
Waveform Modeling and
Simulation for Crustal Phases

PRESENTED BY

Ryan Modrak (Los Alamos National Laboratories); Nathan Downey
(Sandia National Laboratories)

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energys National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-10234R

Elastic wave simulations in layered crusts
and implications for SALSA3D crustal
tomography

Ryan Modrak (Los Alamos National Laboratories)

3 Goals •

Numerically simulate wave propagation in layered crustal models with laterally-
varying structure

0 Investigate seismic phases Pg and Pn; help understand the variability and
complexity of these phases in recorded seismic data

o Use wavefield movies and "wavepaths" to suggest improvements for SALSA3D
crustal tomography

4 Cross Section Used for Wavefield Simulations

For numerical wave simulations, we chose a —400 km cross-section
from the North Korea Test Site to station MDJ. Crustal structure
along this path has been well studied, and unlike many nearby
stations, MDJ corresponds to an entirely continental path.

5 SALSA3D Velocity Structure Used for Wavefield Simulations

Ex

0 -

25 -

NKT

ImE11111

_E
a
I-.
ra,
12

50 -

75 -

10D -,
0 501 100 1AD

I 1D 0

Offset (km)

0 -
NKJ

25 -
Ex
_cI-+
a
ra,

50 -

12 75 -

100
D 50 10G 15G 200 250

Offset (km)

0 -
NKT

25 -
E

_cA-.
a
a)

50 -

a 75 -

100 -
0 100 150 200 250

Offset (km)

300 31E1

MDJ

4170

MDJ

300 350 400

300 350

MDJ

400

1

3.50

3.25

3.00

2.75

- 7.5

- 7.0

6.5

III

11-
3 5

For a 2D isotropic elastic velocity model, we interpolated P-wavespeeds
(middle) from SALSA3D. To obtain density (top) and S-wavespeeds
(bottom), we used the depth-dependent ratios defined by AK135F.

6 Synthetic Record Sections

Pn Pg

Vertical displacerrent Radial displacement

100 150 200 250 300 350 0 50 100 150 200 250 300 350

Offset (kni) Offset (km)

Transverse displacement

Using a 2D spectral-element solver and an impulsive source-time function with 1 Hz dominant frequency, we computed

the above displacement record sections. Pg is the first arriving phase at offsets less than 150 km, being overtaken by Pn

at greater offsets.

7 Wavefield Snapshot (Direct Body Phases Only)

z / /
KT

Pn Pg

t = 22.0 s

150

•

P-SVwavefield snapshot just before Pn overtakes Pg. For easier visualization of direct body wave phases, this simulation was carried out with
an absorbing free surface.

Despite spatial overlap, the two phases can be distinguished by incidence angle: Pg travels horizontally through the crust and has —0'
incidence, while Pn travels upward from the Moho and has >0° incidence.

8 Wavefield Movie Superimposed on Bender Ray Paths

Pn
Pg

0
10

20 -

30 -
i 40 -_
-E. 50 -
a_
o

70

80
90

100

60a)

NKT

50

Distance (km)

50 100 150 200 250 300 350

100 150

7Y 77 .,-",/7,-//,P.

i i
200 250

Offset (km)

t= 1 s

PAW

•

Note: Movie and raypaths may not display correctly from Sharepoint/ browser

Pn traveltime kernel
9

0 -

-25
a

-50 -
-a

-75 -

-1 00 -,

0

NKT MDJ

Nowainw-

50 -150 200 250

Offset (km)

350
440

Pg traveltime kernel
NKT

-150 200 250

Offset (km)

MDJ

400

Using a cross-correlation traveltime imaging condition relevant to traveltime tomography, we backpropagated P-wave
phases. The resulting Pn kernel, or "wavepath" is relatively simple. The resulting Pg kernel is more complicated,
revealing discrete waveguide modes. These results suggest that Pg can be represented to some extent by ray paths
within the deeper crust. Ray modeling, however, ignores diffraction, internal reflection, and mode superposition
effects evident in the Pg kernel.

