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ABSTRACT

Recent developments at Sandia in meshfree methods have delivered improved robustness in solid
mechanics problems that prove difficult for traditional Lagrangian, mesh-based finite elements.
Nevertheless, there remains a limitation in accurately predicting very large material deformations.
It seems robust meshfree discretizations and integration schemes are necessary, but not sufficient, to
close this capability gap. This state of affairs directly impacts current and future LEPs, whose
simulation needs are not well met for extremely large deformation problems.

We propose to use a new numerical framework, the Optimal Transportation Meshfree (OTM)
method enhanced by meshfree adaptivity, as we believe that a combination of both will provide a
novel way to close this capability gap.
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1. INTRODUCTION

Recent developments at Sandia in meshfree methods have delivered improved robustness in solid
mechanics problems that prove difficult for traditional Lagrangian, mesh-based finite elements.
Nevertheless, there remains a limitation in accurately predicting very large material deformations.
It seems robust meshfree discretizations and integration schemes are necessary, but not sufficient, to
close this capability gap. This state of affairs directly impacts current and future LEPs, whose
simulation needs are not well met for extremely large deformation problems. Applications
include:

e ballistic impact spanning the ordnance regime (~ 100 — 3000 m/s impact velocities)
e impact into soft targets

e ductile failure

e shear-banding and localization in metals and bonded granular materials

e localized melting and other phase transitions

We seek to answer the technical question: can we build on the recent advances at Sandia in
meshless simulation, and develop an accurate and robust computational approach for predicting
material response under extreme deformation? Our hypothesis is that meshfree adaptivity is one of
the keys to resolving this problem.

State-of-the-art methods for tackling extreme deformations have critical deficiencies:

e Eulerian hydrocodes: specialized for fluid-like behavior in problems like hypervelocity
impact, not the deformations of solids. Induce numerical smearing of material states,
problematic for modeling plastic deformation. Also lack a well-defined surface
representation, crucial for modeling contact.

e Lagrangian mesh-based finite element methods: existing methods to address mesh distortion
are ad hoc, are not sufficiently robust or accurate.

e Lagrangian meshfree methods: No adaptivity resources in the implementations currently
available at Sandia, and a search of the open literature yields very little work in this direction.
Robust contact algorithms for these discretization schemes have likewise not received much
attention. In some versions of Lagrangian meshfree, this is compounded by difficulties in
identifying and representing the surface without a mesh.
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Recent work at Sandia has improved the numerical stability and geometry-to-simulation turnaround
time for meshfree methods. We aim to retain these advances to the greatest extent possible, while
tackling the challenges noted above. We propose to use a new numerical framework, the Optimal
Transportation Meshfree (OTM) method, as we believe it has properties beneficial to close this
capability gap:

e It is a rigorous mathematical framework based on variational minimization principles. The
discretization procedure is thus amenable to well-established accuracy and stability analyses,
which provides tools for error estimation, and a means to detect incipient instabilities.
Furthermore, the variational principle approach provides a meaningful objective function for
goal oriented adaptivity.

e The basis functions are interpolating, at least on convex boundaries, which in practical terms
means that the surface is directly represented by the nodal points.

The Optimal Transportation Meshfree (OTM) method is a meshfree updated Lagrangian
methodology, which combines concepts from Optimal Transportation theory with material-point
sampling and local maximum entropy (LME) meshfree approximation, and overcomes the essential
difficulties in grid- based Lagrangian and Eulerian finite element methods. In OTM, the inertial
action in space and time is discretized within a strictly variational framework [17, 21, 22, 19, 18,
20]. The resulting discretization is the result of restricting the inertial action to mass measures
concentrated on material points undergoing piecewise-rectilinear motions. The density of such
mass measures and the constrained minimization structure of the problem confers the discretization
robust convergence properties. The framework also results in proper mass matrices and inertia
forces in the presence of continuously varying spatial interpolation, geometrically exact mass
transport and satisfaction of the continuity equation. Finally, fields requiring differentiation, such as
deformation and velocity fields, are interpolated from nodal values using LME shape functions, and
possess a Kronecker-delta property at the boundary, which enables the direct imposition of
displacement boundary conditions, unlike other meshfree methods.

