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ABSTRACT

This final report on Laboratory Directed Research and Development (LDRD) project 209234
presents background material for electrokinetics at the pore and porous media scales. We present
some theoretical developments related to uncoupling electrokinetic flow solutions, from a
manuscript recently accepted into Mathematical Geosciences for publication. We present a
summary of two pore-scale modeling efforts undertaken as part of the academic alliance with
University of Illinois, resulting in one already submitted journal publication to Transport in
Porous Media and another in preparation for submission to a journal. We finally show the
laboratory apparatus built in Laboratory BS9 in Building 823 and discuss some of the issues that
occurred with it.
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NOMENCLATURE

Abbreviation Definition

BC boundary conditions

DOE Department of Energy

EDL electric double layer

EO electroosmosis

LDRD Laboratory-Directed Research & Development
SP streaming potential



1. INTRODUCTION

While many geophysical exploration methods are sensitive to the presence of water or solutes
(e.g., electrical resistivity [59], seismic [37], or induced polarization [4]), the coupling between
hydrology and geophysics is especially explicit and direct in electrokinetics [65, 64]. Direct
causality exists between processes of water flow and electric potentials for streaming potentials
and electrokinetics. Streaming potentials are caused by the movement of water through a porous
medium and electroosmosis is the movement water in low-permeability porous media due to
applied electric fields. Electrokinetics occur when electrolytes (e.g., water and ions) flow through
a porous medium with a surface charge (e.g., quartz sand grains) [60, 16]. Streaming potentials
arise from the movement of water under an imposed pressure gradient, dragging ions with the
water, creating a streaming current. Electroosmotic pressure arises from the movement of ions
under an imposed electric field, dragging the water with the ions, creating an electroosmotic
flux.

Streaming potentials are a pore-scale phenomena that create useful effects at the laboratory and
field scales to characterize water movement using passive (i.e., self-potential without an applied
current) voltage observations [65, 62]. Field-scale streaming potentials have been used to derive
material properties from field-scale pumping tests experiments [63, 50, 49, 48, 70].
Electroosmosis is utilized widely in microfluidics [40] and at the pore scale [21, 35] to move
fluids through small pores. At the laboratory and field scale electroosmosis has been used to
consolidate soft clays [9, 10, 45, 6] or mobilize contaminants [17, 2, 69, 1, 73, 14].
Seismoelectric applications consider the electrokinetic response (i.e., both streaming potential and
electroosmosis) of a porous formation to seismic waves [60, 36, 64, 56].

The pore-scale electrokinetic problem involves solving the Navier-Stokes equation for fluid flow,
the Nernst-Planck equations for ion transport, and the Poisson equation for excess charge
redistribution. At this scale, the pore walls or grain boundaries are individually resolved (i.e.,

~ um). These small-scale problems are simulated to better understand and predict the physical
processes at the porous media or field-relevant scale. At the porous media scale it can be
straightforward to propose solvable governing equations, but difficult to physically justify these
relationships (i.e., upscale or derive relationships that include all the physics from the smaller
scale). At the porous media scale individual grains or fractures are not resolved (i.e., > cm) and
the equations rely on the existence of a representative elementary volume [25]. At this larger scale
we use the groundwater flow (diffusion) equation and the Laplace equation for electrostatic
excess charge redistribution. The equations at the porous media scale have terms with assumed or
inferred coefficients. The academic alliance part of this LDRD involves simulating the problem at
pore and macro scales with the hopes to improve the understanding of the relation between the
processes.



Solid surfaces at the pore scale have fixed charge for a given solution composition (e.g., pH); ions
in solutions within fractures and pores arrange themselves to balance out the surface charge
(Figure [I-1)). The more ordered region of ions near the surface is the bound part of the double
layer (i.e., Stern layer), while a less bound region of ions is the diffuse part of the double layer
(i.e., beyond the slipping plane). In both regions, most water molecules are free to move [38]
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Figure 1-1. lon distribution around a charged solid (Wikipedia)

(except the layer of water molecules immediately adjacent to the surface). With no fluid flow the
steady-state double layer of counterions (i.e., cations in the case of negatively charged silica
surfaces at typical pH) around a charged surface is given solely by the electrostatic arrangement
of excess charges in the liquid around the charged solid surface (balance of Nernst-Planck and
Poisson equations). This static distribution of excess charge — only influenced by electrostatic
forces — will follow the Boltzmann distribution.

The porous media scale problem can be developed by scaling it up from the pore-scale equations
([32,33]), but they are typically derived independently. There are multiple approaches to
“upscale” the pore-scale solutions to understand the meaning of parameters derived initially at the
porous media scale. The upscaling from Navier-Stokes to Darcy’s Law is one step that is
relatively well known (e.g., [52], [74]), the upscaling from pore to porous media scale for the
electrokinetic problem is less well developed [23, 66, 5, 72].

The following sections introduce the pore-scale governing equations (Section 2)) and the porous
media scale governing equations (Section 3). One accepted journal publication has already been
completed from this project on the topic of uncoupling the porous media scale governing
equations [42], which is introduced in Section 3.2, The academic alliance portion of the LDRD
has produced one journal paper, which is in review on the topic of pore-scale numerical modeling
the effects of tortuosity (Section 4.1)), while the manuscript on using machine learning to upscale
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pore-scale flow to porous media scale is approaching submission (Section 4.2). A laboratory
effort to measure streaming potential and electroosmotic coupling coefficents in 823/B59 is
outlined in Section 5.