10 Normal modes revealed by sliding a I-second window along
the Pg wavetrain

Pg kernel

Pg + 1 sec kernel

Pg + 2 sec kernel

-200 -150 1 150 200

11 Implications for SALSA3D tomography ■

° Wave-equation sensitivity kernels. Kernels are important for developing
intuition. However, they are expensive and might vary a lot depending on
structure.

0 Asymptotic methods for estimating waveguide first arrivals. Waveguide
asymptotics (e.g.,) are mathematically rigorous,
computationally inexpensive and generalizable to different velocity structures.

Ray-like approximations in quasi-layered models. In a quasi-layered
CRUST1.0 model like SALSA3D, propagation time is closely related to the speed
of the fastest layer. A flat path through the fastest layer, combined with an
empirical distance-based correction to account for internal reflection and
diffraction, might be a useful approach.

Ongoing research questions

13

Pg kernel using 1D structure (based on SALSA3D profile beneath station MDJ)

20

40

z
60

ao

100

Offse k

Pg kernel using 3D structure (based on SALSA3D along NKT-MDJ cross-section)

NKT Moj

Are these
pronounced

fringes real or
spurious?

e.g. do they
I-i disappear in 3D?

0 -150

QUESTION 2

Why is the
depth

dependence
different?

e.g. related to
layer

thickness?

A Fast CUDA-Based Seismic
Waveform Modeling Package

17 Motivation

A stated goal of the GNDD Signal Propagation project is to understand the
sensitivity of seismic crustal phases to changes in crustal velocity in order to
better use these phases in crustal tomography.

However, it is understood that the current technology for tomographic inversion,
based on ray formulations of seismic wave propagation, are insufficient to fully
capture the complexities of seismic propagation in Earth's crust.

Therefore, new tools must be developed to help us achieve the ability to study the
complex wavefields in Earth's crust, with crustal waveform modeling being the
only known method by which this can be achieved.

18 Motivation

In this presentation I will outline progress that has been made to date in an
effort to modify a community research modeling code ("simulator") into a tool
which can be used by GNDD researchers to study the effect of varying crustal
velocity on wavefield propagation.

I will review simulator technologies and why I chose the particular simulator
used.

I will outline the structure of the python wrapper that I constructed around the
simulator and the tools available to researchers investigating crustal wavefields.

I will give an example of a simulation of an event in Central Utah showing the
utility of the wrapper and its easy integration with existing python tools.

I will discuss future work both in the near-term and long-term

•

19 Simulator Technologies
Three simulator technologies were investigated as possibilities for use in crustal modeling
studies. The first of these, SpecFEM, is the community standard modeling code, which
uses a finite element formulation to compute synthetic seismograms. The second was a
Sandia-developed code similar to SpecFFINI but with many more advanced features and
advanced optimization. The third was a GPU accelerated finite difference code based on
an old code base dating back a few decades.

I eventually chose the GPU accelerated code because of the following features:

1. It is extremely fast and can be run on the GPU machines that we already have available in our
department. The speed is achieved by: using GPU acceleration, computing in 2d and
converting to a 3d response after the simulations, and the use of a finite difference
formulation.

2. This code has been used in several recent studies on waveform modeling at both teleseismic
and local distances. i et al., 2014a; Li et al., 2014b; Chu and Helmberger, 2014). One of these
studies (Chu and Helmberger, 2014) examined Lg propagation at regional distances to look at
sensitivity of Lg to changes in velocity deep in the crust. This type of study is very much in
alignment with what we are trying to accomplish in GNEM.

3. This code is based on an old and well-tested code base that has been used in a variety of finite
difference-based modeling studies in the past.

•

20 Python Wrapper
The GPU simulator as I received it used MATLAB for
I have built a new wrapper that eliminates the need for
model construction and data processing capabilities.

