SAND2020- 10234R

Waveform Modeling and
Simulation for Crustal Phases

Rsyan Modrak (Los Alamos National Laboratories); Nathan Downey
(Sandia National Laboratories)

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Elastic wave simulations in layered crusts
and implications for SALSA3D crustal

tomography

=

——]

Ryan Modrak (Los Alamos National Laboratories)

3

Goals
Numerically simulate wave propagation in layered crustal models with laterally-
varylng structure

Investigate seismic phases Pg and Pn; help understand the variability and
complexity of these phases in recorded seismic data

Use wavefield movies and “wavepaths™ to suggest improvements for SALSA3D
crustal tomography

4 | Cross Section Used for Wavefield Simulations

For numerical wave simulations, we chose a ~400 km cross-section
from the North Korea Test Site to station MD]J. Crustal structure
along this path has been well studied, and unlike many nearby
stations, MDJ corresponds to an entirely continental path.

5

SALSA3D Velocity Structure Used for Wavefield Simulations

200 250
Offset (km)

200 250
Offset (km)

200 250
Offset (km)

For a 2D 1sotropic elastic velocity model, we interpolated P-wavespeeds
(middle) from SALSA3D. To obtain density (top) and S-wavespeeds
(bottom), we used the depth-dependent ratios defined by AK135EF

¢ | Synthetic Record Sections I

Vertical displacement Radial displacement Transverse displacement

150 200 150 200 150 200
Offset (km) Offset (km) Offset (km)

Using a 2D spectral-element solver and an impulsive source-time function with 1 Hz dominant frequency, we computed
the above displacement record sections. Pg 1s the first arriving phase at offsets less than 150 km, being overtaken by Pn
at greater offsets.

7 | Woavefield Snapshot (Direct Body Phases Only) _

5 Pn Pg

-

P-§'T"wavetield snapshot just before Pr overtakes Pg. For easier visualization of direct body wave phases, this simulation was carried out with ¢
an absorbing free surface.

Despite spatial overlap, the two phases can be distinguished by incidence angle: Pg travels horizontally through the crust and has ~0°
incidence, while Pz travels upward from the Moho and has >0° incidence.

s | VWavefield Movie Superimposed on Bender Ray Paths

Distance (km)

200 250
Offset (km)

Note: Movie and raypaths may not display correctly from Sharepoint/ browset

P traveltime kernel

Depth (km)

200 250
Offset (km)

E
=,
s
o
D
(]

200 250
Offset (km)

Using a cross-correlation traveltime imaging condition relevant to traveltime tomography, we backpropagated P-wave
phases. The resulting Pz kernel, or “wavepath” is relatively simple. The resulting Pg kernel is more complicated,
revealing discrete waveguide modes. These results suggest that Pg can be represented to some extent by ray paths
within the deeper crust. Ray modeling, however, ignores diffraction, internal reflection, and mode superposition

effects evident in the Pg kernel.

Normal modes revealed by sliding a |-second window along _

10
the Pg wavetrain |

Pg kernel

Depth tkrry)

-50 G

Pg + 1 sec kernel

E .
X2
a
)
o

Offset (k)

Pg + 2 sec kernel

Dapth (km)
g2 & 8

g

g

Offsel (o)

11

Implications for SALSA3D tomography

Wave-equation sensitivity kernels. Kernels are important for developing
intuition. However, they are expensive and might vary a lot depending on
structure.

Asymptotic methods for estimating waveguide first arrivals. Waveguide
asymptotics (e.g.,) are mathematically rigorous,
computationally inexpensive and generalizable to different velocity structures.

Ray-like approximations in quasi-layered models. In a quasi-layered
CRUST1.0 model like SALSA3D, propagation time 1s closely related to the speed
of the fastest layer. A flat path through the fastest layer, combined with an
empirical distance-based correction to account for internal reflection and
diffraction, might be a useful approach.

g e

i! [y
| fx“"“""'

.
i - ' & t-

13

Pyg kernel using 1D structure (based on SALSA3D profile beneath station MDJ)

Depth (k)

Oifset o)

14

QUESTION 1

Are these
pronounced
fringes real or
spurious?

e.g. do they
- disappear in 3D?

15

QUESTION 2

Why is the
depth
dependence
different?

) e.g. related to
layer
thickness?

A Fast CUDA-Based Seismic
Waveform Modeling Package

e o - mm - = == e — —

Nathan Downey

17 I Motivation

A stated goal of the GNDD Signal Propagation project is to understand the
sensitivity of seismic crustal phases to changes in crustal velocity in order to
better use these phases in crustal tomography.

However, it 1s understood that the current technology for tomographic inversion,
based on ray formulations of seismic wave propagation, are insufficient to tully
capture the complexities of seismic propagation in FEarth’s crust.

Therefore, new tools must be developed to help us achieve the ability to study the
complex wavefields in Earth’s crust, with crustal waveform modeling being the
only known method by which this can be achieved.