In this work, we propose to advance this framework in several key areas to meet the needs of the
laboratories:

e implement the theory of optimal transportation, including the ability to choose between
different approximation bases;

e take advantage of the meshfree framework to develop adaptivity strategies, to resolve local
geometric features and material instabilities;

e exploit the variational structure of the method to incorporate material models to predict shear
banding, fracture, and phase transitions in solids.
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2. FORMULATION OF THE FINITE DEFORMATION SOLID DYNAMICS
PROBLEM

We start by defining the standard finite deformation variational formulation to establish notation
before presenting the formulation of the meshless method.

2.1. Variational formulation

Let I :={t € [fo,ty]} be a closed time interval with #y < y, and o, 7y € R. Then consider a body as
the regular open set Q C R undergoing a motion described by the mapping

x=@(X,t): QxI— R} where X € Qandt € I. Assume that the boundary of the body is

0Q = d,QU I Q with unit normal IV, where d,€ is a prescribed position boundary, d7Q is a
prescribed traction traction boundary, and d,Q N d7Q = 0. The prescribed boundary positions or
Dirichlet boundary conditions are x : 9,Q x I — R3. The prescribed boundary tractions or
Neumann boundary conditions are T': 97Q x I — R3. Let F' := Grad ¢ be the deformation
gradient. Let the initial position and velocity at time 7o be g = X : Q — R3, and vy : Q — R?,
correspondingly. Let also pgB : Q — R> be the body force, with pg the mass density in the
reference configuration. Furthermore, introduce the kinetic energy of the body as

1
T(¢)i=5 [ pow- av. @.1)

and its potential energy as
V(p) ::/A(F,Z) dV—/ 00B- @ dV—/ T ds, 2.2)
Q Q 0T Q

in which A(F', Z) is the Helmholtz free-energy density and Z is a collection of internal variables.
The Lagrangian function of the body is then

L(g,¢):=T(¢)—V(p), (2.3)

which gives rise to the action functional

Sigl = [ Lip. ) ar. (2.4)

According to the Variational Principle of Hamilton, the equation of motion is obtained by finding
the critical point of the action functional S[¢] over the Sobolev space W, (Q x I) that is comprised
of all functions that are square-integrable and have square-integrable first derivatives [24]. Define

«53:{‘PGWQ](QXI):cpzxonag,QxI;cp:azooanto} (2.5)
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and
V= {6 W) (QxI):€=00n0d,QxTUQx1f)} (2.6)

where £ is a test function. This leads to

oL oL . oL d oJL
SSZ:DS[‘P](Q:/I(%f‘F%'ﬁ) dt:/l(—a¢—a—a¢)'§ dr
:/U (poB-§— P :Grad§) dV+/po¢-édv+/ T ¢ ds} dr (2.7)
11/0 Q orQ

:/IVQ(DivPerOB—pOga)-g dV—|—/aTQT-§ dS] dr =0,

where P = dA/dF denotes the first Piola-Kirchhoff stress. The Euler-Lagrange equation
corresponding to (2.4) is then

DivP+poB =pop in QxI, (2.8)

with the initial conditions

(X, 00)=x9 in Q,

2.9
Qb(X,l()) =wvg in Q. 29)

and the boundary conditions

P(X,t)=x on 0dpQxI,

2.10
PN =T on opQxlI. (2.10)

2.2 Spatial Discretization by Local Maximum Entropy (LME) Shape Functions

The domain under consideration is discretized by two sets of points, called nodes and material
points or points for short. The nodes play the same role as in the standard finite element method,
and the points play a similar role as the integration points [17]. Each node has a set of points
associated to it called the influence domain. Conversely, each point has a set of nodes associated to
it called the support domain. The influence and support domains are the data structures that
maintain the connectivity between the nodes and points. They change dynamically as the
simulation advances. See Figure 2-1.

