
E F
EXRSCRLE COMPUTING PROJECT

V*

•xSDK

Toward interoperable and flexible
scientific computing libraries:
Lessons Learned from xSDK

Keita Teranishi and xSDK Developers

Sandia National Laboratories, Livermore, CA

E4S Forum, September 23, 2019

exascaleproject.org xsdk.info Office of
Science National Nuclear Security Administration

SAND2019-11412C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2

xSDK Lessons Learned:
General Observation

• Working toward shared understanding of issues and perspectives is
essential and takes time
— Need regular opportunities for exchanging ideas, persistence, patience, informal interaction

— Must establish common vocabulary

• Lots of fun, too ... xSDK: Life is good

It takes all kinds. Think outside the box. Face the bumps with a smile. The pursuit is the reward.

A E 'LIP E XRSCRLE
COMPUTING
PROJECT

Complexity of xSDK

• 17+ Packages

• Multiple Languages (Fortran, C and C++)

• Multiple runtimes (OpenMP and CUDA)

• Diversity of computing platforms

• Architecture and Runtime

• Multiple Compilers and Multiple versions

• GCC, Clang and other proprietary compilers

• Spack builds for us. Nice!

• How to report errors and problems? eat

~zSDK
E 61= EXRSCRLE

COMPUTING
PROJECT

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called
packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the
software.

M9. Use a limited and well-defined symbol, macro, library, and include file
name space.
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or 10 statements.
M12. Allow installing, building, and linking against an outside copy of external
software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible
with the xSDK install tool and xSDK metapackage.

4

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

Also recommended policies, which currently
are encouraged but not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.
R4. Free all system resources it has acquired as soon as
they are no longer needed
R5. Provide a mechanism to export ordered list of library
dependencies.
R6. Provide versions of dependencies.
R7. Provide README, SUPPORT, LICENSE and CHANGELOG
files or their equivalent.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be used by
another package in the xSDK, and the connecting
interface is regularly tested for regressions.

AN EIC-n
xSDK

EXRECRLE
COMPUTING
PROJECT

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6.
pack
M7.

M8.
soft
M9.
nam
M10.
M11.

How to check the policy compliance?

M12. Allow installing, building, and linking against an outside copy of external
software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible
with the xSDK install tool and xSDK metapackage.

5

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

Also recommended policies, which currently
are encouraged but not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.

soon as

If library

\1GELOG

V1/4.01 I I FIC.A LI 1,11%., FICA LA I 1 l4 I L. .11/4 %-1 I VUI I AJV used by
another package in the xSDK, and the connecting
interface is regularly tested for regressions.

A 7 EIC-n l)P
xSDK

EXRECRLE
COMPUTING
PROJECT

Applications using xSDK

• PFLOTRAN and Alquimia
— Multiphysics & multiscale modeling of watershed dynamics

— Provided as part of xSDK
— Spack script for individual application packages

• Nalu in ExaWind
— Call hypre from Trilinos (xSDK Trilinos)

• Laghos in CEED
— MFEM and hypre

— Planning to use SuperLU, SUNDIALS and PUMI

• AMPE and Truchas in ExaAM
— SUNDIALS and hypre

— Wrote Spack script for AMPE and Truchas

A I
xSDK
E -41)1=

EXRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned:
Users' Perspective

• Building the whole xSDK takes time and produces a very large executable.
— Future releases should allow building a subset

• Need better document for Spack and xSDK

• Application developers want subset of xSDK or special build of xSDK
— Some library capabilities are disabled for the interoperability, but needed for some

applications

— It will be important to provide flexibility through the xSDK to allow users to use their own
versions of some xSDK libraries.

— Need a searchable library collection based on capability

• xSDK member libraries should also pursue improved compatibilities where
possible to avoid for users to have building their own versions.

