This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-11412C

\C\\”,

EEEEEEEEEEEEEEEEEEEEEEEE

Toward interoperable and flexible
scientific computing libraries:
~ Lessons Learned from xSDK

Keita Teranishi and xSDK Developers
Sandia National Laboratories, Livermore, CA

E4S Forum, September 23, 2019

A p “I
exascaleproject.org xsdk.info ., EN ERGY ggssc‘;f N A'SZ'?Q‘;

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

XSDK Lessons Learned:
General Observation

* Working toward shared understanding of issues and perspectives is
essential and takes time

— Need regular opportunities for exchanging ideas, persistence, patience, informal interaction
— Must establish common vocabulary

» Lots of fun, too ... xXSDK: Life is good ©

It takes all kinds. Think outside the box. Face the bumps with a smile. The pursuit is the reward.

’-:\ EXASCALE
“' E\(C\)I:’ EaTELT

xSDK

Complexity of xSDK

17+ Packages =
* Multiple Languages (Fortran, C and C++) A '
* Multiple runtimes (OpenMP and CUDA) mEo ey o d

Diversity of computing platforms

* Architecture and Runtime

* Multiple Compilers and Multiple versions wm e ® = oes
. . oD e @ om»
» GCC, Clang and other proprietary compilers - e
« Spack builds for us. Nice! | @ ;
 How to report errors and problems? =
e

v ECP =

xSDK

xSDK community policies

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

Q

xSDK compatible package: Must satisfy

mandatory xSDK policies:

M1. Support xXSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called
packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the
software.

M9. Use a limited and well-defined symbol, macro, library, and include file
name space.

M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or 10 statements.

M12. Allow installing, building, and linking against an outside copy of external
software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible
with the xSDK install tool and xXSDK metapackage.

Also recommended policies, which currently
are encouraged but not required:
R1. Have a public repository.

R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.

R3. Adopt and document consistent system for error
conditions/exceptions.

R4. Free all system resources it has acquired as soon as
they are no longer needed

R5. Provide a mechanism to export ordered list of library
dependencies.

R6. Provide versions of dependencies.

R7. Provide README, SUPPORT, LICENSE and CHANGELOG
files or their equivalent.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be used by
another package in the xSDK, and the connecting
interface is regularly tested for regressions.

EXASCALE
COMPUTING
PROJECT

v ECP

xSDK

make sense for your software?

We welcome feedback. What policies
< https://xsdk.info/policies

xSDK community policies

xSDK compatible package: Must satisfy Also recommended policies, which currently
mandatory xSDK policies: are encouraged but not required:

M1. Support xXSDK community GNU Autoconf or CMake options. R1. Have a public repository.
M2. Provide a comprehensive test suite. R2. Possible to run test suite under valgrind in order to

. : test for memory corruption issues.
M3. Employ user-provided MPI communicator. R3. Adoot and d t font t f
M4. Give best effort at portability to key architectures. opt and document consistent system for error

M5. Provide a documented, reliable way to contact the development team. CondltlonS/exceptlonS.

M6. soon as
packlf \i

M7. (f library
M8. F

soft How to check the policy compliance?

M9. U
name

M10.

M11. N_ -

. UU""JU"U'\J Puunuvu, Urru iu vuoouo Vil vdlii L% used by
sMo%\'/éArIg.)W installing, building, and linking against an outside copy of external another package in the xSDK, and the connectmg

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/. interface is regularly tested for regressions.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible
with the xSDK install tool and xXSDK metapackage.