2. PORE-SCALE EQUATIONS

Predicting the pore-scale electrokinetic problem requires simultaneously solving three or more
governing equations: Stokes for incompressible, creeping fluid flow, the Nernst-Planck equation
for each species in ion transport, and a Poisson equation for excess charge redistribution

[61, 18, 51, 41]. These governing equations are already simplifications (e.g., Stokes is simplified
from Navier-Stokes for creeping flow; Nernst-Planck is simplified from Stefan-Maxwell for dilute
concentrations; Poisson excess charge distribution simplified from Maxwell equations without
magnetic effects), but are generally found to be sufficient for relevant pore-scale problems [51].

Fluid flow most generally is governed by the Navier-Stokes equations, but fluid compressibility,
non-linear acceleration, and gravity terms are often considered insignificant at small scales. The
Nernst-Planck equation assumes the distribution of ions can be treated as a continuum problem
governed by electrostatics; a smaller-scale density functional theory, Monte Carlo, or molecular
dynamics simulation would need to be used to resolve ion size (i.e., steric) effects or other
ionic-strength dependent forces between ions. By solving the electrostatic Poisson equation, we
assume there is no significant magnetic field generated (even when applying low-frequency
alternating current), and we assume the transient effects of polarization are minimal. The
Maxwell equations would need to be solved in a more rigorous formulation that included
magnetic field effects due to time-variable charges. Coupling the Navier-Stokes and Maxwell
equations with a representation of individual ions would be quite computationally intensive, and
is not done here.

2.1, Pore-Scale Fluid Flow (Stokes)

Generally, the Navier-Stokes equations (momentum and mass continuity) for a Newtonian fluid
subject to gravitational and electrical body forces are [27]

d (pu)
ot

8_p

ot

+V-(puu)=—-Vp+V-pu (Vu—}—VuT) +pg—prVy

(2.1)
+V-(pu)=0

where p is fluid density [kg/m?], u is the fluid velocity vector [m/s], p is fluid pressure [Pa], u is
dynamic viscosity [Pa-s], g = —gk is the gravitational acceleration vector [m/s?], py is the free
charge density [C/m?] (as opposed to bound charge from polarization), and v is the electrostatic
potential [V].

The last source term in the Navier-Stokes equation accounts for electroosmosis. At the pore scale,
the characteristic lengths are very small, such that the Reynolds numbers are small for liquids
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except for large velocities. The gravity term in the Navier-Stokes is typically unimportant in
pore-scale problems; it is often set to zero. For incompressible (constant p) flow at low Reynolds
number, both equations can be significantly simplified (but the non-linear diffusion terms can
sometimes make the Navier-Stokes equations easier to solve than the stiffer Stokes equations).
These simplifications lead to the transient Stokes flow problem:

Ju
P =—Vp+V-pVu—pVy
V-u=0.

(2.2)

The first equation is momentum conservation in creeping flow, and the second equation is the
revised mass continutity equation, which now simply requires the velocity field to be solenoidal
(divergence-free).

Even with these simplifications, solutions for linear transient Stokes flow are typically performed
numerically; it is a set of 4 equations in 4 unknowns (3 components of u and p). It is possible to
solve (2.2) using finite volume ([55], [27], or FiPy) or finite element (e.g., Elmer, SfePy, deal.Il,
or FEniCS).

When solving the stokes problem numerically, often the continuity equation is used to adjust the
pressure, by solving a Poisson-type equation that ensures the solution is divergence-free. The
SIMPLE scheme is summarized by as (e.g., [55], [27]):

* start with guess of pressure and velocity fields (u is assumed to be divergence free);
* compute the viscous term, the source term;

* solve a Poisson equation for pressure, using the previous terms as the inhomogeneous
terms;

» compute the velocity field at the next time step (it will be divergence free); and
* advance to the next time step.

Despite being a significant simplification from the Navier-Stokes equations, Stokes flow is still
non-trivial to solve, because there is not an equation to derive the pressure field from, and this is
typically not known a priori. There are several common solution strategies for the Stokes
equations, including modifying them to create a pressure equation that simultaneously leads to a
solenoidal velocity field and therefore satisfies the mass continuity equation.

2.2, Dilute Pore-Scale lon Transport (Nernst-Planck)

Transport of dilute concentrations of ions in an electrolyte at the mesoscale is governed by the
Nernst-Planck equation [61, 51]. Direct molecular dynamics simulation of individual molecules
of water and solute represents smaller time and length scales (e.g., like LAMMPS). Some of the
limitations of this representation include ([18, §4.3], [38]):

* Finite size of ions is neglected (i.e., close to solid surface, ion concentration can be very
high);

11



* Finite size of ion hydration spheres;
* Ignore discrete nature of ions (i.e., they are actually multiples of the fundamental charge);
* Ignore finite nature of surface charge;

* Ignore non-Coulombic interaction (i.e., not including effects of water hydration shells or
ion dipoles);

* Ignore variations in water permittivity near solid surface;
* Surfaces are assumed to be locally flat; and
* Solution is derived in dilute limit (i.e., no multiple-ion interactions like Pitzer).

