
PRESENTED BY Andrew J. Younge

Sandia National Laboratories

ajyoung@sandia.gov

E4S Forum - IEEE Cluster 2019

September 23rd, 2019
SAND201 9-XXX

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology Et Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract

DE-NA0003525.

SAND2019-11335C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Motivation

DOE/NNSA and Sandia have long history of investment in HPC

Mission workloads computational requirements demand scale
Tightly coupled BSP simulation codes typically use MPI for communication
Many workload ensembles quickly expanding to ML/DL/AI

Public cloud computing is often prohibitive
Both in cost and security models

However, HPC is not traditionally as flexible as "the cloud"
Shared resource models
Static software environments
Not always best fit for emerging apps and workflows

What about Containers?
Can we support containers in HPC in the same way as industry?
Does this model fit for HPC and emerging workloads across DOE?
Can we adapt our programming environments into container images?

What is a Container?

Unit of software which packages up all code and dependencies
necessary to execute single process or task

Encapsulates the entire software ecosystem (minus the kernel)

OS-level virtualization mechanism
Different than Virtual Machines

Think "chroot" on steroids, BSD Jails

Dependent on host OS, which is (usually) Linux

Uses namespaces (user, mount, pid, etc)

Docker is the leading container runtime
Used extensively in industry/cloud enterprise

Foundation for Kubernetes and Google cloud

Supported in Amazon AWS cloud

Initial HPC Container Vision \
Ell--- t

Fl 6 C '

Support HPC software development and testing on laptops/workstations
- Create working container builds that can run on supercomputers

• Minimize dev time on supercomputers

Developers specify how to build the environment AND the application
Users just import a container and run on target platform

Have many containers, but with different manifests for arch, compilers, etc.

Not bound to vendor and sysadmin software release cycles

Performance matters
Use mini-apps to "shake out" container implementations on HPC

Envision features to support future workflows (ML/DL/in-situ analytics)

I

1

Containers in HPC
Wanted Features

BYOE - Bring-Your-Own-Environment
Developers define the operating environment and
system libraries in which their application runs

Composability
Developers have control over how their software
environment is composed of modular components
as container images
Enable reproducible environments that can
potentially span different architectures

Portability
Containers can be rebuilt, layered, or shared
across multiple different computing systems
Potentially from laptops to clouds to advanced
supercomputing resources

DevOps
Integrate with revision control systems like Git
Include build manifests and container images
using container registries

Conflicting Features

Overhead
HPC applications cannot incur significant overhead
from containers

Micro-Services
Micro-services container methodology does not
apply to current HPC workloads
1 app/node with multiple processes or threads per
container

On-node Partitioning
On-node partitioning with cgroups unnecessary

Root Operation
Containers allow root-level access control to users
Root is a significant security risk for HPC facilities

Commodity Networking
Common network control mechanisms are built
around commodity networking (TCP/IP)
Supercomputers utilize custom interconnects w/ OS
kernel bypass operations

I

1

I HPC Container Runtimes
Docker is not good fit for running HPC workloads
Building with Docker on my Iaptop is ok

Security issues, no HPC integration

Several different container options in HPC

r4N
SHIFTER

All 3 HPC container runtimes are usable in HPC today

Each runtime offers different designs and OS mechanisms
Storage & mgmt of images

User, PID, Mount namespaces

Security models

OCI vs Docker vs Singularity images

Image signing, validation, registries, etc

Charliecloud

ECP Supercontainers

Joint DOE effort - Sandia, LANL, LBNL, LLNL, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
Enable container deployments from laptops to Exascale

Assist ECP applications and facilities leverage containers most efficiently

Three-fold approach
Scalable R&D activities

Collaboration with related ST and AD projects

Training, Education, and Support

Activities conducted in the context of interoperability
Portable solutions
Optimized E4S container images for each machine type

Containerized ECP that runs on Astra, A21, EI-Capitan, ...

