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ABSTRACT

Over the last 15 years, compressive sensing techniques have been developed which have the
potential to greatly reduce the amount of data collected by systems while preserving the amount
of information obtained. A cost of this efficiency is that a computationally-intensive optimization
routine must be used to put the sensed data into a form that a person can interpret.

At the same time, machine learning techniques have experienced tremendous growth as well.
Machines have demonstrated the ability learn how to effectively perform tasks such as detection
and classification at speeds much faster than humanly possible.

Our goal in this project was to study the feasibility of using compressive sensing systems "at the
edge." That is, how can compressive sensing sensors be deployed such that information is created
at the remote sensor rather than sending raw data to a central processing location? Studies were
performed to analyze whether machine learning could be done on the compressively sensed data
in its raw form. If a machine is performing the task, is it possible to do so without putting the data
into a human interpretable form? We show that this is possible for some systems, in particular a
compressive sensing snapshot imaging spectrometer. Machine learning tasks were demonstrated
to be more effective and more robust to noise when the machine learning algorithm worked on
data in its raw form. This system is shown to outperform a traditional spectrometer.

Techniques for reducing the complexity of the reconstruction routine were also analyzed.
Techniques for such as data regularization, deep neural networks, and matrix completion were
studied and shown to have benefits over traditional reconstruction techniques.

In this project we showed that compressive sensing sensors are indeed feasible at the edge. As
always, sensors and algorithms must be carefully tuned to work in the constrained environment.
In this project we developed tools and techniques to enable those analyses.
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1. INTRODUCTION

The theory of compressive sensing (CS) provides a new paradigm for data collection systems. For
decades, the Shannon-Nyquist sampling theorem was thought to provide a limit on the amount of
information that can be obtained from a signal. Compressive sensing provides a framework that
allows fewer measurements to be made to recover the same amount of information.

CS has been applied to a wide variety of sensing modalities. Early demonstrations focused on
two-dimensional imaging. The application of compressive sensing to tomography could
potentially provide a path to medical imaging with reduced risk to patients. Compressive sensing
techniques can be applied to imaging spectrometers to revolutionize the trades between spatial
resolution, spectral resolution, temporal resolution, and field-of-view.

Under the current CS paradigm, data are first reconstructed to traditional forms that a person can
understand. For instance, in a CS imaging system the raw data may look nothing like an image to
a person, so optimization techniques are employed to reconstruct the image from the raw
measurements. This optimization step does not add any information to the data, though. Once the
data are in the reconstructed form, information extraction then occurs. Traditionally this step is
done by an human analyst. However, machine learning algorithms are now increasingly used for
this step.

Researchers are now beginning to pair compressive sensing system with modern machine
learning algorithms. In this case the compressive sensing system acts somewhat like a feature
extraction technique. The features are known to be good because the CS basis set is assumed a
priori to be sufficient to represent the data.

Machine learning algorithms operating on compressively sensed data are expected to perform
comparably to algorithm operating on reconstructed data. However, since the amount of data on
which the algorithms operate is significantly reduced, gains in speed or reductions in power can
be achieved.

This project innovates by bringing together cutting-edge systems (those based on compressive
sensing) with cutting-edge algorithms (machine learning). The traditional model of casting the
data into a human-readable form is unnecessary. By operating on the data in its compressed form
the size, weight, and power of the processing electronics are significantly reduced. Such gains are
critical for the deployment of remote autonomous systems.

By employing CS techniques the sensors will gather information much more efficiently. By
performing data processing on board, these systems will be able to make decisions faster and be
able to operate in degraded communications environments since large amounts of data will not
need to be downloaded to the ground for processing. This has the potential to revolutionize our
nations future autonomous systems.
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2. COMPRESSIVE SENSING THEORY

Compressive sensing is a growing field with the potential to dramatically impact sensing systems
of nearly every modality. Traditional Shannon-Nyquist sampling theory dictates that reconstruct a
signal of bandwidth B, uniform samples of width 1/(2B) should be collected in order to perfectly
reconstruct the signal. The Shannon-Nyquist theory is a sufficient but not necessary condition,
however. It assumes that no information about the signal is known a priori.

2.1. The 12-Ball Problem

Before jumping into the math associated with compressive sensing, we consider an example to
provide intuitive insight. The problem we consider is known as the "12-Ball Problem." Consider
a set of 12 balls. All of these balls are exactly the same size, but one defective ball is either lighter
or heavier than the other 11. How many measurements do we need to make to find the defective
ball and to determine whether it is lighter or heavier?

An obvious solution is to use a scale to measure the weight of each ball separately. Since the
weights of the balls are not known, measuring one ball is insufficient. Even measuring two is
insufficient since we do not know if the defective ball is lighter or heavier than the others. By
measuring three balls, we will find the defective ball if it is one of the balls that is measured.
Therefore, a minimum of three measurements are needed.

But what if the defective ball is the last one selected for measurement? In that case, 12
measurements are needed. After 11 measurements we know that the 12th ball is defective, but we
do not know if it is lighter or heavier. Hence a 12th measurement must be made. This direct
technique will require at least three and at most 12 measurements.

By changing the measurement scheme, we can find this ball in three measurements. Instead of
weighing each ball separately, we use a balance scale. This scale can hold multiple balls on each
side. To demonstrate one solution technique, we consider that Ball 9 is lighter than the others.
Table 2-1 shows an example measurement scheme.

After the first measurement, we know that balls 1-8 are identical and the defective ball is in the
range of 9-12. After the second measurement we know that one of the balls in the range 9-11 is
lighter. After the third measurement we know that ball 9 is lighter.