The Nernst-Planck expression for the total ion flux of the ith dilute species is [61, 24]

. zieD;
J, = nu — D;Vn; —I’li—vw,
~—~— —— kT (23)
convection diffusion N=——~r—
migration

where n; is the number concentration [1 /m?] for the ith species, D; is the diffusion coefficient
[m? /s] for the ith species in the solvent (i.e., water), z; is the dimensionless integer ion valence, e
is the fundamental electron charge [1.602 x 10~1° C], kp is the Boltzmann constant
[1.381 x 10723 J /K], and T is absolute temperature [K]. The mass concentration c; of the ith
species [kg/m>] and number concentration are related through the molecular weight M; [kg] for a
given species

Ci = Ml'l’li. (2.4)
The coefficient in the last term of () can be written equivalently as Z"‘I?TD i where .% = eN, is
the Faraday constant [9.649 x 10* C/mol], R is the universal gas constant [8.314 J/(mol-K)], and
Ny is the Avagadro constant [6.022 x 10?3 1 /mol].

The current density vector, i [A/m?], can be related to the sum of the fluxes of all N charged
species

N 2 N

. e

i— euZZini — eZvaziVni - —kBTVl/IZZ,-ZDin,- (2.5
i i

by summing over all the ions and multiplying by the appropriate constant. The coefficient in the
third term (i.e., migration) of (2.5) is bulk electrolyte electrical conductivity [S/m]

T2\ 2 e 2
oy = ﬁ Zzi D,‘Cl' = kBT Zzi D,'I’l,'. (26)
This shows the local electrical conductivity depends on concentration and the diffusion
coefficient, which also may be a function of concentration.

The electrostatic charge conservation equations for individual species are

ani

= V. 2.7

ot Ji s )
12



and the familiar total current density conservation equation is obtained by again summing over all
N charged species
N on d Py
N - — _V.-i 2.8
e;Zl at at 17 ( )

where the definition of excess charge distribution (p r=eY,; zin,-) is used.

For electrically neutral solutions, ps = 0 over typical macroscopic volumes (i.e., many pores). If
an electrolyte consists only of water and equal concentrations of ions derived from a common
solute (e.g., Na™ and C1~ from salt), then ¥;zin; =zyn. +z.n_=zm—-m=0(z. = —z_ =72
and ny = n_ for a 1:1 electrolyte). For water far from container/pore walls, the electroneutrality
condition is satisfied. Near a charged surface (i.e., a pore wall or a central ion [15]), there will be
an excess of counterions, which balance the immobile surface charge.

2.3. Pore-Scale Excess Charge Redistribution (Poisson)

In the electrostatic limit (i.e., no magnetic fields), the electric field is governed by

vE=P
€

+Pp, 2.9)
where py, is the distributed “bound” charge due to polarization effects, € = €&, is the permittivity
of the liquid [F/m or C/(V-m)], & is the permittivity of free space [8.854 x 10~!2 F/m], and

& ~ 80 for water at 25° C. Static permittivity (i.e., in the DC limit) of water decreases with
increases temperature and salinity; € = €(c;, T ). Permittivity is also a function of frequency, but is
relatively constant at low frequencies considered here (< 1kHz).

Maxwell’s equations require V x E = 0, which can be enforced by equating the electric field to
the gradient of a scalar potential, E = —Vy (e.g., [7]).

_ Py

Vzl[/— ?-i—pb. (2.10)

Equation (2.10) is a steady-state distribution of scalar electrostatic potential, with the bound
polarization charge and excess charge distribution acting as a source terms.

These equations are solved numerically using OpenFOAM [39] in the two applications discussed
in Section 4. We now move up to the porous media (i.e., macroscopic) scale, where the individual
pores are not resolved, but treated with a new set of equations.

13



3. POROUS MEDIA SCALE EQUATIONS

3.1. Streaming Potential and Electroosmosis

The macroscopic (i.e., porous media) scale electrokinetic problem requires simultaneously
solving two governing equations: the transient groundwater flow equation (i.e., diffusion) and a
Poisson equation for excess charge redistribution. We develop expressions for the Darcy and
electric current densities (i.e., fluxes) simultaneously in terms of potential gradients (i.e.,
thermodynamic forces)

Jo=—00Vy—L;7Vp

, k 3.1)
Jr=—-LaVy— EOVP

where j, and j, are electrical [A/ m?] and Darcy (i.e., fluid-volume) [m/s] current densities, kq is
porous media intrinsic permeability [mz], {L12, Ly} are porous media electrokinetic coupling
coefficients {[A/(m-Pa) — A-s?/kg], [m?/(V -s) — A -s?/kg]}/!, v is electrostatic potential [V]
(in the quasi-static limit with no magnetic sources), and p is liquid pressure [Pa]. Both p and y
are changes from an arbitrary initial state due to some forcing (e.g., pumping or recharge), which
is conveniently set to zero here. The zero subscripts on k and o differentiate them from similar
quantities (i.e., jparey = —k/U VP OF jopm = —0 V) that do not consider electrokinetic coupling
effects [58]].

