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ABSTRACT

This report summarizes work done under the Laboratory Directed Research and Development
(LDRD) project titled "Incorporating physical constraints into Gaussian process surrogate
models?' In this project, we explored a variety of strategies for constraint implementations. We
considered bound constraints, monotonicity and related convexity constraints, Gaussian processes
which are constrained to satisfy linear operator constraints which represent physical laws
expressed as partial differential equations, and intrinsic boundary condition constraints. We wrote
three papers and are currently finishing two others. We developed initial software
implementations for some approaches. This report summarizes the work done under this
LDRD.
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1 INTRODUCTION

This report summarizes work done under a two-year Laboratory Directed Research and
Development (LDRD) project titled "Incorporating physical constraints into Gaussian process
surrogate models." In this project, we explored a variety of strategies for constraint
implementations. We considered bound constraints, monotonicity and related convexity
constraints, Gaussian processes which are constrained to satisfy linear operator constraints which
represent physical laws expressed as partial differential equations, and intrinsic boundary
condition constraints. We wrote three papers and currently are finishing two others. We developed
initial software implementations for some approaches. This report summarizes the work done
under this LDRD.

The various constraint implementation strategies are extensively described in our papers. We do
not reproduce the entire papers here but instead give an annotated bibliography. This report is
divided into two subsequent chapters: Chapter 2 lists the publications and Chapter 3 describes our
software. The final Chapter presents a summary.
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2. PAPERS

The papers produced as part of this LDRD research program are listed below with annotations.

2.1. Constrained Gaussian Processes

The literature on constrained Gaussian processes (GPs) is extensive and growing rapidly. There
are many different approaches: some methods relax the global constraints to constraints at a finite
set of "virtue' points; others transform the output of the GP to guarantee the predictions satisfy
constraints, or construct a sample space of predictions in which every realization satisfies the
constraints; some methods involve a modification or transformation of the likelihood function or
covariance kernel while others do not.

A major contribution of this LDRD is a 40 page survey paper which describes the main areas of
constrained GP research and provides readers an overview of the approaches. We completed this
survey paper in June, 2020 and submitted it to the Journal of Machine Learning for Modeling and
Computing. It was reviewed internally by Khachik Sargsyan who provided detailed comments
which helped tighten and improve the manuscript.

The GP survey paper discusses bound contraints, monotonicity and convexity constraints,
"physics-informer approaches where the GP is constained to satisfy linear operator constraints
which represent physical laws expressed as partial differential equations (PDEs), and boundary
condition constraints. A main goal of the paper is to aid readers in selecting methods appropriate
for their applications. In addition to presenting a survey of existing approaches, this paper
identified common themes in constraint implementation approaches and suggests a categorization
of strategies for enforcing constraints. The addition of constraints typically adds computational
cost and complexity to the formulation and training process, so strategies to address these
computational challenges such as low rank methods were provided.

The paper is titled: "A Survey of Constrained Gaussian Process Regression: Approaches and
Implementation Challenges", with authors Laura Swiler, Mamikon Gulian, Ari Frankel, Cosmin
Safta, and John Jakeman. [12]. It is available on arXiv (SAND2020-6086J):

• https://arxiv.org/abs/2006.09319

8



2.2. Tensor Basis Gaussian Processes

Ari Frankel led the development of a Gaussian process regression model for hyperelastic material
behavior. This work is described in the paper titled "Tensor Basis Gaussian Process Models of
Hyperelastic Materials" by Ari Frankel, Reese Jones, and Laura Swiler. [1]. This paper was
accepted by the Journal of Machine Learning for Modeling and Computing and will be published
in the inaugural issue. It is available at the following sites:

•

•

doi:10.1615/.20200333251

https://arxiv.org/abs/1912.10872

In this paper, we developed an approach to model the components of the Cauchy stress tensor as a
function of the components of the Finger stretch tensor using a Gaussian process. Then, we
presented an improvement on this approach that embeds the rotational invariance of the
stress-stretch constitutive relation in the GP representation. Finally, we considered an approach
that recovers the strain-energy density function and derives the stress tensor from this potential.
The paper demonstrated the efficacy of the GP regression on a synthetic dataset corresponding to
the Mooney-Rivlin hyperelastic constitutive relation. The GP regression approach that embeds
rotational invariance attained orders of magnitude improved accuracy compared to a standard GP
regression approach.