NGELOG

v ECP e

xSDK

Applications using xSDK

« PFLOTRAN and Alquimia

— Multiphysics & multiscale modeling of watershed dynamics
— Provided as part of xXSDK
— Spack script for individual application packages

* Nalu in ExaWind
— Call hypre from Trilinos (xSDK Trilinos)

» Laghos in CEED
— MFEM and hypre
— Planning to use SuperLU, SUNDIALS and PUMI

« AMPE and Truchas in ExaAM
— SUNDIALS and hypre
— Wrote Spack script for AMPE and Truchas

EXASCALE
COMPUTING
PROJECT

xSDK Lessons Learned:
Users’ Perspective

 Building the whole xSDK takes time and produces a very large executable.
— Future releases should allow building a subset

* Need better document for Spack and xSDK

» Application developers want subset of xXSDK or special build of xXSDK

— Some library capabilities are disabled for the interoperability, but needed for some
applications

— It will be important to provide flexibility through the xSDK to allow users to use their own
versions of some xSDK libraries.

— Need a searchable library collection based on capability

» xXSDK member libraries should also pursue improved compatibilities where
possible to avoid for users to have building their own versions.

,:\ EXASCALE
iﬁ E\(C\)F’ EamELTG

xSDK

xSDK Lessons Learned:
Developers’ Perspective

» Requires some code modifications to eliminate naming conflicts
— Namespaces
— Unique prefix for function names and preprocessor macros

» Maintaining interoperability needs close communication with the developers of
other packages

— Coordination for release scheduling is challenging

— Domain-specific version of software-coupling could hurt interoperability
» Be generic and follow the best practice!
« Special version may work effectively for the integration with A, but fails with B and C

» Work toward better, faster, more people-efficient workflow for development and
testing is important!
— Needs for continuous and integrated testing

,:\ EXASCALE
iﬁ E\(C\)F’ EamELTG

xSDK

Interoperability Lessons: hypre+Trilinos

« ExaWind calls hypre and Trilinos together.
— User wants to call hypre through Trilinos APls

— hyper and Epetra/Tpetra (Trilinos’s sparse matrix package) implement distributed CSR (sparse
matrix) format in slightly different manners.

— Developed xSDK-Trilinos (a special version of Trilinos)

* Development
— Our team discovered a hypre interface in Trilinos source, but never maintained and tested.

— The slight difference in sparse matrix implementation requires local data copy between hypre
and Trilinos.

— Trilinos-hypre interface helped for the initial development of ExaWind, eventually phased out for
performance reasons

» Calling hypre’s API directly to reduce the overhead.

,:\ EXASCALE
3’& E\(C\)P EamELTG

xSDK

Sparse Matrix in hypre (PETSc) and Tpetra

hypre/PTESc Tpetra

Two separated
allocations

Permuted to separate
diagonal and off-diagonal

Permuted to separate
diagonal and off-diagonal

Permuted to separate
diagonal and off-diagonal

Permuted to separate
diagonal and off-diagonal

» hypre and PETSc separate local sparse matrix into two sparse matrices

» Tpetra supports 1D and 2D partitioning of sparse matrix.
— Nonzero entries are permuted to separate diagonal and off-diagonal
« All entries are assigned to a single contiguous allocation

+ Diagonal part comes first =
« With some extra indices. a E\(\C\)P EENPLTNG

10 xSDK

Interoperability Lessons: SUNDIALS+Trilinos

 SUNDIALS provides abstractions for linear system solver, matrix and vector
implementations.

— Trilinos provide a collection of sparse linear system solvers and preconditioners
— Runs with MP1+OpenMP/CUDA
— Sounds great ©, but ... ®

* Problems:
— Poor documentation of Trilinos
* No good example of best use cases
» No description of the design (class hierarchies)
» Many deprecated interfaces for backward compatibilities
— Trilinos’s build system is hard to use even with Spack (barely complies xSDK standard)

— MPI+CUDA works only for OpenMPI
: v S s

xSDK

12

Lessons from Individual xSDK Package
Adaptations

xSDK Lessons Learned

Background:

— deal.ll was already compliant with almost all of xXSDK’s Community Policy Compatibilities.

— In particular, it has a very large test suite (10,000+ tests) that covers all of the interfaces we
have with other libraries; in some cases, we seem to have better coverage of these external
libraries through the interfaces than the package’s test suite itself.

Lessons learned:

— Avoid unprefixed macros or provide a way to disable them. Avoid unprefixed preprocessor
variables.