The streaming potential coupling coefficient can be given in terms of pore-scale electrokinetic
quantities [65, 16] as
el oy

Figrm — 20
#7 u(oy+Foy)

(3.2)
where € is the pore-fluid dielectric constant [F/m], { is the zeta potential at the pore/fluid
interface [V], o and o; are the electrical conductivity of the individual fluid and solid
components, and F' is the dimensionless formation factor, defined as the resistivity of the
fluid-saturated rock normalized by the pore fluid resistivity. In the geotechnical literature, Ly is
electroosmotic permeability (k.) [20, 8], given in similar form as

_gke

= (3.3)

Ly

where 7 is dimensionless porosity.

Based on a thermodynamic argument of microscopic reversibility, [53, 54] showed the
off-diagonal coupling coefficients in (3.1)) are symmetric (Lj» = Lp;) when the fluxes and forces

lexpressing the two coupling coefficients in their base SI units shows they are equivalent
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are written correctly [47, 22]. Using this equality, these two expressions from different literature
(3.2 and 3.3) lead to the equivalence n = 4moy/(0f + F 0;). Both expressions may have utility,
since in some situations porosity may be known, and the various conductances may not, or vice
versa.

Mass and charge conservation expressions are conveniently and symmetrically written in terms of
flux divergence as

. .0

i, =0 a—‘i’ (3.4)
3

—V-js :nca—f,

where c is compressibility [1/Pa], and C* is specific capacitance [C/(m?- V)], that is the
electrolyte charge flowing into a unit volume per unit change in potential [22]. Typically, in
streaming potential problems V - j, = 0 [65], but without loss of generality we include a small
transient capacitance term to maintain symmetry in the governing equations required by the
uncoupling approach.

Substituting the fluxes (3.1)) into the conservation equations (3.4) leads to two coupled differential
equations in terms of potentials,

oy _
or

0 k
nca—lz =V (LyVy)+V- <EOVp) .

c* V- (coVy)+V-(L12Vp) (3.5)

These coupled equations can be written as a matrix differential equation. In the derivation we
assume Oy, ko, U, L12, and Ly are piecewise constant in space (allowing them to be taken outside
the divergence operator), which results in the form

C* 0]d[y] |00 Liz|_,[w
[0 nc}g{p}_llm ]L—O]V [P} 6.0

Because of the assumption of piecewise constancy in material parameters which can violate flux
continuity at property discontinuities in numerical models with linear interpolation functions, but
still allows either layers or regions of different material properties.

This can be additionally re-arranged, multiplying by the diagonal storage properties matrix
inverse, leaving

od (07 opKsg 2

— = v-d 3.7
ot [OCHKE 0731 ’ S
where d = [y, p]” is the physical potential vector, ay = ko/(tnc) is the hydraulic diffusivity
[m?/s], ag = 0p/C* is the electrostatic potential diffusivity [m?/s], Ks = L;»/0y is the streaming

potential [V /Pa], and Kg = Lyt /k is the electroosmosis pressure [Pa/V — A -s/m3]?.

2electroosmotic pressure units (when expressed in SI base units) are equivalent to volumetric charge density, [C/ m3]
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Using this equality, we express porous media permeability in terms of the streaming potential and
the electroosmotic pressure ([58, 57]) Kg = Ksoou /kg or

K
ko = O'(),uK—Z. (3.8)

When L, = L1 = 0 the streaming potential and electroosmotic pressure cease to exist; zeroing
these coefficients makes the matrix in (3.7) diagonal, where the flow and electrostatic problems
are independent and uncoupled.

Starting with (3.7), we multiply the y equation by L2 /(o) and multiply the p equation by

L2 /(agP.). Characteristic electrostatic potential (¥, = P.Ks), pressure (P.), time (T, = L2/ o),
and length (L.) are used to re-write the equations in non-dimensional form in terms of xp = x/L,,
tp =1t/T¢, pp = p/P:, Yp = y /¥, and V% (the dimensionless Laplacian). The governing
equation becomes

od
a—zD = AV3d) (3.9)

oap Op]| . . . . : .
where A = {a Ié) 1D 1 is the dimensionless matrix of Laplacian operator coefficients,
D

op = o /oy is the dimensionless electrical/hydrological diffusivity ratio, dp = [y/%¥., p/ PC]T is
the dimensionless potential vector, and Kp = Kg Ky is the dimensionless product of the
electroosmotic pressure and streaming potential, representing the magnitude of electrokinetic
coupling.

In the formulation presented here these two dimensionless quantities completely characterize the
electrokinetic problem, reducing the problem from four free parameters (0, 0g, Ks, Kg) to two.
This reduction in free parameters does not limit the range of validity of the solution, it properly
simplifies the previously over-constrained solution space (two equations in terms of two
potentials were related with four parameters). L. and P are chosen from the physical problem
configuration (e.g., domain size and applied boundary or initial conditions), while 7, and ¥ are
specified as part of re-writing the governing equations in dimensionless form.

3.2. Eigenvalue Uncoupling

In a recently accepted journal manuscript [42], we present an eigenvalue uncoupling approach
that relies on decomposing the matrix characterizing the operator in the governing equation into a
diagonal matrix using its eigenvalues and eigenvectors (i.e., spectral decomposition). The process
results in two uncoupled diffusion equations in terms of “intermediate” material parameters and
boundary conditions. The simpler and uncoupled intermediate problems are solved with
traditional methods, then the fully-coupled solution is found through a matrix multiplication of
the intermediate results with a matrix comprised of the eigenvectors of the original problem.
While the approach has been used in geophysics to decouple poroelastic wave equations [46], and
in quantum mechanics to uncouple second-order differential equations regarding elastic scattering
[71, 44], it has not previously been applied to uncoupling electrokinetic processes.