The "tensor basis" GP developed for hyperelastic materials is a good example of
physics-informed machine learning, in which knowledge of the material laws and physics at hand
yields a substantial improvement over a naive implementation of popular machine learning
models. This particular approach is of immediate use to researchers in computational material
science who wish to develop robust and accurate models for the macroscale behavior of complex
materials. In addition, the embedding of the physics in a GP framework enables the calculation of
uncertainty in predictions, which is an important part of building confidence in a machine
learning model.

2.3. Optimal Sampling

The question of how to select samples to best inform a Gaussian process has been a long-standing
research question. Typically, this is done by choosing points (often from a candidate set) that
minimize the average predictive variance of the GP over the domain. [H, 9, 11)] or which minimize
the predictive variance at a particular location of interest [3] .

John Jakeman led an investigation of optimal experimental design for Gaussian process models.
This work is documented in the article titled "Weighted greedy-optimal design of computer
experiments for kernel-based and Gaussian process model emulation and calibratioe by H.
Harbrecht, J.D. Jakeman, and P. Zaspel [5]. The paper has been submitted to Communications in
Computational Physics and the authors are addressing the reviews.

This paper focuses on the approximation of high dimensional functions by kernel-based methods,
with the goal of constructing approximations that are accurate with respect to to a probability
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density function of random variables. The paper presents a nested greedy sampling strategy based
upon a weighted modification of the pivoted Cholesky factorization which successively generates
samples with the goal of minimizing error in regions of high probability. The approximation error
is defined with respect to a weighted LP-norm.

A major contribution of this paper is to allow the specification of a probability density function
(PDF) over the input random variables which is then incorporated in the approximation and
optimal experimental design. Typically, the optimal designs assume independent uniform inputs
and are not tailored to the input PDFs. Numerical experiments validate that this new importance
sampling strategy is superior to other sampling approaches, especially when used with
non-product probability density functions. The paper demonstrates how to use the proposed
algorithm to efficiently generating surrogates for inferring unknown model parameters from
data.

2.4. Boundary constraints

As mentioned in the survey article HZ when a GP is expected to satisfy a linear operator
constraint, it is possible to develop covariance operators that satisfy those constraints explicitly
and even perform co-kriging. [7] [6] developed covariance operators that embed linear
differential operators between function observations to enforce satisfaction of ordinary and partial
differential equations.

One special case is that of a differential equation subject to boundary condition constraints: a
boundary value problem. This situation can arise in a number of physical processes of interest,
including prominent examples of the Poisson equation for electrostatics, advection-diffusion of a
scalar (such as temperature or species concentration), wave propagation (as in spectral analysis of
acoustics), or elastic deformation of materials. In these cases there is a known linear differential
equation with additional information associated with the behavior of the function of interest at the
domain. Enforcing the boundary conditions explicitly would require adding fictitious data points
to the training data and increase the cost of inference. Requiring the data points to satisfy the
differential operator would complicate the formulation and estimation of the Gaussian process. If
the observed data were noisy, then there would also be no guarantee that the boundary conditions
would be satisfied exactly.

In a recent work, [111] demonstrated that by projecting the observed data to an orthonormal
eigenbasis that goes to zero at the boundaries, the resulting GP will also satisfy those boundary
conditions since any linear combination of GPs is also a GR The eigenbasis derived in that work
was determined by approximating the spectrum associated with the Laplacian operator. In
summary, [111] derived a GP that satisfies the Poisson equation subject to Dirichlet boundary
conditions. The reduction of the regression to a finite eigenbasis also represented a compression
of the dataset and led to a large speed-up due a much smaller matrix inversion.

Ari Frankel and Mamikon Gulian have combined the linear operator GP approach for PDEs with
the boundary condition approach. Their paper (in draft, to be submitted by Sept. 30) shows that
this spectral expansion can be used to solve other boundary value problems with different
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governing equations and boundary conditions with similar computational speed-up. The paper
provides the derivation of the covariance matrix for a "co-kriging" GP for a PDE operator based
on the spectral expansion formulation. The methodology is demonstrated on two example
problems: a 1-D Poisson equation with noise in both the solution observations and the forcing
function, and a 2-D Helmholtz problem.

