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ABSTRACT

Software flaw detection using multimodal deep learning models has been demonstrated as a very
competitive approach on benchmark problems. In this work, we demonstrate that even better
performance can be achieved using neural architecture search (NAS) combined with multimodal
learning models. We adapt a NAS framework aimed at investigating image classification to the
problem of software flaw detection and demonstrate improved results on the Juliet Test Suite, a
popular benchmarking data set for measuring performance of machine learning models in this
problem domain.
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1. INTRODUCTION

Most current approaches for software flaw detection rely on analysis of a single representation of
a software program (e.g., source code or program binary compiled in a specific way for a specific
hardware architecture). Recent work using multiple software representations and multimodal
deep learning illustrates the benefits of leveraging both source and binary information in detecting
flaws [5]. However, when using deep learning models, determining the most effective neural
network architecture can be a challenge. Neural architecture search (NAS) is one way to perform
an automated search across many different neural network architectures to find improved model
architectures over manually-designed ones. In this work, we use a gradient-based NAS method
that leverages a differentiable architecture sampler (GDAS) [2], which was identified as the best
NAS method across 10 popular approaches when applied to image classification problems [3].

The remainder of this report is organized as follows. In Section 2, we provide an overview of the
multimodal deep learning and NAS methods used to create flaw detection models. In Section 3,
we define the set of experiments conducted to assess performance of these models over the
baseline of not using NAS. In Section 4, we present the results of these experiments on a standard
benchmark data set used in flaw detection research. And, finally, in Section 5, we summarize our
conclusions and provide suggestions for future work in this area.



2. METHODS

In this section, we describe the Joint Autoencoder (JAE) multimodal deep learning model for
software flaw detection [5] and the cell-based neural architecture search (NAS) approach used to
determine an optimal architecture for that model.

2.1. Multimodal Deep Learning for Software Flaw Detection

The neural network architecture selected for these experiments is an early fusion multimodal
learning model called Joint Autoencoder (JAE) [4]. JAE was originally developed for learning
multiple tasks simultaneously based on sharing features that are common to all tasks.

Figure 2-1(a) illustrates the architecture of the original JAE model, which contains 2
encoder/decoder components per modality and a single mixing component that combines the
output from one of the encoders associated with each modality. The components that do not
interact with the mixing component are referred to as private branches [4]. Note that each of the
components depicted in the image (i.e., each box in the image) can contain one or more
traditional neural network layers. Recently, an adaptation of the JAE model, referred to here as
the JAE Classifier Model, was developed for classifying software functions as to whether or not
they contain flaws/bugs [5]. Figure 2-1(b) illustrates the architecture of the JAE Classifier Model,
where we remove the decoders and use a linear layer to concatenate the outputs from previous
layers. In the JAE Classifier Model, we use one or more linear layers with LeakyReLLU activation
for encoders and the mixing components. In the first linear layer, the number of input features
will be the total length of two private branch encoders plus the number of output features from
mixing component, and the number of output features is fixed as 50. In the final linear layer, a
classifier layer is used, mapping 50 input features to the number of classes. In the flaw detection
models used here, we use two classes, flawed and not flawed.

Modality 1 Modality 2

| Decoder | | Decoder | | Decoder | | Decoder | | Linearlayer |
_
| Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder |
(a) Original JAE Model (b) JAE Classifier Model

Figure 2-1. JAE Structure



2.2. Neural Architecture Search

The JAE architectures described in the previous section were designed manually and thus may not
be optimal for the learning tasks to which they are applied. To address this potential issue, we
leverage a Neural Architecture Search (NAS) strategy to determine an optimal architecture for the
flaw detection task. The specific form of NAS we employ here is based on cell-based search, in
which a cell represents a portion of the architecture and is defined using a densely-connected
directed acyclic graph (DAG) [3]. The edges of the DAG represent architecture layers and the
nodes represent sums of the feature maps output from each of those layers. The search is
performed over a set of operations (i.e., network layers) and the weights associated with those
operations. Optimization of the cell structure and weights is performed within each iteration of
the overall model training.