A 7
xSDK

EXRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned:
Developers' Perspective

• Requires some code modifications to eliminate naming conflicts
— Namespaces

— Unique prefix for function names and preprocessor macros

• Maintaining interoperability needs close communication with the developers of
other packages
— Coordination for release scheduling is challenging

— Domain-specific version of software-coupling could hurt interoperability
• Be generic and follow the best practice!

• Special version may work effectively for the integration with A, but fails with B and C

• Work toward better, faster, more people-efficient workflow for development and
testing is important!
— Needs for continuous and integrated testing

/
A I

xSDK

EXRSCRLE
COMPUTING
PROJECT

9

Interoperability Lessons: hypre+Trilinos

• ExaWind calls hypre and Trilinos together.
— User wants to call hypre through Trilinos APIs

— hyper and Epetra/Tpetra (Trilinos's sparse matrix package) implement distributed CSR (sparse
matrix) format in slightly different manners.

— Developed xSDK-Trilinos (a special version of Trilinos)

• Development
— Our team discovered a hypre interface in Trilinos source, but never maintained and tested.

— The slight difference in sparse matrix implementation requires local data copy between hypre
and Trilinos.

— Trilinos-hypre interface helped for the initial development of ExaWind, eventually phased out for
performance reasons

• Calling hypre's API directly to reduce the overhead.

A 7
xSDK
E -L1)1=

EXRSCRLE
COMPUTING
PROJECT

10

Sparse Matrix in hypre (PETSc) and Tpetra
hypre/PTESc

•wo separated
allocation

RI

Tpetra

Permuted to separate
diagonal and off-diagonal

I Permuted to separate
diagonal and off-diagonal

M.

r
Permuted to separate

diagonal and off-diagonal

Permuted to separate
iagonal and off-diagonal

• hypre and PETSc separate local sparse matrix into two sparse matrices

• Tpetra supports 1D and 2D partitioning of sparse matrix.
— Nonzero entries are permuted to separate diagonal and off-diagonal

• All entries are assigned to a single contiguous allocation

• Diagonal part comes first

• With some extra indices.
- 1

A g
xSDK

EXRSCRLE
COMPUTING
PROJECT

Interoperability Lessons: SUN DIALS+Trilinos

• SUNDIALS provides abstractions for linear system solver, matrix and vector
implementations.
— Trilinos provide a collection of sparse linear system solvers and preconditioners

— Runs with MPI+OpenMP/CUDA

— Sounds great ©, but ... 0

• Problems:
— Poor documentation of Trilinos

• No good example of best use cases

• No description of the design (class hierarchies)

• Many deprecated interfaces for backward compatibilities

— Trilinos's build system is hard to use even with Spack (barely complies xSDK standard)

— MPI+CUDA works only for OpenMPl

A 7
xSDK

E XRSCRLE
COMPUTING
PROJECT

12

Lessons from Individual xSDK Package
Adaptations

tA
i xSDK

E XRSCRLE
COMPUTING
PROJECT

13

xSDK Lessons Learned # deal,II

Background:
— deal.11 was already compliant with almost all of xSDK's Community Policy Compatibilities.

— In particular, it has a very large test suite (10,000+ tests) that covers all of the interfaces we
have with other libraries; in some cases, we seem to have better coverage of these external
libraries through the interfaces than the package's test suite itself.

Lessons learned:
— Avoid unprefixed macros or provide a way to disable them. Avoid unprefixed preprocessor

variables.

— Don't use MPI COMM WORLD, but user provided MPI communicators.

/
A I

xSDK

E XRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned
h/gh peNtraince
precamiamers

Background:
• hypre had various issues that needed to be addressed.
• Name space conflicts (some functions with simple names)

• Overlooked prints of error messages

• No exhaustive test suite that could be run on arbitrary computers

Lessons learned:
• Giving all functions the prefix 'hypre: avoids namespace conflicts.

• Allowing for error messages to only be printed for a higher print level avoids
undesired printouts.

