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2 
I BACKGROUND OVERVIEW
Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan

Safety incidents are rare but possible, including external
causes.

How can we reduce facility investment risk?

Prevent single point failure from cascading to
large-scale system risk.

Current approach is test to safety.
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3 
I OVERVIEW
Predicting and Mitigating Thermal Runaway

How can we reduce facility investment risk?

Identify boundaries between mitigation and cascading failure
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Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan
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Other tasks link predictive heat release to material science (Randy Shurtz)

Identify boundaries of propagation versus mitigation
• Battery chemistry (Randy Shurtz)
• Thermal aspects of system design
• Electrical aspects of system design
• Algorithms for active control strategies.

Develop capabilities to evaluate design tradeoffs.
Promote a broader acceptance of quality approaches to energy
storage safety.
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I METRICS AND MILESTONES
Predicting and Mitigating Thermal Runaway

Relate material models to
experimental measurements at
multi-cell level.

Address safety modeling
associated with thermal
modifications. Determine limits
of cascading failure.

Future goals listed on Looking
Forward slide.

o Adjust high-temperature chemistry

10 
according to statistical analysis of
calorimetry and propagation.

o Provides factor of two global
improvements in propagation
predictions.

Increased heat capacity per stored
energy mitigates propagation.

Contact resistance between cells and
passive mitigation contribute.

Quan tified rela tive effectiveness
experimentally and through predictions.



7 I CHALLENGE'

Most models for thermal runaway heat sources are -20 years old

Successful in terms of single-cell onset

Lack higher-temperature measurements needed for cascading failure prediction.

Lack tie to material science developments.

2018 addressed anode heat release models
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8 I RESULTS Predicting and Mitigating Thermal Runaway

CHALLENGE: No measurements of thermochemical
decomposition rates at propagation temperatures.

rate measurements:

ARC and DSC measurements show two 
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9 I RESULTE Predicting and Mitigating Thermal Runaway

Cascading failure testing with thermal inserts: metallic spacers between cells

LiCo02 3Ah pouch cells

5 closely packed cells with/without aluminum or copper
spacer plates

Spacer thicknesses between 1/32" and 1/8"
State of charge between 50% and 100%

Failure initiated by a mechanical nail penetration in the
outer cell (cell 1)

Thermocouples (TC) between cells and spacers (if present)
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11  RESULTS - Predicting and Mitigating Thermal Runaway

Simulation and measurements: 100% SOC, no spacers
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RESULTS Predicting and Mitigating Thermal Runaway
12

Temperature-time propagation measurements and predictions
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13 I RESULTS - Predicting and Mitigating Thermal Runaway

Cascading failure propagation rates.
Global rates allow estimates of possible active cooling requirements.
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14 I RESULTS Predicting and Mitigating Thermal Runaway

Heat capacity and SOC propagation/mitigation summary

State of Charge Experiment

100% SOC Propagation

90% SOC

80% SOC

75% SOC

N/A

Propagation

No Propagation

Simulation

Propagation

Propagation

No Propagation

No Propagation

Effective Heat Capacity Experiment Simulation

778 J/kg/K (no spacers) Propagation Propagation

893 J/kg/K (1/32" Al) Propagation

941 J/kg/K (1/32" Cu) Propagation

1009 J/kg/K (1/16" Al) No Propagation (Cell 2
Failure)

1103 J/kg/K (1/16" Cu) No Propagation (Cell 2
Failure)

Propagation

No Propagation

No Propagation

No Propagation



15 I RESULTS - Predicting and Mitigating Thermal Runaway

Limits of cascading thermal runaway 

Energy per heat capacity, cooling and inter-cell resistance defines propagation limits

Model maps delay in propagation: yellow region is infinite delay—failure to propagate.
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16 I LOOKING FORWARD

From defining limits of propagation at cell-stack level to larger-scale facilities:

o Module and rack-scale heat release and dissipation.

Improved thermal source term models for new battery materials.

Developing open-source application to analyze thermal-runaway mitigation designs

Stand-alone application to analyze cell-stack and eventually module-scale then rack-scale scenarios.

Analyze consequences of various abuse scenarios.

o Develop robust mitigation approaches to fit your economic model.

Cell venting of flammable gases: Flammability and heat release consequences.

Flammability of unignited mixtures: CO-H2 versus electrolytes.

o Heat release distribution, consequences and dissipation.



17 I LOOKING FORWARD

Collaborative workshops: Thermal Runaway Investigation, Prediction and Prevention

Follow models of Turbulent Nonpremixed Flames Workshop (https://www.sandia.gov/TNF/abstract.html),

Measurements and Computation of Fire Phenomena Workshop (https://iafss.org/macfp/)

Setup online forum for validation quality measurements and validated predictive models.

Collaboratively address inconsistencies across literature.

° Organizational meeting at Dallas ECS meeting, May 2019 including range of contributing institutions.

J. hlectrochem. Soc. Perspectives paper on calorimetry measurements. Difficult to predict broadly across
different systems.

Suggest collaborative workshop structure bringing together experimentalists and
modelers to create a dialogue working through these challenges.
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19 I SUMMARY

Thermal runaway is a risk and potential barrier to development and

acceptance.

Multi-physics thermal models are identifying critical ignition and

propagation trends.

Quantifying mitigation strategies in terms of physical parameters.

Progress this term

Bayesian analysis of cathode measurements show parameter range

allowing improved propagation predictions.

Predictions and measurements of cell-to-cell propagation with varying

SOC and thermal mitigation.

Identify cascading failure limits: heat release per heat capacity

(homogeneous and inhomogeneous) -- combine with last-year's analysis of

thermal resistance.
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20 I CONTACTS

Thank you

Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage
program under the guidance of Dr. Imre Gyuk, Program Director.

Sandia National Laboratories is a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-NA-
0003525.

For further information: John Hewson - jchewso@sandia.gov
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