18 | Motivation

In this presentation I will outline progress that has been made to date in an
effort to modify a community research modeling code (“simulator”) into a tool
which can be used by GNDD researchers to study the effect of varying crustal
velocity on wavetield propagation.
I will review simulator technologies and why I chose the particular simulator
used.

I will outline the structure of the python wrapper that I constructed around the
simulator and the tools available to researchers investigating crustal wavetields.

I will give an example of a simulation of an event in Central Utah showing the
utility of the wrapper and its easy integration with existing python tools.

I will discuss future work both in the near-term and long-term

19

Simulator Technologies

Three simulator technologies were investigated as possibilities for use in crustal modeling
studies. The first of these, SpecFEM, is the community standard modeling code, which
uses a finite element formulation to compute synthetic seismograms. The second was a
Sandia-developed code similar to SpecFEM but with many more advanced features and
advanced optimization. The third was a GPU accelerated finite ditference code based on
an old code base dating back a few decades.

I eventually chose the GPU accelerated code because of the following features:

It is extremely fast and can be run on the GPU machines that we already have available in our
department. %he speed 1s achieved by: using GPU acceleration, computing in 2d and
converting to a 3d response after the simulations, and the use of a finite difference
formulation.

This code has been used in several recent studies on waveform modeling at both teleseismic
and local distances. (]Li et al., 2014a; Li et al., 2014b; Chu and Helmberger, 2014). One of these
studies (Chu and Helmberger, 2014) examined Lg propagation at regional distances to look at
sensitivity of Lg to changes in velocity deep in the crust. This type of study 1s very much in
alignhment with what we are trying to accomplish in GNEM.

This code is based on an old and well-tested code base that has been used in a variety of finite
difference-based modeling studies in the past.

20 | Python Wrapper

The GPU simulator as I received it used MATLAB for model preparation and data post processing.
I have built a new wrapper that eliminates the need for MATLAB and provides much more powerful
model construction and data processing capabilities.

New structure of Simulator Software

Old structure of Simulator Software Model construction in

Python (using CRUST1.0 or

MATLAB model arbitrary layered model)

construction

Addition of crustal scatterers and/or

Earth Flattening Transformation : :
anomalies to crustal regions of model

Manugl ~_JOb Automatic scheduling of large runs
submission
CUDA2D Simulator
CUDA2D Simulator

Python data Post Processing (2D to 3D)

MATLAB post processing (2D to

3D) and output to isis format Automated combination of data into
obspy streams for further analysis

Python Wrapper — Code Structure

Simulation Collection Object

Data Members:
-Collection of
Simulation Objects
Methods:
-execute() -dynamically
assigns simulations to
free GPUs and calls
their respective
execute() method

Simulation Object

Data Members:

-Model Object
-Source Object
-Receiver Object

Methods:

-execute() - set up job
directory, output
parameter files and run
simulation jobs on
specified GPU

-various parameter
setting methods
-dataProcessing() - post
process output data,
combine appropriate
simulation outputs into
obspy streams

Source Object

Data Members:
-Various source parameters

Methods:
-setCoords() - sets source
location
-addDislocationComponent() -
adds a double couple
component to the source
-addVolumetricComponent() -
adds explosive component to
source
-setSourceTimeFunction() -
sets time dependence of
source activity

Receiver Object

Data Members:
-Coordinates of each sensor in
the simulation

Methods:
-setCoords() - sets receiver
location

Data Members:

Inherits From -same as Model Object
/ Methods:

-getProfile() - creates model
based on 1D profile
-assertMoho() - removes any
scatterers or anomalies below
Moho in model

2 | Python Wrapper — Code Structure, MOW Profile Model Object

Model Object (abstract base class)
Data Members:

-Velocity Model and associated
parameters Inherits From

Methods: \
-setGeometry() - uses source
and receiver coordinates Crust1 Model Object
to set the geometry of the Data Members:
simulation -same as Model Object
-addPerturbations() - adds Methods:
random scatterers to model -getProfile() - extracts profile
-imageProfile() - generates along source-receiver line
preview image of the model from CRUST1.0 model
-addGaussianAnomaly() - adds -assertMoho() - removes any

a Gaussian shaped velocity
anomaly to the model
-getProfile() (abstract)

scatterers or anomalies below
Moho in model, returning
velocities to pure CRUST1.0
values in the mantle.

