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Forward

This work examines how we may cast machine learning within a complete Bayesian frame-
work to quantify and suppress explanatory complexity from first principles. Our investi-
gation into both the philosophy and mathematics of rational belief leads us to emphasize
the critical role of Bayesian inference in learning well-justified predictions within a rigorous
and complete extended logic. The Bayesian framework allows us to coherently account for
evidence in the learned plausibility of potential explanations. As an extended logic, the
Bayesian paradigm regards probability as a notion of degrees of truth. In order to satisfy
critical properties of probability as a coherent measure, as well as maintain consistency with
binary propositional logic, we arrive at Bayes' Theorem as the only justifiable mechanism
to update our beliefs to account for empiracle evidence.

Yet, in the machine learning paradigm, where explanations are unconstrained algorith-
mic abstractions, we arrive at a critical challenge: Bayesian inference requires prior belief.
Conventional approaches fail to yield a consistent framework in which we could compare
prior plausibility among the infinities of potential choices in learning architectures. The
difficulty of articulating well-justified prior belief over abstract models is the provinence
of memorization in traditional machine learning training practices. This becomes excep-
tionally problematic in the context of limited datasets, when we wish to learn justifiable
predictions from only a small amount of data.

The intuitive solution is to suppress unnecessary complexity, the principle of Occam's
Razor. Yet, to suppress complexity, we must have a comprehensive understanding of what
complexity is. Our investigation begins in Chapter 1 with analysis of the properties and
relationships among various forms of information within a unifed theory of information as
a rational measure of change in belief. This theory allows us to understand complexity
as information within a wide variety of contexts and analyze the corresponding properties
within a rigorous mathematical framework.

Given our theory of information, we are able to return to the question of suppress-
ing complexity in Chapter 2. In this chapter, we examine various notions of algorithmic
complexity and universal priors. By applying our theory of information to symbolic descrip-
tions, which articulate learning frameworks, we are able to assign prior plausibility to any
architecture that may be cast as Bayesian inference or variational inference. Our numeri-
cal experiments demonstrate how our theory suppresses complexity for first principles and
arrives at well-justified predictions without cross-validation, thus providing a fundamental
capability when datasets are limited. Further, by accounting for multiple potential expla-
nations within our theory, our prototype algorithms also demonstrate natural extrapolation
uncertainty from first principles.

Our theories provide a foundation to suppress a wide variety of notions of complexity,
including algorithmic communication complexity. By suppressing the amount of communi-
cation between slow and fast layers of memory, which we may regard as symbols generated
and communicated through elementary operations, we are able to construct algorithms that
improve performance and computational feasibility. Chapter 3 demonstrates this potential
to improve the performance of algorithmic decision-making by leveraging randomized pro-
jection in Randomized QR with Column Pivoting (RQRCP). Randomized projection allows
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us to control an increase in uncertainty regarding the conditions used to make algorithmic
decisions while gaining a substantial performance advantage.

These developments provide new insight into the constraints we must satisfy in order
to obtain rigorous justification for the predictions we obtain from data through machine
learning. Moreover, we see how these techniques also advance the pursuit of computational
feasibility and rational decision-making.
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Chapter 1

Generalizing Information to the
Evolution of Rational Belief

Information theory provides a mathematical foundation to measure uncertainty in belief.
Belief is represented by a probability distribution that captures our understanding of an
outcome's plausibility. Information measures based on Shannon's concept of entropy include
realization information, Kullback—Leibler divergence, Lindley's information in experiment,
cross entropy, and mutual information.

We derive a general theory of information from first principles that accounts for evolving
belief and recovers all of these measures. Rather than simply gauging uncertainty, informa-
tion is understood in this theory to measure change in belief. We may then regard entropy
as the information we expect to gain upon realization of a discrete latent random variable.

This theory of information is compatible with the Bayesian paradigm in which rational
belief is updated as evidence becomes available. Furthermore, this theory admits novel
measures of information with well-defined properties, which we explore in both analysis
and experiment. This view of information illuminates the study of machine learning by
allowing us to quantify information captured by a predictive model and distinguish it from
residual information contained in training data. We gain related insights regarding feature
selection, anomaly detection, and novel Bayesian approaches.

1. Introduction

This work integrates essential properties of information embedded within Shannon's deriva-
tion of entropy (Shannon, 1948) and the Bayesian perspective (LaPlace, 1774; Jeffreys, 1998;
Jaynes, 2003), which identifies probability with plausibility. We pursue this investigation in
order to understand how to rigorously apply information-theoretic concepts to the theory of
inference and machine learning. Specifically, we would like to understand how to quantify
the evolution of predictions given by machine learning models. Our findings are general,
however, and bear implications for any situation in which states of belief are updated. We
begin in 1.1 with an experiment that illustrates shortcomings with the way standard infor-
mation measures would partition prediction information and residual information during
machine learning training.
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1.1 Shortcomings with standard approaches

Let us examine a typical MNIST (LeCun et al., 1998) classifier. This dataset comprises a
set of images of handwritten digits paired with labels. Let both x and y denote random
variables corresponding respectively to an image and a label in a pair. In this perspective,
the training dataset contains independent realizations of such pairs from an unknown joint
probability distribution. We would like to obtain a measurement of prediction information
that quantifies a shift in belief from an uninformed initial state qo(y) to model predictions
ql(y I x). The symmetric uninformed choice for qo(y) is uniform probability over all
outcomes. Note that both qo (y) and qi (y I x) are simply hypothetical states of belief.1
Some architectures may approximate Bayesian inference, but we cannot always interpret
these as the Bayesian prior and posterior.

Two measurements that are closely related to Shannon's entropy are the Kullback—
Leibler divergence (Kullback and Leibler, 1951; Kullback, 1997) and Lindley's information
in experiment (Lindley, 1956), which are computed respectively as

Ð KL[ql(y 1 x) ll clo(y)1 = fdy qi (y l x) log (clic(:(Iy)x)) and

D L[ql(y I x) ll clo(y)] = fdy qi (y I x) log(qi (y I x)) — f dy clo(Y)log(clo(Y)) •

Whatever we choose, we would like to use a consistent construction to understand how
much information remains unpredicted. After viewing a label outcome .., we let r(y I M
represent our new understanding of the actual state of affairs, which is a realization assign-
ing full probability to the specified outcome. This distribution captures our most updated
knowledge about y and therefore constitutes rational belief. A consistent information mea-
surement should then quantify residual information as the shift in belief from qi (y I x) to1
r(y I 'y). For example, the KL version would be DKL[r(y l M ll qi(y 1 x)].

In order to demonstrate shortcomings with each approach, some cases are deliberately
mislabeled during model testing. We first compute information measurements assuming the
incorrect labels hold. Mislabled cases are then corrected to Y with corrected belief given
by r(y I 'Y'). This allows us to compare our first information measurements with corrected
versions. An example of each belief state is shown in Figure 1.1 where the incorrect label 3
is changed to O.

Ideally, the sum of prediction information and residual information would be a con-
served quantity, which would allow us to understand training as simply shifting information
from a residual partition to the predicted partition. More importantly, however, predic-
tion information should clearly capture prediction quality. Figure 1.2 shows information
measurements corresponding to the example given.

Mislabeling and relabeling shows us that neither formulation of prediction information
captures prediction quality. This is because these constructions simply have no affordance
to account for our understanding of what is actually correct. Large KL residual informa-
tion offers some indication of mislabeling and decreases when we correct the label, but total
information is not conserved. As such, there is no intuitive notion for what appropriate
prediction and residual information should be for a given problem. The Lindley formula-
tion is substantially less satisfying; Although total information is conserved, neither metric
changes and we have no indication of mislabeling.
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Digit 0 1 2 3 4 5 6 7 8 9

qo(y) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

qi(y l x) 0.952 0.0 0.045 0.001 0.0 0.001 0.0 0.0 0.0 0.002
r(y l 'Y.) 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
r(y l "Y) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

o
Figure 1.1: Example of the evolution of plausible labels for an image. Without evidence,

the probability distribution qo(y) assigns equal plausibility to all outcomes. A
machine learning model processes the image and produces predictions qi(y 1 x).
The incorrect label 3 is represented by r(y l -Y). After observing the image,
shown on the right, the label is corrected to 0 in r(y l M.

Original Label Corrected Label
Information Type Prediction Residual Sum Prediction Residual Sum
Kullback-Leibler 3.02 10.44 13.46 3.02 0.07 3.09

Lindley 3.02 0.30 3.32 3.02 0.30 3.32

Figure 1.2: Information measurements before and after label correction. Neither construc-
tion of prediction information allows the computation to account for claimed
labels. Residual information, however, decreases in the KL construction when
the label is corrected. The Lindley forms are totally unaffected by relabeling.

The problem with these constructions is they do not recognize the gravity of the role of
expectation. That is, reasonable expectation must be consistent with rational belief. We
hold that our most justified understanding of what may be true provides a sound basis
to measure changes in belief. Figure 1.3 gives a preview of information measurements in
the framework of this theory. Total information, log2(10) bits in this case, is conserved
and both prediction information and residual information react intuitively to mislabeling.
Determining whether the predictive information is positive or negative provides a clear
indication of whether the prediction was informative.

Original Label Corrected Label
Information Type Prediction Residual Sum Prediction Residual Sum

Proposed -7.11 10.44 3.32 3.25 0.07 3.32

Figure 1.3: Information measurements using our proposed framework. Total information
is a conserved quantity and when our belief changes, so do the information
measurements. Negative prediction information forewarns either potential mis-
labeling or a poor prediction.
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1.2 Our contributions

In the course of pursuing a consistent framework in which information measurements may
be understood, we have derived a theory of information from first principles that places all
entropic information measures in a unified interpretable context. By axiomatizing the prop-
erties of information we desire, we show that a unique formulation follows that subsumes
critical properties of Shannon's construction of entropy.

This theory fundamentally understands entropic information as a form of reasonable
expectation that measures the change between hypothetical belief states. Expectation is
not necessarily taken with respect to the distributions that represent the shift in belief,
but rather with respect to a third distribution representing our understanding of what may
actually be true. We find compelling foundations for this perspective within the Bayesian
philosophy of probability as an extended logic for expressing and updating uncertainty (Cox,
1946; Jaynes, 2003). Our understanding of what may be true, and therefore the basis for
measuring information, should be rational belief. Rational belief (Ramsey, 2016; Lehman,
1955; Adams, 1962; Freedman and Purves, 1969; Skyrms, 1987) begins with probabilistically
coherent prior knowledge and is subsequently updated to account for observations using
Bayes' theorem. As a consequence, information associated with a change in belief is not
a fixed quantity. Just as rational belief must evolve as new evidence becomes available,
so also does the information we would reasonably assign to previous shifts in belief. By
emphasizing the role of rational belief, this theory recognizes that the degree of validity we
assign to past states of belief is both dynamic and potentially subjective as our state of
knowledge matures.

As a consequence of enforcing consistency with rational belief, a second additivity prop-
erty emerges; just as entropy can be summed over independent distributions, information
gained over a sequence of observations can be summed over intermediate belief updates. To-
tal information over such a sequence is independent of how results are grouped or ordered.
This provides a compelling solution to the thought experiment above. Label information in
training data is a conserved quantity and we motivate a formulation of prediction informa-
tion that is directly tied to prediction quality.

Soofi, Ebrahimi, and others (Soofi, 1994, 2000; Ebrahimi et al., 2004, 2010) identify
key contributions to information theory in the decade following Shannon's paper that are
intrinsically tied to entropy. These are the Kullback—Leibler divergence, Lindley's informa-
tion in experiment, and Jaynes' construction of entropy-maximizing distributions that are
consistent with specified expectations. We show how this theory recovers these measures
of information and admits new forms that may not have been previously associated with
entropic information, such as the log pointwise posterior predictive measure of model accu-
racy (Gelman et al., 2013). We also show how this theory admits novel information-optimal
probability distributions analogous to that of Jaynes' maximum uncertainty. Having a con-
sistent interpretation of information illuminates how it may be applied and what properties
will hold in a given context. Moreover, this theoretical framework enables us to solve mul-
tiple challenges in Bayesian learning. For example, one such challenge is understanding
how efficiently a given model incorporates new data. This theory provides bounds on the
information gained by a model resulting from inference and allows us to characterize the
information provided by individual observations.
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The rest of this paper is organized as follows. Section 2 discusses notation and back-
ground regarding entropic information, Bayesian inference, and reasonable expectation.
Section 3 contains postulates that express properties of information we desire as well as the
formulation of information that follows and other related measures of information. Section 4
analyzes general consequences and properties of this formulation. Section 5 discusses further
implications with respect to Bayesian inference and machine learning. Section 6 explores
negative information with computational experiments that illustrate when it occurs, how
it may be understood, and why it is useful. Section 6 summarizes these results and offers
a brief discussion of future work. Appendix A proves our principal result. Appendix B
contains all corollary proofs. Appendix C provides key computations used in experiments.

2. Background and notation

Shannon's construction of entropy (Shannon, 1948) shares a fundamental connection with
thermodynamics. The motivation is to facilitate analysis of complex systems which can
be decomposed into independent subsystems. The essential idea is simple when proba-
bilities multiply, entropy adds. This abstraction allows us to compose uncertainties across
independent sources by simply adding results. Shannon applied this perspective to streams
of symbols called channels. The number of possible outcomes grows exponentially with the
length of a symbol sequence, whereas entropy grows linearly. This facilitates a rigorous
formulation of the rate of information conveyed by a channel as well as analysis of what is
possible in the presence of noise.

The property of independent additivity is used in standard training practices for machine
learning. Just as thermodynamic systems and streams of symbols break apart, so does an
ensemble of predictions over independent observations. This allows us to partition training
sets into batches and compute cross-entropy (Good, 1963) averages. MacKay (MacKay,
2003) gives a comprehensive discussion of information in the context of learning algorithms.
Tishby (Tishby and Zaslavsky, 2015) examines information trends during neural network
training.

A second critical property of entropy, which is implied by Shannon and further artic-
ulated by both Barnard (Barnard, 1951) and Rényi (Rényi, 1961), is that entropy is an
expectation. Given a latent random variable z, we denote the probability distribution over
outcomes as p(z). Stated as an expectation, entropy is defined as

1 1
S[p(z)] = f dzp(z) log 

(p(z) / 
Ep(z) log (p(z))

Following Shannon, investigators developed a progression of divergence measures be-
tween general probability distributions, qo (z) and qi (z). Notable cases include the Kullback—
Leibler divergence, Rényi's information of order-a (Rényi, 1961), and Csiszár's f-divergence
(Csiszár, 1967). Ebrahimi, Soofi, and Soyer (Ebrahimi et al., 2010) offer an examination
of these axiomatic foundations and generalizations with a primary focus on entropy and
the KL divergence. Recent work on axiomatic foundations for generalized entropies (Jizba
and Arimitsu, 2004) includes constructions that are suitable for strongly-interacting sys-
tems (Hanel and Thurner, 2011) and axiomatic derivations of other forms of entropy in-
cluding SharmaMittal and FrankDaffertshofer entropies (Ilié and Stankovié, 2014). Further
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work relates group-theoretic properties of systems to corresponding notions of entropy and
correlation laws (Tempesta, 2011).

2.1 Bayesian reasoning

The Bayesian view of probability, going back to Laplace (LaPlace, 1774) and championed
by Jeffreys (Jeffreys, 1998) and Jaynes (Jaynes, 2003), focuses on capturing our beliefs.
This perspective considers a probability distribution as an abstraction that attempts to
model these beliefs. This view subsumes all potential sources of uncertainty and provides
a comprehensive scope that facilitates analysis in diverse contexts.

In the Bayesian framework, the prior distribution p(z) expresses initial beliefs about
some latent variable z. Statisticians, scientists, and engineers often have well-founded
views about real-world systems that from the basis for priors. Examples include physically
realistic ranges of model parameters or plausible responses of a dynamical system. In the
case of total ignorance, one applies the principle of insufficient reason (Bernoulli, 1713)
— we should not break symmetries of belief without justification. Jaynes' construction
of maximally uncertainty distributions (Jaynes, 1957) generalizes this principle, which we
discuss further in 4.6.

As observations x become available, we update belief from the prior distribution to
obtain the posterior distribution p(z 1 x), which incorporates this new knowledge. This
update is achieved by applying Bayes' theorem

p(z l x) = 1)(x 1 z)13(z) 
p(x)

where p(x) =1 dz p(x l z)p(z).

The likelihood distribution p(x 1 z) expresses the probability of observations given any
specified value of z. The normalization constant p(x) is also the probability of x given
the prior belief that has been specified. Within Bayesian inference, this is also called
model evidence and it is used to evaluate a model structure's plausibility for generating the
observations.

Shore and Johnson (Shore and Johnson, 1980, 1981) provide an axiomatic foundation
for updating belief that recovers the principles of maximum entropy and minimum cross-
entropy when prior evidence consists of known expectations. For reference, we summarize
these axioms as

1. Uniqueness. When belief is updated with new observations, the result should be
unique.

2. Coordinate invariance. Belief updates should be invariant to arbitrary choices of
coordinates.

3. System independence. The theory should yield consistent results when independent
random variables are treated either separately or jointly.

4. Subset independence. When we partion potential outcomes into disjoint subsets, the
belief update corresponding to conditioning on subset membership first should yield
the same result as updating first and conditioning on the subset second.
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Jizba and Korbel (Jizba and Korbel, 2019) investigate generalizations of entropy for which
the maximum entropy principle satisfies these axioms.

Integrating the maturing notion of belief found within the Bayesian framework with
information theory recognizes that our perception of how informative observations are de-
pends on how our beliefs develop, which is dynamic as our state of knowledge grows.

2.2 Probability notation

Random variables are denoted in boldface such as x. Typically x and y will imply ob-
servable measurements and z will indicate either a latent explanatory variable or unknown
observable. Each random variable is implicitly associated with a corresponding probability
space including the set of all possible outcomes Sr2z, a cr-algebra Tz of measurable sub-
sets, and a probability measure Pz which maps subsets of events to probabilities. We then
express the probability measure as a distribution function p(z).

A realization, or specific outcome, will be denoted with either a check z or, for discrete
distributions only, a subscript z, where i E [n] and [n] = {1, 2, ... , n}. If it is necessary
to emphasize the value of a distribution at a specific point or realization, we will use the
notation p(z = i). Conditional dependence is denoted in the usual fashion as p(z x).
The joint distribution is then p(x, z) = p(z x)p(x) and marginalization is obtained by
p(x) = fdz p(x, z). When two distributions are equivalent over all subsets of nonzero
measure, we use notation qo(z) p(z) or ql(z) p(z x).

The probability measure allows us to compute expectations over functions f(z) which
are denoted

Ep(z) f (z) = I dz p(z)f (z).

The support of integration or summation is implied to be the same as the support of p(z),
that is the set of outcomes for which p(z) > 0. For example, in both the discrete case
above and continuous cases, such as a distribution on the unit interval z E R[0,1], the
integral notation should be interpreted respectively as

1
f dz p(z)f(z) = E p(z = zi)f (zi) and f dz p(z) f (z) = J dz p(z =i=i

2.3 Reasonable expectation and rational belief

The postulates and theory in this work concern the measurement of a shift in belief from
an initial state qo(z) to an updated state ql(z). In principle, these are any hypothetical
states of belief. For example, they could be predictions given by the computational model
in 1.1, previous beliefs held before observing additional data, or convenient approximations
of a more informed state of belief. A third state r(z), rational belief, serves a distinct role
as the distribution over which expectation is taken. When we wish to emphasize this role,
we also refer to r(z) as the view of expectation.

To understand the significance of rational belief, we briefly review work by Cox (Cox,
1946) regarding reasonable expectation from two perspectives on the meaning of probability.
The first perspective understands probability as a description of relative frequencies in an
ensemble. If we prepare a large ensemble of independent random variables, Z = {zi i E
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[n]}, and each is realized from a proper (normalized) probability distribution p(z), then
the relative frequency of outcomes within each subset w E C2z will approach the probability
measure Pz(w) for large n. It follows that the ensemble mean of any transformation f (z)
will approach the expectation

1 n
hill 

n Ef(zo= Ep(z) f (z).
i=1

The difficulty arises when we distinguish what is true from what may be known, given
limited evidence. This falls within the purview of the second perspective, the Bayesian
view, regarding probability as an extended logic. To illustrate, suppose z is the value of an
unknown real mathematical constant. The true probability distribution would be a Dirac
delta p(z) (5(z — i) assigning unit probability to the unknown value z. Accordingly, each
element in the ensemble above would take the same unknown value. If we have incomplete
knowledge r(z) regarding the distribution of plausible values, then we can still compute an
expectation Er(z) f(z), but we must bear in mind that the result only approximates the
unknown true expectation. Since the expectation is limited by the credibility of r(z), we
seek to drive belief towards the truth as efficiently as possible from available evidence to
fulfill this role.

Within Bayesian Epistemology, rational belief is defined as a belief that is unsusceptible
to a Dutch Book. When an agent's beliefs correspond to their willingness to places bets,
a Dutch Book (Lehman, 1955; Adams, 1962; Hajek, 2008; Freedman and Purves, 1969;
Skyrms, 1987) means that it is possible for a bookie to construct a table of bets that the
agent finds acceptable but also guarantees that the agent will lose money. Therefore the
existence of such a table corresponds to the agent holding an irrational state of belief. When
multiple bets are allowed to be conditioned on a sequence of outcomes, it has been shown
that the agent must use Bayes' Theorem to account for previous outcomes in the sequence
to update beliefs regarding subsequent outcomes to avoid irrationality (Skyrms, 1987).

For our purposes, it is sufficient to say that if we have a coherent prior belief in a latent
variable as well as a likelihood function that implies beliefs about observations, Bayes'
theorem incorporates observational evidence to from the posterior distribution representing
rational belief. For example, we could measure inference information from prior belief
qo(z) p(z) to the first posterior ql (z) p(z x) conditioned on an observation x. When
we have additional evidence y that complements x, then rational belief must corresponds
to a second inference r(z) p(z x, y) because retaining the belief ql(z) would not
account for y. Likewise, if z is an observable realization, then rational belief must assign
full probability to the observed outcome 2. This case is specifically denoted as r(z .2) and
in continuous settings it is equivalent to the Dirac delta function r(z 2) (5(z — 2).

2.4 Remarks on Bayesian objectivism and subjectivism

Within the Bayesian philosophy, we may disagree about whether or not rational belief is
unique. This disagreement corresponds to objectivist versus subjectivist views of Bayesian
epistemology, see (Weisberg, 2011; Jaynes, 2003) for a discussion. Note that this is not the
same as the more general view of objective versus subjective probabilities.
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In the objectivist's view, one's beliefs must be consistent with the entirety of evidence
and prior knowledge must be justified by sound principles of reason. Therefore, anyone with
the same body of evidence must hold the same rational belief. In contrast, the subjectivist
holds that one's prior beliefs do not need justification. Provided evidence is taken into
account using Bayes' theorem, the resulting posterior is rational for any prior as long as the
prior is coherent. Note that the subjectivist view does not imply that all beliefs are equally
valid. It simply allows validity in the construction of prior belief to be derived from other
notions of utility, such as computational feasibility.

While the following postulates in 3 and derivation of Theorem 1 do not require adoption
of either perspective, these philosophies influence how we understand reasonable expecta-
tion. The objective philosophy implies that an information measurement is justified to the
same degree as the view of expectation that defines it, whereas the subjective philosophy
entertains information analysis with any view of expectation.

3. Information and evolution of belief

In order to provide context for comparison, we begin by presenting the properties of entropic
information originally put forward by Shannon using our notation.

3.1 Shannon's properties of entropy

1. Given a discrete probability distribution p(z) for which z E {Zi i E [n]}, the entropy
S[p(z)] is continuous in the probability of each outcome p(z = zi).

2. If all outcomes are equally probable, namely p(z = zi) = 1/n, then S[ p(z) ] is
monotonically increasing in n.

3. The entropy of a joint random variable S[ p(z, w)] can be decomposed using a chain
rule expressing conditional dependence

S[P(Z, IV) S[p(z)] Ep(z) S[P(W z) •

The first point is aimed at extending Shannon's derivation, which employs rational prob-
abilities, to real-valued probabilities. The second point drives at understanding entropy as
a measure of uncertainty; as the number of possible outcomes increases, each realization
becomes less predictable. This results in entropy taking positive values. The third point is
critical — not only does it encode independent additivity, it implies that entropic informa-
tion is computed as an expectation.

We note that Fadeeve (Fadeev, 1957) gives a simplified set of postulates. Rènyi (Rényi,
1961) generalizes information by replacing the last point with a weaker version which sim-
ply requires independent additivity, but not conditional expectation. This results in a-
divergences. Csiszar (Csiszár, 1967) generalizes this further using convex functions f to
obtain f-divergences.
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3.2 Postulates

Rather than repeating direct analogs of Shannon's properties in the context of evolving
belief, it is both simpler and more illuminating to be immediately forthcoming regarding
the key requirement of information in the perspective of this theory.

Postulate 1 Entropic information associated with the change in belief from qo (z) to qi (z)
is quantified as an expectation over belief r(z), which we call the view of expectation. As
an expectation, it must have the functional form

ffr(z)[cll(z) 11 Clo(z) ] = fdz r(z)f(r(z), cli(z), cio(z)) .

Postulate 2 Entropic information is additive over independent belief processes. Taking
joint distributions associated with two independent random variables z and w to be qo (z, w) =
qo(z)qo(w), qi (z, w) = ql (z)ql (w), and r(z, w) = r(z)r(w) gives

ffr(o.(.)[cii(z)cil(w) Il i:MC*10(p) ] = l[r(z)[ Cli(z) 11 Clo(z)] + Ir(w)[Cil(W) 11 Clo(w) ] •

Postulate 3 If belief does not change then no information is gained, regardless of the view
of expectation,

l[r(z)[c113(z) 11 clo(z)] = O.

Postulate 4 The information gained from any normalized prior state of belief q0(z) to an
updated state of belief r(z) in the view of r(z) must be nonnegative

Er(z)[r(z) 11 q0(z)] ? O.