Old structure of Simulator Software

MATLAB model
construction

Earth Flattening Transformation

Manual Job
submission

CUDA2D Simulator

MATLAB post processing (2D to
3D) and output to isis format

model preparation and data post processing.
MATLAB and provides much more powerful

New structure of Simulator Software

Model construction in
Python (using CRUST1.0 or
arbitrary layered model)

Addition of crustal scatterers and/or
anomalies to crustal regions of model

Automatic scheduling of large runs

CUDA2D Simulator

Python data Post Processing (2D to 3D)

Automated combination of data into
obspy streams for further analysis

21 Python Wrapper — Code Structure

IT T

Simulation Collection Object
Data Members:

-Collection of
Simulation Objects

Methods:
-execute() -dynamically
assigns simulations to
free GPUs and calls
their respective
execute() method

Simulation Object
Data Members:

-Model Object
-Source Object
-Receiver Object

Methods:
-execute() - set up job
directory, output
parameter files and run
simulation jobs on
specified GPU
-various parameter
setting methods
-dataProcessing() - post
process output data,
combine appropriate
simulation outputs into
obspy streams

Source Object
Data Members:

-Various source parameters
Methods:

-setCoords() - sets source
location
-addDislocationComponent() -
adds a double couple
component to the source
-addVolumetricComponent() -
adds explosive component to
source
-setSourceTimeFunction() -
sets time dependence of
source activity

1

Receiver Object
Data Members:

-Coordinates of each sensor in
the simulation

Methods:
-setCoords() - sets receiver
location

9> Profile Model Object
22 Python Wrapper — Code Structure, Model

Data Members:

Model Object (abstract base class)
Data Members:

-Velocity Model and associated
parameters

Methods:
-setGeometry() - uses source
and receiver coordinates
to set the geometry of the
simulation
-addPerturbations() - adds
random scatterers to model
-imageProfile() - generates
preview image of the model
-addGaussianAnomaly() - adds
a Gaussian shaped velocity
anomaly to the model
-getProfile() (abstract)

Inherits From -

Inherits From

Crustl Model Object

-same as Model Object
Methods:

-getProfile() - creates model
based on 1D profile
-assertMoho() - removes any
scatterers or anomalies below
Moho in model

Data Members:
-same as Model Object

Methods:
-getProfile() - extracts profile
along source-receiver line
from CRUST1.0 model
-assertMoho() - removes any
scatterers or anomalies below
Moho in model, returning
velocities to pure CRUST1.0
values in the mantle.

23 Example Run — Circleville Event in Central Utah

import os
import multiprocessing
import CUDA2DSimulator as simulator
import obspy

simulationDirectory = "Simulations"
simCollectionDirectory = "Test_Simulations"

receiverCoords = [(-113.029831, 40.92083, 0.),
-110.739998, 39.473, 0.),
-113.362701, 37.550598, 0.),
-111.750343, 40.692501, 0.),
-110.741798, 37.938, 0),
-112.775002, 41.779671, 0.
-111.449951, 40.601952, 0.
-113.243896, 37.011799, 0.
-111.633331, 40.015499, 0.
-112.184303, 38.0415, 0),
-112.074997, 39.95483, 0.),
-112.120331, 40.6525, 0.),
-112.310997, 37.443901, 0.
-110.245697, 39.627899, 0.
-113.854698, 38.533699, 0.
-109.569504, 40.570801, 0.
-110.523827, 39.110828, 0.
-113.087502, 37.595402, 0.
-112.447197, 38.609501, 0.
-111.208168, 39.296501, 0.
-113.125397, 37.356098, 0. i

1
 Imports needed for run. The code for the wrapper is contained in the
CUDA2DSimulator module. multiprocessing is used to set up the runs
for each receiver in parallel.

}The runfiles and output for each receiver will be in the directory
Simulations/ Test_Simulations / Receiver_??/

Receivers (stations) whose data we are attempting to model

source = simulator.Source((-112.329, 38.240, 9.6))
source.addDislocationComponent(strike=336, dip=69, rake=-129)
source.addVolumetricComponent(amplitudeRatio=0.25)
source.setSourceTimeFunction(type= Gaussian', alpha=-40)

Source parameters, these are common to all the simulations. Here
we specify a source whose DC percentage is 75.