Work for multiple container implementations
Not picking a "winning" container runtime

Multiple DOE facilities at multiple scales
EC I=
EXRECRLE COMPUTINE PROJECT

8 Container DevOps

Impractical to use large-scale
supercomputers for DevOps and
testing
HPC resources have long batch queues

Large effort to port to each new machine

Deployment portability with containers
Develop Docker containers on your laptop or
workstation

Leverage registry services

Import container to target deployment

Integrate with vendor libs (via ABI compat)

Leverage local resource manager (SLURM)

Separate networks maintain separate
registries

eon EC2

$ docker pull gitlab.sandia.gov/usr/appl:latest
$ docker run -d -p 12500-13:00 ... appl
$ ssh ctl -C "mpirun -np X appl .exe

S docker build appl
S docker login gitlab.sandia.gov
S docker push appl :latest

CTS Cluster

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/appl :latest
$ qsub71.pbs

Gitlab out:litter Registry

Ser% ice

S singularity pull appl img
docker://gitlab.sandia.gov/user/appl:latest
S aprun -n X singularity exec appl .img appl .exe

9 Singularity Runtime at Sandia

Singularity fit for current needs
OSS, publicly available, support backed by Sylabs
Simple image plan, support for many HPC systems
Docker image support
Multiple architectures
X86_64, ARM64, POWER9

Initial GPU support
singualrity exec --nv appl.simg /opt/bin/app

Large community involvement

Singularity deployed across Sandia
CTS-1 and TLCC clusters
Astra — First Petascale ARM supercomputer

Ongoing collaboration with Sylabs

I

Sylabs Remote Container Builder

Separated container build workstations for various architectures
Can't use a laptop to build ARM64 or POWER9 CPUs
Inflexible, clunky, isolated

Working with Sylabs on new solution — Remote Builder
Enables users to build for alternate architectures:

Ex. build AARCH64 container from AMD64 workstation
Can be used as part of Cl/CD process (GitHub, etc.)

Builds run natively on alternate architecture, giving great performance
Centralized resource pool:

Lowers TCO by decreasing the need for workstations of multiple architectures
Enables users to build containers without privilege
Native integration with Singularity CLI
Can be deployed on-premise via Singularity Enterprise

More info: https://sylabs.io/singularity-enterprise/ CSJ

I

I
1
I

1 Case Study I : SNL ATDM App

10000

T
i
m
e
 (
se
co
nd
s)

1000 -

AN.

SPARC HIFiRE-L1 Native v Container

N..

▪ N..

r..

's.w.

128 (7168) 256 (14336) 512 (28572)
Nodes (cores)

Native

#fga,)ht&-
11111111111.1111L-- - -Containe

1024 (57344)

Points:
• Supporting SPARC containerized build &

deployment
• Deployed on Astra with Singularity
• Near-native performance using a container

• Container faster due to new
optimizations for TX2

• Testing HIFiRE-1 Experiment (MacLean et
al. 2008)

Takeaway: Production HPC Applications can be deployed with containers

12 I Case Study 2: Nalu CFD
M
e
a
n
 W
al
l
T
i
m
e

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
0 2

Nalu - Container vs. Native - Strong Scaling

4 6

Nalu: A generalized unstructured massively parallel
low Mach CFD flow code designed to support

—Native —^ Containerenergy applications of interest

8 10

Nodes

12

Maw

Ratio

-rt MI=

14 16 18

1.200

1.150

1.100 -0a)a)
o_

1.050 La-)
.c

1.000 t

0.950

0.900
20

.•, (U) Quantifying Metrics ate Deplo d Usage of NNSA Production Applications, NECDC 2018

Case Study 3: Reinforcement Learning Algorithms

An evolutionary approach for multi-objective optimization
Evolutionary Algorithms are gradient-free population-based methods
EA benefits from parallelization and does not require GPU acceleration