The first postulate requires information to be reassessed as belief changes. The most
justified state of belief, based on the entirety of observations, will correspond to the most
justified view of information. The second postulate is the additive form of Shore and
Johnson's Axiom 3, system independence. That is, we need some law of composition,
addition in this case, that allows independent random variables to be treated separately
and arrive at the same result as treating them jointly.

By combining the first two postulates, it is possible to show that f (r, q, p) = log (r'rep13)
for constants a, /3, ry. See A for details. The third postulate constrains these exponential
constants and the fourth simply sets the sign of information.

3.3 Principal result

Theorem 1 Information as a measure of change in belief. Information measure-
ments that satisfy these postulates must take the form

l[r(z)Ni(z) ll CIO(Z)] = a f dz r(z) log 
(cli(z)) for some a > O.
qo (z)

Proof is given in A. As Shannon notes regarding entropy, a corresponds to a choice of
units. Typical choices are natural units a = 1 and bits a = log(2)-1. We employ natural
units in analysis and bits in experiments.
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Although it would be possible to combine Postulate 1 and Postulate 2 into an analog of
Shannon's chain rule as a single postulate, doing so would obscure the reasoning behind the
construction. We leave the analogous chain rule as a consequence in Corollary 1. Regarding
Shannon's proof that entropy is the only construction that satisfies properties he provides,
we observe that he has restricted attention to functionals acting upon a single distribution.
The interpretation of entropy is discussed in 4.1.

Normalization of r(z) is a key property of rational belief and reasonable expectation.
As for qo (z) and ql(z), however, nothing postulated prevents analysis respecting improper
or non-normalizable probability distributions. In the Bayesian context, such distributions
merely represent relative plausibility among subsets of outcomes. We caution that such
analysis is a further abstraction, which requires additional care for consistent interpretation.

We remark that although Renyi and Csiszar were able to generalize divergence measures
by weakening Shannon's chain rule to independent additivity, inclusion of the first postulate
prevents such generalizations. We suspect, however, that if we replace Postulate 1 with an
alternative functional that incorporates rational belief into information measurements, or
we replace Postulate 2 with an alternative formulation of system independence, then other
compelling information theories would follow.

3.4 Regarding the support of expectation

The proof given assumes qo (z) and qi (z) take positive values over the support of the
integral, which is also the support of r(z). In the Bayesian context, we also have

p(x 1 z)qo(z) r(z) = 13(y l z,x)qi(z) 
cll. (z) = and

p(x) 13(y 1 x)

Accordingly, if for some 2 we have qi (2") = 0 it follows that r(2) = O. Likewise, qo(2) = 0
would imply both qi (2) = 0 and r(z) = O. This forbids information contributions that fall
beyond the scope of the proof. Even so, the resulting form is analytic and admits analytic
continuation.

Since both lim,_>o [E. log E] = 0 and limE_>0 [slog El = 0, limits of information of the
form

E
lim E log

1 ) 
, lim E log (

i.
) , lim s log — , and lim s log (-

s)

e-) go e-) 6 e—A) go e—>0 6

are consistent with restricting the domain of integration (or summation) to the support of
r(z). We gain further insight by considering limits of the form

lim r log (-6)
K)

and lim r log (-q)
e-A) q e- E

Information diverges to -oo in the first case and +oo in the second. This is consistent with
the fact that no finite amount of data will recover belief over a subset that has been strictly
forbidden from consideration, which bears ramifications for how we understand rational
belief.

If belief is not subject to influence from evidence, it is difficult to credibly construe
an inferred outcome as having rationally accounted for that evidence. Lindley calls this
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Cromwell's rule (Lindley, 1980); we should not eliminate a potential outcome from con-
sideration unless it is logically false. The principle of insufficient reason goes further by
avoiding unjustified creation of information that is not influenced by evidence.

3.5 Information density

The Radon-Nikodym theorem (Nikodym, 1930) formalizes the notion of density that relates
two measures. If we assign both probability and a second measure to any subset within
a probability space, then there exists a density function, unique up to subsets of measure
zero, such that the second measure is equivalent to the integral of said density over any
subset.

Definition 1 Information density. We take the Radon-Nikodym derivative to obtain
information density of the change in belief from q0(z) to ql(z)

D[cii(z) cio(z)1 dl[r(z)[cll(z) clo(z)]  (cll(z))
dr(z) log q0(z)) •

The key property we find in this construction is independence from the view of expec-
tation. As such, information density encodes all potential information outcomes one could
obtain from this theory. Furthermore, this formulation is amenable to analysis of improper
distributions. For example, it proves useful to consider information density corresponding
to constant unit probability density qi (z) 1, which is discussed further in 4.1.

3.6 Information pseudometrics

The following pseudometrics admit interpretations as notions of distance between belief
states that remain compatible with Postulate 1. This is achieved by simply taking the view
of expectation r(z) to be the weight function in weighted-LP norms of information density.
These constructions then satisfy useful properties of pseudometrics:

1. Positivity, LI:(z)[cli(z)11 qo(z) ]> 0,

2. Symmetry, IL/:(z)[ ql(z)11qo(z)] = ILP,,(z)[q0(z)11q1(z)],

3. Triangle inequality,

1[ 3,(z)[ q2(z) 440(z) [ Cl2 (z) qi(z)] + Lii).(z)[qi(z) q0(z)] .

Definition 2 LP information pseudometrics. We may construct pseudometrics that
measure distance between states of belief qo(z) and ql(z) with the view of expectation r(z),
by taking weighted-LP norms of information density where the view of expectation serves as
the weight function

II-r(z) [C11(z) q0(z)] = dz r(z) log qi(z)
clo(z)

16
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Note that taking p = 1 results in a pseudometric that is also a pure expectation. The
homogeneity property of seminorms, Max = la I Ilx II for a E implies that these construc-
tions retain the units of measure of information density; if information density is measured
in bits, these distances have units of bits as well. Symmetry is obvious from inspection and
the other properties follow by construction as seminorms. Specifically, positivity follows
from the fact that I • IP is a convex function for p > 1. The lower bound immediately follows
from Jensen's inequality

LP
(z) 

[cii(z) Clo(z)] iii.(,)[C11(z) q0(z)]I O.
r 

A short proof of the triangle inequality is given in B.

We observe that if qo(z) and ql(z) are measurably distinct over the support of r(z)
then the measured distance must be greater than zero. We may regard states of belief q0(z)
and ql (z) as weakly equivalent in the view of r(z) if their difference is immeasurable over
the support of r(z). That is, if qo (z) and ql(z) only differ over subsets of outcomes that
are deemed by r(z) to be beyond plausible consideration, then in the view of r(z) they are
equivalent. As such, these pseudometrics could be regarded as subjective metrics in the
view of r(z). The natural definition of information variance also satisfies the properties of
a pseudometric and is easily interpreted as a standard statistical construct.

Definition 3 Information variance. Information variance between belief states qo(z)
and qi(z) in the view of expectation r(z) is simply the variance of information density

Varr(z)[ql(z) qo(z)] = fdz r(z) (log (cicii0((: 2))) — go) 

where cp = Tr--r(z) [ql(z) II q0(z)].

4. Corollaries and Interpretations

The following corollaries examine primary consequences of Theorem 1. Note that multiple
random variables may be expressed as a single joint variable such as z = (zl, z2, • • • , zn)•
The following corollaries explore one or two components at a time such as variables z1 and
z2 or observations x and y. Extensions to multiple random variables easily follow.

Note that the standard formulation of conditional dependence holds for all probability
distributions in Corollary 1. That is, given an arbitrary joint(  izd,i2)distribution q(zi, z2), we can
compute the marginalization as q(zl) f dz2 q(zl, z2) and conditional dependence follows

by the Radon-Nikodym derivative to obtain q(z2 

gz

zi) =   All proofs are containedq(z1) '
in B.

Corollary 1 Chain rule of conditional dependence. Information associated with joint
variables decomposes as

4(zi,z2)[cil(zl, Z2) 11 CiO(Z11 Z2) ] = ]Ir(zi)[Cil(Z1) II (40(Z1)]
Er(z1)Er(z21z1)[Cil(Z2 I z1) II Cio(z2 l Z1)] •
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Corollary 2 Additivity over belief sequences. Information gained over a sequence of
belief updates is additive within the same view. Given initial belief qo (z), intermediate states
qi(z) and q2(z), and the view r(z) we have

l[r(z)[c12(z) qo(z)] = l[r(z)[c12(z) 11 cli(z) Er(z)[cIl(z) qo(z)] •

Corollary 3 Antisymmetry. Information from ql(z) to qo(z) is the negative of infor-
mation from qo(z) to qi (z)

Er(z)No(z) 11 ql (z) = -4(z)[C11-(z) C113(z)1 •

4.1 Entropy

Shannon's formalization of entropy as uncertainty may be consistently understood as the
expectation of information gained by realization. We first reconstruct information contained
in realization. We then define the general form of entropy in the discrete case, which is cross
entropy, and finally the standard form of entropy follows.

Corollary 4 Realization information (discrete). Let z be a discrete random variable
z E {Zi i E [T]} . Information gained by realization .2 from q(z) in the view of realization
r(z 1 i) is

Er(z1z")[r(z 1 2) 11 cl(z)] = D[1 11 €1(z = 2) ] •

Corollary 5 Cross entropy (discrete). Let z be a discrete random variable z E {zi I i E
[n] } and 2 be a hypothetical realization. Expectation over the view r(2-) of information gained
by realization from belief q(z) recovers cross entropy

Er(i-) ]Ir(zli) r(z 1 2) 11 q(z) ] = Er(z) 1 11 cl(z)] = Sr(z)]cl(z) ] •

Corollary 6 Entropy (discrete). Let z be a discrete random variable z E {,Zi I i E

[n] } and .2 be a hypothetical realization. Expectation over plausible realizations q(2) of
information gained by realization from belief q(z) recovers entropy

lEc(t.) l[r(z [ 1 11 q(z) ] = l[q(z) [ 1 11 q(z) ] = S[ q(z) ] .

Shannon proved that this is the only construction as a functional acting on a single
distribution q(z) that satisfies his properties. As mentioned earlier, the information nota-
tion l[q(z)[ 1 11 cl(z)] requires some subtlety of interpretation. Probability density 1 over all
discrete outcomes z E Qz is not generally normalized. Although these formulas are conve-
nient abstractions that result from formal derivations as expectations in the discrete case,
nothing prevents us from applying them in continuous settings, which recovers the typical
definitions in such cases.

In the continuous setting, we must emphasize that this definition of entropy is not
consistent with taking the limit of a sequence of discrete distributions that converges in
probability density to a continuous limiting distribution. The entropy of such a sequence
diverges to infinity, which matches our intuition; the number of bits required to specify a
continuous (real) random variable also diverges.

18
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4.2 Information in an observation

As discussed in 2.3, we may regard qo(z) p(z) as prior belief and ql (z) p(z x)
as the posterior conditioned on the observation of x. Without any additional evidence,
we must hold r(z) p(z x) to be rational belief and we recover the Kullback—Liebler
divergence as the rational measure of information gained by the observation of x, but with a
caveat; once we obtain additional evidence y then information in the observation of x must
be recomputed as Ep(z1x,y)[ p(z p(z) ]. In contrast, this theory holds that Lindley's
corresponding measure

DL[p(z I x) II p(z)] = s[p(z)] - s[p(z I x)]

is not the information gained by the observation of x; it is simply the difference in uncer-
tainty before and after the observation.

4.3 Potential information

We now consider expectations over hypothetical future observations w that would influence
belief in z as a latent variable. Given belief p(z), the probability of an observation w is
p(w) = fdz p(w I z)p(z) as usual.

Corollary 7 Consistent future expectation. Let the view p(z) express present belief in
the latent variable z and w represent a future observation. The expectation over plausible
w of information in the belief-shift from qo(z) to ql (z) in the view of rational future belief
p(z I w) is equal to information in the present view

Ep(w) l[p(z1w)[ ql (z) 11 qo (z) = l[p(z)[ ql (z) 11 q0(z) -

Corollary 8 Mutual information. Let the view p(z) express present belief in the latent
variable z and w represent a future observation. Expectation of information gained by a
future observation w is mutual information

Ep(w) l[p(ziw)EP(z I w) II p(z)] = Ep(.,.)[p(z, W) II 13(z)13(w) •

Corollary 9 Realization limit. Let z be a latent variable and z be the limit of increasing
observations to obtain arbitrary precision over plausible values of z. Information gained
from qo(z) to ql(z) in the realization limit r(z I i) is pointwise information density

l[r(zli)[€11(z) II 140(Z)] = D[cli(z = i)11clo(z = i)] •

4.4 Consistent optimization analysis

Bernardo (Bernardo, 1979) shows that integrating entropy-like information measures with
Bayesian inference provides a logical foundation for rational experimental design. He consid-
ers potential utility functions, or objectives for optimization, which are formulated as kernels
of expectation over posterior belief updated by the outcome of an experiment. Bernardo
then distinguishes the belief a scientist reports from belief that is justified by inference.

For a utility function to be proper, the Bayesian posterior must be the unique optimizer
of expected utility over all potentially reported beliefs. In other words, a proper utility
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function must not provide an incentive to lie. His analysis shows that Lindley information
is a proper utility function. Corollary 10 holds that information in this theory also provides
proper utility. Thus information measures are not simply ad hoc objectives; they facilitate
consistent optimization-based analysis that recovers rational belief.

Corollary 10 Information is a proper utility function. Taking the rational view
p(z 1 x) over the latent variable z conditioned upon an experimental outcome x, the infor-
mation 1p(z1x) [q(z)11p(z)] from prior belief p(z) to reported belief q(z) is a proper utility
function. That is, the unique optimizer recovers rational belief

q*(z) argmax lip(zlx)[q(z) 11 p(z) ] —, p(z1 X).
q(z)

We would like to go a step further and show that when information from qo(z) to ql (z)
is positive in the view of r(z), we may claim that qi (z) is closer to r(z) than qo(z). For
this claim to be consistent we must show that any perturbation that unambiguously drives
belief qi (z) toward the view r(z) must also increase information. The complementary
perturbation response with respect to qo(z) immediately follows by Corollary 3.

Corollary 11 Proper perturbation response. Let ql(z) be measurably distinct from
the view r(z) and _ffr(z)[Cil(z) ll q0(z)] be finite. Let the perturbation 77(z) preserve normal-
ization, and drive belief toward r(z) on all measurable subsets. It follows

lim 
0 
--ffr (z )[ql(z) + En(z)11qo(z)] > 0.e_>.0 as 

It bears repeating, by Corollary 8, that mutual information captures expected proper utility,
which provides a basis for rational experimental design and feature selection.

4.5 Discrepancy functions

Ebrahimi, Soofi, and Soyer (Ebrahimi et al., 2010) discuss information discrepancy func-
tions, which have two key properties. First, a discrepancy function is nonnegative

DN.]. (z)11qo (z) ] > 0 with equality if and only if ql (z) qo(z).

Second, if we hold qo (z) fixed then D[ qi (z)11qo (z) ] is convex in qi (z). One of the reasons
information discrepancy functions are useful is that they serve to identify independence.
Random variables x and z are independent if and only if p(x) —= 1:0 l z). Therefore, we
have D[p(x, z)11p(x)p(z)] > 0 with equality if and only if x and z are independent, noting
that p(x,z) p(x 1 z)p(z). This has implications regarding sensible generalizations of
mutual information.

Theorem 1 does not satisfy information discrepancy properties unless the view of ex-
pectation is taken to be r(z) qi (z), which is the KL divergence. We note, however,
that information pseudometrics and information variance given in 3.6 satisfy a weakened
formulation. Specifically, r I2(z) [ qi(z)11q0(z) ] > 0 with equality if and only if qo(z) and

qi (z) are weakly equivalent in the view of r(z). Likewise, these formulations are convex in
information density D[ qi (z)11qo (z) ].
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4.6 Jaynes maximal uncertainty

Jaynes uses entropy to analytically construct a unique probability distribution for which
uncertainty is maximal while maintaining consistency with a specified set of expectations.
This construction avoids unjustified creation of information and places the principle of insuf-
ficient reason into an analytic framework within which the notion of symmetry generalizes
to informational symmetries conditioned upon observed expectations.

We review how Jaynes constructs the resulting distribution r*(z). Let such kernels of
expectation be denoted fi(z) for i E [n] and the observed expectations be 1E,.(,)[f2(z)] = co,.
The objective of optimization is

r*(z) = argmax s[ r(z) ] subject to Er(z) (z) = coi vi E [n].
r(z)

The Lagrangian, which captures both the uncertainty objective and expectation constraints,
is

L[r(z), A] = f dz r(z) (log (r(iz))
n

i=1

(fi(z) — coi)) .

where A E Rn is the vector of Lagrange multipliers. This Lagrangian formulation satisfies
the variational principle in both r(z) and A. Variational analysis yields the optimizer

r*(z) oc exp Aifi(z)) .
i=1

INFORMATION-CRITICAL DISTRIBUTIONS

Rather than maximizing entropy, we may minimize Er(,)[ r(z)11q0(z) ] while maintaining
consistency with specified expectations. Since the following corollary holds for general
distributions qo (z), including the improper case qo (z) 1, this includes Jaynes' maximal
uncertainty as a minimization of negative entropy.

Corollary 12 Minimal information. Given kernels of expectation fi(z) and specified
expectations Er(,)[L(z)] = coi for i E [n], the distribution r*(z) that satisfies these con-
straints while minimizing information l[r(z)[r(z)11q0(z)] is given by

(r*(z) oc q0(z) exp
i=1

4.7 Remarks on Fisher information

)Aifi(z) for some A E Rn.

Fisher provides an analytic framework to assess the suitability of a pointwise latent de-
scription of a probability distribution (Fisher, 1925). As Kullback and Leibler note, the
functional properties of information in Fisher's construction are quite different from Shan-
non's and thus we do not regard Fisher information as a form of entropic information.
Fisher's construction, however, can be rederived and understood within this theory. He
begins with the assumption that there is some latent realization z for which p(x is
an exact description of the true distribution of x. We can then define the Fisher score as
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the gradient of information from any independent prior belief qo (x) to a pointwise latent
description p(x z), in the view p(x

f = V.I[p(.1.i)[p(x 1 z) go* •

Note that z is fixed by assumption, despite remaining unknown. By the variational principle,
the score must vanish at the optimizer z*. By Corollary 10, the optimizer must be z*= z.
We can then assess the sensitivity of information to the parameter z at the optimizer z*
by computing the Hessian. This recovers an equivalent construction of the Fisher matrix
within this theory

a2

Fij azzazi ffp(xli) [13(x l z) 11 clo(x)] •

The primary idea behind this construction is that high-curvature in z implies that a point-
wise description is both suitable and a well-conditioned optimization problem.

GENERALIZED FISHER MATRIX

We may eliminate the assumption of an exact pointwise description and generalize analogous
formulations to arbitrary views of expectation.

Definition 4 Generalized Fisher score. Let r(x) be the view of expectation regarding
an observable x. The gradient with respect to z of information from independent prior belief
qo(x) to a pointwise description p(x z) gives the score

f = vzi[r(x)[P(x 1 z) II cio(x)]•

Definition 5 Generalized Fisher matrix. Let r(x) be the view of expectation regarding
an observable x. The Hessian matrix with respect to components of z of information from
independent prior belief qo(x) to the pointwise description p(x z) gives the generalized
Fisher matrix

02

aziazi Erw[P(x z) II (40(x) ]•

Again, a local optimizer z* must satisfy the variational principle and yield a score of
zero. The generalized Fisher matrix would typically be evaluated at such an optimizer z*.

5. Information in inference and machine learning

We now examine model information and predictive information provided by inference. Once
we have defined these information measurements, we derive upper and lower bounds between
them that we anticipate being useful for future work. Finally, we show how inference
information may be constrained, which addresses some challenges in Bayesian inference.

5.1 Machine learning information

Akaike (Akaike, 1974) first introduced information-based complexity criteria as a strategy
for model selection. These ideas were further developed by Schwarz, Burnham, and Gel-
man (Schwarz, 1978; Burnham and Anderson, 2001; Gelman et al., 2013). We anticipate
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these notions will prove useful in future work to both understand and control the problem of
memorization in machine learning training. Accordingly, we discuss how this theory views
model complexity and distinguishes formulations of predictive information and residual in-
formation.

In machine learning, observations correspond to matched pairs of inputs and labels

Y { (x(3), y(3)) I j c [7]}. For each sample j of T training examples, we would like

to map the input x(3) to an output label y(3). Latent variables 9 are unknown model
parameters from a specified model family or computational structure. A model refers to a
specific parameter state and the predictions that the model computes are p(y(3) x(i), 9).
Since the definitions and derivations that follow hold with respect to either single cases
or the entire training ensemble, we will use shorthand notation p(y 0) to refer to both
scenarios.

We denote the initial state of belief in model parameters as qo(0) and updated belief
during training as qi(0) for i E [n]. We can then compute predictions from any state of
model belief by marginalization qi(y) f d0 p(y 0)(1(0).

Definition 6 Model information. Model information from initial belief qo(0) to updated
belief qi(0) in the view of r(9) is given by

]Ir(e)[(4, (6) ll q0(9) ] for i E [n].

When we compute information contained in training labels, the label data obviously
provide the rational view. This is represented succinctly by r(y which assigns full
probability to specified outcomes. Again, if we need to be explicit then this could be
written as r(y l x(3), y(3)) for each case in the training set.

Definition 7 Predictive label information. The realization of training labels is the
rational view r(y ÿ) of label plausibility. We compute information from prior predictive
belief qo(y) to predictive belief qi(y) in this view as

l[r(y1t)[cti(y) II clo(Y) •

In the continuous setting, this formulation is closely related to log pointwise predictive
density (Gelman et al., 2013). We can also define complementary label information that is
not contained in the predictive model.

Definition 8 Residual label information (discrete). Residual information in the label
realization view r(y 'Y) is computed as

l[r(yI 1 M 11 cli(y)] •

Residual information is equivalent to cross-entropy if the labels are full realizations.
We note, however, that if training labels are probabilistic and leave some uncertainty then
replacing both occurances of r(y M above with a general distribution r(y) would correctly
calibrate residual information so that if predictions were to match label distributions then
residual information would be zero.
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As a consequence of Corollary 2, the sum of predictive label information and residual
label information is always constant. This allows us to rigorously frame predictive label
information as a fraction of the total information contained in training labels. Moreover,
Corollary 11 assures us that model perturbations that drive predictive belief toward the
label view must increase predictive information. In the continuous setting, just as the
limiting form of entropy discussed in 4.1 diverges, so also does residual information diverge.
Predictive label information, however, remains a finite alternative. This satisfies our initial
incentive for this investigation.

There is a second type of predictive information we may rationally construct, however.
Rather than considering predictive information with respect to specified label outcomes, we
might be interested in the information we expect to obtain about new samples from the
generative process. If we regard marginalized predictions qi(y) as our best approximation
of this process, then we would simply measure change in predictive belief in this view.

Definition 9 Predictive generative approximation. We may approximate the dis-
tribution of new outcomes from model belief CO) using the predictive marginalization

f clo p(y 0)qi(0). If we hold this to be the rational view of new outcomes from the
generative process, predictive information is

Ecii(y)[cli(y) II clo(Y)] •

5.2 Inference information bounds

In Bayesian inference, we have prior belief in model parameters q0(0) p(0) and the
posterior inferred from training data qi (0) p(0 I *y.). The predictive marginalizations are
called the prior predictive and posterior predictive distributions respectively

p(y) dO p(y 0)p(0) and p(y I Y-) f (10 p(y 0)13(0 I P).

We derive inference information bounds for Bayesian networks (Pearl, 2014). Let y,
01, and 02 represent a directed graph of latent variables. In general, the joint distribution
can always be written as p(y,01, 02) = p(02 l 01, y)P(Oi I y)p(y). The property of local
conditionality (Goodfellow et al., 2016) means p(02 l 01, ÿ) p(02 01). That is, belief
dependence in 02 is totally determined by that of 01 just as belief in 01 is computed from

Corollary 13 Joint local inference information. Inference information in 01 gained
by having observed y is equivalent to the inference information in both 01 and 02.

02 MIIP(Oi, 02)] = /[13(01V[P(01 I M P(01)] •1[091,021P)[P(01,

Corollary 14 Monotonically decreasing local inference information. Inference in-
formation in 02 gained by having observed y is bound above by inference information in

Oi.

ffp(6021p.)[ P(02 I M 111)(02)] < l[p(011M [P(01 I M P(01)] •
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This shows that inference yields nonincreasing information as we compound inference on
locally conditioned latent variables, which is relevant for sequential predictive computational
models such as neural networks. We observe that the inference sequence from training data
to model parameters 9 to new predictions y is also a locally conditioned sequence. If belief

in a given latent variable is represented as a probability distribution, this places bounds
on what transformations are compatible with the progression of information. For example,
accuracy measures which snap the maximum probability outcome of a neural network to
unit probability impose an unjustified creation of information.

Corollary 15 Inferred information upper bound. Model information in the posterior
view is less than or equal to predictive label information resulting from inference

1[1)Am [P(O 1 Ml1P(9) ffr(ylii)[P(Y 1 P)1113(y) •

This is noteworthy because it tells us that inference always yields a favorable tradeoff
between increased model complexity and predictive information. Combining Corollary 14
and Corollary 15, we have upper and lower bounds on model information due to inference

ffp(ylt) [ P(y I Y-) II p(y) ]Ip(491p)[ P(9 1 )1113(9) ffr(ylt) [1)(y 1 M1113(y) •

5.3 Inference information constraints

Practitioners of Bayesian inference often struggle when faced with inference problems for
models structures that are not well suited to the data. An under expressive model family
is not capable of representing the process being modeled. As a consequence, the posterior
collapses to a small set of outcomes that are least inconsistent with the evidence. In contrast,
an over expressive model admits multiple sufficient explanations of the process.

Both model and predictive information measures offer means to understand and address
these challenges. By constraining the information gained by inference, we may solve prob-
lems associated with model complexity. In this section, we discuss explicit and implicit
approaches to enforcing such constraints.