Next we introduce the spatial discretization for the field ¢ and its test function & as

on(X) = No(X) 24 € Sh,
Eh(X) ::Na(X)Ea € ‘Vh,
12
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in which §, C § and V), C 7V are finite-dimensional subspaces of S and ¥/, respectively. The local
maximum entropy shape functions are defined as

Zo(Xp; A) = exp [=B[[ X — X[+ A~ (X, — X)),

NP
Z(Xp ) =) Z,(X,, ),
a=l (2.12)
Api= argm}inZ(Xp,)\),
Za(Xp,Ap)
Ny(Xp) = —72,
e Z(Xp,Ap)

where B is a locality parameter that narrows or spreads the support of the shape functions, A is a
Lagrange multiplier that enforces the first order consistency condition, and N, is the number of
support nodes for a specific point p. The normalization is effected so that the shape functions
satisfy the partition of unity condition.

The minimization to find the Lagrange multiplier A, is carried out numerically, typically by means
of a Newton-type scheme. We will explore in Chapter 5 how well-conditioned this minimization is,
in particular in the presence of adaptivity, where nodes and points are inserted or removed from the
domain. For a more thorough discussion of the local maximum entropy shape functions, the reader
is referred to Arroyo and Ortiz [2], Li [17], Li et al. [21], and Weissenfels and Wriggers [33], and
references therein.

2.3. Temporal Discretization by a Two-Step Integration Algorithm

Here, we follow the time integration scheme proposed by Li [17] and Li et al. [21], which does not
assume a constant time step as in Weissenfels and Wriggers [33]. The OTM method is an updated
Lagrangian scheme. Assume that the time interval / := {t € [fo,#y]} is discretized by a sequence of
time values fo,...,#,...,ty, and that the configuration of the body is known at time #;. The task is
to update the configuration such that Q| := @i (Qg, %), as shown in Figure 2-2. Define the

diagonal lumped mass matrix as M, where each entry mc(lk) is computed as

Na
mi =Y No(X,p)pi vy, (2.13)
p=1
where pg,k) is the mass density and Vp(k) is the volume associated with point p, correspondingly; and
N, is the number of points in the influence domain of node a. For convenience, the positions,
densities and volumes of the points in the discretization are initialized by means of a standard
tetrahedral mesh. Then, the nodal linear momentum l; may be computed as

i == My,
. e ¢ (2.14)
e el — e
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Figure 2-1. A domain discretized by nodes (green) and points (red) for use by the OTM
method. Also shown are nodes in the support domain (light red) of a point, and points in the

influence domain (light green) of a node. The support and influence are recomputed every
certain number of time steps that is chosen beforehand.
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Note that this definition of the linear momentum is different than the one used in Li [17] and Li

et al. [21], where it is computed by means of the point masses and LME functions. This expression,
however, is more efficient computationally and does not seem to introduce adverse effects in our
calculations and those of Li [23]. The procedure that effects the integration in time is shown in

Algorithm 1.

k ... k1 .o.....O;: ..OO
Xa( ) ®.e%° X[(, +1) PR -'.‘-"-‘.'.'.
@ @, °e ..0.0........... (€]
0 e eccoe RN A PR I
........°.;:.:. .......:.....O:....:...0.0.0.......
€] ° ; ° ..0.'.. ..... .:..o.'..:..:.......o...o.o...o.o..
..;.;o.......... . .:.:.’..o.. ..o.o...o.o.....o
.0.0.0.....00. .:.o................
(k) $e0.00 0uten 0 (1] 0e01800°0 e 00 e °
TN et X e
....... ........:..... ............. ...
@ ° ® o @°°%,°_o ®o, ), @ ° ©
..o.".o o.::.....°. ...... .o....
....... ..... 0 ®° 0 © .........
......... ......:....O. .......:....
c0@0 0@ o0 0 ®° o @ o e ®° 0@’ ®°e®
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.:o';-;°..'°..'.'° ®e
0o e tasce”® Qi1 = Pr( Qs 1)
Q Qi1

Figure 2-2. Two subdomains Q; and Q. The task of the OTM method is to update the
configuration such that Q1 := g (Q, %)
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Initialize nodal positions X((fl) and Xa(o)

1: , and times 7_ and 7y

2: Initialize point positions X (0>, volumes VIEO), densities pg,o), and masses m,,

3: Initialize total deformation gradient FIEO)

4: k<0

5: repeat > time integration loop

6: Compute support and influence domains in Figure 2-1 > Optional adaptivity here

7. Compute Ny(X ") and Grad N, (X V) by (2.12)

8: Compute M, by (2.13) and I by (2.14)