2.5. Stochastic parameter treatment within GP-PDE approaches

The fifth paper involves explicitly including stochastic parameters in the formulation of Gaussian
processes for PDEs. That is, the paper starts with a formulation where a Gaussian processes may
be constrained to satisfy linear operator constraints of the form

Yu = f (2.5.1)

given data on f and u. When .=Z is a linear partial differential operator, equation 2.5.1 can be
used to constrain GP predictions to satisfy known physical laws expressed as linear partial
differential equations. This formulation requires forming the joint Gaussian process [u; f] where
observations on both the forcing function (or source term) and on the solution at various points in
the domain are used to inform the overall GP. [7] [6] The covariance matrix of the resulting GP is
a four block matrix assembled from the covariance matrix of the GP for the solution u, the
covariance of the GP for the forcing function, and the cross terms.

This fifth paper extends a GP formulation based on 2.5.1 to allow for stochastic parameters
within the PDE such as diffusivity coefficients or material properties. For example, the goal is to
develop a GP framework to model the following simple PDE with a stochastic parameter :

d2u
d — —1x2

(2.5.2)

The objective is to treat inherent randomness in parameters such as a diffusion coefficient within
the GP formulation. This requires another co-kriging layer to be added to the Gaussian process
and formulating the GP over both [x, 4]. There are some issues with ensuring that the GP properly
incorporates the uncertainty in the stochastic parameter when calculating the mean and variance
predictions from the joint GP. This is the topic of the last paper.
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3. SOFTWARE

In this section, we summarize the software developed under this LDRD. We have created a
repository on Sandia's gitlab site:

• https://gitlab.sandia.gov/lpswile/ConstrainedGP

Contact Laura Swiler for access to this repository. There are example scripts in the directory
code_sept 2 O. We have annotated these scripts but emphasize this is prototype code, not
production code. All the code is written in Python. The scripts that we currently have include:

• spline_boundGP . py This implements bound constraints with a spline approach for a
1-D problem.

• spline_boundGP_multi .py This implements bound constraints with a spline
approach for multiple dimensions.

• s ample_boundDer . py This implements monotonicity constraints with a four-block
covariance matrix using an MCMC approach.

• pde_constraints_example .py This implements a simple example of the linear
operator four block covariance for a GP which satisfies a PDE.

• lagp There is an entire directory for lagp. This directory has a revised version of the Local
Approximation GP developed by Gramacy et al. [®, 3] This code is written in Python, not
R, and is a new implementation to allow users who have large data sets to construct and
evaluate GPs efficiently.
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4. SUMMARY

In this Laboratory Directed Research and Development (LDRD) project, we investigated a wide
variety of approaches for incorporating physical constraints into Gaussian process models. We
explored bound constraints, monotonicity, and convexity constraints. We also explored Gaussian
processes which are constrained to satisfy linear operator constraints which represent physical
laws expressed as partial differential equations, and intrinsic boundary condition constraints. We
examined approaches which employ various transformations on the output to guarantee the
predictions satisfy the constraints, approaches which involve truncated multivariate Gaussians,
and a formulation involving splines, where a multivariate Gaussian prior is placed on a class of
spline functions and the constraints are incorporated through constraints on the coefficients of the
spline functions. We examined the idea of relaxing the global constraints to constraints at a finite
set of "virtue' points. We examined methods that involve a modication or transformation of the
likelihood function or covariance kernel. Because the addition of constraints increases the
computational cost of building and training the Gaussian process, we investigated approaches to
improve computational efficiency of GPs.

We developed two special formulations for particular problems: a tensor basis GP to handle the
types of rotational invariance constraints found in materials modeling problems and a GP for
PDEs which incorporates boundary conditions through a spectral expansion. We demonstrated
the tensor basis GP on a hyperelastic materials model and the spectral expansion GP on boundary
value problems for a Poisson equation and for a Helmholtz equation.

Finally, this work has led to more communication and awareness of constrained Gaussian
processes across Sandia. Mamikon Gulian presented the work at the Machine Learning and Deep
Learning 2020 Workshop M. Laura Swiler plans to present it at SIAM CSE 2021. Further, our
team members are involved in subsequent projects which will leverage these contributions.
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