EXPLICIT INFORMATION CONSTRAINTS

Our first approach to encode information constraints is to explicitly solve a distribution
that satisfies expected information gained from the prior to the posterior. We examine how
information-critical distributions can be constructed from arbitrary states of belief ci2(9) for
i [n]. Again, we may obtain critical distributions with respect to uncertainty by simply
setting cio(0) 1. By applying this to inference, so that n = 1 and qi(0) p(e 1 y), we
recover likelihood annealling as a means to control model information.

Corollary 16 Constrained information. Given states of belief q2(9) and information
constraints Tr-r(8) [ qo(9)] = coi for i E [n], the distribution r*(9) that satisfies these
constraints while minimizing i[r(0) [ r(6)11(40(9)] has the form

r*(9) a cio(9) qz (9)  )
z=1 Cl° (6)
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Corollary 17 Information-annealed inference. Annealed belief r(0) for which infor-
mation gained from prior to posterior belief is fixedffr(0)[p(60 1113(9)] = cp and informa-
tion Er(9)[r(0) 11p(6)] is minimal must take the form

r(0) 0)Ap(0) for some A E R.

Note that the bounds in 5.2 still apply if we simply include A as a fixed model parameter
in the definition of the likelihood function so that p(.9. I 0) H 13(y I 9, A) 0)À • This
prevents the model from learning too much, which may be useful for under-expressive models
or for smoothing out the posterior distribution to aid exploration during learning.

IMPLICIT INFORMATION CONSTRAINTS

Our second approach introduces hyper-parameters, A and //,, into the Bayesian inference
problem, which allows us to define a prior on those hyper-parameters that implicitly encodes
information constraints. This approach gives us a way to express how much we believe
we can learn from the data and model that we have in hand. Doing so may prevent
overconfidence when there are known modeling inadequacies or underconfidence from overly
broad priors.

As above, A parameters influence the likelihood and can be though of as controlling
annealing or an embedded stochastic error model. The 7/., parameters control the prior on
the model parameters 0. For example, these parameters could be the prior mean and co-
variance if we assume a Gaussian prior distribution. Therefore the inference problem takes
the form

13W I 19, A)1)(19 I 'OP(A,'IP) 
PA — •

13(M

In order to encode the information constraints, we must construct the hyper-prior dis-
tribution p(A, = g ((po, (PO where

(Pe = I[p(01,A,/P)[P(0 I y, XV)) II P(0 I IP)

(ioy = Ir(ylg)[P(Y '0) 1113(y l

and

control model information and predictive information, respectively. The function g (coo, coy)
is the likelihood of A and //) given the specified model and prediction complexities. For
example, this could be an indicator function as to whether the information gains are within
some range. Note that we may also consider other forms of predictive information such as
the predictive generative approximation.

The posterior distribution on model parameters and posterior predictive distribution
can be formed by marginalizing over hyper-parameters

13(0 I M =PachP p(8, XV) I M and

P(y = f dAd0 13(y 119 A)p(19 , '0
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6. Negative information

The possibility of negative information is a unique property of this theory in contrast to
divergence measures such as Kullback—Leibler divergence, a-divergences, and f-divergences.
It provides an easily interpreted notion of whether a belief update is consistent with our best
understanding. Negative information can be consistently associated with misinformation in
the view of rational belief. That is, is negative then qo(z) is a better
approximation of rational belief thainfilqr(iz(z[7.1(Tzh) 

qo(z)
consislency of this interpretation would

be violated if we could construct ql (z) that is unambigously better than qo(z) at approxi-
mating r(z). Corollary 11 shows, however, that this is not possible. If we construct qi (z)
by integrating perturbations from qo (z) that drive belief towards r(z) on all measurable
subsets, then information must be positive. The following experiments illustrate examples
of negative information and motivate its utility.

6.1 Negative information in continuous inference

In the following set of experiments we have a latent variable 0 E , which is distributed
as A r (0 0, I). Each sample y(3) E R2 corresponds to realization of an independent latent
variable x(3) E 2 so that y(3) = 0 ± x(3). Each x(3) is distributed as ./V(x(3) I 0, afj) where
Ql = 1/2. Both prior belief in plausible values of 0 and prior predictive belief in plausible
values of y are visualized in Figure 1.4. Deciles separate annuli of probability 1/10. The
model information we expect to gain by observing 10 samples of y, which is also mutual
information from Corollary 8, is l[p(y,o) [ p(y, 0) II p (y) p (0) ] = 5.36 bits. See C for details.

The first observation consists of 10 samples of y followed by inference of 0 . Subsequent
observations each add another 10, 20, and 40 samples respectively. A typical inference
sequence is shown in Figure 1.5. Model information gained by inference from the first
observation in the same view is 5.72 bits. As additional observations become available the
model information provided by first inference is eventually refined to 5.10 bits. Typically
the region of plausible models 0 resulting from each inference is consistent with what was
previously considered plausible.

By running 1 million independent experiments, we construct a histogram of the model
information provided by first inference in subsequent views. This is shown in Figure 1.6. As
a consequence of Postulate 4, the model information provided by first inference must always
be positive before any additional observations are made. The change in model covariance
in this experiment provides a stronger lower bound of 3.95 bits after first inference, which
can be seen in the first view on the left. This bound is saturated in the limit when the
inferred mean is unchanged. Additional observations may indicate that the first inference
was less informative than initially believed. We may regard the rare cases showing negative
information as being misinformed after first inference. The true value of the model 0 may
be known to arbitrary precision if we collect enough observations. This is the realization
limit on the right. Under this experimental design, this limit converges to the Laplace
distribution centered at mutual information L(11, (log 2)-1) computed in the prior view.

From these million experiments, we can select the most unusual cases for which the
information provided by first inference is later found to an extreme. Figure 1.7 visualizes the
experiment for which the information provided by first inference is found to be the minimum
after observing 160 total samples from the generative process. Although model information
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assessed following the first observation is a fairly typical value, additional samples quickly
show that the first samples were unusual. This becomes highly apparent in the fourth view,
which includes 80 samples in total.

Figure 1.8 visualizes the complementary case in which we select the experiment for
which the information provided by first inference is later found to be the maximum. The
explantory characteristic of this experiment is the rare value that the true model has taken.
High information in inference shows a high degree of surprise from what the prior distri-
bution deemed plausible. Each inference indicates a range of plausible values of 9 that is
quite distant from the plausible region indicated by prior belief. The change in belief due
to first inference is confirmed by additional data in fourth inference.

Finally, we examine a scenario in which the first 10 samples are generated from a different
process than subsequent samples. We proceed with inference as before and assume a single
generative process, despite the fact that this assumption is actually false. Figure 1.9 shows
the resulting inference sequence. After first inference, nothing appears unusual because
there is no data that would contradict inferred belief. As soon as additional data become
available, however, information in first inference becomes conspicuously negative. Note that
the one-in-a-million genuine experiment exhibiting minimum information, Figure 1.7, gives
-11.53 bits after 70 additional samples. In contrast, this experiment yields -47.91 bits
after only 10 additional samples.

By comparing this result to the information distribution in the realization limit, we see
that the probability of a genuine experiment exhibiting information this negative would be
less than 2-155. This shows how highly negative information may flag anomalous data. We
explore this further in the next section.

6.2 Negative information in MNIST model with mislabeled data

We also explore predictive label information in machine learning models by constructing a
small neural network to predict MNIST digits (LeCun et al., 1998). This model was trained
with 50,000 images with genuine labels. Training was halted using cross-validation from
10,000 images that also had genuine labels. To investigate how predictive label information
serves as an indicator of prediction accuracy, we randomly mislabeled a fraction of unseen
cases. Prediction information was observed on 10,000 images for which 50% had been
randomly relabeled, which resulted in 5,521 original labels and 4,479 mismatched labels.

The resulting distribution of information outcomes is plotted in Figure 1.10, which shows
a dramatic difference between genuine labels and mislabeled cases. In all cases, prediction
information is quantified from the uninformed probabilities cio(y = yz) = 1/10 for all
outcomes i E [10] to model predictions, which are conditioned on the image input qi (y
in the view of the label r(y I yi). Total label information, the sum of predictive label
information and residual label information, is

l[r(ylyi)[r(y I yi) go(y)] = l[r(ylyz)[cli(y x) II go(y)] Er(ylyi)[r(y I yi)11cli(y Ix)]

= log2(10) bits

or roughly 3.32 bits for each case. Both Figure 1.11 and Figure 1.12 show different forms
of anomaly detection using negative information.
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Figure 1.11 shows that genuine labels may exhibit negative information when predictions
are poor. Only 1.1% of correct cases exhibit negative predictive label information. The
distribution mean is 3.2 bits for this set. Notably, the first two images appear to be genuinely
mislabeled in the original dataset, which underscores the ability of this technique to detect
anomalies.

In contrast, over 99.1% of mislabeled cases exhibit negative information with the dis-
tribution mean at —18 bits. The top row of Figure 1.12 shows that information is most
negative when the claimed label is not plausible and model predictions clearly match the
image. Similarly to 6.1, strongly negative information indicates anomalous data. When
incorrect predictions match incorrect labels, however, information can be positive as shown
in the bottom row. The cases appear to share identifiable features with the claim.

7. Conclusion

Just as belief matures with accumulation of evidence, we hold that the information asso-
ciated with a shift in belief must also mature. By formulating principles that articulate
how we may regard information as a reasonable expectation that measures change in belief,
we derived a theory of information that places existing measures of entropic information
in a coherent unified framework. These measures include Shannon's original description of
entropy, cross-entropy, realization information, Kullback—Leibler divergence, and Lindley
information (uncertainty difference) due to an experiment.

Moreover, we found other explainable information measures that may be adapted to
specific scenarios from first principles including the log pointwise predictive measure of
model accuracy. We derived useful properties of information including the chain rule of
conditional dependence, additivity over belief updates, consistency with respect expected
future observations, and expected information in future experiments as mutual information.
We also showed how this theory generalizes information-critical probability distributions
that are consistent with observed expectations analogous to that of Jaynes'. In the context
of Bayesian inference, we showed how information constraints recover and illuminate useful
annealed inference practices.

We also examined the phenomenon of negative information, which occurs when a more
justified point of view, based on a broader body of evidence, indicates that a previous
change of belief was misleading. Experiments demonstrated that negative information re-
veals anomalous cases of inference or anomalous predictions in the context of machine
learning.

The primary value of this theoretical framework is the consistent interpretation and
corresponding properties of information that guide how it may be assessed in a given context.
The property of additivity over belief updates within the present view allows us to partition
information in a logically consistent manner. For machine learning algorithms, we see that
total information from the uninformed state to a label-informed state is a constant that
may be partitioned into the predicted component and the residual component. This insight
suggests new approaches to model training, which will be the subject of continuing research.
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7.1 Future work

The challenges we seek to address with this theory relate to real-world applications of
inference and machine learning. Although Bayesian inference provides a rigorous foundation
for learning, poor choices of prior or likelihood can lead to results that elude or contradict
human intuition when analyzed after the fact. This only becomes worse as the scale of
learning problems increases, as in deep neural networks, where human intuition cannot catch
inconsistencies. Information provides a metric to quantify how well a model is learning that
may be useful when structuring learning problems. Some related challenges include:

1. Controlling model complexity in machine learning to avoid memorization,

2. Evaluating the influence of different experiments and data points to identify outliers
or poorly supported inferences,

3. Understanding the impact of both model-structure and fidelity of variational approx-
imations on learnability.
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Figure 1.4: Prior distribution of 0 and prior predictive distribution of individual y samples.
The domain of plausible 0 values is large before any observations are made.
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Figure 1.5: Typical inference of 0 from observation of 10 samples of y (left) followed by 10,
20, and 40 additional samples respectively. Both prior belief and first inference
deciles of 0 are shown in gray. As observations accumulate, the domain of
plausible 0 values tightens.
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Figure 1.6: Histogram of first inference information in observation sequence. The vertical
line at 5.36 bits is mutual information. Information is positive after first infer-
ence, but may drop with additional observations. The limiting view of infinite
samples (realization) is shown on the right.
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Figure 1.7: Minimum first inference information out of 1 million independent experiments.
This particularly rare case shows how first samples can mislead inference, which
is later corrected by additional observations. The fourth inference (right) bears
remarkably little overlap with the first.
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Figure 1.8: Maximum first inference information out of 1 million independent experiments.
The true value of 9 has taken an extremely rare value. As evidence accumulates,
plausible ranges of 9 confirm the first inference.
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Figure 1.9: Inconsistent inference. The first 10 samples are drawn from a different ground
truth than subsequent samples, but inference proceeds as usual. As additional
data become available, first inference information becomes markedly negative.
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Figure 1.10: Histogram of information outcomes for mismatched and original labels. Cor-
rect label information is highly concentrated at 3.2 bits, which is 95.9% of the
total information contained in labels. Mislabeled cases have mean information
at -18 bits and information is negative for 99.15% of mislabeled cases.
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Figure 1.11: Original MNIST labels. The top row shows lowest predictive label information
among original labels. Notably, the two leading images appear to be genuinely
mislabeled in the original dataset. Subsequent predictions are poor. The
bottom row shows the highest information among original labels. Labels and
predictions are consistent in these cases.
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Figure 1.12: Mislabeled digits. The top row shows the lowest predictive label information
among mislabeled cases. In each case, the claimed label is implausible and the
prediction is correct. The bottom row shows the highest prediction information
among mislabeled cases. Although claimed labels are incorrect, most images
share identifiable features with the claim.
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Chapter 2

Parsimonious Inference

Occam's Razor conveys an intuitive principle; the simplest sufficient explanation tends to
be most predictive. Building upon our work regarding information as a rational measure of
change in belief, we develop parsimonious inference, an information-theoretic formulation
of Bayesian inference over arbitrary predictive architectures that formalizes Occam's Razor.
Ideally, a learning problem consists of a description of prior belief followed by Bayesian infer-
ence to account for evidence in updated belief over models that could explain our data. Yet,
it may be especially difficult to articulate well-founded justification for prior belief in the
machine learning context, where algorithms contain high parameter dimensions and practi-
tioners frequently modify computational architectures to improve outcomes. Our universal
hyperprior expands on the core relationships between program length, Kolmogorov com-
plexity, and Solomonoff's algorithmic probability to assign plausibility to prior descriptions
that are encoded as sequences of discrete symbols. We then cast learning as an information
minimization problem over our composite change in belief when an architecture is specified,
training data are observed, and model parameters are inferred. This framework allows us
to distinguish model complexity from prediction information and quantify the phenomenon
of memorization.

Information optimization allows us to control learned explanatory complexity from first
principles, rather than resorting to heuristic strategies such as cross-validation. Although
this theory is general, it is most critical when we seek to apply machine learning to lim-
ited training datasets. Our optimization approaches require both efficient encodings of
potential models and prudent sampling strategies to construct predictive ensembles from
small datasets. Experiments include novel algorithms for polynomial regression and random
forests in the presence of extremely small or skewed datasets. These algorithms demonstrate
how model complexity adapts to the amount of evidence contained within available data
in order to avoid memorization without cross-validation. Our theory addresses a funda-
mental challenge in how we may efficiently use data to obtain rational predictions from the
otherwise arbitrary architectures encountered in machine learning.

1. Introduction

We began this investigation desiring to understand the relationship between prior belief
and the resulting uncertainty in predictions obtained from inference in the hope that new
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insights would provide a sound basis to improve prediction credibility in machine learn-
ing. The mathematical and epistemological foundations of rational belief, from which the
laws of probability and Bayesian inference are derived as an extended logic from binary
propositional logic (Cox, 1946), lead us to assert the central role of Bayesian inference in
obtaining rigorous justification for uncertainty in predictions. Although this foundation of
reason holds generally, it is critical when we need to learn robust predictions from limited
datasets. Yet, applying Bayesian inference within the machine learning context requires
addressing a fundamental challenge: inference requires prior belief. When the amount of
evidence contained within a dataset regarding a phenomenon of interest is extremely lim-
ited, specifying prior belief is not merely an inconvenience; it is the dominant source of
uncertainty in predictions. Examples of such data limitations include having few observa-
tions, noisy measurements, skewed or highly imbalanced labels of interest, or even a degree
of mislabeling in the data.

When predictive models integrate well-understood physical principles, they are often
accompanied by physically plausible parameter ranges that provide a strong basis for prior
belief. Likewise, canonical priors are acceptable for simple approximations with relatively
few unconstrained parameters in comparison to the size of the dataset intended for inference.
Kass and Wasserman (1996) give a thorough survery of related work. In contrast, the
machine learning paradigm seeks to instrument arbitrary algorithms with high parameter
dimensionality. A typical architecture may have tens of thousands, or perhaps millions, of
free parameters. In this setting, the sensitivity of predictions to an arbitrary choice of prior
belief may be unacceptable for applications of consequence (Owhadi et al., 2015).

1.1 Our contributions

Expanding on the work of Solomonoff (1964a,b, 2009), Kolmogorov (1965), Rissanen (1983,
1984), and Hutter (2007), we develop a theoretical framework that assigns plausibility to
arbitrary inference architectures. Just as Solomonoff derives algorithmic probability from
program length, widely understood as the number of bits needed to encode a program for
a specific interpreter, we observe that a similar approach yields a universal hyperprior over
symbolic encodings of ordinary priors. We may regard an ordinary prior, that which is
typically used in Bayesian inference, as a restricted state of belief from a general universe
of potential explanatory models. Within our framework, every choice of computational
architecture, and associated prior over model parameters, is just a restriction of prior belief.
Our hyperprior provides a means to measure and control the complexity of such choices.

We show how our theory of information (Duersch and Catanach, 2020), Theorem 1,
allows us to derive a training objective from the information that is created when we select
a prior representation, observe the training data, and either infer the posterior distribution
or construct a variational approximation of it. Zhang et al. (2018) provide a thorough
survey. Our main result, Theorem 2, expresses this objective in three components:

• Encoding information contained within a symbolic description of prior belief;

• Inference information gained regarding plausible models from observations;

• Predictive information gained regarding the observed labels from plausible models.
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Notably, our derivation generates the first two terms with negative signs and the third with
a positive sign, which reveals how this theory suppresses complexity as an intrinsic tradeoff
against increased agreement with observed labels. We demonstrate this theory with two
learning prototypes.

Our first algorithm casts polynomial regression within this framework, predicting a
distribution over continuous outcomes from a continuous input. By setting the maximum
polynomial degree to be much higher than the data merits, standard machine learning
training strategies are susceptible to memorization, as we demonstrate by applying gradient
based training with leave-one-out cross-validation. In contrast, our prototype discovers
much simpler models from the same high-degree basis. When we aggregate predictions over
an ensemble of polynomial representations, our prototype further demonstrates the natural
increase in uncertainty we intuitively associate with extrapolation.

Our second algorithm samples ensembles of decision trees that are constructed using
the parsimonious inference objective. These models aim to predict discrete labels through
a sequence of partitions on continuous feature coordinates. Our random forest prototype
demonstates the ability to learn credible prediction uncertainty from extremely small and
heavily skewed datasets, which we contrast with a standard decision tree model and boot-
strap aggregation. Both of these algorithms achieve superior prediction uncertainty by ac-
counting for many alternative explanations, according to their degree of plausibility within
the Bayesian paradigm of reason, from prior belief that is derived to both quantify and
naturally suppress complexity over arbitrary explanations.

1.2 Organization

Section 2 begins with a discussion and illustration of the severe inadequacies of traditional
machine learning training approaches that depend on cross-validation. We then briefly
review the critical connections between scientific principles, rational belief, and Bayesian
inference, which provide a sound theory to obtain rigorously justified uncertainty in predic-
tions. When placed in the machine learning context, however, we explore how principled
justification for prior belief over abstract models, including justification for our unavoidable
disregard for an infinite number of alternatives, remains a critical challenge. Further, we
summarize how our theory of information is derived to satisfy key properties that allow us
to relate the various forms of complexity that follow in the parsimonious inference objective.

Section 3 continues with our main contributions, including a discussion of generalized
description length, a coherent complexity hyperprior, and the principles of minimum in-
formation and maximum entropy. These notions culminate in the parsimonious inference
objective, providing a suitable framework to understand and control model complexity over
arbitrary learning architectures. We also show how this objective allows us to quantify mem-
orization. Our theory allows us to apply these concepts within a wide variety of approaches
to solving learning problems, including variational inference techniques.

Section 4 examines implementation details within our prototype algorithms, including
efficient encodings and training strategies for polynomial regression and decision trees.

Section 5 concludes with a discussion of our theory's relationship to other work, a path-
way to frame and address computability à priori, open questions for further investigation,
and a summary of our findings.
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2. Background

In order to place trust in machine learning predictions, we need to understand where trust
originates in science. Yet, in order to motivate the need for a review, we begin by illustrating
the severe deficiencies of standard machine learning practices. Machine learning models are
typically trained using some variation of stochastic gradient descent (Robbins and Monro,
1951).

Gradient-based training algorithms are subject to overtraining, causing model predic-
tions to memorize or artifically hew to training data even as predictions on unseen cases
deteriorate. Cross-validation (Allen, 1974) attempts to prevent memorization, by monitor-
ing predictions on a holdout dataset that is not directly used to tune model parameters.
By monitoring predictions on a validation dataset, practitioners are able to tune hyper-
parameters, such as regularization weights and learning-rate schedules, and estimate the
optimal model discovered over a training trajectory. These methods work well when data
are abundant, but they are problematic in limited data regimes.

2.1 Memorization

The term memorization is often conflated with overtraining, however, we distinguish these
terms as follows. Overtraining is characterized by degradation in prediction quality on
unseen data that occurs after an initial stage of improvements. In contrast, memorization
refers more generally to any predictive algorithm that exhibits unjustifiable confidence, or
low prediction uncertainty, in the training dataset labels that were used to adjust model
parameters.

Conflating these terms lends to an incorrect picture of the problem; to avoid memoriza-
tion, we must merely halt training at the correct moment. Cross-validation is a data-driven
method to address overtraining, but it fails to prevent memorization on small datasets.
The obvious difficulty presented by cross-validation is the inherent tradeoff between using
as much data as possible to train parameters, but also having a reliable estimator for when
to halt training to prevent overfitting.

For limited data, standard practices apply some form of k-fold cross-validation (Hastie
et al., 2009). We form k distinct partitions of the dataset, train k models respectively, and
aggregate predictions by averaging. Leave-one-out cross-validation uses the same number
of partitions as datapoints. Each partition reserves only one observation to estimate the
best model over each training trajectory.

Figure 2.1 demonstrates this technique using polynomial regression, fitting 20th degree
polynomials with only 12 points. The top-left shows an example of a single model trained
by holding out one point for validation, shown in green. The average predictions over 12
such models appears at the bottom-left. Yet, suppose we could train with all 12 points
while remaining highly confident that we will halt training at the correct moment. This
ideal is demonstrated as a thought experiment in the middle column of Figure 2.1 by
sampling 1000 extra data from the generative process, the ground truth mechanism that
creates observations. We see that eliminating the tradeoff between training and validation
would not prevent artifacts from developing that confidently hew to scant observations,
memorization.
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Figure 2.1: Illustration of standard training shortcomings. Top-left: training optimum ob-
tained from holding out the green point. Bottom-left: mean predictions over
all single-holdout sets. Leave-one-out does not prevent development of complex
artifacts that hew to the data. Top-middle: idealized training using all original
data as well as 1000 extra validation points from ground truth. Bottom-middle:
mean predictions starting from 12 random initializations, .Ar (ei l µ= 0, Q= 0.2).
Removing the tradeoff between validation count and training data does not pre-
vent complexities in predictions. Top-right: optimal model discovered using our
theoretical framework and prototype algorithm. Bottom-right: our aggregate
accounts for many plausible models, improving robustness and demonstrating
natural extrapolation uncertainty.

This experiment demonstrates how neither of the competing cross-validation objectives
are at the core of the problem with learning from limited data. Memorization is often framed
in terms of a bias-variance tradeoff; predictions should avoid fluctuating rapidly, but also
remain flexible enough to extract predictive patterns. In our theoretical framework, how-
ever, memorization is more comprehensively and rigorously understood as unparsimonious
model complexity, i.e. increases in model information that are not justified by only small
improvements to training predictions.

We conclude that stochastic gradient optimization never even explores low-complexity
models. Regularization strategies attempt to address this heuristically by penalizing exces-
sive freedom in learning parameters, for example attaching an ti or f2 norm to the training
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objective. While many of these approaches can be equivalently cast as choices of prior belief,
they lack a clear foundation that would allow us to compare alternatives or architectures
without having a sufficient amount of data to apply cross-validation, thus failing to address
the core challenge.

2.2 Scientific Reasoning and Bayesian Inference

In order to reiterate the concrete relationship between Bayesian inference and scientific
reasoning, we review the epistemological foundations of reason at the center of the scientific
method. These foundations bear decisive consequences regarding the valid forms of analysis
we may pursue in order to obtain rational predictions. At its core, the scientific method relies
on coherent mathematical models of observable phenomena that have been informed over
centuries of physical measurements. Within the field of epistemology, this is the naturalist
view of rational belief (Brandt, 1985). It holds that validity is ultimately derived from
consistency, which can be understood in three key components:

1. Rational beliefs must be logical, avoiding internal contradictions;

2. Rational beliefs must be empirical, accounting for all available evidence;

3. Rational beliefs must be predictive, continually reassessing validity by how well pre-
dictions agree with new observations.

The third point is really nothing more than a restatement of the second point, placing
emphasis on the evolving nature of rational beliefs as new data become available. The
critical significance of the first point is that it provides a path to elevate the second and
third points to a rigorous extended logic: Bayesian inference.

Building on the rich body of work by many scholars—including Ramsey (2016, original
1926), De Finetti (1937), and Jeffreys (1998, original 1939) Cox (1946) shows that for a
mathematical framework analyzing degrees of truth, belief as an extended logic, to be con-
sistent with binary propositional logic, that formalism must satisfy the laws of probability:

1. Probability is nonnegative.

2. Only impossibility has probability zero.

3. Only certainty has maximum probability, which we normalize to one.

4. To revise the degree of credibility we assign to a model upon reviewing empirical
evidence, we must apply Bayes' theorem.

Consequently, the Bayesian paradigm provides a uniquely rigorous approach to quantify
uncertainty in the predictions we derive through inductive reasoning. Therefore, the only
logically correct path to quantify and suppress memorization in learning must be cast within
the Bayesian perspective.