23

Example Run — Circleville Event in Central Utah
import osul . _ Imports needed for run. The code for the wrapper is contained in the
import multiprocessin y 1 7 ;
imgort CUD%ZDSirm%ator S CUDAZDSImul‘ator‘module. multiprocessing is used to set up the runs
import obspy for each receiver in parallel.
simulationDirectory = "Simulations” The runfiles and output for each receiver will be in the directory
simiColicctcnlitce o iIcS & Simulatons Simulations/ Test_Simulations/Receiver_2?/

receiverCoords =4§—113.029831, 40.92083, 0.), e
-110.739998, 39.473, Og,
-113.362701, 37.550598, 0.),
-111.750343, 40.692501, 0.),
-110.741798, 37.938, O?,
-112.775002, 41.779671, 0.
-111.449951, 40.601952, 0.
-113.243896, 37.011799, 0.
-111.633331, 40.015499, 0.
-112.184303, 38.0415, 0.), : _ :
-112.074997, 39.95483, 0.), ——— Receivers (stations) whose data we are attempting to model
-112.120331, 40.6525, 0.),
-112.310997, 37.443901, 0.
-110.245697, 39.627899, 0.
-113.854698, 38.533699, 8

0.

v v v v

-109.569504, 40.570801,
-110.523827, 39.110828,
-113.087502, 37.595402, 0.
-112.447197, 38.609501, O.
-111.208168, 39.296501, 0.
-113.125397, 37.356098, O. e

source = simulator.Source((-112.329, 38.240, 9.6)) _ .
source.addDislocationComponent(strike=336, dip=69, rake=-129) Source parameters, these are common to all the simulations. Here

source.add VolumetricComponent(amplitudeRatio=0.25) : :
source.setSourceTimeFunc%on(typeZ Gaussian', alpha=-40) we specify a source whose DC percentage is 75.

—_—e v v v v U U u

24 m Example Run — Circleville Event in Central Utah (continued) _

def setupJob receiverTuple)r: < This function is used by multiprocessing to setup jobs in parallel
receiverlndex = receiver uple[O} 7 Setup the name and get
receiverCoord = receiverTuple . . :
thisName = os.path.join(simulationDirectoty, — receiver coordinates for
simCollectionDirectory, this simulation

"Receiver_{:02d}".format(receiverlndex)) =
sim = simulator. CUDA2DSimulation(simDir=thisName,numGPUs=1,simTypes=[PSV']) Instantiate simulation and
rec = simulator.Receiver(receiverCoord) — ,
sim.setReceiver(rec) add source and receiver

sim.setSource(source)

it = Simulator-Cr}‘llit(%leﬁg‘f)eégig:i%%dgfggé;&dﬁgg3)5O'O’ Create the velocity model object for the simulation. Here we set
model.setGeometryFromSim (sim) N ' the geometry from the simulation object’s source and receiver E
model.getProfile() coordinates, we extract a profile from CRUST1.0, add crustal
model.addPerturbations() — : :
model.outputProfile() scatterers, output the model and model images, and, finally, add
model.imageProfile(showPlots=False) the model to the simulation object.
sim.setModel(mode
sim.setSimulationParameters(nt=4001, dt=0.03, itrecord=1, itprint=100)
return sim « The setupJob function returns the simulation object with source, receiver and model members defined

simPool = multiprocessing.Pool() The simulations (one per receiver) are setup in

simCollection = simulator.simulationCollection(simPool.map(setupJob, enumerate(receiverCoords))) parallel and returned as a simulationCollection object I

gpuPool=[0,1] The simulations are run, being dynamically assigned to
simCollection.execute(gpuPool) [ejther GPUO or GPU1 as they become available

vertStream = obspy.Stream() -

for sim in Sim%O cction: Finally, the computed synthetic data are collected from -
f;g;t' trr%(;islsfitig)m.streamzﬁxp . ‘ | across the §imulations into an obspy _stream. object and
vertStream.wnte(os.pat}Cl.jcflln(slmlf)lguOnD1rector5g output to file. The data from each simulation are also
simCollectionirectory, . . - : :
simCoﬂectionDirectog+"_Section.pkl"),formatZ"PICKLE") i stored in obspy streams in each simulation directory.

s | Example Run — Circleville Event in Central Utah - Output

Map View of Simulation Geometry

B
o

o
o
=
£
S
L

w
o

=113 -112 -111 -110

Longitude
P-Wave Velocity

200

100
Distance from Source Epicenter (km)

Output

Example Run — Circleville Event in Central Utah

26

—
=]
Q
[=}
e
[=]
[=]
=
—
[=]
-
2
(=}
I~
s3]
—
—_—
%]
i}
[&]
c
Jram}
-
™
e
i

.
M,

Network:

1

Offset [km]

27 | Future Work

Scientific:

Begin to study the effect of different types of crustal velocity anomalies on Pg, Pn, L.g and Sg
wave propagation at local and regional distances. This will require setting up simulations to
highlight these phases and compare seismograms from a base model to those simulated using a
model with various crustal anomalies in Vp, Vs and density. The simulator’s current state allows
this work to start immediately.

Code Development:

Add in support for the Earth flattening transformation needed for teleseismic waveform
modeling. (Near Term).

Add in a ray tracer to allow wavetield propagation to be compared with an infinite frequency
response (Medium Term)

Add alternative methods by which seismograms can be computed, using, for example,
SpecFEM2D, reflectivity and integral transform methods (Long Term)

Upgrades and bug fixes, add user-requested features (Forever and Always)