— Don’t use MPI_COMM_WORLD, but user provided MP| communicators.

=
e ! P

xSDK

14

xSDK Lessons Learned f}},%

Background:
* hypre had various issues that needed to be addressed.

* Name space conflicts (some functions with simple names)
» Overlooked prints of error messages
* No exhaustive test suite that could be run on arbitrary computers

Lessons learned:

Giving all functions the prefix ‘hypre_ " avoids namespace conflicts.

Allowing for error messages to only be printed for a higher print level avoids
undesired printouts.

A test suite that allows users to test hypre solvers on any platform and check for
errors is now available.

15

xSDK Lessons Learned

Background:

« MAGMA's solvers rely unconditionally on hardware accelerators (AMD, Intel, NVIDIA).
 Accelerators are optional for xSDK packages.

Lessons learned:

« Having established software practices helps with xXSDK integration.
« Continual maintenance is a must.
» This is enforced for MAGMA with vibrant accelerator hardware market and frequent product releases.
» Code documentation is required.
* Large MAGMA user base made good documentation a must to ease the burden of answering user questions.
* User contributions might not meet xSDK requirements.
» Adjustments were needed for user-contributed Spack package for MAGMA.

* New variant added to support xSDK builds with CUDA present on the installation system.

’;\\ EXASCALE
“' E\(C\)F’ =

xSDK

xSDK Lessons Learned PUMI

Background:

« PUMI was not compatible with the requirement for runtime control of output - there
were over 700 calls to functions from the printf ‘family’.

Lessons learned:

 Design your library from the beginning with a print statement wrapper so it can run

in silent mode, or with various levels of output for performance information,
developer level debugging, etc..

— Use grep/sed to automate replacement of the printf family functions with the wrapper API.

— The handful of C++ cout/cerr uses were manually replaced with the wrapper functions. In some

cases stringstream was used to compose the strings and then those strings were passed into
the API.

,:\ EXASCALE
. "i E\(C\)P EaEL e

xSDK

17

xSDK Lessons Learned sundials

Background:

« SUNDIALS has interfaces to several external libraries e.g., PETSc, hypre, KLU, LAPACK, ...
» Existing CMake options did not align with xSDK policies.

» Added redundant options that overwrite existing variables to maintain options for current users.
« MFEM has interfaces to SUNDIALS time integrators and nonlinear solvers.

» Updates to SUNDIALS for xSDK compatibility were introduced along side a new linear solver API.

* The new API broke compatibility with MFEM and required updating the MFEM interface to
SUNDIALS.

Lesson learned:

« Packages working toward xSDK compatibility should adopt xXSDK conventions early to ease user
transition to new options.

« Maintaining interfaces between xSDK packages requires regular communication and testing with
in-development versions.

,:\ EXASCALE
“1 E\(C\)P EamELTG

xSDK

18

XxSDK Lessons Learned SuperLU

Background:
» SuperLU initially faced challenges with build system, revision control, namespacing.

Lessons learned:

* Migration from manual editing make.inc to CMake/Ctest increases build-test productivity and robustness.

— Easier to manage dependencies (ParMetis, machine-dependent files), and platform-specific versions (_MT, _DIST, GPU) and correctness

— Better accommodate special build requirements (e.g., disable third-party software like ParMetis)

» Migration from svn to git improves distributed contributions and bug fixes. E.g., users have contributed:
— Working with Windows environment, building as both static and shared libraries simultaneously

» Proper namespacing allows 3 versions of the library (serial, multithreaded and distributed) to be used
simultaneously and to be used by other packages in xSDK.