16



In the recent manuscript [42], we illustrate the process of uncoupling through two examples: the
streaming potential response to 1D cylindrically symmetric flow to a confined pumping well (i.e.,
the Theis solution) and solution for an oscillatory streaming potential and electroosmotic
laboratory device.
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4. ACADEMIC ALLIANCE: PORE-SCALE NUMERICAL
MODELING

During the second and third years of the three-year LDRD project (FY19 and FY20), the authors
participated in a partnership funded by the Sandia LDRD Academic Alliance program. Professor
Narayana Aluru and postdoctoral researcher Pikee Priya from the Beckman Institute at the
University of Illinois at Urbana-Champaign performed pore-scale modeling. The following two
sections summarize some of the work done as part of this partnership. Section 4.1] is based on a
submitted manuscript to Transport in Porous Media (i.e., work is currently under journal peer
review), while the Section 4.2 is based on a draft manuscript “Upscaling Electrokinetics via
Machine Learning” currently under preparation for submittal to journal peer review.

4.1. Investigating Tortuosity and Electrokinetics

Pore-scale finite-volume continuum models of electrokinetic processes are used to predict the
velocity and potential profiles for two-dimensional arrays of circles, ellipses and squares with
different orientations. The pore-scale continuum model solves the coupled Navier-Stokes,
Poisson, and Nernst-Planck equations to characterize the electro-osmotic pressure and streaming
potentials developed on the application of an external voltage and pressure difference respectively
(see equations in Section [2). This model is used to predict the macroscale permeabilities of
geomaterials (see relationships in Section 3)) via the widely used Carman-Kozeny equation [19]
and through the electrokinetic coupling coefficients [58, 57]. The effect of the particle aspect ratio
and orientation on the electrokinetic coupling coefficients and subsequently the electrical and
hydraulic tortuosity of the porous media has been determined. These calculations suggest a highly
tortuous geomaterial can be efficient for applications like decontamination and desalination.

A pore-scale continuum model is used to simulate the Electric Double Layer (EDL) in porous
materials and the effect of applied pressure/voltage on the fluid flow and current density.
However, real-world geomaterials are heterogeneous and complex and it is difficult to understand
the individual effects of pore orientation, grain aspect ratios, and overall tortuosity on the
observed bulk electrokinetic effect. We, therefore, characterized these effects in regular 2D
geometries (circles, ellipses with different aspect ratios, and squares) and determine the
electroosmotic pressure, K, and streaming potential, Kg, using pore-scale models. Although
previous Navier-Stokes simulations have been performed to confirm relationships between
permeabilities, pore particle geometries, porosities, and tortuosities [76], benchmarking of
electrokinetics through the quantitative pore-scale determination of Kr and K has not yet been
performed. Here, we predict the effect of hydraulic and electrical tortuosities on electrokinetics in
these geometries.
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4.1.1. Numerical Model

A pore-scale continuum finite volume model implemented in OpenFOAM [39] has been used for
the characterization of electroosmosis (EO) and streaming potential (SP) in geomaterials and
regular geometries. An iterative implementation of the SIMPLE algorithm (Section 2.1)) is used to
solve the Navier-Stokes equations at each step, coupled with the Nernst-Planck (Section 2.2) and
Poisson (Section 2.3)) equations. The segmented binary microstructural images of the
geomaterials are converted into stereolithiography (STL) files using DREAM3D [34]. These STL
files are then imported into Gmsh [28] to create the solution mesh. The initial Gmsh mesh is
imported into OpenFOAM and subsequently refined near the charged pore surfaces to capture the
ion accumulation in the EDL ‘diffuse’ layer for very dilute NaCl solutions (0.05 mol/m?).

The pore-scale governing equations are solved on a two-dimensional mesh of prismatic control
volumes representing the pore space in a porous material (i.e., the grains are assumed
impenetrable by the fluid phase and resistive enough to not contribute to bulk electrical
conduction). The approximate domain size is 5 wm with control volume in the range of 4 to 10
nm with the smaller control volumes near the pore surfaces. The number of finite volume
elements in any simulation are in the range 100,000 to 300,000. A constant-pressure difference
(for SP characterization) and constant-potential difference (for EO characterization) are applied
across the domain (i.e., between inlet and outlet patches). A no-gradient (Vu = 0) velocity
boundary condition (BC) is applied at the left and right (inlet and outlet) boundaries while a
no-slip velocity BC (u=0) is applied at the top and bottom walls. No-gradient electric potential
(Vy = 0) and pressure (Vp = 0) BCs are applied at the top and bottom walls. A constant
electrostatic potential equal to the zeta potential [V] is applied at the internal boundaries (i.e.,
solid-liquid interfaces) for electro-osmotic flow calculations while a constant surface charge
density [C/m?] is applied for the streaming potential calculations. Internal walls have no-slip
velocity and no-gradient pressure BCs. An initial condition of a constant concentration of the
electrolyte is used.

The EO and SP coefficients, Kg and Ks, and associated permeability ky, were calculated from
porous media scale relationships (Section [3.1). These permeabilities were compared to the
Carman-Kozeny (CK) relationship [19] and the Schwartz-Sen-Johnson model [68, 43].