Population of agents is generated and attempts a problem in parallel
High performance agents are used for next population generation

We are using Astra for scaling of ASTooll
Coevolves an agent's decision making
policy and body

Built Singularity container
Ubuntu 16.04, NumPy, PyBullet, ...
Simple to use and modify

500 nodes - 7.5 hours to complete

Next steps: Credit: https://designrl.github.io/
Eliminate major software performance inefficiencies and bottlenecks
Apply lessons-learned to our own multi-objective optimization problem

1. https://github.com/hardmaru/astool

Takeaway: Containers can support Emerging HPC workloads like Reinforcement Learning

Case Study 4: Containerized ATSE

kloper HPC
Operations Users & Applications

ATSE Programming Environment

Provisioning,
Monitoring

BMC

oL

CIJ

ARM Allinea
Studio

C,C++ & Fortra
Compiler,

Performance
Libraries,

DDT Debugger,
MAP Profiler,

RHEL Runtime Libraries

_0

0

HPE MPI OpenMPI

Mellanox
OFED

Lustre
client

RHEL Kernel

■ HPE ■ Redhat ■ Arm ■ Mellanox ■ Open Source

On workstation where user has root:

docker build -t "gitlab.sandia.gov/atse/astra:1.2.2" .

Dcker push gitlab.sandia.gov/atse/astra:1.2

Sandia GitLab
Container
Registry

.2

singularity build atse-astra-1.2.2.simg docker://gitlab.sandia.gov/atse/astra:1.2

salloc -N 2048 -t 4:00:00

.2

mpirun -np 114688 -npernode 56 singularity exec atse-astra-1.2.2.simg /home/user/myapp

Takeaway: Deployed Et validated upgraded ATSE in a container before machine upgrade

Future: Emerging workloads on HPC with Containers

Support emerging Al/ML/DL frameworks on HPC
Containers useful to adapt ML software to HPC

Already supported and heavily utilized in industry

Extreme-scale Scientific Software Stack (E4S)
Includes TensorFlow & Pytorch in container image

Find Sameer Shende for more details! — e4s.io

Working with DOE app teams to deploy custom ML tools in containers

Investigating scalability challenges and opportunities

E4S 'IP
lensorFlow 13¥1" R C H

16 Containers on Secure Networks

SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

Cybersecurity approvals in place to run containers on all networks

Security controls used in running containers on HPC systems
Working to validate software compliance

Automated Transfer Services to air gapped networks

Challenges of automated transfers
Size — 5GB-1OGB are ideal

Integrity — md5 is enough

Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks

Warning: Currently just Slideware

Future Containerized CI Pipeline

As a developer I want to generate container builds from code pull requests so
that cnntpiners are iiRed tn te.st new cnde nn taraet HPC mpchine.s

Speck Binary Mirror

Gitlab

Git Repo

►

Contirit.Jous Integration

Test

►

Cont iner
Re• istry

Heterogeneous Build Farm

 J1

Walnut Watint

Container Takeaways (aka tupperware?)

Use Docker to build manifests to assemble full app suites from scratch
Developers specify base OS, configuration, TPLs, compiler installs, etc

Leverage base or intermediate container images (eg: TOSS RPMs in a container)

Leverage container registry services for storing images
Import/flatten Docker images into Singularity & run on HPC resources
Also works for Charliecloud compatibility

Advantages
Simplify deployment to analysts (just run this container image)
Simplify new developer uptake (just develop FROM my base container image)
Decouple development from software release cycle issues
Reproducibility has a new hope?