Within the Bayesian formalism, a probability distribution called the prior p(6) quantifies
our lack of information, our initial uncertainty, in plausible explanatory models. Here, 0
is any specific parameter state within a model class, or computational architecture. When
we need to emphasize the prior dependence on a model class, or choice of architecture,
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and the distribution of parameters within that class, we will write the prior as p(9 0),
where a description 0, or hyperparameters, provides such details. We will examine how
//) plays a key role regarding model complexity in detail in Section 3. The empirical data
are expressed as a set of ordered pairs D = {(xi, yi) I i E [T]} that have been sampled
from the generative process g(x , y) . The features xi are used to predict labels yi from
a computational structure and parameters. We write the predicted distribution over all
potential labels as p(yi Ix27 0).

If the ordered pairs in D represent independent samples from the underlying process, the
likelihood is evaluated as p(D l 0) = niE[n] 13(yi I xi, 0), which expresses the probability of
observing D if a hypothetical explanation 0 held. Then, we update our beliefs according
to Bayes' theorem. In our picture, we hold that having 0 alone is sufficient to evalute
predictions. When we explicate the role of prior descriptions 0, that means inference can
be written as

P(D 0)1)(0 HP) 
13(0 D = where p(D IP) = f de p(D l 0)13(0 V))

P(D 10)

is the model-class evidence. If we have a hyperprior p(0) over potential descriptions, we
can also infer the hyperposterior

P(o 
I D) = 

0)13(0) 
p(D)

where p(D) = fdli) P(D I IP)P(0)-

The central point of inference is that it does not attempt to identify a single explanation
matching the data, as with stochastic gradient optimization and cross-validation. Rather,
inference naturally adheres to the Epicurean principle, that we should retain multiple expla-
nations according to their respective degrees of plausibility, within a coherent mathematical
framework. We obtain rational predictions by evaluating the posterior predictive integral,
or even the hyperposterior predictive integral, respectively constructed as

P(Y I x ,D , = f d0 p(y I x, 0)1309 I D and

p(y D) = f (1013(y Ix,D,0)13(0

The resulting predictions meet the exigent standard of rational belief for meaningful uncer-
tainty quantification.

2.3 The Universal Scope of Prior Belief

The pervasive objection to the Bayesian paradigm is the lack of clear provenance for prior
belief. In addition to objections based on subjectivity, translating our intuitive beliefs into
distributions can be non-trivial. This problem is most pronounced in the domain of machine
learning, where computational models are abstract, driven only by practical utility rather
than well-understood physical principles. The premise of machine learning is that we do
not need to integrate expert knowledge and specialized scientific theory into algorithms to
obtain useful predictions from data, which eludes the traditional view of priors, that we
must express our beliefs.
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Figure 2.2: Illustration of prediction sensitivity to prior belief. The first row uses a Cheby-
shev polynomial basis and the second uses the standard basis. The third row
exacerbates the problem of basis dependence by inserting a polynomial that
has already partially memorized the data as the first basis function, followed
by the Chebyshev basis. Priors are Gaussian with zero mean and identity co-
variance matrix. The choice of basis clearly matters and inference alone does
not prevent the artifacts we associate with memorization from developing as
parameter dimensions increase; we conclude that to control memorization, we
require principled constraints on prior belief.

Prediction sensitivity to prior belief is most apparent when the number of parameters
approaches or exceeds the size of our dataset, as illustrated in Figure 2.2. If we have n ob-
servations and k > n differentiable parameters, every point in parameter space must have
at least k - n perturbable dimensions in which the likelihood gradient is zero. Because the
likelihood remains constant as we move through these dimensions, each point lives within
a (k - n)-dimensional submanifold wherein prior belief entirely determines the structure
of posterior belief. Thus, within these submanifolds, the contribution of parameter uncer-
tainty to prediction uncertainty is not affected by evidence. Clearly, we cannot be satisfied
with meeting only the bare conditions for technically rational belief; we require concrete
philosophical justification for prior belief.

In order to appreciate the solution, we must grasp the full severity of this problem by
framing it in the most arduous scope. We can define the model universe as the set containing
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every computational architecture that could produce coherent predictions over y from x.
By considering inference over the model universe, we see that every architectural design
decision is actually a choice of support for prior belief, i.e. the subdomain in which prior
belief is nonzero. Similarly, parameter regularization strategies simply correspond to the
shape of the prior distribution within an architecture. By capturing potential choices of
prior belief using model-class descriptions IP, these problems are subsumed by investigating
the correct form of a hyperprior WV)).

This picture also alludes to a second significant challenge in the machine learning set-
ting, the problem of dimensionality in high-parameter families. Even if we obtain an at-
tractive hyperprior, we can always construct increasingly complicated architectures. It is
not possible to explore all of them. Occam's Razor provides a compelling path to a so-
lution; explanations should not exhibit more complexity than what is required to explain
the evidence. We conclude that a comprehensive hyperprior must compute and surpress a
principled formulation of complexity. Moreover, our learning framework must justify dis-
regarding infinite dimensions from inference and simultaneously address how to feasibly
construct or approximate restricted posteriors.

2.4 Controlling Complexity

Bayesian theorists have had a persistent interest in articulating core principles for construct-
ing priors over abstract models, particularly within the objectivist Bayesian philosophy.
Examples of such priors include maximum entropy priors (Jaynes, 1957; Good, 1963) and
Jeffrey's priors (Jeffreys, 1946). Other approaches use information criteria to determine a
suitable number of parameters, such as the Akaike Information Criterion (AIC) (Akaike,
1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978). In contrast to these ap-
proaches that explicitly compare model classes, in which a parameter is either present or
absent, Automatic Relevance Determination (ARD) priors (MacKay, 1995; Neal, 2012) take
a softer approach. ARD uses a hyperprior to express uncertain relevance of different param-
eters and features in a model. It postulates that most model parameters should be close to
zero because only a limited number of features are relevant for prediction. Through infer-
ence, these relevant model parameters can be identified automatically. ARD priors are are
particularly relevant for machine learning because they were developed for neural networks.
We will discuss the relationship between ARD priors and our theory in Section 5.3.

Perhaps the most principled approach to a universal prior is Solomonoff's work on algo-
rithmic probability (Solomonoff, 1964a,b, 2009). Solomonoff derives a prior over all possible
programs based upon their lengths using binary encodings subject to a Turing complete in-
terpreter. Hutter (2007), reviewing prevalent principles of reason, goes further to show how
Solomonoff's framework solves important philisophical problems in the Bayesian setting,
including predictive and decision-theoretic performance bounds under the assumption that
the generative process is a program. Potapov et al. (2012) also discuss Solomonoff's algo-
rithmic probability, emphasizing the importance of retaining many alternative models to
not only learn robust predictions, but also maintain adaptability in decision making.

Kolmogorov's work on mapping complexity (Kolmogorov, 1965) is closely related and
we will examine it in detail in Section 3.1. Rissanen's work on universal priors and Min-
imum Description Length (MDL) (Rissanen, 1983, 1984) is also related. We examine his
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universal prior on integers in Section 4.1 and the relationship between our theory and MDL
in Section 5.4. The key advantage of Solomonoff's approach is that it applies generally
to any model we can program, thus eliminating artificial constraints on computational ar-
chitectures. Solomonoff does not separate the model 9 from the model class //), since any
model from any model class can be expressed as a program. As this complexity-based
information-theoretic prior provides a strong base for our work, we provide a detailed dis-
cussion in Section 3.2.

Fundamentally, the notion of complexity for arbitrary architectures concerns the amount
of information that is contained within an encoding, first investigated by Shannon as en-
tropy (Shannon, 1948). In order to rigorously understand how information in our datasets
relates to Bayesian inference and encoding complexity, we developed a theory of informa-
tion (Duersch and Catanach, 2020) rooted in understanding information as an expectation
over rational belief. Given an arbitrary latent variable z, we would like to measure the
information gained by shifting belief between hypothetical states, i.e. from qo (z) to qi (z).
We require this measurement to be taken relative to a third state of belief, r(z), which we
hold to be valid. The precise reasoning by which validity of r(z) is derived is an important
epistemological question. For our purposes, r(z) will either be rational belief, expressing our
present understanding of the actual state of affairs, or a choice, representing a hypothetical
state of affairs following a decision.

Rational belief is defined as the posterior distribution resulting from inference, which
reserves some nonnegative probability for every outcome that is plausible. In contrast, we
regard a choice as a restriction on the support of belief, effectively confining probability to
any distribution that we can describe. This occurs when we must adhere to a course of
action from a set of mutually incompatible options.

Key results are summarized in the following postulates and theorem.

1. Information gained by changing belief from q0(z) to qi (z) is quantified as an expec-
tation over a third state r(z), called the view of expectation.

2. Information is additive over independent belief processes.

3. If belief does not change then no information is gained, regardless of the view of
expectation.

4. Information gained from any normalized prior state of belief qo(z) to an updated
state of belief r(z) in the view of r(z) must be nonnegative

Information, measured in bits, satisfying these postulates must take the form

Rr(z) [ c11(z) ll cm (z) ] =jdz r(z) log2 (qqoi((zz))) bits.

When the view of expectation is the same as the target belief, we recover the Kullback-
Leibler divergence (Kullback and Leibler, 1951)

Diajr(z)11 q(z) ] = l[r(z) [ r(z) ll q(z)] •
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The entropy of a distribution p(z) over discrete outcomes z e {z, i e [n]} is equivalent to
the expected information gained upon realization in the view of the realization

S[p(z)]
i=1

p(zi) log2  
P(zi)

Our theory allows us to relate and analyze changes in belief regarding our data, model
parameters, and model-class descriptions within a unified framework. This theory provides
a pathway to rigorously define memorization, Corollary 23, and prevent it by allowing us
to quantify the benefit of changes to the model structure; an increase in model complexity
that benefits multiple predictions is parsimonious, a worthwhile investment. In contrast, we
regard memorization as an increase in model information benefiting few training instances.
Further, when it becomes necessary to select discrete approximations of plausible model
distributions in the pursuit of computational feasibility, the domain of variational inference,
our theory allows us to analyze potential choices within the same formalism.

3. Complexity and Parsimony

We present our theoretical learning framework in three components. First, we analyze a
modest generalization of Kolmogorov's notion of program length to sequences of symbols
drawn from arbitrary alphabets that may be conditioned on previously realized symbols.
This simplifies our ability to assign complexity to arbitrary descriptions of prior belief. Sec-
ond, we use description length to derive a hyperprior that extends Solomonoff's formulation
of algorithmic probability to general inference architectures. Third, we cast learning as an
information minimization principle. We show how learning balances the two forms of in-
formation contained within models, due to both prior descriptions and inference, against
the information the models provide about our dataset. Not only does this formalism allow
us to analyze the utility of potential choices of restriction on prior belief, we also recover
variational inference optimization from the same principle when we desire to approximate
the posterior distribution.

3.1 Program Length and Kolmogorov Complexity

Kolmogorov's discussion of complexity begins with a countable set of objects A = {a} that
are indexed with binary sequences. For Kolmogorov, an object a is a program and the
length of the program f(a) is taken to be the number of binary digits in a corresponding
binary sequence 11.,(a). Given a domain of program inputs X and a codomain of outputs y,
a Turing complete interpreter cp(., .) accepts the program a and an input x E X and returns
an output y = (p(a, x)EY. The Kolmogorov complexity of an ordered pair (x,y)EXxÿ
is the length of the shortest program that is capable of reproducing the pair

lc(x,y) = 
aEB
min t(a) where B = {a y = go(a,x)} c A.

An ordered pair may be understood to enforce multiple function values or even the entire
mapping that defines a function. Further, Kolmogorov's framework easily captures the
complexity of a singleton y by taking an empty input x = O.
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Because Turing complete interpreters can simulate one another, the choice of interpreter
only affects complexity by a small constant offset. That said, the choice of interpreter is an
important problem that is also resolvable within our theory. Consequently, we revisit this
issue in Section 5.1.

The descriptions of interest to us, however, may not admit perfectly efficient binary
codes. For example, we may wish to represent the outcome of rolling of a balanced six-sided
die. Rather than solving for an optimal binary encoding (Huffman, 1952), it is convenient
to extend the notion of the length to finite sequences of symbols drawn from multiple
alphabets. For example, this extension supports efficient descriptions of feature domain
partitions within decision trees, discussed in Section 4.3.

Let a description be composed of sequence of symbols represented as //) = (801L1. When
we wish to draw attention to the role of a sequence as an encoding of an object, we write
71)(a). For our purposes, these objects do not necessarily need to be programs, but rather
are simply descriptions of belief, such as p(9 71.,) discussed earlier. For each i e [n], a
symbol sz is selected from an alphabet Ei. We emphasize that the each alphabet is allowed
to depend on previously realized symbols in the sequence so that the sequence of alphabets
is not fixed. To avoid cumbersome notation and excessive indexing variables, subsequences
expressed as (s)i are interpreted with the natural indexing (801=1. It is also useful to regard
(s)? as the empty subsequence. Likewise, the conditional dependence of each alphabet on
previous symbols is left implied so that we may simply write Ei rather than Ei[(s)171]. As
with Kolmogorov, the length of an object is derived from a sequence, f(a) = t(lb(a)).

If we treat each symbol in an encoding TP (a) as a random variable, we have

n

13(0(a)) = p(si I (s)i1 
2,=1

The entropy corresponding to each potential symbol, or the information we expect to gain
upon realization, is the maximum if and only if the probability of each symbol is uniform
over its alphabet, p(s, (s)1 1) 

= lEd. That is,

E (s)11) log2 (  1
p(si 

I WI-
1) ) log2(1Eil)-

siEE,

Our construction of generalized length in Definition 10 invokes the principle of maximum
entropy to remove restrictions on the kinds of codes we can consider, while recovering
Kolmogorov's length when all symbols are binary digits.

Definition 10 Generalized Length as Maximum Entropy Encoding. The general-
ized length of an arbitrary sequence is the upper bound on entropy of the corresponding
sequence of alphabets from which each symbol is drawn,

AO) = E log2(1 Ei 1) bits.

Corollary 18 shows that this length saturates the information lower bound in Shannon's
source coding theorem (Shannon, 1948). We provide all proofs in Appendix D. Further-
more, when we develop an efficient encoding for the kinds of objects we would like to use,
Corollary 19 allows us to naturally derive the probability of an object from the encoding.
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1 2-EOP(a))

Corollary 18 Generalized Length Lower Bound. Given a set of objects A and proba-
bilities p(a) for all a E A, the expected generalized length of an object is bound from below
by the entropy

1
Ewa) t(IP (a)) Ewa) log2 (p(a)) .

Corollary 19 Probability from Length. Given a set of objects A and a maximum en-
tropy encoding with p(a) = p(TP(a)) for all a E A, the generalized length satisfies

p(a) = 2-t(a).

We remark that by allowing symbol probabilities to deviate from the maximum entropy
limit, subjective prior beliefs could take the form of non-uniform probabilities within each
alphabet. In this view, just as generalized length is the limit of expected information
gained by realization from an encoding, the corresponding probability in Corollary 19 may
be regarded as a limit of subjective priors subject to a given encoding. Subjective prior
beliefs may also be taken into account through the choice of interpreter that we deem to be
valid.

3.2 Algorithmic Probability

During the same time period that Kolmogorov worked on mapping complexity, Solomonoff
developed a related theoretical framework for inductive inference and algorithmic probabil-
ity. He was specifically interested in programs capable of reproducing a binary sequence
y, i.e. the subset of programs 13 ={a I y = cp(a,0)} c A, and he derived the probabilistic
contribution of each program to plausible continuations of the sequence

P(aly) a 
0

a E B

a ,0 B

where, as with Kolmogorov's picture, length corresponds to a binary encoding subject to a
Turing complete interpreter. We view his result as Bayesian inference wherein Corollary 19
provides prior belief and a program has unit likelihood if it reproduces the sequence and
zero likelihood otherwise. It follows that the optimizing program that yields Kolmogorov's
complexity is simply the MAP estimator in the same picture.

In the information-theoretic perspective, the Kolmogorov complexity is the minimum
amount of information that is possible to gain by restricting belief to a discrete program
that is capable of reproducing a desired ordered pair. If, however, we allow distributions
of belief over many programs, so that r(a) > 0 for any a E 13, Corollary 20 shows that
Solomonoff's algorithmic probability is the minimizer of information gain, improving beyond
the Kolmogorov complexity.

Corollary 20 Information Optimality of Solomonoff Programs. If we measure
the change in belief from all possible programs according to Corollary 19 to distributions
r(a) that restrict belief to programs capable of reproducing an input-output pair (x, y), the
minimizer

r*(a) = argmin D Kijr(a) II p(a)] subject to r(a) =0 V a ,OB= {a I y = (p (a , x)} ,
r(a)
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is uniquely given by

2- t(1P (a))
r*(a) =  

10) 
V aEB where p(B) = E 2-4'/'(a)).

ag6

Solomonoff's picture is even more general than it first appears. There is no need to
confine our attention to binary programs that reproduce sequences. Instead, we may apply
the same framework to programs that generate coherent probabilities on any given dataset,
p(y 1 x, a). Since any algorithm we write is ultimately a program, this induces universal
prior belief over arbitrary algorithms. Then, Bayesian inference yields rational belief as a
posterior distribution over all such algorithms.

Yet, this approach is fundamentally difficult because it requires us to efficiently explore
the posterior over suitable programs via their discrete sequences. Since it is not always
possible to anticipate how a program will respond to given inputs in finite time, we arrive
at the problem of uncomputability. Moreover, even if we discover seemingly high poste-
rior probability programs, we cannot guarantee that our sample adequately represents the
posterior for the purpose of obtaining credible uncertainty in predictions. We discuss this
problem and a potential solution further in Section 5.2.

Rather than restricting our attention to programs, however, we would like analyze more
general inference architectures, which we easily accomplish by relaxing //) to be merely a
description of prior belief p(6 1 0). A description may still be a program, a series of
instructions, subject to a Turing complete interpreter, wherein we implicitly assign full
probability to the program that was written, but we can also consider interpreters that
merely require a few hyperparameters of a distribution to be specified, rather than a full
set of instructions. Then, standard inference drives the result from a single description,
rather than being forced to only account for posterior probability among separate programs.
Letting our data drive updates in belief from a short description is often substantially more
information-efficient than accounting for a full program that computes the equivalent result.
In doing so, however, we lose the ability of interpreters to simulate one another, the critical
property of Turing complete decoders that bounds variations in Kolmogorov complexity
resulting from the choice of interpreter. Yet, our framework still allows us to compute
the relative plausibility of interpreters within the same theory by identifying a common
language describing interpreters. We discuss the role of interpreters further in Section 5.1.

The parsimonious hyperprior over corresponding model classes from Corollary 19, p(0) =
2—kcb), is enough to complete the Bayesian framework with well-founded justification for
how we arrive at prior belief over arbitrary architectures. When we perform Bayesian in-
ference from a parsimonious prior or hyperprior, we call the result parsimonious rational
belief. To achieve computational feasiblity, however, we still need to investigate principled
restrictions of belief.

3.3 The Principle of Information Minimization

We develop this paradigm with the intention of providing a path to computationally feasi-
bility predictions with well-founded theoretical justification. As alluded to in Corollary 20,
we can cast learning as an information minimization problem over our total change in belief

48



CIS-LDRD PROJECT 218313, FINAL TECHNICAL REPORT

due to observing the training data D, selecting model classes and solving for distri-
butions over models 0 within each class. The principle of minimum information (Evans,
1969), based on the closely related principle of maximum entropy (Jaynes, 1957), intuitively
states that driving the information gained upon viewing the training data to be as low as
possible, we obtain better predictions. If a dataset contains a highly predictive pattern,
then once that pattern is known we can obtain strong predictions. As a consequence, the
information gained by observing new labels drops because the outcomes are easy to predict.
In contrast, the information gained by observing new labels will remain high when there is
no discernable pattern. We derive Theorem 2 from a rigorous formulation of the minimum
information principle using our work regarding information as a rational measure of change
in belief and show how this information objective can be manipulated into three terms that
provide insight into how we may understand and control complexity during learning as a
constrained optimization problem with the aim of improving computational feasibility.

Theorem 2 Parsimonious Inference Optimization. Let our training dataset be rep-
resented as an ordered pair (x, y). A model 0 computes coherent probabilities over potential
labels y from features x, or p(y x,0). The shorthand p(y I 9) leaves dependence on x
implied. A description of the model class is represented by a sequence and provides a
restriction on prior belief p(9 0). The parsimonious hyperprior over potential sequences
derives from generalized length as p(0) = . Our joint belief in potential sequences,
models, and labels is given by p(y, 9 , = p(y l 9)1)(9 0)13(0)• Viewing the labels

changes our belief in labels to r(y I M, a distribution assigning full probability to the
observed outcomes. Let our choice of belief over descriptions after viewing the data be rep-
resented as r(0). Likewise, within the model class 0, our chosen posterior approximation
over plausible models is written as r(O l 0), which may or may not be the exact posterior
P(9 I P, The total information gained is given by the Kullback-Leibler divergence

DKL[r(y I Mr(0 7P)r(0) 1113(y l 6)13(9 l 0)13(0)].

The minimizer of this objective is equivalent to the maximizer of the following parsimony
objective, expressed in three parts

W = Er(011*(0) l[r(ylM [ p(y l 0)11 P(Y 1 00)]
- Er(o) DKL[r(0 1 0)1113(0 1 0)]
- Er(o) 40) + S[r(0) ]

(prediction information)

— (inference information)

— (description information)

where 00 anchors predictive information gained regarding labels relative to any fixed baseline
model.

The first term, prediction information, is the expected information gained about training
data resulting from our belief in explanations. Both secondary terms, inference information
and description information, account for model complexity. Anchoring predictive informa-
tion to any fixed model p(y I Oo) allows us to coherently interpret label information as that
which is gained relative to 90. Any fixed predictive distribution suffices, including the prior
predictive

p ( y x) = f d'11) do WY 1 x, 0)13(0 1 0)13(0)-
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However, because the prior predictive may be difficult (or impossible) to compute, it is
much simpler to use a naive model 00. If we disregard the role of 1/) and only account for
prediction information and inference information from prior belief p(0), i.e. from the first
two terms of the parsimonious inference objective, then we recover a form of the Bayesian
Occam's Razor (MacKay, 1992),

l[r (y lp-) [ P(y) II P(y I Oo) ] = log2

= Ep(Olg) log2

(  13W)  )

13(y 1 0o))

(13(y l 0)  ) 
Dia,[13(0 1 ) 1113(0)] ,

13(y 1 00))

provided we use the exact posterior p(0 I'M for r(0 1 0). Otherwise, we recover a varia-
tional inference objective that is equivalent to maximizing the conventional Evidence Lower
Bound (ELBO). These constructions show a tradeoff between information due to inference
and information inference provides about our data, but they leave the provenance of p(0)
unaddressed.

Our description information terms show how our theory subsumes the Principle of Max-
imum Entropy. If we were to disregard the critical role that the parsimonious hyperprior
plays in controlling complexity, dropping expected length, we would be left with an opti-
mization objective that drives increases in entropy within our chosen distribution of de-
scriptions. Doing so, however, would mean that long and complicated descriptions would
be just as plausible as short and simple descriptions, as long as they are all equally capable
of explaining the data. By accounting for the complexity of descriptions, the parsimonious
inference objective seeks to drive up information gained about our dataset while simulta-
neously suppressing a complete notion of model complexity. Thus, we have a complete and
rigorous formulation of the intuition in Occam's Razor.

Critically, Corollaries 21 and 22 show that unconstrained optimization recovers, and is
therefore consistent with, Bayesian inference and parsimonious rational belief. As demon-
strated in Section 4.3, some prior beliefs facilitate exact inference and easily allow us to take

r(0 1 0) = P(0 1 "9', //,). Yet, unconstrained optimization of r(//,) would need to account
for unlimited varieties of programs and model classes. It is not clear how that would ever
be achievable. Instead, we can restrict the support of prior belief to a feasible exploration
manifold. We can also constrain the types of distributions we are willing to consider to
approximate the posterior. Theorem 2 provides a consistent framework to compare the
utility of such restrictions.

Corollary 21 Optimality of Inference. Given a single description 11, specifying prior
belief p(O 1 IP), the conditionally optimal distribution over models,

r*(0 l 0) = argmax Er(91,0 l[r(y1P)[P(Y 1 0) 11 P(y 1 00)] - DKL[r(0 1 IP) II 13(° 0)] 7
r(01//,)

is the posterior distribution r*(0 l 0) = P(O l - , I,b)•

Corollary 22 Optimality of Hyper Inference. Applying the optimizer from Corol-
lary 21 to the objective in Theorem 2 produces the second optimization problem

r*(0) = argmax Er(tp) 1og2 (  PCY I 'P)  )
PCY I 0 o) ) D Kdr(P) 1113(0)] •r(V,)
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The optimizer is the hyperposterior distribution, r*(0) = p(IP y).

As an information objective, we hold the given views of expectation to be valid because
they represent the actual distributions that will be used in practice to compute predictions.
We also observe that this construction of information, rather than the reversed divergence

D KL[P(y I 9 0)11 r(y,o9,0)], is necessary to avoid multiple infinities. For each description
//, with r(0) = 0, the reversed divergence is infinite. Moreover, we cannot avoid eliminating
an infinite number of such cases from consideration.

The parsimony objective allows us to understand and quantify memorization of training
data in Corollary 23 as a bound on the increase in model complexity that is required to
achieve increased agreement between predictions and our training data. This bound holds
even when we restrict the support of prior belief to a computationally feasible manifold.
Likewise, we may also restrict our attention to allowable variational approximations of the
posterior distribution and the bound still holds relative to the optimizer over feasible states
of belief. As demonstrated in our experiments, restricting our attention to classes of simple
descriptions provides a tractable means to discover models and control complexity.

Corollary 23 Quantifying Memorization. We can write the combined model com-
plexity terms as x[r(0, 0)] = DKL[r (I 9 77b) P (0 , 0)] and let r* (IP, 0) be the constrained
optimizer of the parsimony objective, restricted to whatever feasible set of distributions we
are willing to consider. Let the optimal predictions be written as

r*(y) = f d0 p(y I O)r* (0, 0).