In this work, we define the macro skeleton, i.e., the full NAS architecture, as the JAE Classifier
Model and the cell as the mixing layer with that model. Figure 2-2 illustrates the macro skeleton
architecture (left), example DAG instances of the cell (center), and the cell operations used in our
work (right). As noted in the image, the cell operations consist of single linear layers of sizes 25,
50, and 100 (i.e., the number of nodes in the layer). Details of the interpretation of the cell
examples as sums of the feature maps of the operations can be found in [2].

We adapt the Automated Deep Learning (AutoDL) NAS comparison framework!, which
implements the NAS-BENCH-201 [3] image classification benchmark, for use with our flaw
detection classification problem. As recommended in the NAS-BENCH-201 experiments on
images and confirmed in preliminary experiments with the JAE Classifier Model, we use the
GDAS search strategy [2] in the work presented here. GDAS is a gradient-based search method
using differentiable architecture sampler to optimize the cell search, and it has been demonstrated
to be one of the more efficient NAS techniques that relies on more than simple random sampling
for the cell search.

Optimization of the weights in the cell layers is performed using stochastic gradient descent
(SGD) [8] and the overall macro skeleton architecture model fitting is performed using the
ADAM optimizer [6], both as implemented in the AutoDL framework.

Macro Skeleton (JAE) Cell:

| Linear Layer |

= # Linear Layer - Size 100
Cell
. e~ Left: the macro skeleton of JAE architecture
N /

Predefined operations:

= Linear Layer - Size 25

=—p Linear Layer - Size 50

Middle: examples of the cell with 5 nodes
I Encoder | | Encoder I | Encoder | | Encoder | (4 layers). Each edge is associated with an
Modality 1 Modality 2

Figure 2-2. JAE Structure

operation from predefined operations in
directed acyclic graph.
Right: predefined operation set.

Uhttps://github.com/D-X-Y/AutoDL-Projects



3. EXPERIMENTS

In this section, we describe the experiments we performed to answer the following questions:

¢ Are there differences between handcrafted JAE structure and selected structure from NAS?

* Are there improvements on flaw detection performance after implementing NAS?

3.1. Data

As we are measuring potential improvements when using NAS on the JAE Classifier Model, we
use the same subset of the Juliet Test Suite data [7] from the software flaw detection experiments
performed in [5]. The Juliet Test Suite [7] is a collection of test cases in the C/C++ language,
providing pairs of functions with and without software flaws. The test cases laws are organized
into collections based on the Common Weakness Enumeration (CWEs) of the specific flaws
exhibited in each function. Table 3-1 lists the test case CWE collections used in this work. This
set of test cases represents a wide range of the types of flaws found in real-world software
systems. We use the features extracted from this data as defined in [5].

In our experiments, we split each CWE collection into three data sets: 80% train, 10% validation,
and 10% test. For cell search, we use the train and validation data sets to search for the best cell.

CWE | Flaw Description # Flawed | # Not Flawed
121 | Stack Based Buffer Overflow | 6346 16868
190 | Integer Overflow 3296 12422
369 | Divide by Zero 1100 4142
377 | Insecure Temporary File 146 554
416 | Use After Free 152 779
476 | NULL Pointer Dereference 398 1517
590 | Free Memory Not on Heap 956 2450
680 | Integer to Buffer Overflow 368 938
789 | Uncontrolled Mem Alloc 612 2302
78 OS Command Injection 6102 15602

Table 3-1. Juliet Test Suite Data Summary
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3.2. Methods used in Experiments

We compare flaw detection results using the JAE Classifier Model and application of the GDAS
to the cell-based macro skeleton described in the previous section. The manually-designed JAE
Classifier Model used a mixing component with a single linear layer consisting of 50 nodes, and
we refer to this model as the JAE-Mixing-50 model. In our experiments, we also investigated the
use of a larger layer of size 100, and we refer to that model here as the JAE-Mixing-100 model.
The GDAS-based model is referred to here as the NAS-GDAS-JAE model.

