temperature solution
observed in these areas of the domain, the difference in microstructure is fairly small.

3.4 Residual Stress Comparison

The temperature histories from the two models are used as inputs to the solid mechanics model
and residual stress profiles predicted. Residual stress values for the two cases, after the part has
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Figure 3. Temperature difference between non-linear and

Green's function models normalized by standard deviation

(a) Non-linear (b) Green's Function

Figure 4. Comparison between predicted microstructures from

Aria and Green's function temperature histories
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Figure 5. Comparison of grain size distributions between Aria
and Green's function models

completely cooled, are shown in Figures 6 and 7. Stress profiles are shown for the XX and YY
directions along a line running across the domain perpendicular to the laser scan direction. Profiles
are shown at three different depths in the part: the bottom, the top and halfway between bottom
and top.

The agreement between the two results is relatively good in the interior of the part. The largest
differences are seen at the edges of the part, particularly with the YY stress which at some lo-
cations switches from tension to compression. This is likely due to the difference in boundary
conditions between the Aria and Green's function models. The Green's function model assumes a
semi-infinite domain, whereas this is not possible to impose in the Aria FEM model. Thus, zero-
flux conditions are imposed at the domain edges. For a large enough domain, the two boundary
conditions will give the same result, but the size of the Aria model domain is practically limited
by the computational cost of the model. Given that parts are generally built on top of a base plate
much larger than the part size, the semi-infinite assumption is more representative of the physical
system than the zero-flux condition. Thus, for this case, the large difference between the stress at
the part edges is likely due to a deficiency in the non-linear Aria model, not the Green's function
assumptions required for the Green's function model. Initial work has been performed tying the
boundaries of the Aria model to a much larger surrounding coarse mesh through contact in order
to approximate a semi-infinite boundary condition and initial results show better agreement at the
part edges.

Overall, the residual stress results, similar to the microstructure results, show better agreement
between the two cases than the initial temperature fields.
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4 Anticipated Outcomes and Impacts

This work represents a first step towards a modeling framework capable of predicting final me-
chanical performance of laser processed metal parts within a well-defined range of input process
parameters with estimated uncertainties in hours-days as opposed to days-weeks. As performance
is ultimately governed by the thermal history a part undergoes during processing, a rapid method
for predicting thermal history is key to a rapid performance prediction. Having demonstrated the
capability to calculate thermal histories 72 times faster than traditional FEM, using a methodology
which performs well on new, highly parallel, GPU architectures, this work is well suited to serve
as the thermal component of a rapid performance prediction capability.

Further work is needed in order to complete development of this capability. First, the thermal
model developed here must be enhanced to better handle non-linear effects. This could be accom-
plished through sequential Green's functions solutions to iteratively correct for non-linear effects,
or potentially using the developed Green's function solution along with the adaptive space-time
grid to solve a Green's function pre-conditioned finite elements in time system representing the
full non-linear problem. Additionally, the calibration procedure needs to be improved to reduce
uncertainties in the calibrated input parameters and expanded to include experimental data as well
as higher-fidelity model results.

A capability to model defects also needs to be developed by correlating formation of defects, ei-
ther predicted by high-fidelity, flow-resolved models, or measured experimentally, with the Green's
function temperature solution. This would allow approximate pore densities to be quickly predicted
based on the results of the thermal model.

The performance of the microstructure and solid mechanics models also need to be improved
to bring their run times in line with the thermal model. Analytical expressions for predicting bulk
microstructural features are available in the literature and could be easily incorporated with the
thermal model predictions for a coarse estimate of part microstructure. Additionally, newly de-
veloped capabilities in the SPPARKS code [12] could enable rapid, fully resolved microstructure
predictions by integrating with the Green's function model. For solid mechanics, existing inherent
strain models [4] could be enhanced with thermal history predictions from the Green's function
model to rapidly predict part residual stress profiles while alleviating some of the known inaccu-
racies arising from the fact that a full temperature history of the part is not generally available.
Additionally, rapid time integration methods such as wavelet relaxation methods [14], large time
incremental [3], wavelet transformation multi-time scaling [5], and FFT methods can be investi-
gated for developing a fully time-resolved solid mechanics model.

Finally, the uncertainty quantification work should be expanded to include the propagation
of uncertainties from the thermal model through the solid mechanics, microstructure, and defect
models so that estimates of uncertainty in the part performance prediction can be made. Many of
these efforts will be pursued as part of an ongoing ASC PE&M Advanced Manufacturing project.

Once an "overnight" time frame capability for predicting part performance from laser-metal
processing systems is developed, the resulting predictions could then be used to inform design and
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qualification decisions for high-consequence applications such as ND. Further investment from
ND could enable the use of these novel manufacturing technologies for improving stockpile re-
sponsiveness by shortening the design-build-test cycle.
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5 Conclusion

The work develops a fully GPU-capable Green's function based solver for laser-metal processing
systems along with an adaptive space-time grid for representing temperature solutions of highly-
localized phenomena such as laser heating. The solver is found to be 72 times faster than a con-
ventional FEM method for computing the temperature history of an example problem. Bayesian
calibration techniques for calibrating the inputs to the Green's function model from non-linear
model data are explored. While the estimated uncertainties due to the Green's function assump-
tions do account for the differences seen in temperature predictions between the non-linear and
Green's function methods, further work is needed to reduce the uncertainty in the Green's function
parameters.

Using the non-linear and Green's function results as inputs to microstructure and solid mechan-
ics models show that, while the temperature fields have large differences between the two cases,
the agreement between the microstructure and residual stress predictions is better than expected
given the large temperature differences. This indicates that the downstream models have some-
thing of a smoothing effect on the errors incurred by making the assumptions necessary for the use
of the Green's function. This is a promising result which suggests that this work could be built
upon to develop a rapid part performance capability for laser-metal processing systems. However,
additional work is needed improving the calibration procedure, developing a defect model, and
improving the performance of the solid mechanics and microstructure models before this can be
achieved.
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