* Improved productivity of new code development:
— Wrote comprehensive regression unit test code
— UseTravis Cl for continuous integration on each git commit

,:\ EXASCALE
3’& E\(C\)P EamELTG

xSDK

19

xSDK Lessons Learned w

Background:

* Trilinos had interfaces to both PETSc and hypre, but those interfaces were
» Poorly documented (e.g. — no hypre interface document)
* Not tested regularly (e.g. — the PETSc-Trilinos interface was broken in recent releases)

Lessons learned:
» Interfaces supported for the xSDK require regular testing and clear documentation

» Continual maintenance of code and documentation will be required; occasional fixes are
insufficient

‘ ,:\ EXASCALE
v E (\C P &

xSDK

20

Toward Better Integration

Testing xSDK

« xSDK doesn’t contain directly any source code, but only a Spack Package.py file
that defines the rules of a spack install xsdk instruction.

— Every xSDK package is tested by its own continuous integration (Cl) mechanism.

 Testing xSDK means testing whether an individual package is xXSDK-compatible.
— Any xSDK installation must work for as many platforms and compilers as possible
— Every package must comply with the community’s policy
— Every package must be interoperable

,:\ EXASCALE
3 3’1 E\(C\)P EaEL e

xSDK

xSDK and Gitlab-CI

« xSDK Cl is a Github project that contains:

22

xSDK Spack installation scripts
Policy testing scripts
Minimal docker images prepared for xSDK testing

pipeline described in gitlab-ci.yml:
Pull the xSDK CI project

Pull the Spack project

Run the xSDK installation scripts

Run the policy testing scripts

Report all results as a set of artefacts for all xSDK inner
packages

Repeat for every targeted platform using docker xXSDK
images

(FY20: Built/Run interoperability example programs)

xsdk-project / xsdk-ci-test @wWwatch 7 HStar 1 YFork 0

¢ Code Issues 0 Pull requests o Projects 0

Join GitHub today
GitHub is home to over 40 million developers working together to host
and review code, manage projects, and build software together.

=
Cl tester infrastructure
D 89 commits 1 branch 0 releases 42 2 contributors
—
e N
mperrinel ommit 7813748 3 hours ago
docker months a
policy ys a
spac
gitlab-ciyml
README

‘ ,;\\\ EXASCALE
~ E\(C [Saiine

xSDK

Compliance with xSDK policies

Package A Tester Package B Tester
. Repo : Repo
| Policy M1 Policy M1
— Every policy has been
analyzed to establish a . Repo :
list of tests that can be golcy e M2 Fellielar
automatically verified
Policy M3 R‘ng Policy M3
— For every package, the
tests produce reports Repo :
: . Policy M4
that can be viewed in ! M4 HeloTL
the Cl
’;\\ EXASCALE
2 %w E\(\g\)lz’ =2 g

 Using scripted tests to
verify compliance

Report
M2

Repo
M3

Repo

7

24

xSDK Policy Testing Design

» Every testable mandatory policy has a dedicated testing script which outputs a
report.

— e.g., the first mandatory policy (M1) has test (m1.sh) with corresponding report (report_m1.log)
« All tests are run daily; they can also be manually triggered on the Gitlab-CI

« xSDK' Spack installation is done by running spack install —keep-stage —source
xsdk that keep the source and the build directories of every inner package.

« Source and build directories are used as an input parameter for the policy tests
— e.g. the m1.sh run for every inner package takes the corresponding source directory as input.

—
Y ECP s

xSDK

25

xSDK Policy Testing Design, Examples

M1. Support xXSDK community

GNU Autoconf or CMake options.

M3 Employ user-provided MPI
communicator.

MS5. Provide a documented,
reliable way to contact the
development team.

1) Check the CMakelLists.txt or Configure file existence.

2) Interoperability between packages can be tested here with
packages inclusion cmake option -DENABLE_<package>.

3) An option —dis/enable-xsdk-defaults must exist.