9: Compute residual force fy > Assemble in finite element fashion
10: Update time step > We use a conservative Courant condition estimate
e XY e X (g — ) M (tH%ﬁc)

k41 N, k k41
0 XE ey N (x) x Y

k41 N k k+1
13 AFSTY ¥ GradN,(x ) x Y
4 FyY e ARV RE
15 VY e detaFy vk
k+1 p
16: pg? = VZZIH)
P

17: k< k+1
18: until k =N > N is the total number of time steps

Algorithm 1 Optimal Transportation Meshfree method for solid transient dynamics.
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3. IMPLEMENTATION

The OTM method was implemented in the Lagrangian Grid Reconnection (LGR)
performance-portable toolkit written by Sandia National Laboratories [15].! LGR is fundamentally
designed from the ground up for adaptivity, a key component of our purposes. It has minimal
dependencies, enabling rapid prototyping of ideas and quick build-test turnaround times. The
performance portability of LGR is based on raw CUDA code, the Thrust library, and C++14
standard constructs. This does not prevent LGR to be interoperable with other CUDA-enabled
libraries, such as Kokkos or ArborX. LGR’s data access patterns are designed for fast access and
minimal data race conditions on NVidia GPU threaded architectures. With the help of the LGR
framework, we were able to gain valuable experience developing portable algorithms and testing
complex code for correctness and performance on both the CPU and GPU without any algorithm
duplication. Furthermore, we find that the OTM method as described in Algorithm 1 is amenable to
performance on GPU architectures, although further exploration and optimization are required. We
observed that our OTM implementation achieved an utilization of the GPU above 90%.

3.1. Geometric Search

The computation of the support and influence domains defined in Figure 2-1 requires geometric
searches that are performant both in the CPU and GPU. To this end, we utilize ArborX,? an
open-source library designed to provide performance portable algorithms for geometric search.
ArborX is based on Kokkos> and Thrust* libraries to deliver performance on both CPU and GPU
architectures. Using these libraries, we developed a reusable, performance-portable search library
interface for LGR and used it to build the necessary support and influence domains for our OTM
implementation.

An example of the gains obtained by performance portability is shown in Figure 3-1, where we plot
a comparison of CPU and GPU wall time execution for the Taylor bar simulation of Chapter 4 with
different numbers of points.

'LGR is available on GitHub: https://github.com/SNLComputation/LGR.
2 ArborX is available on GitHub: https://github.com/arborx/ArborX .
3Kokkos is available on GitHub: https://github.com/kokkos/kokkos.
4Thrust is available on GitHub: https://github.com/thrust/thrust.
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100 1000 10000 100000
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Figure 3-1. Comparison of CPU and GPU wall time execution for the Taylor bar simulation
of Chapter 4 with different numbers of points.
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4. VERIFICATION BY TAYLOR ANVIL TEST

The impact of a Taylor bar is a common use case to induce extremely large deformation in metals
[31, 34, 35]. This is a prime example for the use of numerical simulation methods capable of
representing extreme large deformation. The geometry of the cylinder and impact speed is shown in
Figure 4-1

vo = 227 m/s

6.4 mm

Figure 4-1. Geometry and initial velocity of the copper Taylor bar subjected to impact on a
rigid surface.

4.1. Results from Our OTM Implementation

The cylinder is assumed to be made of copper, with a density of 8930kg/m>. The Young’s modulus
and Poisson’s ratio are 117 GPa and 0.35, respectively. We employ a rate-independent J2 plasticity
constitutive model with power law hardening [28]. The yield strength and hardening modulus are
400 MPa and 100 MPa, respectively. The cylinder is initially in contact with the rigid surface.We

use two different contact algorithms, one based on enforcing the displacement perpendicular to the
rigid surface to be zero, and another based on a penalty coefficient. Both algorithms produce results
with very minor differences. We run the simulation from Ous to 100us, and we show the resulting

deformed configurations in Figure 4-2.
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302400

2 0.0e+00

Figure 4-2. Deformed configuration of the Taylor bar obtained with our OTM implementa-
tion at 20us, 40us, and 80us. The color contour shows the equivalent plastic strain €P.
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4.2. Comparison to Other Works

It is difficult to validate against other numerical computation results, mainly because published
results tend to show deformed configurations and color scales for a field as we show here, without

making reference to a precise metric. Nevertheless, we include some results obtained by other
authors for reference.

effetive plastic strain
3.00
' 257
2.14
LI
1.29
0.857

l 0.429

0.000

Y &
t = 20us t = 40us t=80us

Figure 14. Taylor-anvil impact test of copper specimen at 227 m/s impact velocity. Distributions of effective
plastic strain at 20, 40 and 80ps.