Every feasible alternative r(tP, 0) must satisfy

x[r(0, 6)] — x[r*(0, 19)] Er(0,,o) l[r(y1M[P(Y 1 6) 11r*(y)]

showing that any increased agreement with training data can only be achieved by a still
greater increase in model complexity.

4. Implementation

The parsimony objective acts on opportunities for compression to reduce the complexity
of our belief over models through both the description of prior belief and the information
gained due to inference. While there are many ways to encode the concepts we need to
articulate prior belief, compression is only possible if the interpreter admits a range of
code lengths. Consequently, it is important to review some efficient encodings, capable of
expressing increasing degrees of specificity with longer codes, that are needed by our proto-
type implementations. Then we discuss our algorithms for polynomial regression followed
by decision trees.

4.1 Useful Encodings

Sometimes we need to identify one of multiple states without any principle that would al-
low us to break the symmetry among potential outcomes. For example, our decision tree
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algorithm requires a feature dimension to be specified from n possibilities. Laplace's prin-
ciple of insufficient reason indicates that our encoding should not break symmetry among
hypothetical permutations of the features. We can easily handle this case by representing
each state with a single symbol from an alphabet of n possibilities.

As the cardinality of the set increases, however, the information provided by realizing
a symbol increases logarithmically. Thus, this approach cannot hold when we have count-
ably infinite sets, such as with integers or rational numbers, or information would diverge.
Instead, we must break symmetry with either some notion of magnitude, some notion of
precision, or both.

NONNEGATIVE INTEGERS

Rissanen's universal prior over integers (Rissanen, 1983) can be derived by counting out-
comes over binary sequences of increasing length. Provided the sequence length is known,
any nonnegative integer z can be encoded with [log2(z + 1)] binary digits, as shown in
Table 2.1. Yet, the sequence length is also a nonnegative integer, thus a recursive encoding
of arbitrary nonnegative integers will have length approaching

log '`(z) =[log2(z + 1)] + [log2 (Llog2(z + 1)] + 1)]

+ Llog2 ( [log2 alog2(z + 1)] + 1)] + 1)] + • • • .

Table 2.2 shows how the first few Rissanen codes are formed. This encoding becomes very
efficient for large integers, but the number of length recursions must be set high enough. If
most of the integers we need are small, a unary encoding can also provide good compression.
Table 2.3 provides a comparison.

Sequence 0 1 00 01 10 11 000 001 • • •

Index 0 1 2 3 4 5 6 7 8 • • •

Table 2.1: Enumeration of binary sequences of increasing length.

iPo 0 1 1 1 1 1 1

zo 0 1 1 1 1 1 1

11)1 0 0 1 1 1 1

zl 0 1 1 2 2 2 2

'02 0 1 00 01 10 11

z2 0 1 2 3 4 5 6

Table 2.2: The first sequence /Po has an implied length of 1 bit. The represented outcome
zo indicates the length of 01 and so on. Rissanen, codes are formed by concate-
nation (00,11)1,...,11,2). With three length recursions, numbers 0 through 126
are compressed to use between 1 and 9 bits.
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z 0 1 2 3 4 5 6 7

Unary 0 10 110 1110 11110 111110 1111110 11111110

Rissanen1 0 10 11 n.r. n.r. n.r. n.r. n.r.

Rissanen2 0 100 101 1100 1101 1110 1111 n.r.

Rissanen3 0 1000 1001 10100 10101 10110 10111 1100000

Table 2.3: Nonnegative integers with unary codes and Rissanen codes. Integers that have
no representation with the given encoding are indicated by n.r. .

BINARY FRACTIONS

It will also be useful to represent a dense distribution of fractions on the open unit interval
q E (0,1), thus allowing us to approximate any real number to arbitrary precision by a
variety of potential transformations. Binary fractions, with a denominator that is an integer
power of 2 and a numerator that is odd, provide such a set with a convenient encoding.
These fractions can be written as

2i - 1
q = 

2z+1 
where i E [21

and z is a nonnegative integer. If we desire all fractions of a specific precision, corresponding
a fixed z, to have the same encoding length, then the numerator may be regarded as a single
symbol with 2' outcomes, providing z bits. We simply need to encode the precision z with
one of the integer encodings above. The unary encoding provides a simple and attractive
solution for this purpose because it does not require us to commit to a maximum precision.
Table 2.4 shows some examples. If we translate and scale q to represent an angle on the
real Riemann circle, the corresponding real numbers are r = tan(rr(q - 1/2)), but other
choices are also possible, such as inverting the normal cumulative distribution function
r = -V2 erf-1(2q - 1). We can also easily set the scale of outcomes by multiplying the result
by some a > 0.

q 1/2 1/4 3/4 1/8 3/8 5/8 7/8 1/16 • • •

code 0 100 101 11000 11001 11010 11011 1110000 • • •

Table 2.4: Leading binary fractions on the open unit interval with a unary encoding of z.

4.2 Polynomial Regression

Our regression prototype directly encodes a polynomial within a description and captures
uncertainty with a hyperposterior ensemble. Since any nth degree polynomial can be writ-
ten as a linear combination of n + 1 basis functions of ascending degree, we first need to
identify the degree of polynomial. A unary encoding serves this purpose without placing a
limit on the maximum polynomial degree and ensures that each additional degree increases
model complexity by the same amount. Coefficients are represented in the Chebyshev basis.
Since critical points equioscillate in this basis, the corresponding polynomial coefficients are
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interpretable as the length scales of oscillation. Because this basis is known a priori, we
expect all n + 1 coefficients to take nontrival values. For this reason, the encoding implicitly
reserves a code segment for each coefficient rather than attempting to use a sparse encod-
ing. Still, natural sparsity arises from binary fractional codes, representing angles on the
Riemann circle, after transforming them to the corresponding real numbers.

Algorithm 1 is a nonreversible sequence of reversible samples over all polynomial coeffi-
cients that we are willing to consider, which satisfies the requirement to obtain an ensemble
that asymptotically approaches that of the posterior. Our sampler proposes polynomials
up to 20th degree by constructing the set of all perturbations of both the leading nonzero
coefficient, which determines the polynomial degree, and other coefficients in a randomly
permuted order. All other basis coefficients are held fixed in each proposal set. For each
coefficient, the sampler considers all binary fractions with z < 4. Since the polynomial rep-
resentation automatically reserves symbols to describe coefficients up to the last nonzero
coefficient, the posterior is most sensitive to perturbations of the last nonzero coefficient.
This technique allows us to periodically sample all joint perturbations of the leading coef-
ficient and any other coefficient. Figure 2.3 shows results.

Algorithm 1 Parsimonious Polynomial Regression Gibb's Sampler
Require: Vectors x and y provide observed abscissas and ordinates, respectively. The length scale

of y is set so that the known intrinsic stochasticity of the process is a = 1.

Ensure: lif = {0} is an ensemble of hyperposterior polynomial descriptions /Pi p(ip X, y).

1: function PARSIMONIOUSREGRESSION(x, y)

2: Initialize to the zero polynomial

3: for each sample iteration i = 1, 2, ... do

4: Determine randomly permuted order of polynomial coefficients.

5: for each permuted basis coefficient j = 1, 2, ... , b. do

6: Identify the leading nonzero coefficient k in //y.

7: Form tensor product of all representable perturbations over both j and k.

8: Update //, by sampling the conditional posterior and add it to the ensemble.

9: end for

10: end for

11: end function

4.3 Decision Trees

Decision trees learn to predict discrete classifications, labels, as a sequence of binary de-
cisions. Each case to be predicted is represented by a feature vector (f1,f2,...,fk) and
each feature must be comparable to a learned threshold, thus facilitating a binary decision.

The decision process begins within the root node, representing the full domain of poten-
tial input features. Each binary branching decision must identify both a feature category,
or mode, and the comparison threshold. We classify the outcomes of the comparsion as
indicating membership in either left or right child nodes. The sequence of binary deci-
sions effectively filters the case through a series of increasingly restrictive partitions, each
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Figure 2.3: Polynomial regression experiments comparing leave-one-out cross validation,
the hyper MAP, and the hyper posterior aggregate. All data are drawn from
the same ground truth. The first row shows how the hyper MAP is much simpler
than the leave-one-out aggregate. The hyper posterior aggregate demonstrates
extrapolation risk as increasing uncertainty as we move away from the data.
Increasing the number of observations provides modest increases in complexity
and reduces uncertainty in the aggregate.

of which ideally provides some simplification to the classification problem. This filtration
process terminates at a leaf node, which then issues label probabilities.

Decision trees are grown from training data in a recursive process, beginning at the root
node. We consider the set of training cases that are members of a given node and we must
either construct a branch decision or compute final leaf probabilities. The conventional
procedure is to evaluate every potential splitting outcome with some utility function and
choose the optimizer. While there are many varieties of utility functions used in practice,
a standard information-theoretic approach maximizes the reduction in entropy due to the
splitting. Given d label outcomes, let ci represent the count of cases with a specific label,
indexed by i E [4, within the domain partition corresponding to a given node. If the given
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node were a leaf node, the conventional frequentist approach to predicting label probabilities
uses the sample mean

d

=
c

Ci 
where c = E ci.

Likewise, we denote the corresponding variables regarding hypothetical left and right child

nodes, resulting from a potential splitting, using superscripts such as c,,L) and e) , respec-
tively. The reduction in entropy corresponding to a potential splitting, weighted by the
fraction of cases that appear within the respective child feature domains, is

C(L) d (L) C(R) d R) () 
) — E log2 (AS = — E log2 (iL L)) E log2(tti

R
tti).

c i=i i=i

The recursion typically continues until there is no reduction in entropy, i.e. each leaf node
contains only a single label.

Bootstrap aggregation constructs a forest of decision trees by resampling the dataset.
This consists of forming a new dataset, the same size as the original, by sampling the orginal
dataset uniformly with replacement. Predictions are aggregated among trees uniformly, by
taking the average of predictions from each decision tree.

Similarly, our approach encodes prior belief as a sequence of splitting decisions that
define the partition of feature coordinates. Within any node, we can translate and scale
features in a given dimension to the unit interval [0, 1]. Since it is never useful to split at
either 0 or 1, we can represent the split location using a binary fraction on the open unit
interval.

Within a leaf node, let 0 represent the vector of label probabilities over all potential
outcomes. Before any data are observed, the leaf node has a flat Dirichlet distribution over
the simplex of all potential models. We can perform exact inference using label counts ci
to recover Laplace's rule of succession

ci +1

EP(") [ei] = c + d •

Because we are performing exact inference, we could skip the following information
analysis and compute the log likelihood of label counts directly

log2 (pW 1p)) = log2 (  r(d)  + log2(r(ci + 1)).
i=1

We can use this opportunity, however, to demonstrate how the information analysis would
proceed if a variational approximation were used. The amount of information due to change
in model belief is

[ P(0 I II P(0) ]

log(2) g r(d
  (10 (r(c+

) 
Cr (c + d) +
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where r(x) = dx log(I'(x)) is the digamma function. The prediction information gained
about labels from a uniform prior is

E13(01M ]lr(y1M[P(Y 1 0)11p(y 1 00)] = log(2) 
c log(d) — cF(c Ecir(ci + 1) .

i=1

Subtracting inference information from predictive information recovers the log likelihood
up to an additive constant. The variational versions would simply replace p(O with

any restricted distribution r(0).
Our parsimonious decision trees are formed by calling Algorithm 2 on the full training

dataset to form the root node. Internal child nodes are constructed recursively. Aggregating
predictions over an ensemble of many trees approximates the hyperposterior. By noting both
the proposal probability and the posterior probability, up to an unknown normalization
constant, we use importance weighting to approximate the posterior integral. For a tree t
with description /Pt, the weights that compose a convex combination of predictions are

P('IPt 
wt cx so that

s(/Pt)
>_:wt = 1

where s(Ot) is the composite probability of the sequence of samples that generated Ipt.

Algorithm 2 Parsimonious Node Construction
Require: X is a matrix of feature coordinates and y is the corresponding vector of labels for data

in a partition of the feature domain.

Ensure: //, and p(19 ,C,y,/P) sample annealed hyperposterior.

1: function PARSIMONYNODE(X, y)

2: for each enumerated node outcome i = 1, 2, ... do

3: Construct leaf description or splitting

4: Approximate likelihood p(y l X, /Pi), assuming children will be leaf nodes.

5: Compute annealed posterior p(y X,Oi)« p(0i) (unnormalized).

6: end for

7: Sample a description /Pi from annealed posterior approximations.

8: Record sample probability.

9: if /Pi is a branch node then

10: Partition data into (Xleft, Yleft) and (Xright,Yright)•

11: Recursively construct left child: ParsimonyNode(Xleft, Yleft)
12: Recursively construct right child: ParsimonyNode(Xright, Yright)
13: Concatenate descriptions and posteriors from each partition.

14: else

15: Infer label posterior p(O y) from a flat prior within this feature partition.

16: end if

17: end function
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Our first set of decision tree experiments, Figure 2.4, examines learning from a generative
process that cleanly partitions the data into regions containing a single label. Row one
compares models that learn from a single sample. Rows two and three learn from 25
and 100 samples, respectively. The leading two columns compare a conventional decision
tree with a typical parsimonious decision tree. The last two columns compare bootstrap
aggregation with our hyperposterior aggregate.

Entropy Reduction Tree Parsimonious Inference Tree Entropy Reduction Forest Parsimonious Inference Forest

0.8

0.6

OA

0.2

0
Test Info = 0.959 - 0.041 DO Test Info = 0.127 Test Info = 0.959 - 0.041 oo Test Info = 0.260

0.8

as

0.4

0.2

0
Test Info = 0.959 - 0.041 oo Test Info = 0.877 Test Info = 0.959 - 0.041 oo Test Info = 0.866

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.8 0.8 1 0 0.2 0.4 0.8 0.8
Test Info = 1.000 Test Info = 0.977 Test Info = 0.996 Test Info = 0.969

Figure 2.4: This first set of decision tree experiments uses a highly-skewed generative pro-
cess with well-separated label domains. Conventional decision trees and random
forests, columns 1 and 3, obtain highly confident predictions despite having few
data, whereas our parsimonious trees and hyperposterior aggregates, columns 2
and 4, only gradually reduce uncertainty. Our aggregates demonstrate extrap-
olation uncertainty as the prediction domain departs from the data.

This is a highly skewed generative process. Even with 25 samples, the second row still
has no realizations of a blue label. Yet, the parsimonious aggregate predictions in both rows
1 and 2 naturally increase uncertainty as the prediction domain deviates from the training
data. In stark contrast, the conventional approaches generate completely certain predictions
in regions that lack any data. Blue labels finally appear in the third row, showing how the
parsimonious forest reacts to skewed data. This particular generative process is incapable
of generating data in the off-diagonal regions, but without any way of knowing that, we
should be highly skeptical of predictions bearing certainty in the absense of evidence.
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Figure 2.5: This second set of decision tree experiments demonstrates a generative process
with smooth mixing of labels. Conventional trees increase complexity rapidly
with increasing data. In contrast, parsimonious trees remain simple. Conven-
tional forests exhibit confident predictive artifacts that hew to few datapoints,
whereas the parsimonious forests only gain confidence with sufficient evidence.

The second set of experiments, Figure 2.5, examines a generative process that mixes la-
bels. There is nonzero probability of generating a point of either label at any location, but
red labels are more likely to appear on the left and blue on the right. We first observe that
typical decision trees are more complicated than their parsimonious counterparts, as ex-
pected. Moreover, the complexity increases severely as the number of training observations
increases. In contrast, parsimonious decision trees increase complexity more gradually. We
also observe how the typical approach generates confident artifacts in the predictive struc-
ture that hew to few data points. In contrast, the parsimonious trees and parsimonious
forests only gradually reduce uncertainty.

5. Discussion

Because our formulation of complexity accounts for information within arbitrary descrip-
tions, it already contains the functionality needed to address a wide variety of challenges.
First, we examine how to include other sources of prior belief and prior belief in interpreters
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within the same framework. Second, we discuss how changing the scope of descriptions to
account for symbols generated and communicated by elementary operations during the
evaluation of predictions provides a mechanism to prefer fast algorithms. Third, we explore
how other Bayesian hyperpriors relate to description complexity. Fourth, we compare the
non-Bayesian treatment of probability in Rissanen's Minimum Description Length to our
approach. Finally, we offer our concluding remarks.

5.1 Comparing and Inferring Interpreters

While the difficulty of expressing prior belief for abstract complex models motivates this
research, when we have access to additional information that could constrain prior beliefs,
that information may be very impactful. Therefore, we should also be able to integrate these
prior beliefs within the general complexity framework. Let our complexity-based prior belief
be denoted as p(a C) = 2—gtP(a)). If, additionally, we have other prior beliefs about the
model, p(a B), we can form the combined prior-beliefs as p(a B, C). For example, B
may express physical laws or previously observed data. One approach would be to use an
interpreter that implicity embeds B within viable encodings so that p(a B,C) = 2—t(11'B(a)).
Alternatively, if we assume that belief derived from B is conditionally independent of our
complexity-based belief C, then we have

p(B l a, C)p(a C) 

13(B I C)

p(a I B)13(B)13(a C)

13(a)13(B I C)

Here we hold that p(a) must be uniform over all a since B and C have been constructed
to capture all our beliefs. Thus, the composite prior is easily expressed up to a constant of
proportionality.

We can also compare choices of interpreter within this framework by identifying a com-
mon language in which each interpreter is defined. When different interpreters are used,
£(0(a)) will differ for a fixed state of belief and thus have a different prior probability. To
compare different interpreters, or infer the interpreter from data, we must construct the
prior p(co). Fortunately, we already have the machinery to do this since co is just a program
taking 7/, as input and equating it to a state of belief over explanatory models. Thus we
define p(co) = 2—gV)*(`P)), where 7/,*(co) is constructed relative to a common language co*. If
potential interpreters are enumerated as co, for i E [n] and the corresponding descriptions
are //,, (a), then resulting objective is equivalent to augmenting our model descriptions with
a description of the interpreter to obtain composite description lengths £(7P2 (a)) -he(V)*(coi)).

The benefit of this view is it allows us to see how short and simple interpreters are
generally more plausible. Nefarious interpreters, such as the third basis in Figure 2.2, effec-
tively transfer complexity from an otherwise long encoding, subject to a simple interpreter,
into a short encoding, subject to a long interpreter. Yet, when we shift the derivation of
plausibility to a common language, the excessive complexity becomes visible. We conclude
that an objectivist view of credible interpreters, in the absense of additional justification
for prior belief, should be short and simple.

This approach is a formulation of grammar discovery, which is a core aspect of learning.
If we have several inference problems that we believe should be well-explained within a

p(a B,C) =
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common language, then we can infer an efficient interpreter from these datasets. An inter-
preter that represents common functions between the different learning problems efficiently
will be more likely than one that solves a single problem well by hiding complex functions
within shortcut codes.

5.2 The Imperative of Utility

It is simply not viable to have a theory that requires infinite computational power to obtain
useful predictions. Practical models must be discoverable and predictions must be com-
putable. The Kolmogorov complexity is well-known to be uncomputable, thus raising a
natural concern that generalizing prior belief to arbitrary descriptions only exacerbates the
problem. Yet, the primary purpose of Theorem 2 is to show how information theory allows
us to restrict our attention to feasible manifolds of belief, while simultaneously allowing
us to compare outcomes from different choices of restriction. Because long descriptions
are already exponentially suppressed à priori, the information we generate by refusing to
consider long descriptions becomes small as the descriptions we drop become long.

Even so, it is instructive to examine uncomputability more careful as it motivates future
directions. Suppose we had an oracle Q that would determine whether or not a program a
is capable of reproducing a mapping (x, y) in a finite amount of time

Q(w, a, x, y) = 
{true y = go(a, x)

false otherwise.

This is a stronger criterion than the well-known halting problem. The existance of such an
oracle would allow us to determine the Kolmogorov complexity by brute force, generating
and checking programs in order of increasing length until the oracle returns true. Further,
it would be a trivial matter to write another brute force subroutine to identify the first
sequence y with Kolmogorov complexity above an arbitrarily high limit 1C,,, (0, y) > T. By
setting T to exceed the combined lengths of the oracle and brute force subroutines, we would
have succeded in writing a program that contradicts the Kolmogorov complexity.

The core problem with this thought experiment is the arbitrarily large amount of mem-
ory and elementary operations that would be required to run the program. Disregarding the
halting problem, the brute force Kolmogorov complexity function alone needs to generate
full programs in memory, but it only incurs the cost of programming a counter. We may
conclude that problems associated with computability will be alleviated within this theory
if we simply include memory operations, every symbol generated or transmitted between
slow and fast levels of memory, in the definition of program execution length. This defini-
tion would articulate prior belief that prefers efficient algorithms, allowing us to restrict our
attention to models that can be evaluated within a limited computational budget. Lempel
and Ziv (1976) present a related framework to measure sequence production complexity
as the minimum number of steps required to build a sequence from a production process
to construct a heirarchy of subsequences. Speidel (2008) provides additional discussion of
recent work by Titchener (1998).

In this view, prior belief becomes an expression for the degree of utility considering
a model would contribute to obtaining feasible predictions. It is not useful to consider
models that, in order to provide a substantial contribution to predictions, would require

61



J. A. DUERSCH AND T. A. CATANACH

more evidence than we anticipate having. Likewise, it is not useful to consider models that
would require either more computational power, or time to evaluate, than is practical to
generate useable predictions. This simple modification provides a principled foundation to
prefer algorithms that may be more difficult to program, but also achieve faster results. For
example, randomized algorithms such as Randomized QR with Column Pivoting (RQRCP)
(Duersch and Gu, 2020) would gain plausibility by having reduced slow communication
bottlenecks, despite incurring a controllable increase in the uncertainty of conditions that
are used to make decisions. In order for machine learning to be capable of providing
discoverable, computationally feasible, and useful models, we cannot avoid limiting our
attention accordingly.

5.3 Relationship to other Bayesian methods

Our hyperprior formulation provides a principled foundation to derive results that are sim-
ilar in function to several well-known methods for specific Bayesian inference problems.
Notable comparisons include sparsity inducing priors, like Automatic Relevance Determi-
nation, for regression problems with continuous coefficients. The ARD prior is a hyperprior
over parameters which is intended to identify critical parameters and drive remaining pa-
rameters towards zero. The ARD prior is implemented as:

p(e) = Ar(e l 0, Cr)

where we need to specify p(cr). In the original work that introduced the ARD prior,
p(cr) was taken to be a gamma distribution in the precision T = (7-2 with a small shape
parameter. This closely corresponds to the improper Jeffrey's prior p(cr) oc a, often used
in practice for unknown scalar covariances. If we partition the potential values of cr into
intervals 0 < a < b < oo, where a and b are any positive real numbers, the cumulative
probability diverges for values less than a and values greater than b, dominating over the
finite contribution within the interval [a, b]. It follows that sampling the Jeffrey's prior
would yield outcomes either very close to zero or diverging towards infinity. Within this
formulation, if 9 has little relevance to the likelihood, then probability is maximized when
0 and a approach zero. Otherwise, a large enough a will be found to allow 0 to take
moderate nonzero values with the Jeffrey's prior introducing only a slight penalty as cr
increases. Therefore, it can be interpreted as making a binary choice between very large
or very small Q. More generally, a gamma distribution allows, indeed requires, the relative
probably of these two outcomes to be tuned.

If we uniformly discretize the possible values of a as ai = icr1 and assign them prob-
abilities according to p(cri) oc k, we can equate this prior with the complexity prior
p(ai) = 2-4̀7z) to obtain

.e(ai) = log2(ai) + c = log2(i) log2(cri) + c = log2(i) +

where the constant c corresponds to the normalization. The complexity of cri increases
logarithmically. Thus, the Jeffrey's prior is the continuous limit of the number of bits
required to express an integer number of fixed increments in cr, i.e. uniformly within the
exponential term.
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While sparsity is a useful notion of complexity for many problems, it is not universal.
Sparsity either regards a continuous parameter as either complex (nonzero) or not complex
(zero). While sparsity-inducing priors, like ARD, can compel continuous parameters to zero
if they do not provide enough benefit to predictions, they have no affordance to suppress
other forms of complexity. For example, there is no compelling notion of sparsity within the
construction of decision trees. Moreover, when we need to encode constants within prior
descriptions, our theory supports consistent distinctions in complexity among potential
constants.

5.4 Relationship to Minimum Description Length

Rissanen's Minimum Description Length (MDL) shares many similarities with our theory,
but it is not motivated by the philosophical foundations of reason and learning that drive
the Bayesian perspective. Rather, MDL views inference as finding an optimal compressed
representation of the data and probability as a way of developing efficient codes. MDL rep-
resentations contain both the model used to construct an efficient code and the compressed
form of the data that follows. The length of the data representation f(D) is the sum of the
number of bits needed to describe the model £ (a) and the number of bits needed to de-
scribe the residual data f(D l a). In its simplest form, the inference problem for identifying
a hypothesis or program a E A is

f(D) = TA f(a) + f(D I a),

requiring a specific discretization and encoding for a hypothesis space A. To address the
arbitrary task of designing the encoding of a hypothesis space, MDL proposes using minimax
optimal universal codes that minimize the worst-case regret of using that encoder to encode
arbitrary data. This simple form of MDL can also be refined to compare and optimize
hypothesis classes instead of individual hypotheses, which corresponds to the Bayesian
model-class selection problem.

While under certain conditions there is an equivalence between MDL and a Bayesian
formulation this is not true under all circumstances. Particular similarity is observed with
objective Bayesian formulations such as Jeffreys' priors. The key difference is the necessity
of the prior from the Bayesian perspective. A prior represents our beliefs and it is updated
as new data becomes available. Within MDL the encoding of the hypothesis may be thought
of as encoding a prior, but this encoding is not defined with respect to any prior beliefs
wither subjective or otherwise. Within the minimax framework, it is a property of the
model class and the possible data. The Minimum Message Length (MML) framework is
a similar Bayesian framework to MDL, where the encoding can be specified to capture
prior belief. We hold with the Bayesian view that prior information is a critical aspect of
inference. Our theory provides a mechanism for integrating prior belief but also optimizing
the prior representation. This means that simple priors that are consistent with our beliefs
are preferred.