• A test suite that allows users to test hypre solvers on any platform and check for
errors is now available.

14 A E PROPECTrNEG
xSDK

15

xSDK Lessons Learned

Background:
• MAGMAs solvers rely unconditionally on hardware accelerators (AMD, Intel, NVIDIA).

• Accelerators are optional for xSDK packages.

Lessons learned:
• Having established software practices helps with xSDK integration.

• Continual maintenance is a must.

• This is enforced for MAGMA with vibrant accelerator hardware market and frequent product releases.

• Code documentation is required.

• Large MAGMA user base made good documentation a must to ease the burden of answering user questions.

• User contributions might not meet xSDK requirements.
• Adjustments were needed for user-contributed Spack package for MAGMA.

• New variant added to support xSDK builds with CUDA present on the installation system.

A 7
xSDK

....__,-,
Ë C 1) I=

E XRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned Pun'
Background:

• PUMI was not compatible with the requirement for runtime control of output - there
were over 700 calls to functions from the printf 'family'.

Lessons learned:

• Design your library from the beginning with a print statement wrapper so it can run
in silent mode, or with various levels of output for performance information,
developer level debugging, etc..

— Use grep/sed to automate replacement of the printf family functions with the wrapper API.

— The handful of C++ cout/cerr uses were manually replaced with the wrapper functions. In some
cases stringstream was used to compose the strings and then those strings were passed into
the API.

/
A I

xSDK

EXRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned esundials
Background:

• SUNDIALS has interfaces to several external libraries e.g., PETSc, hypre, KLU, LAPACK, ...

• Existing CMake options did not align with xSDK policies.

• Added redundant options that overwrite existing variables to maintain options for current users.

• MFEM has interfaces to SUNDIALS time integrators and nonlinear solvers.

• Updates to SUNDIALS for xSDK compatibility were introduced along side a new linear solver API.

• The new API broke compatibility with MFEM and required updating the MFEM interface to
SUNDIALS.

Lesson learned:
• Packages working toward xSDK compatibility should adopt xSDK conventions early to ease user

transition to new options.

• Maintaining interfaces between xSDK packages requires regular communication and testing with
in-development versions.

A 7
xSDK

E XRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned SuperLU
Background:
• SuperLU initially faced challenges with build system, revision control, namespacing.

Lessons learned:

• Migration from manual editing make.inc to CMake/Ctest increases build-test productivity and robustness.

— Easier to manage dependencies (ParMetis, machine-dependent files), and platform-specific versions (MT, DIST, GPU) and correctness

— Better accommodate special build requirements (e.g., disable third-party software like ParMetis)

• Migration from svn to git improves distributed contributions and bug fixes. E.g., users have contributed:

— Working with Windows environment, building as both static and shared libraries simultaneously

• Proper namespacing allows 3 versions of the library (serial, multithreaded and distributed) to be used
simultaneously and to be used by other packages in xSDK.

• Improved productivity of new code development:

— Wrote comprehensive regression unit test code

— UseTravis CI for continuous integration on each git commit

18
r xSDK

EXRSCRLE
COMPUTING
PROJECT

19

xSDK Lessons Learned 7=i-VLiNLIS

Background:
• Trilinos had interfaces to both PETSc and hypre, but those interfaces were

• Poorly documented (e.g. — no hypre interface document)

• Not tested regularly (e.g. — the PETSc-Trilinos interface was broken in recent releases)

Lessons learned:
• Interfaces supported for the xSDK require regular testing and clear documentation

• Continual maintenance of code and documentation will be required; occasional fixes are
insufficient

A I
xSDK

EXRSCRLE
COMPUTING
PROJECT

Toward Better Integration

20 tA
i xSDK

EXRSCRLE
COMPUTING
PROJECT

Testing xSDK

• xSDK doesn't contain directly any source code, but only a Spack Package.py file
that defines the rules of a spack install xsdk instruction.
— Every xSDK package is tested by its own continuous integration (CI) mechanism.

