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BACKGROUND OVERVIEW

\/ Stationary storage

Predicting and Mitigating Thermal Runaway |
Validated safety and reliability is one of the critical challenges $
identified in 2013 Grid Energy Storage Strategic Plan o ossm
i/ Strings and Targe
Safety incidents are rare but possible, including external (O S :
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How can we reduce facility investment risk? SN Lo e ’

* Prevent single point failure from cascading to

system 1000s or more

large-scale system risk. individual cels
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« Current approach is test to safety.

Large-scale testing is costly and simulations

allow exploration of the design space if well

grounded in reality. .
- Link source terms to material science - Py i |

www.internationalbattery.com

tomorrow Randy Shurtz talk.
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OVERVIEW
Predicting and Mitigating Thermal Runaway |

How can we reduce facility investment risk?
* ldentify boundaries between mitigation and cascading failure

Short circuit Thermal
simulated in modifications >
first cell acts — (Reduced
as boundary Baseline conductivity,
condition cell stack: increased
Thermal contact
runaway resistance):
propagates Propagation
mitigated.

Lamb, J., et al. (2015). J. Power Sources 283: 517-523.




OBJECTIVES

Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan

Develop validated predictive models of cell-to-cell then module-to- = |
module propagation.
> Concurrent experimental program for validation (Loraine Torres-Castro)
o QOther tasks link predictive heat release to material science (Randy Shurtz)
|dentify boundaries of propagation versus mitigation
Battery chemistry (Randy Shurtz)
Thermal aspects of system design
Electrical aspects of system design
Algorithms for active control strategies.
Develop capabilities to evaluate design tradeoffs.

Promote a broader acceptance of quality approaches to energy
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5 I TEAM Predicting and Mitigating Thermal Runaway
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METRICS AND MILESTONES

Predicting and Mitigating Thermal Runaway

o Relate material models to
experimental measurements at ‘
multi-cell level.

> Address safety modeling
assoclated with thermal ‘
modifications. Determine limits
of cascading failure.

° Future goals listed on Looking
Forward slide.

° Adjust high-temperature chemistry
according to statistical analysis of
calorimetry and propagation.

° Provides factor of two global
Improvements in propagation
predictions.

° Increased heat capacity per stored
energy mitigates propagation.

> Contact resistance between cells and
passive mitigation contribute.

° Quantified relative effectiveness

experimentally and through predictions.



7 1 CHALLENGES

Most models for thermal runaway heat sources are ~20 years old
* Successful in terms of single-cell onset
+ Lack higher-temperature measurements needed for cascading failure prediction.

« Lack tie to material science developments.
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RESULTS Predicting and Mitigating Thermal Runaway

CHALLENGE: No measurements of thermochemical
decomposition rates at propagation temperatures. Bayesian likelihood of

- 2019 Bayesian statistical analysis of cathode cathode: rate parameters

rate measurements: DSC parameters ARC parameters

«  ARC and DSC measurements show two
distinct parameter sets.
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*  Both consistent within expt. uncertainty.
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° " RESULTS - Predicting and Mitigating Thermal Runaway
Cascading failure testing with thermal inserts: metallic spacers between cells

LiCoO, 3Ah pouch cells Thermocouple Locations

5 closely packed cells with/without aluminum or copper
spacer plates

> Spacer thicknesses between 1/32” and 1/8”
o State of charge between 50% and 100%

5e 9e

1. 20(|30e||lce||70||e10

Failure initiated by a mechanical nail penetration in the 40 ge
outer cell (cell 1) c1 c2 C3 ca Cs

Thermocouples (TC) between cells and spacers (if present) Thermocouple Locations

with spacer plates
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RESULTS - Predicting and Mitigating Thermal Runaway

Simulation

and measurements: 100% SOC, no spacers
Time: 0.10s
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" | RESULTS - Predicting and Mitigating Thermal Runaway

Temperature-time propagation measurements and predictions
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13 1 RESULTS - Predicting and Mitigating Thermal Runaway

Cascading failure propagation rates.
Global rates allow estimates of possible active cooling requirements.
Thermocouple time derivatives Cell-crossing time Space/gap-crossing time
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Adding spacers increases space crossing time, but decreases cell crossing time.

Increasing state of charge (SOC) decreases both space and cell crossing time.
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14 I RESULTS - Predicting and Mitigating Thermal Runaway

Heat capacity and SOC propagation/mitigation summary

State of Charge | Experiment ____|Simulation ______

100% SOC
90% SOC
80% SOC
75% SOC

Propagation
N/A
Propagation

No Propagation

Propagation
Propagation
No Propagation
No Propagation

Effective Heat Capacity | Experiment ______|Simulation ______

778 J/kg/K (no spacers)
893 J/kg/K (1/32” Al)
941 J/kg/K (1/32” Cu)
1009 J/kg/K (1/16” Al)

1103 J/kg/K (1/16” Cu)

Propagation
Propagation
Propagation

No Propagation (Cell 2
Failure)

No Propagation (Cell 2
Failure)

Propagation
Propagation
No Propagation
No Propagation

No Propagation
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Limits of cascading thermal runaway
Energy per heat capacity, cooling and inter-cell resistance defines propagation limits

Model maps delay in propagation: yellow region is infinite delay—failure to propagate.