Caveats
ABI compatibility with MPI an ongoing issue
Focus is on x86_64 images, alternative archs require more work
Can't build an ARM64 container image from my Mac laptop w/ x86_64

Containers are an option in HPC, not a mandate

Conclusion

Demonstrated value of container models in HPC
Deployments in testbeds to production HPC

Initial performance is promising

Modern DevOps approach with containers

Deployed on several Sandia systems

ECP Supercontainers
Enable containers at Exascale

Embrace software diversity while insuring interoperability

Simplify HPC application deployment

Enable next-gen computing ecosystems

Containers can increase software flexibility in HPC

Acknowledgements:
Kevin Pedretti (1423)
Anthony Agelastos (9326)
Si Hammond (1422)
Doug Pase (9326)
Aron Warren (9327)
Stephen Olivier (1423)
Justin Lamb (9326)
Erik Illescas (9327)
Ron Brightwell (1423)

Collaborators:
Shane Canon (LBNL/NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)

E.XFISCRI-E CCeolloUTPAS PRCtiliCT

Thanks!
ajyoung@sanaia.gov

Want to learn more about containers?

Attend the Container Tutorial @ SC19

Interested in helping & collaborating?

Students, Postdocs, Collaborators... email!

CANOPIE-HPC WORKSHOP

Containers and New Orchestration Paradigms for
Isolated Environments in HPC

canopie-hpc.org

In coordination with Supercomputing 2019 (SC19) in Denver

Proceedings published in IEEE TCHPC

Submission Deadline: Monday, September 2nd, 2019

Conference Date: Monday, November 18th, 2019

SC19 workshop dedicated to containers & software environments

I

Supercontainer R&D Activities

Containers must work at Exascale!
Embrace architectural diversity

R&D Topics:
Advanced Container Runtimes

Efficient container launch

Comparison studies

Optimized Images
E4S environment

Use Spack!

Vendor images

Expand interoperability
Decrease reliance on MPI ABI compatibility

Foster community standards

Other opportunities
Service container orchestration

Workflow ensemble support

Reproducibility?

Spack E4S

cTk
"Per aspera ad astre

885 TB/s memory bandwidth peak
332 TB memory

1.2 MW

RM SUPERCOMPUTER

ATSE - Advanced Tri-lab Software Environment
Supports Singularity container runtime
Building ATSE container images
Developing Pytorch ARM containers

SNL ATDM Mission App

4:15:00

4:00:00

3:45:00

3:30:00

3:15:00

3:00:00

rn! 2:45:00

E 2:30:00

2:15:00

cu 2:00:00

.2 1:45:00
c2 1:30:00

1:15:00

1:00:00

0:45:00

0:30:00

0:15:00

0:00:00

SPARC - Container Strong Scaling - HIFIRE-1

36 72 144 288 576

Points:
• Supporting SPARC containerized

build & deployment
• Deployed on Sandia CTS-1
• Near-native performance using a

container
• Testing HIFiRE-1 Experiment

(MacLean et al. 2008)

1

• SPARC Container • SPARC Native

Emerging workloads on HPC with Containers
I

Support merging Al/ML/DL frameworks on HPC
Containers may be useful to adapt ML software to HPC

Already supported and heavily utilized in industry

Extreme-scale Scientific Software Stack (E4S) I
Includes TensorFlow & Pytorch in container image

Working with DOE app teams to deploy custom ML tools in containers

Investigating scalability challenges and opportunities

E4S TensorFlow PYT RC H

1

Warning: Currently just Slideware

Future Containerized CI Pipeline

As a developer I want to generate container builds from code pull requests so
that cnntniners are iiRed tn te.st new cnde nn taraet HPC mpchine.s

Gitlab

Git Repo

I I
1

Contirit.Jous Integration

ARM IBM

Spack Binary Mirror Heterogeneous Build Farm

G~~ped Ne .

Cluster

4)1
idernot NOwerit

Training Education & Support

Containers involve new software deployment methodology

Training and education is needed to help ECP community to best utilize
new functionality

Technical Reports
Best Practices for building software using containers

Taxonomy survey to survey current state of the practice

Training sessions
International Supercomputing Conference 2019

IEEE/ACM Supercomputing 2019

ECP All-Hands Meeting

Provide single source of knowledge for groups interested in containers