24 Example Run — Circleville Event in Central Utah (continued)
def setupJob(receiverTuple).

receiverIndex = receiverTuple[0]
receiverCoord = receiverTuple [I]
thisName = os.path.join(simulationDirectory,

simCollectionDirectory,
"Receiver :02d} ".format receiverIndex))

sim = simulator.CUDA2D imulation(sim ir=thisName,numGPU
rec = simulator.Receiver(receiverCoord)
sim. setReceiver(rec)
sim.setSource(source)

This function is used by multiprocessing to setup jobs in parallel

1
 Setup the name and get
receiver coordinates for
this simulation

Is=1,simTypes= CPSVI Instantiate simulation and
add source and receiver

model = simulator.crustOneModel(beginPad=50.0, endPad=50.0,
h=0.5, minDepth=0.0, maxDepth=50.0)

model.setGeometryFromSim(sim)
model.getProfileQ
model.addPerturbations0
model.outputProfile0
modellmageProfile(showPlots=False)
sim.setModel(model)
sim.setSimulationParameters(nt=4001, dt=0.03, itrecord=1, itprint=100)

Create the velocity model object for the simulation. Here we set
the geometry from the simulation object's source and receiver
coordinates, we extract a profile from CRUST1.0, add crustal
scatterers, output the model and model images, and, finally, add
the model to the simulation object.

return sim 4 The setupijob function returns the simulation object with source, receiver and model members defined

simPool = multiprocessing.Pool0 The simulations (one per receiver) are setup in
simCollection = simulator.simulationCollection(simPool.map(setupJob, enumerate(receiverCoords))) parallel and returned as a simulationCollection object

gpuPool= [0,1] The simulations are run, being dynamically assigned to
simCollection.execute(gpuPool) either GPUO or GPU1 as they become available

vertStream = obspy.Stream0
for sim in simColfection:

sim.processDataQ
vertStream += sim.streamZexp

vertStream.write(os.path.join(simulationDirectory,
simCollectionDirectory,

Finally, the computed synthetic data are collected from
across the simulations into an obspy stream object and
output to file. The data from each simulation are also
stored in obs streams in each simulation directorsimCollectionDirectory+"_Section.pknformat="PICKLE") J PY Y.

25 Example Run — Circleville Event in Central Utah - Output

43

42

41

40

a,

3
39

38

37

36
—115 —114

Map View of Simulation Geometry

—113 —112
Longitude

—111 —110 —109

0

10

— 20
E

ri 30
a,

40

50

Map of the simulation showing all station
locations (green triangles) and the source
location (red dot). Each simulation profile
is shown with a blue or red line.

P-Wave velocities extracted from CRUSTI.0
along the red profile shown on the map.
The source location is shown with a red star
and the receiver with a green triangle.

P-Wave Velocity

•

8.0

7.2

6.4

5.6

>,

4.8

4.0

3.2

2.4
100 200

Distance from Source Epicenter (km)
300

26 Example Run — Circleville Event in Central Utah - Output

100

80

cu 60

40

20

50

Network: [Z] - (21 traces / 1914-01-61TDD:00:60)

100 150 200 250

Offset [km]

30 .0 350 400 450

Record section of the vertical
component of the output
from the Circleville event

II
simulation. This figure was
generated directly from the
obspy stream generated by
the dataProcessing() method
of the simulation object.
The seismogram modeled
using the velocity profile
shown on the previous slide
is marked with a red arrow.

27 Future Work •

Scientific:
O Begin to study the effect of different types of crustal velocity anomalies on Pg, Pn, Lg and Sg
wave propagation at local and regional distances. This will require setting up simulations to
highlight these phases and compare seismograms from a base model to those simulated using a
model with various crustal anomalies in Vp, Vs and density. The simulator's current state allows
this work to start immediately.

Code Development:
O Add in support for the Earth flattening transformation needed for teleseismic waveform
modeling. (Near Term).

O Add in a ray tracer to allow wavefield propagation to be compared with an infinite frequency
response (Medium Term)

O Add alternative methods by which seismograms can be computed, using, for example,
SpecFEM2D, reflectivity and integral transform methods (Long Term)

O Upgrades and bug fixes, add user-requested features (Forever and Always)