Fully insulated Moderate cooling Strong air cooling
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Convection cooling and conduction through stack results in failure to propagate for some
scenarios.

Consider cost/design tradeoff : cooling versus thermal resistance.
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LOOKING FORWARD

From defining limits of propagation at cell-stack level to larger-scale facilities:

> Module and rack-scale heat release and dissipation.

> Improved thermal source term models for new battery materials.

Developing open-source application to analyze thermal-runaway mitigation designs
> Stand-alone application to analyze cell-stack and eventually module-scale then rack-scale scenarios.
° Analyze consequences of various abuse scenarios.

> Develop robust mitigation approaches to fit your economic model.

Cell venting of flammable gases: Flammability and heat release consequences.
° Flammability of unignited mixtures: CO-H2 versus electrolytes.

° Heat release distribution, consequences and dissipation.



17 1 LOOKING FORWARD

Collaborative workshops: Thermal Runaway Investigation, Prediction and Prevention

> Follow models of Turbulent Nonpremixed Flames Workshop (https:/ /www.sandia.gov/TNF /abstract.html),
Measurements and Computation of Fire Phenomena Workshop (https:/ /iafss.org/mactp/)

> Setup online forum for validation quality measurements and validated predictive models.

° Collaboratively address inconsistencies across literature.

° Organizational meeting at Dallas ECS meeting, May 2019 including range of contributing institutions.

o . Electrochem. Soc. Perspectives paper on calorimetry measurements. Difficult to predict broadly across
different systems.

Suggest collaborative workshop structure bringing together experimentalists and
modelers to create a dialogue working through these challenges.
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PUBLICATIONS AND PRESENTATIONS

Publications

*R. C. Shurtz, Y. Preger, L. Torres-Castro, J. Lamb, J. C.
Hewson and S. Ferreira, “Perspective—From Calorimetry
Measurements to Furthering Mechanistic Understanding
and Control of Thermal Abuse in Lithium-Ion Cells,” |.
Electrochem. Soc., 166, A2498, 2019

*R. C. Shurtz, J. D. Engerer and J. C. Hewson, “Predicting

High-Temperature Decomposition of Lithiated Graphite:

Part I. Review of Phenomena and a Comprehensive
Model,” |. Electrochem. Soc., 165, A3878 (2018). DOI
10.1149/2.0171814jes

*R. C. Shurtz, J. D. Engerer and J. C. Hewson, “Predicting

High-Temperature Decomposition of Lithiated Graphite:

Part II. Passivation Layer Evolution and the Role of
Surface Area,” |. Electrochem. Soc., 165, A3878 (2018). DOI
10.1149/2.0171814jes

* Mitigation of Failure Propagation in Multi-Cell Lithium
Ion Batteries (in preparation)

Presentations and Proceedings

*Toward understanding and preventing cascading failure
with computer modeling; ESS Safety Workshop, Albuquerque,
March 2019.

*Predicting and Mitigating Cascading Failure of Thermal
Runaway in Stacks of Li-Ion Pouch Cells, 77#) FM Global
Open Sonrce CED Fire Modeling Workshop, Norwood, MA, June
2019.

* A. Kurzawski, R. Shurtz, L. Torres-Castro, ]. Lamb, and J. C.
Hewson, "Predicting Limits of Cascading Failure of
Thermal Runaway in Stacks of Li-Ion Pouch Cells,” Proc.
Western States Section Combust. Instit., October 2019.



19 1 SUMMARY

* Thermal runaway 1s a risk and potential barrier to development and

acceptance.

* Multi-physics thermal models are identifying critical ignition and

propagation trends.

* Quantifying mitigation strategies in terms ot physical parameters.

* Progress this term

* Bayesian analysis of cathode measurements show parameter range Limits of propagation
. . . .. Moderate cooling
allowing improved propagation predictions. —
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* Predictions and measurements of cell-to-cell propagation with varying

SOC and thermal mitigation.
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* Identify cascading failure limits: heat release per heat capacity
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Thank you

* Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage
program under the guidance of Dr. Imre Gyuk, Program Director.

= Sandia National Laboratories 1s a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LL.C., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA-
0003525.

= For further information: John Hewson - jchewso@sandia.gov
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This Sandia program brings together core capabilities in

- Thermal abuse of battery systems through Battery Abuse Lab.

- Fire hazard analysis for energy-containing system through the fire science based nuclear deterrent safety.
- High temperature chemistry and reacting systems through the Combustion Research Facility.