3.3. Measurements used in Comparing Methods

For each of the Juliet Test Suite CWE collections, we performed N X 2 cross validation [1] with
N = 5. We use this form of cross validation as it provide a pessimistic estimate of the
generalization error; when training models for operational use, we often use more than 50% of
our training data to fit the final model. We use class-averaged accuracy—the average of the
accuracies of instances from each class, normalized by the size of each class—to adjust for the
skew in the sizes of the flawed and not flawed instance (see Table 3-1 for details). This approach
addresses skew by not favoring classification results from either of the classes when they are not
equal in size. For each method, we compute and report the sample mean and sample standard
deviation of the class-averaged accuracy results for each method on each CWE collection.

3.4. Cell Structure Optimization

As mentioned earlier, in the NAS-GDAS-JAE model, cell search is performed using SGD
optimization. The specific parameters used in the AutoDL implementation of SGD are provided
in Table 3-2.

Parameter | Value
scheduler cos

LR 0.0005
eta_min 0.001
epochs 100
optim SGD
decay 0.000001
momentum | 0.9
nesterov 1
criterion Softmax
batch_size | 32
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3.5. Cell Structure Representation

The result of the cell search in the NAS-GDAS-JAE model is a DAG representing several linear
layers of different sizes (based on our defined cell operations). The AutoDL framework in which
we implemented NAS-GDAS-JAE represents a DAG instance using a string to define the specific
cell operations and sums of feature maps. Figure 3-1 illustrates the string output of an example
DAG, which is

|100~0] + [50~01100~1] + [25~0150~1]150~2| + [25~01100~1|25~2|50~3]

This summands in the string represent the sums of the feature maps associated with different cell
operations. Each sum is defined inside the “| I’ delimiters, where each cell operation and the edge
source node is listed. For example, the summand in the example above of “|25~0|50~1]50~21"
represents the sum of the feature maps of three cell operations (i.e., linear layers) at node 3 as
depicted in the image—the green edge (size 25) from node 0, the blue edge (size 50) from node 1,
and the blue edge (size 50) from node 2.

|100~0] + |50~0|100~1| + |25~0|50~1|50~2| + | 25~0|100~1|25~2|50~3|

Cell:

Predefined operations:

=== Linear Layer - Size 25

=== Linear Layer - Size 50

Linear Layer - Size 100

Figure 3-1. Example Cell Structure in the NAS-GDAS-JAE Model
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4. RESULTS

In this section, we present the results of our experiments leveraging multimodal learning models
and neural architecture search to address the question of software flaw detection.

4.1. Optimized Cell Structure of NAS-GDAS-JAE Models

The optimized cell structure of the NAS-GDAS-JAE models for each of the Juliet Test Suite data
sets can be found in Table 4-1. Note that none of the final cell structures across the difference data
sets are the same.

Table 4-1. GDAS-JAE Search Results

CWE | Cell Structure (string representation of DAG)

121 |100~0] + | 50~0]100~1] + | 25~0] 50~1| 50~2| + | 25~0]100~1] 25~2| 50~3]|
190 | 50~0| + [100~0| 25~1| + | 25~0| 25~1| 50~2]| + [100~0| 50~1]100~2]| 25~3]
369 | 25~0| + | 25~0[100~1| + | 25~0[100~1| 25~2| + | 50~0| 25~1| 25~2|100~3|
377 | 50~0| + | 25~0| 25~1| + | 50~0| 25~1[100~2| + [100~0|100~1| 50~2| 25~3]
416 | 25~0] + | 50~0]100~1] + | 50~0]100~1]100~2| + | 25~0]100~1]100~2| 50~3]|
476 [100~0| + [100~0| 50~1| + | 25~0| 50~1| 25~2| + | 50~0| 25~1| 50~2| 50~3]
590 [100~0| + | 50~0| 25~1| + | 50~0]100~1[100~2]| + [100~0| 25~1| 50~2]100~3]|
680 [100~0]| + [100~0| 50~1| + | 50~0]100~1]100~2| + | 50~0| 50~1] 50~2| 25~3]|
78 [100~0| + | 50~0]100~1] + [100~0]100~1| 50~2| + [100~0| 50~1| 25~2| 50~3]
789 | 25~0| + | 25~0| 25~1| + | 25~0| 50~1[100~2| + | 50~0| 50~1]100~2|100~3