Figure 4-3. Deformed configuration of the Taylor bar at 20us, 40us, and 80us. The color
contour shows the equivalent plastic strain €P. Taken from Li et al. [21].

A comparison between our results in Figure 4-2 and those of Figures 4-3 to 4-5 leads us to conclude
that the behavior that we obtain with our OTM implementation is qualitatively correct. More
verification and validations studies are needed, but those are in the scope of future work.
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t = 20.00us t = 40.00us t = 60.00pus t = 80.00us

0 0.2 0.4 0.6 0.8 i

Figure 4-4. Deformed configuration of the Taylor bar at 20us, 40us, 60us, and 80us. The
color contour shows the equivalent plastic strain €P. Taken from Aguirre et al. [1].
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Figure 4-5. Deformed configuration of the Taylor bar at 12us. The color contour shows the
pressure p. Taken from Foulk et al. [11].
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5. ADAPTIVITY IN THE OTM METHOD

One of the key aspects of our LDRD project is to determine the effects of meshfree adaptivity in
enabling these kinds of methods to access regimes of extreme deformation. Although there is no
mesh associated with meshless methods, and thus no possibility of extreme mesh distortion or
entanglement, there are regimes where the extreme deformation may lead to an undesirable
distributions of nodes and points. As en example, we run the Taylor bar case from Chapter 4,
increasing the impact velocity from 227m/s to 750m/s, and at 37us we obtain the configuration
shown in Figure 5-1. Note the spread of the points as the cylinder flattens against the rigid surface.
This is undesirable for fine resolution of the fields, and thus the need for adaptivity.

© e 108401

ep

Figure 5-1. Deformed configuration of the Taylor bar at 37us. The color countour shows the
equivalent plastic strain €,. The impact velocity has been increased from 227m/s to 750m/s
to obtain very large deformation. Note the spread of the points as the cylinder flattens against
the rigid surface. This is undesirable for fine resolution of the fields, and thus the need for
adaptivity.

5.1. OTM Point and Node Injection

As as starting step, we propose a node and point injection procedure for the OTM method. We
introduce new nodes and points as the simulation proceeds where needed as determined by a simple

24



separation criterion. The existing nodes and points remain, and therefore, no mapping of internal
state variables is necessary. Nevertheless, it is necessary to interpolate internal state variables to
new material points. To this end, we employ Lie group interpolation and variational recovery to
ensure they stay in their proper manifolds [25]. Our initial focus is on capability demonstration, and
thus we set a very simple adaptivity metric as shown in Figure 5-2 and Algorithm 2, where a is a
specific node, A, is the distance between that node and its nearest neighbor, and tol is a predefined
tolerance. An identical metric and algorithm is used for the points.

\
\
\
\
\
\
\
\
\
Q
N
s}
Y
\
\
\
\
\
\
\
\
\
\
f'\

Figure 5-2. Simple distance adaptivity metric, where a is a specific node, &, is the distance
between that node and its nearest neighbor, and tol is a predefined tolerance. An identical
metric and algorithm is used for the points.

1: for a € nodes do

2 hy minb;éa |xa —xb|

3 if i, > tol then

4: insert node halfway between
5 interpolate fields to new node
6 end if

7: end for

Algorithm 2 Simple distance adaptivity metric for nodes. An identical algorithm is used for
the points.

As a demonstration of the adaptivity scheme, and in order to be able to visualize the injection of
points and nodes, we use an extremely coarse density of nodes and points on the Taylor bar
exemplar. The result is shown in Figure 5-3, where we capture two time frames in the simulation
before and after an adaptivity step is performed according to Algorithm 2.