4.1.2. Results

Pengra et al. (1999) [58, 57] presented the macro-scale relationship between permeability and
electrokinetics coupling coefficients in porous materials (Section 3.1)). Permeabilities estimated
from electrokinetic coupling are compared to the permeabilities predicted only by geometry using
the CK relation. These two estimates are reconciled through the hydraulic tortuosity for the
regular geometries.

A summary of the dependence of Kg and Ky (estimated from model results) on 7}, and 7,
(estimated from the CK and SSJ models) is shown in Figure 4-1|, respectively. Both K¢ and K
seem to depend more-or-less linearly on 7j, with 7; remaining near unity for all the geometries.
Differences between geometric or hydraulic and electrical tortuosities are well-known [29]. The
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maximum Kz value corresponds to 7, = 30 for ellipses oriented at 60° with ¢/a = 2 and the
maximum K value is for ellipses oriented at 90° with ¢/a = 3. The maximum tortuosity of about
43 is obtained for ellipses oriented at 30° with ¢/a = 2. This implies that for a highly tortuous
porous material (i.e., more pore bodies, more mixing of flowpaths, and shorter pore throats), the
diffuse ions will move upon application of an electric potential difference, mobilizing the bulk
fluid. However, a direct-current driving potential cannot be increased over the dielectric
breakdown limit. Also, when applying pressure gradient across a highly tortuous material, the
fluid moves, but with less net transport of charges. This could be exploited in applications like
desalination or decontamination using highly tortuous geomaterials. At the other end lies
materials with very low aspect ratio (— 0) and low tortousity (— 1), as is the case of pores in
regularly packed materials. The Kr and K values increase with electric tortuosity (Figure 4-1J).
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Figure 4-1. The effect of hydraulic (7;,) and electrical (7.) tortuosities on elec-
troosmosis (Kz) and streaming potential (Ks) coupling coefficient values for
arrays of regular 2D bodies.

4.1.3. Conclusions

This section illustrated application of a finite-volume continuum model to solve coupled
pore-scale electrokinetics and fluid flow equations, to predict the EO pressures arising from
applied voltage and SP potentials arising from applied pressure differences, in two-dimensional
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domains comprising arrays of circles, ellipses and squares of various orientations to better
understand tortuosity and path complexity effects on geomaterials. To understand electrokinetics
in geomaterials, flow through different regular geometries of pores of comparable sizes are
characterized. This is one of the first works on benchmarking electrokinetics in arrays of regular
geometries. The calculated hydraulic tortuosities suggest highly tortuous geomaterials can be
very effective in applications like desalination and decontamination.

4.2, Investigating Machine Learning to Upscale Fracture Networks

Extending the modeling presented in the previous section, and building on Bernabe’s early work
on flow and electrokinetics in networks of cracks and pores [11, 12], we are working to upscale
electrokinetic flow through a network of intersecting fractures. The goal of this work is to predict
the macroscopic streaming potential and electroosmosis behavior of the system, by training the
network with pore-scale simulations. Then given a pore-scale fracture network, the macroscopic
behavior could be predicted. Historically, flow and transport were solved through a finite
networks of random intersecting fractures as a matrix problem [3, 13, 67].

A series of sparsely-fractured synthetic 2D domains were created (Figure 4-2), and the pore-scale
equations (Section 2) were solved using the OpenFOAM numerical modeling framework
discussed in Section 4.1..
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Figure 4-2. Sparsely-fractured 2D domains for training machine learning

The SP and EO electrokinetics problems were numerically simulated on these 2D domains at 4
different orientations (left to right, right to left, top to bottom, and bottom to top) to gather data
for training the machine learning algorithms. The state variables of the problem (fluid pressure,
potential, and fluid velocity) were sampled from the solution mesh at pore cross sections and
intersections, along with statistics about the geometry (pore diameter, pore length between
intersections, angle made between pores at intersection) to build a training dataset (Figure 4-3)) for
machine learning.

From 15,000 to 25,000 data points were used to train network architectures with different
numbers of hidden layers. Figure 4-4/ shows the improvement in error through training for each
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Figure 4-3. Example of sample locations (dots) at a typical intersection of 2D
fractures (white gaps between orange blocks)

network (green box indicates best network for each case). For flow from the wall to the first
intersection, a system with 8 hidden layers performed best, while for the flow from the next
intersection to the wall, a smaller network with only 4 hidden layers performed better.

These intermediate results illustrate the framework and data are in place (i.e., coupled pore-scale
physics simulations at a high resolution), but some experimentation may be required to arrive at a
feasible upscaled prediction. While there is a large improvement in error due to training, the mean
absolute error at the end of training was around 5%.

To accurately simulate the results, the machine learning must take into consideration multiple
things:

1. The state of the pore-scale electrokinetic solution,
2. The connectivity and geometry of the fracture network, and
3. The boundary conditions (i.e., applied voltage or applied pressure) on the domain.

while making its prediction of overall electrokinetic properties of the network, seeking to arrive at
a result similar to Bernabe [12], but using a machine learning approach.

22



Mean Absolute Percentage Error (%)

-
@
=)

100

5
=3
!

=}
!

— Training
—— Validation

952189-83—77—71-65—59-53—47w-44

| ltle I "

T T T T T T
0 3000 6000 9000 12000 15000

# of Epochs

Mean Absolute Percentage Error (%)

100

80

T T T T T

—— Training
— Validation!