Further, we highlight the difference in the representation and optimization that our
theory provides compared to MDL and MML. Optimization is fundamentally inconsistent
with Bayesian probability theory. Inference updates belief from a state of prior belief to
posterior belief, it does explicitly provide the optimal model but instead expresses beliefs
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about possible models. This is why in our theory we distinguish rational choice from
rational belief. We update rational beliefs using the full formalism of Bayesian inference but
recognize that ultimately a choice must be made to simplify this process so that problems
can be solved on machines with finite computational resources. Rational choices require
a utility function and are informed by our rational belief. Building on Bernardo's work
(Bernardo, 1979), Corollary 21, Corollary 22, Corollary 10, and Corollary 11 show the
variety of circumstances in which information serves to guide well-posed optimization of
belief. The rational choice we make becomes the representation we use to approximate
posterior belief for future predictions. A rational choice could be finding a single model that
best captures the posterior or the hyperparameters, as in MDL and MML. However, other
representations are likely to have greater utility and provide better prediction uncertainty
quantification.

5.5 Summary and Conclusion

We proposed Parismonious Inference, a complete theory of learning based on an information-
theoretic formulation of Bayesian inference that quantifies and suppresses a general notion
of explanatory complexity. We showed how our information-theoretic objective allows us to
understand the relationship between model complexity and increased agreement between
corresponding predictions and data labels.

Within the Bayesian perspective, once the prior, the likelihood, and the data are spec-
ified, the posterior inexorably follows. Yet, when we consider the infinit varieties of algo-
rithms that may be developed in machine learning, we find that any universal prior that
reserves some degree of plausibility for an arbitrary algorithm becomes uncomputable in
practice. Our framework allows us to resolve the imperative of utility by allowing us to
quantify the value of a choice, a restricted manifold of belief in which we only consider com-
putationally feasible models to obtain well-justified predictions within a practical computa-
tional budget. By accounting for model complexity from first principles, we may evaluate
the utility of various restrictions of prior belief, as well as feasible posterior approximations,
within a single framework.

A central aspect of our framework is the distinction between the intrinsic meaning of
a potential state of belief from the description needed to distinguish that state from other
possibilities. Encoding complexity provides a critical missing component that is needed to
measure the complexity of arbitrary inference architectures and naturally associate com-
plexity with plausibility. Our formulation of generalized length allows us to assign length
to a wide variety of codes, beyond binary codes that are typically associated with pro-
gram length. We examined some elementary codes to express integers and fractions on the
open interval, which can be mapped to a broad class of numbers that may prove useful to
represent prior beliefs.

We showed how even feasibility-constrained optimizers satisfy quantifiable memoriza-
tion bounds in comparison to models that may produce better adherence to training data,
but at the cost of increased description length, increased inference information, or infor-
mation generated by an approximating distribution proposed to generate predictions. Our
experimental results show how our hyperposterior ensembles avoid developing artifacts that
artificially hew to seen data within the predictive structure. Moreover, accounting for multi-
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ple explanations by hyperposterior sampling allows us to compute extrapolation uncertainty
from first principels as the input domain deviates from that of past observations. These
experimental results demonstrate how our theory allows us to obtain predictions from ex-
tremely small datasets without cross-validation.

Our theory solves critical challenges in understanding how we may efficiently learn from
data, obtain well-grounded justification for uncertainty in predictions, and anticipate ex-
trapolation regimes where additional data would prove most beneficial, thus opening a new
domain of predictive capabilities. Further, this work provides a principled foundation to
address the challenge of feasible learning and model discovery, from limited data, in the
face of high dimensionality.
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Chapter 3

Randomized Projection for
Rank-Revealing Factorizations

Rank-revealing matrix decompositions provide an essential tool in spectral analysis of matri-
ces, including the Singular Value Decomposition (SVD) and related low-rank approximation
techniques. QR with Column Pivoting (QRCP) is usually suitable for these purposes, but
it can be much slower than the unpivoted QR algorithm. For large matrices, the difference
in performance is due to increased communication between the processor and slow memory,
which QRCP needs in order to choose pivots during decomposition. Our main algorithm,
Randomized QR with Column Pivoting (RQRCP), uses randomized projection to make
pivot decisions from a much smaller sample matrix, which we can construct to reside in
a faster level of memory than the original matrix. This technique may be understood as
trading vastly reduced communication for a controlled increase in uncertainty during the de-
cision process. For rank-revealing purposes, the selection mechanism in RQRCP produces
results that are the same quality as the standard algorithm, but with performance near
that of unpivoted QR (often an order of magnitude faster for large matrices). We also pro-
pose two formulas that facilitate further performance improvements. The first efficiently
updates sample matrices to avoid computing new randomized projections. The second
avoids large trailing updates during the decomposition in truncated low-rank approxima-
tions. Our truncated version of RQRCP also provides a key initial step in our truncated
SVD approximation, TUXV. These advances open up a new performance domain for large
matrix factorizations that will support efficient problem-solving techniques for challenging
applications in science, engineering, and data analysis.

1. Introduction

QR with Column Pivoting (QRCP) is a fundamental kernel in numerical linear algebra
that broadly supports scientific analysis. As a rank-revealing matrix factorization, QRCP
provides the first step in efficient implementations of spectral methods such as the eigen-
value decomposition and Principal Component Analysis (PCA), also called the Singular
Value Decomposition (SVD) (Higham, 2000). QRCP also plays a key role in least-squares
approximation (Chan and Hansen, 1992) and stable basis extraction (Stathopoulos and
Wu, 2002; Hetmaniuk and Lehoucq, 2006; Duersch et al., 2018) for other important algo-
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rithms. These methods allow us to form compressed representations of linear operators
by truncation while retaining dominant features that facilitate analytic capabilities that
would otherwise be impractical for large matrices. In the field of data science, PCA and
its generalizations (Vidal et al., 2005) support unsupervised machine learning techniques
to extract salient features in two-dimensional numerical arrays. Randomized methods have
been extended further to support analysis of multidimensional data using tensor decompo-
sitions (Battaglino et al., 2018; Hong et al., 2020).

QRCP builds on the QR decomposition, which expresses a matrix A as the product of
an orthogonal matrix Q and a right-triangular factor R as A = QR. Unlike the LU decom-
position, or Gaussian elimination, QR always exists and may be stably computed regardless
of the conditioning of A. Furthermore, finely tuned library implementations use a blocked
algorithm that operates with the communication efficiency of matrix-matrix multiply, or
level-3 kernels in the Basic Linear Algebra Subprograms (BLAS-3). The standard QR de-
composition is not, however, suitable for rank detection or low-rank approximations. These
applications require a column permutation scheme to process more representative columns
of A earlier in the decomposition (Chan, 1987; Bischof and Hansen, 1991). A permutation
matrix P encodes these pivoting decisions so that the decomposition becomes AP = QR.

The basic QRCP approach selects an unfactorized column with a maximal 2-norm of
components that do not reside within the span of previously factorized columns. This
heuristic is a greedy algorithm attempting to maximize the sequence of partial determinants
in R, which is typically adequate for rank detection with a few notable rare exceptions, such
as the Kahan matrix (Golub and Van Loan, 2013). The critical drawback, however, is that
these computations suffer a substantial increase in communication between slow (large) and
fast (small) levels of memory, especially for large matrices. Each pivot decision requires at
least one matrix-vector multiply in series, thus limiting overall efficiency to that of level-2
kernels in the Basic Linear Algebra Subprograms (BLAS-2).

Our primary motivation to examine efficient rank-revealing algorithms is that, for large
matrices or algorithms that require frequent use of QRCP, the communication bottleneck
becomes prohibitively expensive and impedes utilization of this important set of analytic
tools.

1.1 Our Contributions

Randomized projection allows us to reduce communication complexity at the cost of in-
creasing uncertainty regarding latent 2-norms (and inner products) among columns in a
large matrix. Randomized QR with Column Pivoting (RQRCP), shown in algorithm 6,
harnesses this trade-off to obtain full blocks of pivot decisions that can be applied to A
all at once. We do this by drawing a Gaussian Independent Identically Distributed (GIID)
matrix, 11, and compressing columns of A into a sample matrix, B = nA. The sample
matrix retains enough information about the original matrix for us to obtain a full block of
pivoting decisions, while requiring far less communication to do so. Because we construct
the sample to contain far fewer rows than the original, it resides in a faster level of memory
than the full matrix. Having a full block of pivots allows us to update the matrix that
becomes R with blocked BLAS-3 operations in the same fashion as unpivoted QR, thus
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entirely eliminating the communication bottleneck of BLAS-2 operations encountered in
the standard algorithm.

We show how rank-revealing decompositions are well suited to this approach because
each pivot decision must merely avoid selecting a column containing a relatively small
component orthogonal to the span of previous pivots. As many columns are often suitable
for this purpose, the use of precise 2-norm computations in standard QRCP is unnecessarily.
Our approach has been adopted in subsequent work in computing matrix factorization-
based low-rank approximations on sequential and parallel platforms (Erichson et al., 2019;
Martinsson et al., 2019, 2017; Martinsson and Tropp, 2020; Xiao et al., 2017).

We also propose a sample update formula that reduces the number of BLAS-3 opera-
tions required to process a full matrix. Given a block of pivots, updating R with blocked
Householder reflections requires two matrix-matrix multiplications. Without a formula to
update the sample, we would need a new sample matrix after each block and one additional
matrix-matrix multiply. Instead, we utilize computations that are needed to update R to
also update B into a suitable sample for the next decision block.

RQRCP naturally extends to a truncated formulation, described in algorithm 7, that
further reduces communication by avoiding trailing updates. For low-rank matrix approx-
imations, this algorithm requires only one block matrix-matrix multiply per update. We
accomplish this by storing reflector information in the compact WY notation (Puglisi, 1992),
which allows us to construct each block of R without intermediate updates. Moreover, this
algorithm serves as a key initial step in our approximation of the truncated SVD described
in algorithm 8, which is a variant of Stewart's QLP algorithm (Stewart, 1999).

Section 2 will discuss the nature of the communication bottleneck and related approaches
to address it. Section 3 will analyze sample-based pivoting as the maximization of expected
utility and derive our main result, RQRCP. Section 4 will derive and explain our truncated
algorithms for low-rank approximation. Section 5 will provide numerical experiments that
explore the performance and decomposition quality of these approaches. Section 6 will offer
concluding remarks.

2. Related Work

In order to understand how our algorithms improve performance, we first review the reasons
why additional communication could not be avoided with previous approaches. Given a
large matrix A E Rm", the QRCP decomposition can be computed using algorithm 3.
This algorithm is composed of a sequence of Householder reflections. To review, a reflector
y is formed from a particular column, say a, by subtracting the desired reflection (which
must have the same 2-norm) from the current form, such as y = a — (—sign(a011all2 ei)•
The negative sign of the leading element of a is used to ensure that the reflector satisfies

11Y112 > Ilaii2 for numerical stability. The corresponding reflection coefficient is T = 2/yTy,
which yields the Householder reflection H = I — yryT.

In the algorithms that follow, an intermediate state of an array or operator at the end
of iteration j is denoted by superscript (j) to emphasize when updates overwrite a previous
state. In contrast, an element computed on iteration j that remains accessible in some form
is denoted with a simple subscript.
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Algorithm 3 QRCP with BLAS-2 Householder reflections.

Require:
A is m x n.

Ensure:
Q is an m x m orthogonal matrix.
R is an m x n right triangular matrix, magnitude of diagonals nonincreasing.
P is an n x n permutation matrix such that AP = QR.

1: function [Q, R, P](QRCP)A
2: Compute initial column 2-norms which become trailing column norms.
3: for j = 1,2, . . . , k, where k = min(m,n) do
4: Find index pi of the column with maximum trailing 2-norm.
5: Swap columns j and pi with permutation Pi.
6: Form Householder reflection Hi = I - yiTjyT from new column.

7: Apply reflection AO) = Hi (AO-1)Pi).
8: Update trailing column norms by removing the contribution of row j.
9: end for
10: Q = H1H2 . . . Hk is the product of all reflections.
11: R= A(k).
12: P = P1P2 . . . Pk is the aggregate column permutation.
13: end function

At the end of iteration j we can represent the matrix A as a partial factorization
using the permutation P(3) = Pi...Pi, the composition of column swaps so far, and the
analogous composition of Householder reflections, Q(3) = H1. . . H3, to obtain

Ap(3) - [ R(131) R(132)
[ 0 A(3) •

The leading j - 1 entries of the vector yi in line 6 of Algorithm 3 are O. The upper-left

submatrix E Rixj is right-triangular. Likewise, R(132) E xi completes the leading j

rows of R. It only remains to process the trailing matrix A(3) . On the next iteration, the 2-

norm of the selected column within A(i) becomes the magnitude of the next diagonal element
+i)in Rii . We may understand QRCP as a greedy procedure intended to maximize the

magnitude of the determinant of RV1+1). The new determinant magnitude is I det R 31+1) I =

I det R(132 I _AU) (:, pi+i) 
2
, so this scheme has selected the pivot that multiplies the previous

determinant by the largest factor. Note that true determinant maximization would require
exchanging prior columns and adjusting the factorization accordingly (Gu and Eisenstat,
1996).

Early implementations of QR also relied on BLAS-2 kernels and, thus, gave similar per-
formance results until reflector blocking was employed in QR (Bischof and Van Loan, 1987;
Schreiber and Van Loan, 1989). To process b columns of an m x n matrix with BLAS-2 ker-
nels, O(bmn) elements must pass from slow to fast memory. Blocking improves performance
by reducing communication between these layers of memory using matrix-matrix multiply.
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Instead of updating the entire matrix with each Householder reflection, transformations are
collected into a matrix representation that can be applied using two BLAS-3 matrix-matrix
multiplies, which reduces communication complexity to 0(bmnIM312), where M is the size
of fast memory.

In order to produce a correct pivot decision at iteration j + 1 in QRCP, however, trailing
column norms must be updated to remove the contribution of row j, which depends on the
Householder transformation Hi. At first glance, this update appears to require two BLAS-2
operations on the trailing matrix per iteration. The first operation computes scaled inner
products IDT = TiyTA(i-1)Pi and the second operation modifies the trailing matrix with

the rank-1 update A(i) = -y .wT These two operations cause the communication
3 3

bottleneck in QRCP.

2.1 Attempts to Achieve BLAS-3 Performance

Quintana-Orti, Sun, and Bischof (Quintana-Orti et al., 1998) were able to halve BLAS-2
operations with the insight that the trailing norm update does not require completing the
full rank-1 update on each iteration. Instead, reflections can be gathered into blocks, as in
QR. This method appears in algorithm 4.

At the end of iteration j, the algorithm has collected a block of reflectors YU). Reflector
for i < j, appears in column i from the diagonal down. This forms a block reflection

Q(3) = I - Y(i)T(i)Y(i)T , where T(3) is an upper triangular j x j connection matrix that
can be solved from y(3) so that Q(i) is orthogonal. This algorithm must also collect each
corresponding scaled inner product, wT, which appears as row i in a matrix W (AT . In the
compact WY notation, this block of inner products is TV(3)T - T(3)Ty(a)T Ap(j), which
provides enough information to update row j alone and adjust trailing column norms to
prepare for the next pivot selection

A(3)(j, ) = A(3-1)(3, )P3 - Y(3)(3, )147(3)T

Note, however, that this construction complicates reflector formation. As before, the
next pivot index p3+1 is selected and swapped into column j + 1. Let this new column be
ai+1. From rows j + 1 down, elements of ai+l have not been updated with the current block
of reflectors. Before we can form y3+1, prior transformations must be applied to these rows

from the formula oti±i = a3+1 - Y(3)W(3)T(:,pi+l). An additional step is also required to
compute reflector inner products because they must account for reflections that have not
been applied to the trailing matrix. The adjusted formula for these inner products is

1"T+1 = 73+1 (yT_FiAU) - (yT+1Y(3))1/17(3)Tl Pi+1.

The reflector and inner product blocks are then updated:

y(3+1) 
[y(a)

y3+1] and W(3+1)T 
(AT .1=)

3+1
]

•
.7+1

Unfortunately, the remaining BLAS-2 operations yT+1A(3) and yT+1Y(3) in the inner prod-
uct computation still dominate slow communication complexity for large matrices. The
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entire trailing matrix must pass from slow to fast memory once per iteration. Conse-
quently, even heavily optimized implementations of blocked QRCP still run substantially
slower than blocked QR on both sequential and parallel architectures.

Algorithm 4 QRCP with BLAS-3 reflection blocking.

Require:
A is m X n.

Ensure:
Q is an m x m orthogonal matrix.
R is an m x n right triangular matrix, diagonals in nonincreasing magnitude order.
P is an n x n permutation matrix such that AP = QR.

1: function [Q, R, P] = QRCP(A)
2: Compute initial column 2-norms, which will become trailing column norms.
3: for i = 0, b, 2b . . . , where b is block size. do
4: for j = i + 1, i + 2, .. . min(i + b, k), where k = min(m, n). do
5: Find index pj of the column with maximum trailing 2-norm.
6: Apply permutation Pi swapping column j with pj.
7: Update column j with prior reflections in this block.
8: Form reflector yi and Tj from new column j.

9: Compute adjusted reflector inner products wT.
10: Update row j with all reflections in this block.
11: Update trailing column norms by removing the contribution of row j.
12: end for
13: Apply block reflection to trailing matrix.
14: end for
15: Q = I — YkTkYT: where Tk can be recovered from Yk and Tl, • • • • Tk•
16: R = A(k) .
17: P = P1P2 . . . Pk is the aggregate column permutation.
18: end function

2.2 Communication Avoiding Rank-Revealing QR

Several mechanisms have been put forward to avoid repeating full passes over the trailing
matrix on each iteration. Bischof (Bischof, 1991) proposed pivoting restricted to local blocks
and Demmel, et al. (Demmel et al., 2012, 2015) propose a procedure called Communication
Avoiding Rank-Revealing QR (CARRQR). CARRQR proceeds by partitioning the trailing
matrix into P subsets of columns that are processed independently and possibly simulta-
neously. From within each column subset, b candidate pivots are selected using QRCP.
Adjacent subsets of candidates are then combined to form 2P subsets of 2b candidates.
This procedure continues, using QRCP to filter b candidates per subset followed by merg-
ing results into 1P subsets and so on, until only one subset of b candidates remains. The
trailing matrix is then updated as before, with blocked reflections.

We now examine several practical constraints in implementing CARRQR. First, the
reflectors Y, inner products WT , and leading rows of R must be stored separately from
the original matrix for each independently processed subset of columns. Furthermore, one
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must employ a version of QRCP that avoids the trailing update, because the final reflectors
are unknown until the last selection stage. Any intermediate changes to the original columns
would have to be undone before the final transformations can be correctly processed. In
contrast, QRCP can be written to convert columns into reflectors, storing the results in the
same array as the input on the strictly lower triangle portion of the matrix. Likewise, R
can be stored in place of the input on the upper triangle.

Depending on the initial column partition, CARRQR performs up to 2 times as many
inner products as QRCP per block iteration. Note that as the reflector index j increases,
the total number of inner products of the form yT+1y3+1, yT+1 Y(3) and yT_FiA(3) remains
constant. Therefore, if the ith subset contains 74 columns, bni, inner products will be
required to produce b candidates. Letting ni + n2 + • • • + np = n on the first stage of
refinement, summing over all of the subsets gives bn inner products to produce P subsets of
b candidates. QRCP requires the same computational complexity to produce b final pivots.
Assuming that the number of candidates is at least halved for each subsequent stage of
refinement in CARRQR, it easily follows that no more than 2bn inner products will be
computed in total.

Despite increased computational complexity, CARRQR is intended to benefit from bet-
ter memory utilization and better parallel scalability. If each column subset is thin enough
to fit in fast memory, then slow communication is eliminated between iterations of j. The
only remaining slow communication transmits pivot candidates between stages of refine-
ment.

Unfortunately, writing and tuning CARRQR is nontrivial. We implemented this al-
gorithm and found that it ran slightly slower than the LAPACK implementation of algo-
rithm 4, called DGEQP3, on a shared-memory parallel machine. We believe this was mainly
due to inefficient parallelization in the final stages of refinement. We assigned each column
subset to a different processor, which then worked independently to produce candidates.
This approach was attractive because it did not require communication between processors
during each filtration stage. However, despite communication efficiency, this technique can
only engage as many processors as there are column subsets. Most processors are left idle
during the final stages of refinement. A second problem with this approach occurres when
the matrix is too tall. In such cases, it is not possible to select column subsets that are
thin enough to fit into fast memory. An efficient implementation would need alternative or
additional workload-splitting tactics to use all processors at every stage of refinement.

As we will discuss in the next section, the method we propose also gathers pivots into
blocks, which are then applied to the trailing matrix. Our method, however, improves
performance by reducing both the communication and computational complexity needed to
form a block of pivots.

3. Randomized Projection for Sample Pivoting

Sampling via randomized projection has proven to be beneficial for a variety of applications
in numerical linear algebra (Liberty et al., 2007; Woolfe et al., 2008; Rokhlin et al., 2010;
Halko et al., 2011; Mahoney et al., 2011; Martinsson et al., 2011). Sampling reduces com-
munication complexity via dimensional reduction, while simultaneously maintaining a safe
degree of uncertainty in the approximations that follow. This technique is typically framed
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using the Johnson—Lindenstrauss lemma (Johnson and Lindenstrauss, 1984). Let a3 repre-
sent the jth column of A for j = 1, 2, ... , n. There exists a distribution over x m matrices
such that a randomly drawn matrix 1-1 yields a lower dimensional embedding b3 = Slaj, with
high probability of preserving distances within a relative error E . Because we would like to
use the sample to obtain a block of b pivots while controlling the degree of uncertainty in
the true norms of A, we include padding p in the sample rank so that = b + p. When It
is GIID, the expected 2-norms and variance are

= and Varn [OA] = 2e llaj

If we let cto = 0 and b0 = 0, then we can express the probability of satisfying the relative
error bounds as

P( llbi bill22 

fllaj

fE2
< E) > 1 2 exp  

4 
(1 E))

where 0 < E < 2 and i, j = 0, 1, . . . , n. Capturing the norm of the difference between
columns also implies coherence among inner product approximations by taking (bi—b2)T(bi—

b2) = 11b11122 — 2bfb2 +11b21122. Thus, each component of B within a subspace defined by a
few of its columns approximates the corresponding component of A.

3.1 Bayesian Analysis

Bayesian inference is not often used in numerical linear algebra. In this case, it allows us
to obtain an exact expression for the uncertainty in column norms, which rigorously frames
the amount of padding p that is needed to satisfy a relative error bound with a desired
probability of success.

We begin by expressing a single column a as its 2-norm multiplied by a unit vector q,
so that a = Because a GIID matrix is invariant in distribution under independent
orthogonal transformations, we can construct an orthogonal matrix Q = [q Q_L] and write
SI as

where both the leading column C., and remaining columns (1 are GIID. It easily follows that
each element of the sample column, b = 11 all 2 cZ' , is normally distributed with mean 0 and
latent variance Ilall 22 .

Inferring variance from a normal distribution with a known mean is a standard problem
in Bayesian statistics. The likelihood probability distribution is written p(bIlla1122) ./kr(b I
0, Ilall-r) where I is the £ x £ identity. Jeffreys proposed the maximally uninformative
prior for an unknown variance, p(lIall22) 11a1122, which is invariant under scaling and
power transformations (Kass and Wasserman, 1996). We apply Bayes' theorem, p(Il all22 l

b) oc 13(bIllag)13(11a11D, to obtain the posterior distribution. Normalization results in the
inverse gamma distribution

(11b1W/2
exp — 11bfl 

Palag = 
r(D IlaGe-2 (2440
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Consequently, we can cast each pivoting decision as the maximizer of expected utility, where
utility is taken to be the latent 2-norm squared

=
— 2.

Since expected utility is monotonic in the sample column norms, we simply choose the
maximum as in QRCP.

More importantly, the posterior distribution clearly relates sample rank to uncertainty.
In order to capture the probability distribution of the latent relative error, we can change
variables to express the latent column norm as a fraction 0 of the expectation, =

A This gives analytic expressions for both the probability distribution function and
the cumulative distribution function of the relative scaling

(Y)
,e/2 

exp   and P(0 < = 
r(0p(0 — 

r(0 t 0 02+1 20 )

respectively. The numerator of the cumulative distribution is the upper incomplete gamma
function and normalization results in the regularized gamma function.

Rank-revealing decompositions must avoid selecting columns that are already well ap-
proximated by components in the span of previous pivots, i.e columns with small trailing
norms. As such, we only care about the probability that a sample column radically over-
estimates the true column norm. The CDF plotted in fig. 3.1 shows the probability that
the relative scaling 0 falls below a specified upper bound T for several choices of Our
experiments provide good results using padding p = 8 with a block size b = 32 so that the
effective sample rank satisfies 8 < < 40 for each pivot decision. Note that this analy-
sis also holds for linear combinations of columns in A and B, provided that those linear
combinations are independent of B. An in-depth reliability and probability analysis has
appeared in Xiao, Gu, and Langou (Xiao et al., 2017). In particular, they show that in the
case of decaying singular values in the matrix A, a nearly optimal low-rank approximation
can be computed with the QR factorization with a slight modification in the strategy used
to choose P.

3.2 Sample QRCP Distribution Updates

We now show how the sample matrix B = SZA can be used to select a full block of b pivots.
If QRCP is performed on the sample matrix, then at iteration j we can examine B as a
partial factorization. We let P(3) be the aggregate permutation so far and represent the
accumulated orthogonal transformations applied to B as U(3), with corresponding inter-
mediate triangular factor S(3), as shown below. We also consider a partial factorization of
A using the same pivots that were applied to B. The corresponding factors of A are Q(3)
and R.

Bp(i) = u(i)[s(1i1) s12)1

o st 2)
and APO) = Rii) Rii21

[ 0 RW] •
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Figure 3.1: Cumulative distribution function for latent relative scaling factor. For sample
rank 4, the probability that the latent 2-norm squared is less than 1/8 of the
expectation is 0.30%. For sample rank 8, the probability that it is less than 1/4
is 0.23%. For sample rank 32, the probability that it is less than 1/2 is 0.20%.