• Testing xSDK means testing whether an individual package is xSDK-compatible.
— Any xSDK installation must work for as many platforms and compilers as possible

— Every package must comply with the community's policy

— Every package must be interoperable

tA
i xSDK

E XRSCRLE
COMPUTING
PROJECT

xSDK and Gitlab-CI

• xSDK CI is a Github project that contains:
— xSDK Spack installation scripts

— Policy testing scripts

— Minimal docker images prepared for xSDK testing

• CI pipeline described in gitlab-ci.yml:
— Pull the xSDK CI project

— Pull the Spack project

— Run the xSDK installation scripts

— Run the policy testing scripts

— Report all results as a set of artefacts for all xSDK inner
packages

— Repeat for every targeted platform using docker xSDK
images

— (FY20: Built/Run interoperability example programs)
22

xsdk-project / xsdk-ci-test

0 Code (i) Issues 0

CI tester Infrastructure

ay 89 commits

Pull requests o Projects o Security [d. Insights

e Watch 7 *Star 1 y Fork 0

Join GitHub today

GltHub is horns to over 40 million developers working together to host

and revlew code, manage projects, and bulld software together.

I=1

1,1 brench it 0 releases

Branch: m 1 New pull request
H. mparrInul speck installation script now return speck exit etstus

▪ docker Add which command on Fedora Images

85 policy test-pollcy-all script takes now packages to run as argument

• speck spack Installation script now return speck exit status

E .gitlab-cl.yml Update .gitlah-ci.yml

▪ README Add Readme flle

Dismiss

IL 2 contributors

Find File Clone or rlournload

Latest commit 7(03748 3 hours ago

2 months ego

4 days ago

3 hours ego

5 months ago

5 months ago

* 2018 Oltuub, inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training glog About

AgD K

E414=
EXRSCRLE
COMPUTING
PROJECT

Compliance with xSDK policies

• Using scripted tests to
verify compliance

— Every policy has been
analyzed to establish a
list of tests that can be
automatically verified

— For every package, the
tests produce reports
that can be viewed in
the CI

23

Package A Tester

Policy M2

Package B Tester

Policy M1

Policy M3

E -L1)1= E XRSCRLE
COMPUTING
PROJECT

xSDK Policy Testing Design

• Every testable mandatory policy has a dedicated testing script which outputs a
report.
— e.g., the first mandatory policy (M1) has test (ml .sh) with corresponding report (report_ml Jog)

• All tests are run daily; they can also be manually triggered on the Gitlab-Cl

• xSDK Spack installation is done by running spack install —keep-stage —source
xsdk that keep the source and the build directories of every inner package.

• Source and build directories are used as an input parameter for the policy tests
— e.g. the m1 .sh run for every inner package takes the corresponding source directory as input.

A 7
xSDK
E -L1)1=

EXRSCRLE
COMPUTING
PROJECT

25

xSDK Policy Testing Design, Examples

M1. Support xSDK community 1) Check the CMakeLists.txt or Configure file existence.
GNU Autoconf or CMake options. 2) lnteroperability between packages can be tested here with

packages inclusion cmake option -DENABLE_<package>.
3) An option —dis/enable-xsdk-defaults must exist.

M3 Employ user-provided MPI 1) Scan the code and detect if MPI_COMM_WORLD is called
communicator. which could making this requirement failed.