Lol L

T T T
0 1000 2000 3000 4000
# of Epochs

Mean Absolute Percentage Error (%)

150

100

50

T —
—— Training
— Validation

1 oo > -S>+

A

Mean Absolute Percentage Error (%)

150

100

Mean Absolute Percentage Error (%)

s ols
1 1 04 4
T T T T T T r T T T T
0 3000 6000 9000 12000 15000 3000 6000 9000 12000 15000
# of Epochs # of Epochs
300 T T T T T T 300 T T
— Training . —— Training
i g
2504 — Validation 4 2 5l —— Validation, J
w) | wsgEEEe | e | esm—E e
a-{74-{64-54) 5 o)
150 4 g 150 ]
o
2
100 N S 104 1
2
-1
<
50 - L g g %4 |
, T " L
04 l - T — L L L
T T T T T T
0 3000 6000 9000 12000 15000 z y ¥ Y ’ Y
0 3000 6000 9000 12000 15000
# of Epochs # of Epochs

Figure 4-4. Examples of training for flow from wall to first intersection (top)
and from intersection to subsequent pore (bottom). Green box indicates best
prediction. Chain shows number of layers and humber of connections per

layer

23



5. 823 LABORATORY EXPERIMENTS

In the laboratory in B59/823, a progression of laboratory implementations were created to
estimate sample permeability through estimates of the streaming potential (Ks) and the
electroosmotic pressure (Kg) using a modification of the method described in a paper by Pengra
et al. (1999) [58]. The laboratory approach was not ultimately successful in measuring both the
streaming potential and the electroosmostic pressure with reasonable accuracy. Other approaches
have recently been found that may represent a better approach [30, 31]; however with COVID-19
restrictions and recent construction in the B59 laboratory these approaches could not be

pursued.

5.1. Flow-through Streaming Potential Measurements

First, streaming potential was measured in an Ottawa sand column, driven by a Mariotte bottle
upstream constant head source, and a variable-position outlet (Figure [5-1).

Figure 5-1. Flow-through streaming potential device

The streaming potential coupling coefficient was estimated to be 0.00358 V/mH,0
(3.65 x 1077 V /Pa) from the steady-state voltage response at each different applied pressure drop
(Figure [5-2). These measurements were successful, and show the streaming potential coefficient
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Figure 5-2. Streaming potential response for flow-through device

is relatively straightforward to measure in the laboratory.

5.2 Pengra-Style Laboratory Device

The second device was constructed consisted of two pairs of Ag/AgCl, biomedical electrodes, a
hydrophone, and an Omega differential pressure transducer, similar to the design used by Pengra
et al [57, 58]. The Ottawa sand sample was sealed in with epoxied porous end caps within a
1.5-inch diameter clear PVC pipe. The end caps were cut from a 1.5-mm thick Porex polyethylene
sheet with a pore size of 50-90 um. The sample was then flooded slowly with 0.05-M NacCl brine
from one side until it was saturated, to minimize trapped air bubbles within the sample.

In this device the plan was to perform two conjugate experiments on the same sample. One
experiment would apply a low-frequency pressure pulse to the sample, measuring the resulting
low-frequency electrical response (i.e., streaming potential). The second experiment would apply
a low-frequency electrical excitation to the sample, measuring the resulting low-frequency
pressure response (i.e., electroosmotic pressure).

To improve the sensitivity of the observations, a National Instruments high-frequency (>50 kHz)
analog voltage data acquisition system was purchased. Using this system revealed several flaws in
the design of the overall electrokinetic apparatus, discussed in the next section.

5.3. Issues with Apparatus

The sealed hydrophone (located inside the longer right side of the device — Figure 5-4) did not
create enough pressure signal to result in a measurable streaming potential signal since the
low-voltage requirements in the laboratory required keeping the applied voltage on the
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Figure 5-3. Diagram and photograph of laboratory device in 823/B59

hydrophone below 50 V. The hydrophone was driven at approximately 200 Hz; the response of
the hydrophone as a function of frequency is illustrated in Figure 5-5. This shows the response
predicted is below 100 uPa/V. The result was audible in the laboratory, but the differential
pressure measured between the two sides was not enough to drive a streaming potential response
observable with the electrodes. A different hydrophone with a stronger low-frequency response,
or a physically driven piston or pump (e.g., similar to [31, 30]) would have resulted in a stronger
signal. The metal-bodied differential pressure transducer also evidently was electrically part of
the circuit, making simultaneous measurement of pressure and application of current impossible.
A pair of electrically isolated pressure transducers or a non-conducting differential pressure
transducer would be needed to measure pressure signals in the system. The device was
constructed from plastic to minimize short circuits in the system, but efforts to electrically isolate
the pressure transducer were not successful (using parafilm as a non-conducting membrane to
separate the fluids in each part of the apparatus from one another). A differential pressure
transducer was chosen to increase sensitivity, but two independent pressure transducers would
have improved electrical isolation (at the expense of the error associated with subtracting two
similar values). The Omega specification states at least 10-M£Q resistance between the body and
any wire, but measuring the resistance between the pressure transducer wires and the Ag/AgCl,
electrodes gave a value much smaller than this (= 10 kQ).