The differences in cell structures may be due to the fact that the cell search is a global
optimization problem, but the SGD method is only guaranteed to find a local optimizer. Or this
may be due to the differences between the data associated with the different flaw types. More
work is needed to better understand the source for these differences. To illustrate some of the
differences, we present plots of the convergence behaviors of the cell search (search) and macro
skeleton architecture (eval) optimizations in Appendix A. Over 100 epochs, we see a wide range
of behaviors, maximum accuracy values achieved, and search/eval differences across the various
data sets. More work is needed to better understand how these convergence behaviors impact the
flaw detection results in general.
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4.2. Flaw Detection Results

Table 4-2 shows the flaw detections results using the three models descried above. The two
JAE-Mixing-N models (with N = 50 and N = 100) are considered baselines for the
NAS-GDAS-JAE model, as they use the manually-designed architecture described in previous
results [5]. The results listed in the table are the sample means and sample standard standard
deviations of the class averaged accuracy per Juliet Test Suite data set. The boldfaced results
indicate the best mean class-averaged accuracy for each data set (i.e., per row). Note that many of
the differences between the means are not separated by more than a single sample standard
deviation (across methods/columns), and thus the improvements using NAS may not be
statistically significant. More work is need to determine if these improvements generalize and are
statistically significant.

Table 4-2. Sample means and standard deviations of class averaged accuracy
using 5 x 2 cross validation (boldfaced results are best across methods for
each data set)

CWE | JAE-Mixing-50 | JAE-Mixing-100 | NAS-GDAS-JAE
121 | 0.997240.0009 | 0.9975-+0.0008 0.9970+0.0012
190 | 0.9867+0.0068 0.9907+0.0059 0.9884+0.0067
369 | 0.9485+0.0206 | 0.9500+0.0203 0.9703+0.0220
377 | 0.9309+0.0614 | 0.9285+0.0420 0.9514+0.0410
416 | 0.9074+0.0620 | 0.9359+0.0471 0.9468+0.0400
476 | 0.9991+0.0019 1.0000+0.0000 1.0000+0.0000
590 | 1.0000+0.0000 1.0000+0.0000 1.0000+0.0000
680 | 0.934440.0139 | 0.9356+0.0115 0.9417+0.0197

78 0.9398+0.0110 | 0.9360+0.0143 0.9427+0.0155
789 | 0.9672+0.0201 0.9630+0.0183 0.9683+0.0215
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5. CONCLUSIONS

In this work, we implemented a cell-based neural architecture search strategy to improve upon a
manually-designed multimodal learning model for software flaw detection. Our results indicate
that NAS leads to improved multimodal models that are specific to the software data being
analyzed. These preliminary results provide a starting point for leveraging NAS for such a
problem, as there are many open questions that still need to be addressed. In the work presented
here, we used a cell that replaces only a small part of the JAE Classifier Model from [5].
However, larger, more complicated cells could lead to more pronounced improvements, but this
would come at increased optimization and training cost as well. Determining the trade-offs
between cell complexity and computational cost could be a useful research activity.
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APPENDIX A. NAS-GDAS-JAE Cell Search Results
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Figure A-1. NAS-GDAS-JAE Cell Search Results - Part 1
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