2) Check for the option of the MPI error-handling prevention

M5. Provide a documented, 1) Read the document and parse some information :
reliable way to contact the - Website of the package
development team. - Email address of the package owner

2) Ping the website of the package

/
A I

xSDK

E XRSCRLE
COMPUTING
PROJECT

Conclusion

• Making xSDK work is labor intensive
— Coordination among xSDK members

— Interaction with the users

— Policy compliance

• Great Lessons from the development activities
— Developers applied some fix to comply xSDK policy

— Need for automated testing infrastructure

• Automatic testing and integrations are necessary
— Complement the capability of Spack

— Policy tester

26

4,
A I

xSDK

E XRSCRLE
COMPUTING
PROJECT

More info

• xSDK Foundations: Toward an Extreme-scale Scientific Software
Development Kit, R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond,
M. Heroux, J. Johnson, A. Klinvex, X. Li, L.C. Mclnnes, D. Osei-Kuffuor,
J. Sarich, B. Smith, J. Willenbring, U.M. Yang,
https://arxiv.orglabs/1702.08425, Supercomputing Frontiers and
lnnovations, vol 4 No 1 (2017), pp.69-82.

• https://xsdk.info

EXRSCRLE
COMPUTING
PROJECT

K

License, citation and acknowledgements

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0)

• Requested citation: xSDK Developers, An introduction to the xSDK, a community of diverse
numerical HPC software packages , ECP 3rd Annual Meeting, Houston, TX, January 15, 2019

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced

Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

A I
xSDK

E XRSCRLE
COMPUTING
PROJECT

*smog

EXRSCRLE COMPUTING PROJECT

V*

•xSDK

Thank you!

exascaleproject.org xsdk.info
U.S. DEPARTMENT OF

ENERGY
Office of
Science National Nuclear Security Administration

Backup Slides

30 A I
xSDK

EXRSCRLE
COMPUTING
PROJECT

xSDK Lessons Learned MFEM

Background:
— MFEM interfaces with numerous libraries in the XSDK including HYPRE,
SUNDIALS, SuperLU, PETSc, and STRUMPACK.

Lessons learned:
— Maintaining connections to all existing libraries requires significant effort and
communication.

— Synchronizing releases with interoperating libraries that have API changes is
difficult.

— Library version interoperability needs to be added to our testing suite.

A 7
xSDK

E XRSCRLE
COMPUTING
PROJECT

32

xSDK Lessons Learned _ \ I \ __I \ I \
__/ I _ \ __ \ I v I _ \

_I _ _II _\ __l_l _II _\

Background:
• PLASMA relies on BLAS and LAPACK for low-level HPC optimizations.

• Varied implementations and interfaces across hardware platforms

• Test suites for BLAS and LAPACK are usually not available in most implementations

• Additional set of basic routines (Core BLAS) did not gain community acceptance

Lessons learned:
• Must use name space for all interface entry points even if it might be an older project.

• Ease of installation is a necessity. Using established software configuration frameworks
(autoconf, CMake, etc.) enforce portable code and adaptation to a variety of software
environments.

A 7
xSDK

EXRSCRLE
COMPUTING
PROJECT

33

xSDK Lessons Learned

Background:

PETSc/TAO

• PETSc development was being slowed down by backlog of branches waiting to be fully tested
and moved into master.

• Through work on xSDK, we refactored PETSc tests to improve overall test functionality and better
support continuous integration testing.

Lessons learned:
• Result: Work toward better, faster, more people-efficient workflow for testing has enabled moving

developer branches into master branch without breaking master branch or requiring hand holding.
• Introduced parallelism (and other techniques) to decrease time for running complete test suite while still

providing high coverage

• Simplified the addition of new tests into suite

• Introduced finer grain control over what is tested

• Making testing process more robust to random system, hardware, or software failures

• Working toward making it easier for anyone to automatically run full PETSc test suite, including dashboard

A V E 'E))1=
xSDK

xSDK Lessons Learned PHIST

Background:

• PHIST already adhered to most of the xSDK policies, but still required a few
changes.

Lessons learned:

• Had to duplicate some CMake flags although Spack is the high-level build system
now

• Had to switch off performance optimizations (e.g. no OpenMP, no —march flag) to
get it to compile on all platforms

• No easy way to uninstall all xSDK packages via Spack

tA
i xSDK

E XRSCRLE
COMPUTING
PROJECT