Both Si(31) and /71(31) are upper triangular. n can then be expressed as elements ft in the
bases given by UU) and Q(j) :

uo) O(1,71.) 1,40)1

[O(i) 
12 

Cii)T•
21 —22

Noting that BP(i) = SZA.P0), we have

s) s )1 [n)R(i)
11 12 _ 11 11

0 SWi2) 21 11

(i) pp(j) , (i) pp(i)
la 411 -LIL.12 —I— Q1112 ./1,22

ft(21) R(12) + f42) .k2) •
(3.1)

If Sji,) is nonsingular, then both 1./(131) and R VI) are also nonsingular. It follows that
-11 = -11-11g(i) P)-1 is upper triangular and n21 = O. In other words, we have implicitly
formed a QR factorization of SICii) using the same orthogonal matrix U(j). Finally, the

trailing matrix in the sample simplifies to S2(j2) = C2,22R22, which is a sample of the trailing

matrix R22 using the compression matrix (12(32.). If the permutation PO) were independent
of the sample, then Cii) would be formed from A, independent of n. Likewise, U(i) only
depends on the leading j columns of the sample, which are independent of the trailing

columns. Thus S222 would be GIID. As such, we may use column norms of S2U2) to ap-

proximate column norms of R22 when we select the (j + 1)st pivot, so that a full block of
pivots can be selected without interleaving any references to A or R memory. We note,
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however, that the permutation may exhibit a subtle dependence on the pivots, which we
briefly discuss in section 3.3.

Once b pivots have been selected from the sample matrix B , the corresponding columns
of A are permuted and processed all at once, as is done in BLAS-3 QR, thus reducing
both the communication and computational complexity associated with selecting a block
of b pivots by a factor of Om. More significantly, if the sample matrix B fits in fast
memory, then slow communication between consecutive pivot decisions is eliminated within
each block iteration. As in BLAS-3 QR, the remaining communication costs are due to
the matrix-matrix multiplications needed to perform block reflections. As such, RQRCP
satisfies the BLAS-3 performance standard.

Algorithm 5 outlines the full procedure for a sample-based block permutation. It is
acceptable for very low-rank approximations, wherein the required sample is small enough
to maintain communication efficiency. That is, when the desired approximation rank k is
small enough to be a single block, b = k . For larger approximations we will resort to a more
comprehensive algorithm that includes a sample update formulation that subsumes this
version. Since the single-sample algorithm illuminates the performance advantage gained
from this approach, we examine it first.

Algorithm 5 Single-Sample Randomized QRCP.
Require:

A is m x n.
k is the desired approximation rank. k < min(m, n).

Ensure:
Q is an m x m orthogonal matrix in the form of k reflectors.
R is a k x n truncated upper trapezoidal matrix.
P is an n x n permutation matrix such that AP --:-.', Q(:,1 : k)R.

1: function [Q, R, P] = SINGLES AMPLERQRCP (A, k)
2: Set sample rank l = k + p as needed for acceptable uncertainty.
3: Generate random l x m matrix n.
4: Form the sample B = 11A.
5: Get k column pivots from sample [-, •, P] = QRCP(B).
6: Apply permutation A(1) = AP .
7: Construct k reflectors from new leading columns [Q , Rii] = QR(A(1) (: ,1:k)) .
8: Finish k rows of R in remaining columns R12 = Q (: , 1 : k)T A(1) (: , k+1:n).
9: end function

3.3 Sample Bias

The bias of an estimator is the difference between the expected value of the estimator and
the true value of the quantity being estimated. In this case, sample column norms are used
to estimate true column norms. As illustrated in the following thought experiment, a subtle
form of bias occurs when we use the maximum to select a pivot.

Suppose Jack and Jill roll one six-sided die each. The expected outcome for each of
them is 3.5. We then learn that Jill rolled 5, which was greater than Jack's roll. This
new information reduces Jack's expectation to 2.5, because it is no longer possible for him
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to have rolled 5 or 6. Similarly, the act of selecting the largest sample norm creates a
dependency with remaining samples by truncating their plausible outcomes.

This effect becomes less pronounced, however, if the decision is more likely to be de-
termined by the true value being estimated rather than a chance sample outcome. For
example, now suppose that Jill rolls three dice and Jack rolls one. If we only know each
person's sum, we can still infer the number of dice each person rolled and select the expected
maximum as before. In 90.7% of trials, Jill's sum will be 7 or greater, driven by the fact that
three dice were rolled. In most cases, this leaves Jack's potential outcomes unconstrained
and his expectation unbiased after we observe the maximum. Analogously, when a selected
column exhibits a norm that is an order of magnitude greater than others, the bias effect is
negligible and we may proceed as though the pivot decision was independent of the sample.

The original version of this paper included analysis of this distribution truncation effect
(Duersch and Gu, 2017). For our purposes, we proceed as though the progression of sample
updates is independent of the pivot decisions, which is also the approach Xiao, et al. (Xiao
et al., 2017) take. This assumption is potentially problematic when multiple trailing columns
have similar norms, but any such column provides a suitable pivot in that scenario.

3.4 Blocked Sample Updates

The sample matrix in algorithm 5 is formulated to have rank £ = k + p, where k was
both the desired approximation rank and the permutation block size, b. As k increases,
however, it becomes inefficient to simply increase the sample rank f. In the extreme case,
a full decomposition would require a sample just as big as the original matrix. If we
require a decomposition with a larger rank than that which can be efficiently sampled
and blocked, that is if the sample rank cannot exceed £ = b + p, but we require k > b,
then we need to update the sample matrix after each block. Martinsson (Martinsson and
Voronin, 2016) developed an approach in which one simply processes each subsequent block
by drawing a new random matrix Si and applying it to each new trailing matrix. We propose
a sample update formulation that does not require multiplying the trailing matrix by a new
compression matrix and reduces BLAS-3 communication in the overall factorization by at
least one third.

The update formula we derive is an extension of the implicit update mechanism described
in the previous section. Both algorithm 6 and algorithm 7, the truncated variation, will
proceed in blocks of pivots. Bracket superscripts denote the results of a computation that
occurred on the indicated block-iteration. At entry to the first block-iteration, the sample
is BM = simAm, where AM is the original matrix. At the end of block-iteration J, the
sample will be in the transformed state

L [j_j1] s [1
'12] ] 

[-..1[J] ,., [ J]

s

0 
s[j] = 11 1112 

RN R[1:121

2 2 o 1-2[2J 0 A[J] ,21 (3.2)

just as in eq. (3.1). Si[jil is the leading upper triangle from the partial factorization of the

sample and S22] gives the trailing sample columns. Likewise Ri[jii and A[J1, respectively,
give the leading upper triangle and trailing columns that would be obtained by factorizing
the original matrix with the same pivots. By absorbing the transformations UMT and
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QM into SZM , we obtained an effective compression matrix ei221, which had already been

implicitly applied to the trailing columns: S22[J] = I/22[J] A[J] . The difficulty is SV21 only has
rank p. In order to construct a rank = b + p sample of the trailing matrix AA , we need

to include n12 in the updated compression matrix

[J]l
n[J] ["12

o[J]
""22

giving B[J] = f2[J] AV] = S1j2] — S-1* 
[iiiRV21

•
22

In other words, the new compression matrix 1-2[J] is simply UMTSZ[J-1]Q[J], with the leading
b columns removed. This new compression matrix does not need to be explicitly formed
or applied to the trailing columns AM. Instead, we form the result implicitly by removing
n Bo ]

1'12 from S121. Both RV]) and R121 will be computed in blocked matrix multiply

operations using the previous b pivots of A. Since nil can then be recovered from Si[jil,
we can avoid any direct computations on 1-2. We only need to update the first b rows of B,
which gives us the sample update formula

Br [ SV21 - CR[4-1R[ij21

B[2j] c]
(3.3)

Full RQRCP, described in algorithm 6, can be structured as a modification to blocked
BLAS-3 QR. The algorithm must simply interleave processing blocks of reflectors with
permutations obtained from each sample matrix, then update the sample as above. To
obtain a modified version that employs repeated sampling simply replace the sample update
with a new sample of the trailing matrix, BM = SZMAM.

When QRCP is applied to the sample matrix B, only a partial decomposition is nec-
essary. The second argument b in the subroutine call QRCP(BM, b) indicates that only b
column permutations are required. It is relatively simple to modify the QR algorithm to
avoid any unnecessary computation. After sample pivots have been applied to the array
containing both A and R, we perform QR factorization on the new leading b columns of
the trailing matrix. Although this is stated as returning QM for convenience, it can be
implemented efficiently with the blocked Householder reflections described in section 2.1.
We can then apply reflectors to the trailing matrix and form the sample update BM to
prepare for the next iteration.

4. Truncated Factorizations for Low-Rank Approximations

The trailing matrix is unnecessary for low-rank applications. We can reformulate RQRCP
to avoid the trailing update, rather than computing it and discarding it. Provided the
approximation rank is small (k < min(m, n)), the truncated reformulation (TRQRCP)
reduces large matrix multiplications by half and completes in roughly half the time.

4.1 Truncated RQRCP

Our technique is analogous to the method Quintana-Orti, Sun, and Bischof used to halve
BLAS-2 operations in QRCP. In their version of QRCP, all reflector inner products are
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Algorithm 6 Randomized QR with Column Pivoting, RQRCP
Require:

A is m x n.
k is the desired factorization rank. k < min (m, n).

Ensure:
Q is an m x m orthogonal matrix in the form of k reflectors.
R is a k x n upper trapezoidal (or triangular) matrix.
P is an n x n permutation matrix such that AP .--::: Q(: ,1:k)R.

1: function [Q , R, P] = RQRCP(A, k)
2: Set sample rank £ = b + p as needed for
3: Generate random £ x m matrix SZ[0].
4: Form the initial sample B[°] = it [o] A[o].

5: for J = 1, 2, ... , li do

6: Get b column pivots from sample [UM, SM, PM] = QRCP (B[J-1] ,b).
7: Permute A[J-1] and completed rows in R with PM .

8: Construct b reflectors [QM , RV]] = QR(A[J-1](: , 1 :b)) .

9: Finish b rows R[11-21 = Q[J] (: ,1:b)T A[J -I] (: , b+1 : end).
10: Update the trailing matrix A[J] = Q[J] (: , b+1:end)TA[J-l](: , b+1 : end).

11: Update the sample B[iji = S [1j2] - S[ijil ft[ijil -1R121 and B2j1 = S [2'121.
12: end for

13: Q 
Q[1] [ 

Ib

14: 
p p[1] [ I b

15: end function

acceptable uncertainty.

I ([1c1b]-1)b
Q[2] ]• • •[ Q[k 1 b] ]•

I ([1 c 1 b] — 1) b
P[2] ]• • •[ p[k 1 1)] ]•

computed, but rows and columns are only updated as needed. In order to compute correct
reflector inner products, without having updated the trailing matrix, we need to formulate
blocked reflector compositions

(I - YiTlYT)(I — Y2T211) = I - YTYT ,

[]
where Y = [Y, Y2] and 

T = Ti —T1YT Y2T2 
.

[ 0 T 2

The corresponding reflector inner products WT = TT YT A become

WT = 1147T
LivT 1

2
with Wf = TTYT A and WI = n (-1,1 A _ (iiy-1)-147T) .

If we store these reflector inner products, then we can construct any submatrix of the
- VIaccumulated transformation A = A - 17[J]WVIT as needed. Columns that are selected

by sample pivots are constructed just before becoming the next reflectors and corresponding
rows of R are constructed just before being used to update the sample, as outlined in
algorithm 7.
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Algorithm 7 Truncated RQRCP without trailing update
Require:

A is m x n.
k is the approximation rank. k < min(m, n).

Ensure:
Q is an m x m orthogonal matrix in the form of k reflectors.
R is a k x n upper trapezoidal matrix.
P is an n x n permutation matrix such that AP .--::: Q(: ,1:k)R.

1: function [Q , R, P] TRUNCATEDRQRCP (A, k)
2: Set the sample rank i = b + p as needed for acceptable uncertainty.
3: Generate £ x m random matrix sim and sample BM = stmA[o].
4: for J = 1, 2, ... , ii, do

5: Obtain b pivots [UP], S[J] , P[J]] = QRCP(B[J], b).
A [J-1] PM , w V] T w[J —1[T ,p[J] ,6: Permute AV] = and leading R rows.

7: Construct selected columns A j from AV] - IT [j— I] wrT.

8: Form reflectors 172j1 using [Q[J], el]] = QR(A.j).
= TV[T(y-vvA[J] (yr y[j_1])wr ).

9: Form inner products W[2j1

10: Augment YR] = [Y[J-1] Y2j]] and WV] = [WV] W[2ji].
11: Construct new rows of R from A[J] - Y[j] W MT.

12: Update the sample Br = s[i2] - Sr Rr-1R[ij21 and B2j1 = S[22].
13: end for

14: 
Q Q[1] [ -rb

15: 
p p[1] [ - 1 b

16: end function

([I 0]-1) b
Q[2] ]• • •

[-T
ci[k 1 b] 1 •

([I clb]-1)b
p[2] ]• • •

[-T
p[k 1 b] 1 •

4.2 Truncated SVD Approximation

TRQRCP naturally extends to an approximation of the truncated SVD by following the
QLP method proposed by Stewart. The QLP decomposition proceeds by first applying
QRCP to obtain AP0 = Q 0R. Then the right triangular matrix R is factored again using
an LQ factorization P 1R = LQ1, where row-pivoting is an optional safeguard (otherwise
Pi = I), giving the factorization A = (Q0PDL(Q1K). The diagonal elements of L
approximate the singular values of A. Huckaby and Chan (Huckaby and Chan, 2003)
provide convergence analysis.

The approximate truncated SVD we propose (TUXV) simply adapts low-rank versions of
the steps in QLP. The rank-k approximation that results is exactly the same as the truncated
approximation that would be obtained if QLP had been processed to completion using
RQRCP, without secondary row-pivoting, and then truncated to a rank-k approximation.

We begin by using TRQRCP to produce k left reflectors, which defines the initial left
orthogonal matrix U(°). Superscript (0) refers to the initial state of an array upon entry to
the first iteration of the main loop. We can compare our results to what would have been
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obtained from full RQRCP-based QLP:

[AP(°) •_:-,, [u(r i j - ())] R(1.°) 17.°2)
vs. AP(o*) = [ur up)-1 [R_O].)

-I 0
R
(N)
12

rp, (0*) •
'22

The asterisk denotes additional pivoting produced from the full factorization. The first
k pivots in p(°) and corresponding reflectors in U(°) are the same, as are corresponding
rows in R(°) modulo additional column permutations. We reverse these permutations to
construct the k x n matrix Z(°) = R(0)P(o)T so that

A R-,[ur 7-7-0)-1

2 -I

[Z(1°) zo2)1

(1)
versus A = [u(o) U _

201[Z1(°1) z 102)

z21 
T2*) .

Taking the LQ factorization from Z(c)), so that L(1)V(1)T = Z(c)), instead of from R(°)
simply absorbs the permutation P(°)T into the definition of V(1)T so that

A ,'--,' [Ur UM] -L11) 0 
17(11)7'

1)T[
2 0 0 17 

01 _ (111,0 _ (1*) .....(11*)7,L(1) 0 I [ V(1)T
versus A = [Ur t4

-1/21 -1/22 V 2

For consistency with the following algorithm, we label the k x k connecting matrix L(11)
as X(°). We will discuss the connecting matrix further after explaining the rest of the
algorithm. Provided that no secondary row-pivoting is considered, the leading k reflectors
in V(1) and V(1*) are identical because they are only computed from the leading k rows of

Z(°). At this point, the rank-k approximation of RQRCP-based QLP would require 141*) ,
which is unknown. Fortunately, the leading k columns of U(N)L(1*) can be reconstructed
with one matrix multiply. We label this rn x k matrix Z(1), which is

[Z(1) = A141) = [u(0) u(0*)1 L ii)
1 2 i r (1*)

'21

in both cases. We can then take the QR-factorization U(1)x(1) = z(1) to produce the
approximation

A U(1) [x(l) 117(1)T . (3.4)
0

Further iterations can be computed to produce subsequent k x k connection matrices
X(2), X(3), etc. which would flip-flop between upper triangular and lower triangular forms.
To do this, we simply multiply the leading rows of UT or columns of V on the left and
right of A, respectively, as outlined in algorithm 8. The leading singular values of A are
approximated on the diagonals of X(3). Since the connection matrix is small, however, it is
feasible to obtain slightly better approximations by taking the SVD of X(3). One could also
insert mechanisms to iterate until a desired level of convergence is obtained, but Stewart
observed that only one QRCP-LQ iteration is needed to produce a reasonable approximation
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of the SVD. One subtle point of possible confusion is that by setting jmax = 1 our algorithm
might appear to produce a truncated approximation from the sequence RQRCP-LQ-QR. It
is true that the diagonal elements in X correspond to that sequence; however, the resulting
factorization is equivalent to that which would be obtained by keeping only the leading
columns of L after RQRCP-LQ. The final QR factorization simply extracts an orthogonal
basis U. In the next section, we test the performance of TUXV with it/lax = 1 for both
timing and quality experiments.

Algorithm 8 TUXV approximation of the truncated SVD
Require:

A is an m x n matrix to approximate.
k is the approximation rank. k < min(m, n).
jmax is the number of LQ-QR iterations. We set jmax = 1.

Ensure:
U is an orthogonal m x m matrix.
V is an orthogonal n x n matrix.
X is a k x k upper or lower triangular matrix.
A U(:, 1 : k)XV (:,1 : k)T .

1: function [U, X, V] = TUXV(A,k,T, jmax)
2: TRQRCP-Factorize [UM, R(o), p(0)1 TRQRCP(A, k).
3: Restore original column order Z(°) = R(o) p(0)T

(1), x- (op] QR(z(og).4: LQ-Factorize [V
5: for j = 1, 3, 5, ... do
6: ZU) = AVU)(: , 1 : k).

7: QR-Factorize [U(j+1), X(i)] = QR(Z(j)).
8: If j = jmax, then break.
9: ZU+1) = u(i-F1)(: ,1:k)TA.
10: LQ-Factorize [VU+2), j _ QR(Z(i+l)T).
11: If j 1 = jnam„ then break.
12: end for
13: end function

5. Experiments

Our first Fortran version of RQRCP used simple calls to BLAS and LAPACK subrou-
tines without directly managing workloads among available cores. Library implementations
of BLAS and LAPACK subroutines automatically distribute the computation to available
cores using OpenMP. Although we knew RQRCP should have nearly the same communi-
cation complexity as blocked QR, that version did not compete well with library calls to
the LAPACK subroutine DGEQRF, the BLAS-3 QR factorization. We believe this was
due to poor automatic memory coordination between large blocked matrix operations. In
order to provide a convincing demonstration of the efficiency of RQRCP, we had to carefully
manage workloads using OpenMP within each phase of the main algorithm. The following
experiments show that our RQRCP and TRQRCP subroutines can be written to require
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substantially less computation time than the optimized QRCP implementation DGEQP3
available through Intel's Math Kernel Library.

5.1 Full Factorization Time

These tests examine how factorization times scale with various problem dimensions for
several full matrix decompositions. Since we wanted to understand how different sizes and
shapes of matrices could affect performance, we separately tested order scaling, row scaling,
and column scaling. In order scaling, we vary the number of rows and columns together
so that the matrix remains square. We also wanted to see how the performance of each
algorithm scales as we increase the number of cores engaged. Unless the experiment specifies
otherwise, each matrix has 12000 rows, 12000 columns, and the algorithm engages 24 cores.
The algorithms we tested are listed in section 5.1. fig. 3.2 shows performance results.

Table 3.1: Full decomposition experiments compare these algorithms. Rank-revealing sub-
routines are DGESVD, DGEQP3, RSRQRCP, and RQRCP. DGEQRF demon-
strates the limit of performance without pivoting. DGEQR2 to shows the his-
torical evolution of these algorithms

Subroutine Description

DGEQR2 LAPACK BLAS-2 implementation of QR
DGESVD LAPACK singular value decomposition
DGEQP3 LAPACK competing implementation of QRCP

RSRQRCP algorithm 6 modified for repeated-sampling
RQRCP algorithm 6 with sample update (unmodified)
DGEQRF LAPACK BLAS-3 implementation of QR

These tests show that RQRCP performs nearly as well as DGEQRF, the LAPACK
implementation of BLAS-3 QR without pivoting. We further note that our implementation
even outperforms DGEQRF in some column scaling cases. These experiments were run on
a single node of the NERSC machine Edison. Each node has two 12-core Intel processors.
Subroutines were linked with Intel's Math Kernel Library. Each test matrix was randomly
generated and the same matrix was submitted to each algorithm.

5.2 Truncated Decomposition

These experiments compare truncated approximation performance. In addition to probing
how the matrix shape affects execution time, we examine the effect of varying the truncation
rank. As before, we test parallelization by varying the number of cores engaged. Unless
specified otherwise, each algorithm engages 24 cores, operates on a 12000 x 12000 matrix,
and truncates to rank 1200. Since the proprietary optimized implementations of LAPACK
functions were unavailable for modification, we rewrote and adjusted each algorithm to halt
at the desired rank. Section 5.2 lists the algorithms we tested. Again, the same random
matrix is submitted to each algorithm. Figure 3.3 shows results.

Since TRQRCP uses the sample update formula and avoids the trailing update, it is
nearly always fastest. Our TUXV experiments use jmax = 1. As such, TUXV performs
just one additional matrix multiply. These results show that TUXV requires only a modest
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Figure 3.2: Full decomposition benchmarks. Top-left: 24 cores, rows and columns scaled
equally. Top-right: 24 cores, 12000 rows, columns scaled. Bottom-left: 24
cores, rows scaled, 12000 columns. Bottom-right: cores scaled, 12000 rows
and columns RQRCP consistently performs almost as well as DGEQRF, QR
without pivoting.

Table 3.2: These algorithms are compared in truncated decomposition scaling experiments.
Comparing RSRQRCP with RQRCP reveals the cost of repeated sampling.
Comparing RQRCP with QR reveals the cost of pivot selection from samples.
Comparing RQRCP with TRQRCP reveals the cost of the trailing matrix up-
date. This version of QR is identical to RQRCP after eliminating sample oper-
ations and pivoting.

Subroutine Description

QRCP algorithm 4, QRCP with trailing update

RSRQRCP algorithm 6 modified for repeated-sampling

TUXV algorithm 8, approximation of truncated SVD

RQRCP algorithm 6 with sample update and trailing update (unmodified)

QR QR (no pivoting) with trailing update

TRQRCP algorithm 7 with sample update and no trailing update

increase in processing time over optimized truncated QR. Furthermore, the next set of
experiments shows that TUXV gains a significant improvement in approximation quality
over both QRCP and RQRCP.

5.3 Decomposition quality

The pivots that result from randomized sampling are not the same as those obtained from
QRCP. In order to compare factorization quality, we construct sequences of partial factor-
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Figure 3.3: Truncated decomposition benchmarks. Top-left: 24 cores, 12000 rows and
columns, truncation rank scaled. Top-right: 24 cores, 12000 rows, columns
scaled, rank 1200. Bottom-left: 24 cores, rows scaled, 12000 columns, rank
1200. Bottom-right: cores scaled, 12000 rows and columns, rank 1200. RQRCP
and QR perform similarly. TRQRCP is fastest. TUXV requires only modest
additional cost.

izations and compute the corresponding low rank approximations. The resulting relative
error in the Frobenius norm is plotted in fig. 3.4 against the corresponding approximation
rank. For both RQRCP and TUXV, we perform 100 runs and plot the median, as well
as both the minimum and maximum error bounds. Random samples used padding size
p = 8 and block size b = 32. Matrix decomposition quality is compared for the proposed
algorithms using test cases from the San Jose State University Singular Matrix Database:
FIDAP/ex33, HB/lock2232, and LPnetlib/lpi_gran. We also test a matrix corresponding
to a gray-scale image of a differential gear (image credit: Alex Kovach (Kovach, 2016)).
Plot axes have been chosen to magnify the differences among these algorithms.

At the top of each plot we have QR without pivoting. In order to produce competitive
results, QR was applied after presorting columns in order of descending 2-norms. Despite
this modification, QR performs poorly (as expected) with approximation error dropping
much more slowly than the other approximations, thus demonstrating why pivoting is nec-
essary to prioritize representative columns in the truncated decomposition. Below QR we
have RQRCP, which achieves results that are consistent with QRCP in each case. The
QRCP-like low-rank approximations are further improved by TUXV and the exact trun-
cated SVD, which is theoretically optimal. In each case, TUXV produces approximation
error closer to the SVD, with very low variation among the 100 runs.

In fig. 3.5, we compare approximation quality by reconstructing the image of the dif-
ferential gear using low-rank approximations. The original image is 2442 x 3888 and we
truncate to rank 80. Again, truncated QR shows the poorest reconstruction quality, de-
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Figure 3.4: Truncated decomposition quality experiments. Top-left: FIDAP/ex33 (1733 x
1733). Top-right: HB/10 ck2232 (2232 x 2232). Bottom-left: Differential gear
(2442 x 3888). Bottom-right: LPnetlib/lpi_gran (2658 x 2525). Both RQRPC
and TUXV show the minimum and maximum truncation errors over 100 runs.
The range of outcomes for RQRCP is narrow and holds to QRCP. TUXV out-
comes are even narrower and slightly above the truncated SVD.

spite presorting. Truncated RQRCP produces better results, but close inspection shows
fine defects. Reconstruction using TUXV is nearly indistinguishable from the original.

6. Conclusion

We have shown that RQRCP achieves strong parallel scalability and the pivoting quality
of QRCP at BLAS-3 performance, often an order of magnitude faster than the standard
approach. By using randomized projection to construct a small sample matrix B from a
much larger original matrix A, it becomes possible to substantially reduce the communi-
cation complexity associated with a series of algorithmic decisions. Our analysis of latent
column norms, inferred from the sample, justifies the selection computations that we use
to obtain full blocks of column pivots. Having blocks of pivots allows our algorithm to
factorize A using matrix-matrix multiplications instead of interleaving multiple series of
matrix-vector operations, making RQRCP the algorithm of choice for numerical rank de-
termination.