1) Scan the code and detect if MPI_COMM_WORLD is called
which could making this requirement failed.
2) Check for the option of the MPI error-handling prevention

1) Read the document and parse some information :
- Website of the package
- Email address of the package owner

2) Ping the website of the package

\ FXF\?FF\[E
' 77777 NG
‘ PGD JECT

26

Conclusion

« Making xSDK work is labor intensive
— Coordination among xSDK members
— Interaction with the users
— Policy compliance

» Great Lessons from the development activities
— Developers applied some fix to comply xSDK policy
— Need for automated testing infrastructure

« Automatic testing and integrations are necessary
— Complement the capability of Spack
— Policy tester

»

¢
5

xSDK

ECP

EXASCALE
COMPUTING
PROJECT

More info

 xSDK Foundations: Toward an Extreme-scale Scientific Software
Development Kit, R. Bartlett, |. Demeshko, T. Gamblin, G. Hammond,
M. Heroux, J. Johnson, A. Klinvex, X. Li, L.C. Mclnnes, D. Osei-Kuffuor,

J. Sarich, B. Smith, J. Willenbring, U.M. Yang,
https://arxiv.org/abs/1702.08425, Supercomputing Frontiers and

Innovations, vol 4 No 1 (2017), pp.69-82.
 https://xsdk.info

4

EEEEEEEE
CCCCCCCCC
PPPPPPP

28

License, citation and acknowledgements

e
License and Citation

» This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0).

» Requested citation: xSDK Developers, An introduction to the xSDK, a community of diverse
numerical HPC software packages , ECP 3 Annual Meeting, Houston, TX, January 15, 2019

Acknowledgements

» This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced

Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

,:\ EXASCALE
“1 E\(C\)P EamELTG

xSDK

o

(&

EXASCALE COMPUTING PROJECT

\
MJ

Thank you!

. xSDK

T > p “I
exascaleproject.org xsdk.info : EﬁPAERTMREEFY gg'gsc‘: N A‘S&é

National Nuclear Security Administration

30

Backup Slides

EXASCALE
CCCCCCCCC
PPPPPPP

xXSDK Lessons Learned

Background:

— MFEM interfaces with numerous libraries in the XSDK including HYPRE,
SUNDIALS, SuperLU, PETSc, and STRUMPACK.

Lessons learned:

— Maintaining connections to all existing libraries requires significant effort and
communication.

— Synchronizing releases with interoperating libraries that have API changes is
difficult.

— Library version interoperability needs to be added to our testing suite.

: ! 0P s
K

32

xSDK Lessons Learned 5 \:ﬁ

Background:

« PLASMA relies on BLAS and LAPACK for low-level HPC optimizations.
» Varied implementations and interfaces across hardware platforms
« Test suites for BLAS and LAPACK are usually not available in most implementations
 Additional set of basic routines (Core BLAS) did not gain community acceptance

Lessons learned:
» Must use name space for all interface entry points even if it might be an older project.

« Ease of installation is a necessity. Using established software configuration frameworks
(autoconf, CMake, etc.) enforce portable code and adaptation to a variety of software
environments.

,:\ EXASCALE
3’& E\(C\)P EamELTG

xSDK

33

xSDK Lessons Learned PETSc/TAO

Background:

« PETSc development was being slowed down by backlog of branches waiting to be fully tested
and moved into master.

« Through work on xSDK, we refactored PETSc tests to improve overall test functionality and better
support continuous integration testing.

Lessons learned:
» Result: Work toward better, faster, more people-efficient workflow for testing has enabled moving
developer branches into master branch without breaking master branch or requiring hand holding.

» Introduced parallelism (and other techniques) to decrease time for running complete test suite while still
providing high coverage

« Simplified the addition of new tests into suite

* Introduced finer grain control over what is tested

» Making testing process more robust to random system, hardware, or software failures

» Working toward making it easier for anyone to automatically run full PETSc test suite, including dashboard

,:\ EXASCALE
“1 E\(C\)P EamELTG

xSDK

34

xSDK Lessons Learned PHIST

Background:

» PHIST already adhered to most of the xSDK policies, but still required a few
changes.

Lessons learned:

» Had to duplicate some CMake flags although Spack is the high-level build system
now

» Had to switch off performance optimizations (e.g. no OpenMP, no —march flag) to
get it to compile on all platforms

* No easy way to uninstall all xXSDK packages via Spack