5.4. Experimental Path Forward

Even after a few re-designs and re-builds of the apparatus to improve electrical isolation and
sensitivity, there were some problems with the design that require starting over to achieve. Since
the beginning of the project, the authors have become aware of work going on by Glover and his
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Figure 5-4. Laboratory device above to right with some data acquisition
equipment (National Instruments CompactDAQ for high-frequency voltage
below, Keithley SourceMeters, DC voltage supply, and function generator to
left)

group at University of Leeds to measure periodic streaming potential and electroosmosis
coefficients [31, 30, 56]. Some of the recent papers from this group have included designs that
may be a better design than the approach of Pengra et al. (1999) [57, 58] chosen here.

For the Ottawa sand used here, using the steady-state coupling coefficient relationship (3.8)), the
streaming potential coefficient measured in the flow-through apparatus (Ks = 3.65 x 10~/ V /Pa)
with the electrical conductivity of 10mS /cm [75], a viscosity of 8.9 x 10~#Pa-s and an
approximate hydraulic conductivity of 0.01 cm/s [26], we can estimate the expected
electroosmotic pressure coefficient. Putting everything into compatible units

fo OoU K
=
Kg

1072[S/m]-1073[Pa-s]- 10~ [V /Pa]
K = 10~ 11 [m2]

107%[s*- A?/(kg-m?)] - 10 [kg/(m-5)] - 107 [m*/(s- A)]
Kg = 10~ 11 [m?]
Kg =0.1[Pa/V] = 1.5 x 107 [psi/V] (5.1)

which agrees to an order-of magnitude with tables reported in [58]. Applying approximately 10 V
means an expected signal of 1 Pa or 1/10,000 of a psi. The Omega differential pressure transducer
claims it is accurate to 0.4-0.05 % of full range (0.36 psi), which is 1.8 x 1074 psi (at best).
Theoretically, the setup should have been able to detect the coupling coefficient for Ottawa sand,
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Figure 5-5. Response profile of hydrophone

but it is just on the edge of measurability. Any noise or complicating issues will obscure this, and
subtracting two absolute pressures from one another will likely not be as accurate as a differential
pressure transducer. To achieve higher electroosmotic pressures would require a much more
applied voltage to the Ag/AgCl, electrodes (which would exceed the 50 V environmental safety
and health “low voltage” exemption), saltier, or less viscous fluid. Higher salinity would raise oy,
but it would lower K, so it is difficult to change the resulting Kr value much without making the
water much saltier (which complicates the types of materials that can be used).
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6. OVERALL CONCLUSIONS

This SAND report summarizes the work done as part of this LDRD to utilize electrokinetics for
understanding flow in low-permeability geomaterials. While the laboratory work in 823 was not
as successful as hoped, one journal manuscript was published on a novel eigenvalue uncoupling
approach for electrokinetic problems, and another journal manuscript with the Academic Alliance
is under review. A second academic alliance manuscript is being prepared, and another journal
manuscript on transient electrokinetic effects is being prepared. The academic alliance has
successfully created a collaboration between Sandia and Professor Aluru and postdoc Priya at
Illinois. Once COVID-19 related travel restrictions are lifted, it is planned for Professor Aluru to
present a seminar at Sandia, reciprocating the seminar that Kris Kuhlman presented at Illinois in
November 2018.

This LDRD has laid the groundwork for future endeavors in this area. Theoretical and laboratory
work at Sandia will lead to future applications in any of a range of diverse applications of interest
to Sandia National Laboratories and the Department of Energy. The pore-scale modeling by
University of Illinois has directly attacked the notoriously difficult problem of bridging the gap
between pore and porous media scales in geomaterials.
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c bulk media compressibility 1/Pa
Ci concentration of i’ species kg/m?
C* specific media capacitance C/(m?-V)
D; free-water diffusion coefficient of i species m?/s

g gravitational acceleration m/s?

i current density A/m?
je current density vector A/m?
Jr Darcy flux vector m/s
Jr ion concentration flux of i’ species kg/(m?-s)
jr ion number concentration flux of i’ species ~ 1/(m?-s)
ko permeability of porous media m?
Kg electroosmotic pressure Pa/V
Ks streaming potential V/Pa

Lyy, Ly; electrokinetic coupling coefficients (A-s?)/kg
M; atomic mass number of i’ species kg/mol

n porous media porosity —

n number concentration of i’ species 1/m?
n.  far-field number concentration 1/m?
p fluid pressure Pa
T temperature K
u fluid velocity vector m/s
Zi ion valence —
oE electrical diffusivity m?/s
oy  hydraulic diffusivity m?/s

€ permittivity of fluid F/m
& relative permittivity of fluid —

p fluid density kg/m?
Py free charge density C/m3
Pb bound charge density C/m?
00 bulk electrolyte electrical conductivity S/m
u fluid viscosity Pa-s
v electrostatic potential \%

4 zeta potential: charge at Stern plane A"

Table 6-1. Physical quantities

e 1.602x 10~ fundamental electron charge C
F  9.649 x 10* Faraday constant C/mol
kg 1.381x 1072 Boltzmann constant J/K
Njy 6.022x 10>  Avagadro’s number 1/mol
R 8.314 Gas constant J/(K-mol)
g 8.854x 10712 permittivity of free space F/m

Table 6-2. Physical constants
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