5.2. Conditioning of the Point and Node Injection Procedure

Our first attempt to introduce adaptivity to the OTM method uses the simple adaptivity metric
described in the previous section. As is evident from Figure 5-2 and Algorithm 2, the newly
injected nodes and points are positioned exactly in between existing ones. In our simulations, we
notice that this leads to numerical difficulties in the selected Newton solver for the computation of
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Figure 5-3. Demonstration of the adaptivity procedure of Algorithm 2 on the Taylor bar
with an extremely coarse density of nodes and points. Two time frames that capture an
instance of point injection. Note the new point near the right end on the bottom figure. There
may be other newly injected points.
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the LME shape functions. To further investigate this phenomenon, we examine the ability of the
Newton solver to compute the LME shape functions by defining a set of nodes and then simulating
the injection of a new node anywhere in the cube defined by the set of existing nodes, as shown in
Figure 5-4.

Figure 5-4. Cube domain with a distribution of nodes (light blue) to demonstrate the regions
of ill conditioning for the evaluation of the LME shape functions. The red regions indicate
where the Newton solver cannot converge to a solution of the LME optimization problem
defined in (2.12).

Given this situation, we consider several strategies to overcome this numerical difficulty, such as
carefully regulate node and point locations, spatially and temporally adjusting the LME support
parameter 3 defined in (2.12), use rank-deficient linear solvers when the system is singular or
combine nonlinear optimization methods. Of all of these, regulating the position of nodes and
points would introduce unacceptable restrictions to the OTM method. We consider the remaining
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options, and our findings are summarized in Figure 5-5, where we show the success rate of different
solvers for the solution of the LME optimization problem (2.12) for the red regions of Figure 5-4.

Solution Success Rate, 3D, n = 5000
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Figure 5-5. Success rate of different solvers for the solution of the LME optimization
problem (2.12) for the red regions of Figure 5-4. The parameter v is related to the parameter
B by y:= Bh?, where & is a characteristic distance, often the minimum distance between
nearest points. On the left we show the performance of the solvers with no line search. On
the right, we use a backtracking line search. Note that the introduction of the line search
removes all significant differences between solvers.

60

It is evident that no matter the solution scheme, introducing a backtracking line search removes all
significant differences between solvers. Furthermore, we note that the success rate of the solvers
decreases dramatically as 7, and therefore [3, increases. The implication is that for ill-conditioned
regions, the locality of the LME functions is compromised, and the solvers will only be able to
compute shape functions with very wide support. This is undesirable for at least two reasons: it
increases significantly the computational cost of the simulations, and introduces a much higher
degree of nonlocality into the simulated physical phenomena. For these reasons, we conclude that,
although we believe that the node and point injection procedure is sound, introducing new nodes
and points in a linear fashion is detrimental to the method. Therefore, we propose to develop more
complex and sophisticated injection schemes in future work.
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6. CONCLUSION

We leveraged the theory of the Optimal Transportation Meshfree method for extreme deformation.
We created an implementation of the method in the open-source LGR framework that may be used
for further research and exploration of meshfree methods, adaptivity and extreme deformation. We
introduced adaptivity to meshfree simulations, and we leveraged the LGR code for scalability and
execution on the GPU. Our team achieved the objectives that we defined for this LDRD project.

In addition, we achieved synergy between 1400, 1500, and 8300 with a strong, extremely capable
team. We demonstrated that the OTM method can achieve regimes of extreme deformation
naturally and that we can introduce adaptivity to our implementation with relative ease. We also
discovered that due to the ill-conditioning of the LME problem, different adativity schemes than the
one we proposed are needed, but those are within the scope of future work.

Some of the old habits acquired by many years of use of the finite element are hard to break (no
mesh, no elements). Furthermore, some things that are difficult in FEM are relatively easy in OTM
and vice versa. We need to develop new intuition through experience. We also learned that we need
to develop better adaptivity metrics (variational, energy based), and possibly adopt the use of
different shape functions and adaptivity at extreme deformation. Also, we encountered the issue of
locking in isochoric deformation, and thus we need to collaborate with staff that are already
working on this problem, like Mike Tupek and Jake Koester.

The future promise of OTM is that we may be able to formulate novel, meshfree adaptivity metrics,
and access regimes currently inaccessible with existing FEM technology, such as impact on hard
and soft targets, simulation of subtractive and additive manufacturing, and phase changes and
melting.
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