Critically, we have shown how to leverage intermediate block transformations of A to
update B with a sample update formula. This technique allows us to avoid computing a
new randomized projection for each block operation, thus substantially reducing the matrix-
matrix multiplication work needed to process each block.

We have extended this method of factorization to produce truncated low-rank approx-
imations. TRQRCP, the truncated formulation of RQRCP, avoids block updates to the
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Original

Truncated QR

TRQRCP

TWO/

Figure 3.5: Low-rank image reconstruction comparison. Reconstructions are computed
from a 2442 x 3888 grayscale matrix. Approximations are reconstructed with
rank 80. Truncated QR is computed with columns presorted by descending 2-
norm. TRQRCP dramatically improves visual approximation quality. Likewise,
TUXV further improves fine details.

trailing matrix during factorization, which reduces the leading contribution to communica-
tion for low-rank approximations. Moreover, TRQRCP provides an efficient initial operation
in our approximation of the truncated SVD, TUXV.

Our algorithms are implemented in Fortran with OpenMP. Numerical experiments com-
pare performance with LAPACK subroutines, linked with the Intel Math Kernel Library,
using a 24-core system. These experiments demonstrate that the computation time of
RQRCP is nearly as short as that of unpivoted QR and substantially shorter than QRCP.
Problems that have been too large to process with QRCP-dependent subroutines may now
become feasible. Other applications that had to settle for QR, due to performance con-
straints, may find improved numerical stability at little cost by switching to RQRCP. For
low-rank approximations, TRQRCP offers an additional performance advantage and TUXV
improves approximation quality at a modest additional cost. These algorithms open a new
performance domain for large matrix factorizations that we believe will be useful in science,
engineering, and data analysis.

Randomized methods harness the fact that it is possible to make good algorithmic deci-
sions in the face of uncertainty. By permitting controlled uncertainty, we can substantially
improve algorithm performance. Future work will address how we may understand the
foundations of credible uncertainty in predictions. Improving this understanding will fa-
cilitate the development of efficient predictive algorithms and support our ability to make
good decisions from limited information.

87



Acknowledgements

We would like to extend our earnest appreciation to Michael Bierma, Andrew Charman,
James Demmel, Laura Grigori, Christopher Harrison, Steven Holtzen, Justin Jacobs, Philip
Kegelmeyer, Chris Melgaard, Jaideep Ray, and Jean-Paul Watson for several helpful dis-
cussions on these topics. We also sincerely thank anonymous reviewers and referees for
providing expert feedback to improve this work. We also deeply appreciate editing feed-
back by Jacquilyn Weeks that improved the clarity of presentation of these ideas.

Funding: This work was funded by the U.S. Department of Energy. Original work was
funded, in part, by NSF award 1319312 and by the Department of Homeland Security
under DOE Contract Number DE-NA0003525 for the management and operation of Sandia
National Laboratories. Revised work was supported by NSF award 1760316 and by the
Laboratory Directed Research and Development program at Sandia National Laboratories.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-NA-0003525. This paper describes objective
technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the
United States Government.

Appendix A. Proof of Principal Information Theory

Lemma 1 Let g() : R± i- R be a function such that g(x1x2) = g(x1) + g(x2) for all
xl, x2 > O. It follows that g(x) = a log(x) where a is a constant.

Proofs of Lemma 1 given by Erdös (Erdös, 1946), Fadeev (Fadeev, 1957),
Renyi (Renyi, 1961).

Lemma 2 Let f (• , • , -) :IVF i--> R be a function such that f (r1r2, qlq2•131132) = f(ri,qi,p1)+
f (r2, q2, p2) for all r1, qi, pi, r2, q2, p2 > O. It follows that f (r, q, p) = log (r7epi(3).

Proof of Lemma 2 We begin by defining Th. (x) f (x-1 , x, x), g2(y) f (y , y-1 , y), and
g3(z) f (z, z, z-1). It follows that gl(xlx2) = g(xi) + g(x2). From Lemma 1, we have
gl (x) = a log(x) for some constant a. Similarly, g2 (y) = blog(y) and g3(z) = clog(z) for con-
stants b and c. We may now construct positive quantities x = Vqp, y = .Fyr, and z = ./'-q
and observe f (r, q,p) = f (x-1y z , xy-1 z xy z-1) = f (x-1  x, x) + f (y, y-1, y) + f (z , z, z-1) =
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gl (x) + g2 (y) + gl (z). The desired result follows by identifying constants a = (c + a)/2,
13 = (a + b)/2, and 11 = (b + c) / 2 •

Proof of Theorem 1 We proceed by combining Postulate 1 with Postulate 2, which gives

ffr(z)r(w)N1(z)c11(w) 11 €10(z)clo(w) ]

= f dz dw r(z)r(w)f (r(z)r(w), ql(z)ql(w), qo(z)qo(w))

= l[r(z)[ qi(z) 11 140(z) ] -Hir(w)[ ql(w) 11 Clo(w) ]

= fdz r(z) f (r(z), ql(z), q0(z)) +, I dw r(w)f (r(w), ql (w), qo(w))

= f dz dw r(z)r(w) [f(r(z), ql(z), q0(z)) + f(r(w), ql(w), qo(w))] .

The last line follows by multiplying each term in the previous line by f dw r(w) = 1 and
f dz r(z) = 1, respectively. Since this must hold for arbitrary r(z)r(w), this implies

f(r(z)r(w), ql(z)ql(w), C1o(z)C10(w)) = f(r(z), €11(z),€10(z)) + f(r(w), ql(w) , Clo(w)) '
By Lemma 2, we have f (r(z), cii(z), cm (z)) = log Wzrqi(z)aqo(z)0). From Postulate 3,
we require

fdz r(z) log (r(z)-Yqo(z)a+13) = lif dz r(z) log r(z) + (a + 0)f dz r(z) log qo (z) = O.

Since this must hold for arbitrary r(z) and qo(z), this implies 7 = 0 and 0 = —a. Thus
we see that 4(z)[r(z) ll qo(z) ] = ctD KL[r(z) ll (40(z) ], which is a constant a times the
Kullback—Leibler divergence (Kullback and Leibler, 1951). Jensen's inequality easily shows
nonnegativity of the form

r
fdz r(z) log (cio

(z
(z 
)
)) = idz r(z) log (clo(z))

r(z)

clo ( z 
)
) > — log dz r(z) ) = — log(1) = O.

r(z 

It follows from Postulate 4 that a > O. As Shannon notes, the scale is arbitrary and simply
defines the unit of measure. N

Appendix B. Proofs of Information Corollaries

Proof of triangle inequality for Definition 2 To simplify notation, we use the following
definitions

a(z) = log ( q0(cli (z) 
z)) '

b(z) = log (c12(z)
cli(z)) '

a = 14(z) [ cli(z)11clo(z) ] =

0 = LI:(z)[€12(z)11€11(z)] =

89
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Applying homogeneity followed by Jensen's inequality, we have

LI:(z)[€12(z) clo(z)] = dz r(z) la(z) b(z)113)1113

a(:) b(;)P) l/P
= (a + 0) dz r(z)

(a +a 0) + (a +0 0)

a(az)P dz
b(z)

p)1/23

+ /3) ((a /3)Idzr(z) + (a +13 0) f r(z)

1/p

=(a+0)( 

a

a+0 a+0

= a + O.

Proof of Corollary 1 We unpack Theorem 1 and write joint distributions as the marginal-
ization times the corresponding conditional distribution such as r(zi, z2) r(z2 I zi)r(zi).
This gives

Er(zl,z2)[ cli (zl, z2) z2)

= fdzi dz2 r(zi, z2) log (c11(z1' z2))
z2)

Czi)C11(z2 l Z1))
= fdzi r(zi)fdz2 r(z2 I zi) 1°g 

(cio(zi)go(z2 l Z1)

=fdzi r(zi) log ( 

(zi))

cio(zi)

ql(z2 I zi))+ f dz r(zi) f dz 2 r(z2 zi) log (
qo(z2 l Z1))

= ]Ir(z1)[q1(Z1) 11 q0(Z1)] +1Er(zi)1[1*(z21z1)[Cil(Z2 zl) 11 qo(z2 1 Zi) ]•

Proof of Corollary 2 Again, we simply unpack Theorem 1 and apply the product property
of the logarithm as

Er(z)[q2(z) cio(z)] = f dz r(z) log (c1(402((zz)))

= fdz r(z) log 
(q2(z)cli (z) 

cli(z)€10(z))

= fdz r(z) log (c12(z)) +fdz r(z) log (Cli(Z))

Cli(z) Ci0(z)

= ilr(z)[C12(z) 11 Cii(z) l[r(z)[ ql(z) 11 Cio(z) •
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Proof of Corollary 3 Swapping q0(z) and qi(z) reciprocates the argument of the loga-
rithm in Theorem 1, which gives the negative of the original ordering. •

Proof of Corollary 4 After realization ..z" = zi, probability is distributed as r(z = zi I
zi) = Sii. Restricting support to z = z gives

l[r(zki)[r(z q(z)] = log(  
1 

q(z = .±.)
) = D[111 q(z = i)].

•

Proof of Corollary 5 Computing the expectation value as given easily reconstructs the
standard formulation of cross entropy

Sr(z) [ q(z) ] = Er(z-) Er(*) [r(z

1
=idz r(z) log (q(z))

= Er(z)[1 11 cl(z)] •

q(z)]

•

Proof of Corollary 6 This follows by simply replacing r(z) with q(z) in cross entropy. •

Proof of Corollary 7 Plausible joint values of z and w are p(z, w) = p(z 1 w)p(w).
Marginalizing over w recovers present belief f dw p(z 1 w)p(w) = p(z). It follows

Eon) lip(z1w)[ cI1(z) 11 qo (z) ] = f dw p(w) f dz p(z I w)log(cli(z)
qo (z)

= f dz p(z) log (c1.41-0((:))

= ip(z)[Cil(Z) II 110(z)] •

•

Proof of Corollary 8 We compute the expectation value stated and simply rewrite the

product of the marginalization and conditional distribution as the joint distribution p(z 1
w)p(w) p(z, w). This gives

Ep(w) Ep(z1w)[13(z I w) II 13(z)

(  p 11;p) 1 3(w)(w( z

)
=idw p(w) f dz p(z 1 w) log 1 3 (z 

= f dw dz p(z, w) log ( pp(z(z)p' ))

= Ip(z,w)[13(z, ID) 11 13(z)13(1") •
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•

Proof of Corollary 9 The limit of increasing precision yields the Dirac delta function
p(z 1 i) (5(z — i'). It follows

Ep(z1i)[q1(z) 11 go(z) i =fdz 6(z — i) log (cil(z1 104:=
clo(z)

•

Proof of Corollary 10 We consider differential variations at the optimizer qi(z) = q*(z)+
en(z) where variations ri(z) must maintain normalization f dz n(z) = 0 and are otherwise
arbitrary. Taking the Gateaux derivative (with respect to the differential element e) and
applying the variational principle gives

[13(ciz.(1z7)]0 = f dz ri(z)

To satisfy the normalization constraint for otherwise arbitrary ri(z), the term in brackets
must be constant. The stated result immediately follows. •

Proof of Corollary 11 Let measurable disjoint subsets of outcomes be Q> = {z l r(z) > ql(z) > 01
and CZ‹ = {z l r(z) < ql(z)}. If ri(z) drives belief toward r(z) on all measurable subsets
then ri(z) > 0 for z almost everywhere in Q>. Likewise, 77(z) < 0 almost everywhere in
Q‹. Finally, n(z) = 0 almost everywhere on the complement Q, \ (Q> U Q‹). In order
to retain normalization, we note that f dz n(z) = O. If information is finite, then we may
express r(z) = qi (z)(1 + (5(z)) almost everywhere (except an immeasurable subset that is
not contained in Q> U Q< for which we could have qi(z) = 0 and r(z) > 0) and observe
that 15(z) > 0 for z E Q> just as (5(z) < 0 for z E Q. Since ri(z) has the same sign as
(5(z) almost everywhere, it follows

0
1 i m — IIr (z )[Cll (z) + En(z) 11 Clo(z)]E._>.0 De 

= !ilA . f dz r(z) log ( cli ()cio+(ze)/(z)  )

= f dz r(z) n(z) 
cli(z)

= fdz (1 + (5(z)) ri(z)

= f dz S(z)n(z)

> O.
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Proof of Corollary 12 We proceed by constructing the Lagrangian

n

L[r(z), A] =fdz r(z) (log ( ciro((z
)
) (fi(z) — coi)) .

We consider differential variations at the optimizer r(z) = r*(z) + 671(z) where variations
ii(z) must maintain normalization f dz ii(z) = 0 and are otherwise arbitrary. Taking the
Gateaux derivative and applying the variational principle gives

= f dz (z) [log(
clo() 
r*(z) + 1 — E Az (fz(z) — c,o2)] .

i=1

To satisfy the normalization constraint for otherwise arbitrary n(z), the variational princi-
ple requires the term in brackets to be constant. The stated result immediately follows. •

Proof of Corollary 13 We unpack Theorem 1 and apply the local conditionality property
to write p(01, 02 = P(O2 I 01)p(01 I .V.)• This gives

l[p(191,6021M[P(Oi, 
02 1 M 11P(0i, 02) ]

= f Ali do2 p(0i, 02 1 M log 
(p(01,02 1 M)

p(O1, 02) I

01)f dOi P(01. 1 M 
(P(02 1191)P(01 1M)= f d02 p(02 I log

P(092 l 01)P(01) i

= f Ali 13(611 1 U) log
(P(01 1M)

p(01) )

=1[13(911P)[P(01 1 M1113(01) ] •

•

Proof of Corollary 14 As a consequence of local conditional dependence, we observe that

P(02 =fdoi p(02 I 01)P(01 Then we apply Jensen's inequality followed by Bayes'
Theorem to obtain

ilp(921f/)[ P(02 1 M1113(02)]

(P(02 1 M = f do2 [f do p(02 1 01)P(01 1 9)] log
P(02) )

< jai p(ei I M log

=fdei p(ei I M log

P(92 I 
601)P(02

P(02) )

au„JD 2 
P(Oi 1 02)P(02 1 'Y'))

P(0i) )

+ log (fc/02 
p(Oi 02)P(02  )1(P I M

p(ei M
= /del P(611 I 9) [log 

PA 
A) )

93



J. A. DUERSCH AND T. A. CATANACH

The first term provides the upper bound we seek. It remains to show that the second term
is bound from above by zero, which follows from a second application of Jensen's inequality

l[p(921M[P(02 I M II P(02)]

1lp(eiV[P(01 I M 1113(01)] + log

= 113(1911M [P(01 I .9) 1113(01)] •

d01 d02 P(ei l 02)P(02 I .9))

•

Proof of Corollary 15 The denominator of the first log argument is model evidence and
we apply Bayes' Theorem to the second log argument. Denominators of log arguments
cancel and Jensen's inequality implies that the first term must be greater than the second.

l[r(ylm [ q(y I II p(y) l[p(OW[13(0 I M II P(0)
= dy (5(y m log (f df0dop(:(yl );)(p61(61

)M) f dO p(0 .9") log (13(9 9))
P(e) )

= log 
(folo p(yl)(1:2)13(19  f de F.(0 I M log (13(p(y)°))

= log (f dO 6))13(O I -Y-)) —fa p(0 I M log(13(u I 0)) 0.

•

Proof of Corollary 16 The stated result immediately follows by taking L(6) log (qqoire)))

and applying Corollary 12. •

Proof of Corollary 17 We take n = 1, q0(0) p(0), and qi(0) p(O I Y.) and apply
Corollary 16 with Bayes' theorem to obtain

r (19) a p(0) (1)(13° (10) ))A = P(9) (1)(13(y)19))À

•

Appendix C. Information computations in experiment

C.1 Inference

Prior belief is p(0) Ar(61 l 0, A) and p(x(3)) AT (x(3) I 0, E). Since y(3) = 0 + x(i), we
have p(y(3) I 0) (y(3) l 60, E). If we let n samples have an average g, it easily follows
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that p(9 l 0) Ar (9 I 0 , E). Bayes' rule gives p(9 I g) oc P(Y I 9)P(0) or

p(O I g) oc exp [-2
- 1 

OT A-19 - (0 - g)TE—1 (9 - g)]

- 1oc exp (9 - p,)T .13-1- (0 -

where B-1 = A-1 +nE-1 and µ = nBE-1g. Normalization yields p(O l 9) A r (0 B).

C.2 Mutual information

We marginalize over plausible 0 to obtain corresponding probability of observing g as
p(g) = f c/9 p(9)p(9 I 9). This gives p(g) (g I 0, A + *,E). Mutual information, which
is the expected information gained by observing g according to present belief, is computed

f dg dOp(g, 0) log ( ppw)p(9(Y' 9)))

= f c/60 p(9)f dgp(g I 0) log (P(p(gYl)19))

= f p(e) d9 p(D 0)log  127*,E1-112 ex131((g 9)TE-1(g - 9))  )

127(A + 711)1-112 exp(4gT(A )-19)

= 2 log det (nE-1 A + I)

C.3 First inference information in a subsequent view

Let the state of belief before an experiment be p(0) Ar(0 l 0, A). After observing
g(1) inference gives p(O I p(1)) Af(0 I tt, B). Additional observations g(2) yield p(O I
g(1), g(2)) = .1\1(9 I v, C). Information gained in the first observation in the view of inference
following the second observation is computed

]Ip(elp(1),g(2)) [13(9 l g(1)) P(9)]

= f d0 Al(0 
127 B1-1/2 exp( -21(0 //7B-1(0 tt)) 

v,C) log ( 

1

127rAl-1/2 exp 21 9TA-19)

= (log det (AB-1) + tr ((A-1 - B-1)0 + vT v - (v - p,)T .13-1(v - It)) .

Appendix D. Proofs of Parsimonious Inference Theorem and Corollaries

Proof of Corollary 18. The prirnary complication is that each alphabet E3+1 depends

on previously realized symbols (.9)31. We proceed by induction. The induction hypothesis

regarding a partial sequence (s)1 for j < n is

Ep((s)i) [E 10g2 > Ep((s) ) log2 (  1 i1 )1
p(si (s) )i=1 i=1
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The base case associated with the first symbol 81 easily follows from Jensen's inequality as

Ep(31) log2 (1E1 D = log2 (IE1I) = log2 ( E 1)
siE.,
( 1

siEE1

> z_d\ p(si ) log2 (1)(1s1) = Ep(so log2  
1:1(81)) •

The induction step is given by applying Jensen's inequality and the induction hypothesis

Ep((s)1+1) E log2 Eil)

r

i

+1

=1

[3

= E
P((s) ) E log2 (lEiD + Ep(8 j+11(8).ii) [log2 (

i=1

= E
P((s) ) 
E log2 (lEiD + log2 (lEi+01
3

1
1

? Ep((s)1) log2 
EP(si+lK8)i)

log2
gi=1 P(Si 1 (8)1-1) 

) +
[E (

13(si+i 1 (s)i)

[i=1

j+1
1

= Ep((s) 1)[z=liog2 
(P(Si

l (8
)1

1))1 .

The claim follows by noting that p(a) = p((8)7) = flin_1 p(Si 1 (8)i1 1)• •

Proof of Corollary 19. If the encoding is consistent with object probability and the
encoding also maximizes entropy then

p(a) = Pl(si = = 2-4a).
i=1 i=1 lEi

•

Proof of Corollary 19, recursive consistency alternative. We also obtain the same
prior by combining a counting argument with consistent prior belief in length descriptions.
In order to distinguish a complete short sequence from merely a subsequence of a longer de-
scription, we need some indication of the complete sequence length. The following argument
holds for descriptions //) that are capable of being partitioned into a component that de-
termines the sequence length and the unconstrained complement /Pc so that //) = (lpt,ipe)
and £(//)) = oi) + 4'0c). Once 7P/ is known, we can easily identify lpc, regardless of
its content. Yet, the same problem arises with knowing when we have a complete length
description 7pi, which can be resolved with recursive partitions = (pii,lpie) and so on.
For the description to be finite, this recursion must end implicitly with only one possible
outcome IP/...// = 0.
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We define 40c) so that the complement allows for 240.) outcomes. Binary sequences
provide useful intuition for this construction. If we believe all descriptions of a given length
have the same prior probability, then

1 = f chpc p(cbc kip)) = 2i(.)13(0c I 40))

Thus, p(0) = 2e(0)-4(1)p(tPi). But if the length description satisfies a consistent prior to
determine our belief in the length of the seqence, we must also have p(//)i) = 2.400-4(//)p(0//).
This gives

so that p(I,b, 40)) = 2t(tP)-"'/).

P(P) = 2")-"11)120(011).

Since the recursion ends with only one outcome, we have £(0/...it) = 0 and 13(01 11) = 1.
Thus, AV") = ktPc) kOjc) • + £(0/.../c) and p(0) = 2-e(0). •

Proof of Corollary 20. Let r*(a) be the optimizer. We express arbitrary infinitesimal
belief perturbations in the vicinity of the optimizer as r(a) = r*(a) Eli(a) where E is a
scalar differential element and n(a) is an arbitrary perturbation, so long as r*(a) > 0, so
that

r(a) = *(a) = 1 and n(a) = O.
aEB aGe aEB

The information gained from prior belief to r(a) is

DKL[r(a) 1113(a)] = E r(a) log2 (2 t(()
(

))) .
aE/3

Differentiating with respect to E, evaluating at E = 0, and applying the variational principle
yields

0 = [ 1[r(a)[r(a) 1113(a)]] = E 77(a) (10g2 ( rla) + 1) .
2-t(tP(a)) )

E-0 aEB

As this must hold for arbitrary ri(a), the factor in parenthesis must be constant, provided
r*(a) > O. Solving for r*(a) shows that the stated distribution is the unique critical point.
It remains to show that this distribution achieves the global minimum. Applying Jensen's
inequality to the information gained from any feasible state gives

2-40(a»

DICL[r(a)11 p(a) = - 
r(a) 

log2   

( )

r(a)
aEB

> - log2 (E 2-t((a))) = log2 (
P(
1
13)
) = r*(a) P(a) •

aE/3

•
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Proof of Theorem 2. The chain rule of conditional dependence, Corollary 1, allows us
to express the information gained as

Diajr(y 1 ')r(0 1 IP)r(lP) 11 13(y 1 O)P(0 l 'IP)P(0)]

= Er(y1Mr(011P)r(0)[r(y 1 s)r(0 1 0 )r(IP) 11 13(y 1 0)1)(0 1 0)P(0)]
= lErm[r (0) 11 13(0)] +Er(0)4(91/P)[r(0 1 IP) 11 13(0 1 0)]

+ Er(1911P)r(0) ffr(y1M[ r(y 1 M 11 13(y 1 0)] •

Combining properties of additivity over belief sequences, Corollary 2, with antisymmetry,
Corollary 3, we express the argument of expectation in the last term as

Er(yim[r(y 1 ) 11 P(Y 1 0)]

= Ir(ylp)[r(Y 1 ý) 11 13(y 1 00)] - l[r(y1P.)[P(Y 1 O) 11 13(y 1 60)]

where 00 is any fixed model that serves as a convenient baseline for measuring predic-
tive information with regard to training labels. Once the data are observed, the term

/[r(yVV)[ r(y 1 ..) ll 13(y l OP) 1 is a constant, independent of choices r(0 1 0)r(0). Thus we
have

w = Diajr(y 1 .✓)1113(y 1 0o)] - Ðia[r(y 1 Mr(0 I 'Or(0) 11 13(y 1 0)P(0 1 'cb)P(0)]
= Er(okor(tp)4(y1M[P(Y 1 0)11 1)(y 1 00)] - lEr(tp) Ð Kdr(61 I 0)11 P(0 1 0)]

- Majr (IP) ll 1 )(0) ] •

We apply Corollary 19 as a prior over descriptions and unpack the KL divergence to obtain

- ÐKL[r(0) 11 P(0)] = jchP r(//)) log2 ( r(o)
2-k0) 

= S[r(0)] - Er( p) f(//,)•

•

Proof of Corollary 21. We unpack definitions, combine both terms, and apply Bayes'
theorem to obtain

Er(00) ffr(yvy.)[P(Y 1 0) 11 13(y 1 0o)] - 13 Kdr(0 1 '011 P(0 l IP)]

=IdO r(() 1 0) log2 (  PW l °)P(O 1 0)  )

:)W l 00*(0 1 0))

1 ý ,'IP)13( l 'IP))= f dO r(0 HP) log2 (1)(61
13(ý 1 0o)r(0 1 IP) l

= log2 ( 
p(y. I IP) ) Dia[r(o
P(Y 1 00) 

l 0) I I 1 y, 0)] •

The second term is the negative Kullback-Leibler divergence, i.e. nonpositive. Therefore
the objective is maximized when the second term vanishes, which occurs if and only if

r*(0 1 'IP) = 13(0 1 ',/P)- •
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Proof of Corollary 22. As in Corollary 21, we unpack definitions, combine both terms,
and apply Bayes' theorem to obtain

Er(,,k) log2(1123 1:0))) Dia[r(0)1113(0)] = Er(0) log2 (P(- I 11')P(°) 
9o)r(0))

= Er(o) log2 (P(/P mp(m) = looor(0), g2  P(y) 000 Dia[r(0) 111)(0 1 •

The objective is maximized if and only if the second term vanishes, thus r*(0) = ÿ). •

Proof of Corollary 23. Applying Jensen's inequality to expected prediction information
from the optimizer gives

l[r(yIP)[ r*(Y) 1113(y 1 O0)1 — X[r*(0, 0)]

Er*(04) Er(ylM [ 60 1113(Y l 1901 x[r* (0, 6)]
Er(O*) Er(y1M[P(Y I (4) 11 P(Y I 1901 x[r(0, 6)1-

Since ]Ir(ylp)[r*(y)11P(Y l 00)1 = 4(94) Er(yIP)[ r*(y) 11 P(Y 1 090) ], we can apply antisymme-
try and additivity within the expectations to arrive at the stated result. •
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