An interesting result is obtained in the first measurement. Since the scales balance, we know that
the defective ball must be one of balls 9-12. Thus we learn about balls 9-12 even though we did
not make a measurement on them. This demonstrates the power of a priori information. Indeed, if
the first measurement had used six balls on each scale, we will need four measurements to obtain
the correct answer. We are in fact better off not measuring balls 9-12 in this first measurement.
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Table 2-1. This table demonstrates the measurements that could be made to determine that Ball 9 is lighter

than the others.

Measurement
Number

Balls on
Side A

Balls on
Side B

Result

1
2
3

1,2,3,4
1,2,3
9

5,6,7,8
9,10,11

10

Balanced
Side A Heavier
Side B Heavier

Also notice that we are not measuring the balls individually. To obtain the solution to the problem
in the minimum number of measurements we make measurements on groups of balls.

Lastly, notice that this solution is adaptive - the results of measurements 2 and 3 depend on the
results of measurements 1 and 2. A non-adaptive solution exists as well. Consider the
measurement scheme shown in Table 2-2.

Table 2-2. This table demonstrates a non-adaptive measurement scheme to solve the 12-Ball Problem.

Measurement
Number

Balls on
Side A

Balls on
Side B

1
2
3

1,2,3,4
1,4,8,9
3,7,9,12

5,6,7,8
2,3,11,12
1,2,5,10

This non-adaptive measurement technique provides a solution to the 12-Ball Problem in three
measurements. Table 2-3 provides the answers.
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Table 2-3. This table demonstrates the results of the non-adaptive solution to the 12-Ball Problem. M1 denotes

Measurement 1, M2 denotes Measurement 2, and M3 denotes Measurement 3.

M1 Heavier M2 Heavier M3 Heavier Result
B B A 1 is lighter
A A B 1 is heavier
B A A 2 is lighter
A B B 2 is heavier
B A B 3 is lighter
A B A 3 is heavier
B B Balanced 4 is lighter
A A Balanced 4 is heavier
A Balanced A 5 is lighter
B Balanced B 5 is heavier
A Balanced Balanced 6 is lighter
B Balanced Balanced 6 is heavier
A Balanced B 7 is lighter
B Balanced A 7 is heavier
A B Balanced 8 is lighter
B A Balanced 8 is heavier

Balanced B B 9 is lighter
Balanced A A 9 is heavier
Balanced Balanced A 10 is lighter
Balanced Balanced B 10 is heavier
Balanced A Balanced 11 is lighter
Balanced B Balanced 11 is heavier
Balanced A B 12 is lighter
Balanced B A 12 is heavier

This system can be represented by the equation y = Ox. In this equation y is a three-element
column vector of measurement results. yi is +1 if Side A is heavier for the ith measurement, -1 if
Side B is heavier, and 0 if the scales are balanced. x is a 12-element column vector of ball
weights. xi is +1 if the jth ball is heavy, -1 if it is light, and 0 if it is not defective. is a 3x12
measurement array given by

= 1(
1 1

—1
1
—1

1 —1
1 0

—1
0

—1
0

—1
1

0 0
1 0

0
—1

0
—1 . (2.1)

—1 —1 1 0-1 0 1 0 1-1 0 I

is +1 if the jth ball is used on Side A for the ith measurement, -1 if it is used on Side B, and 0
if it is not used at all. Equation 2.1 encapsulates the measurement scheme described in
Table 2-2.
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For the case where Ball 9 is lighter, we have the problem of finding x such that

/ X

X2

X3

X4

o 1 1 1 1-1 —1 —1 —1 o o o o X5

—1 = 1 —1 —1 1 0 0 0 1 1 0 -1 — 1
X6

, (2.2)
— 1 —1 —1 1 0-1 0 1 0 1 —1 () 1 )

X7

X8

X9

X10

X11

\ X12

which is underdetermined (we have three equations and 12 unknowns).

Since this equation is underdetermined, an infinite number of solutions exist. Compressive
sensing indicates that we should look for the solution with the smallest fi-norm while
maintaining y = cl3x. The ti -norm is given by

-norm (X) = E
all i

(2.3)

We find this solution using optimization techniques and for our example problem this results in

(2.4)

0 /

This problem is solvable because we know only one element of x is non-zero, we have made
measurements of groups of x rather than individual elements of x, and because we have very
carefully constructed (D.

2.2. Exact Recovery of Sparse Signals

In the compressive sensing (CS) framework, we assume that the signal is known to be sparse.
Consider a signal Xs E llerx1. This signal has k-sparsity if at most k elements of xs are non-zero.
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Next, consider a measurement system that involves making M < N measurements of the inner
product of xs with measurement vectors {OWm 1. We represent the results of these measurements
via y E RMxl. We then have y j = (4)i lxs). If we construct an array cl:. E RMIN whose rows are the
transpose of the vectors 0i, we can write

y 
= 

CNS •
(2.5)

The problem in compressive sensing is to determine xs from knowledge of0:13 and measurements y
using the knowledge that y is k-sparse in 43. This results in the problem

1 = argmin49110 such that y = (Dx5 (2.6)

where 11x5 110 denotes the to-norm of x5 (that is, it counts the number of non-zero elements of xs).
The solution to Equation 2.6 is in general numerically unstable and NP-hard. It requires an
exhaustive search of all ( k) possible locations of the non-zero elements of xs

However, it can be shown that the solution to this equation can be solved via a complex
optimization problem of the form

= argminll x511 1 such that y = ctox5 (2.7)

where IIxSII l is the fi-norm of x5 and certain restrictions are made on 44151 This optimization
problem is known as basis pursuit.

A necessary and sufficient condition for exact reconstruction is that for any k-sparse vector v
which has the same non-zero locations as xs and for some E > 0,

11431)11 2 1 + E > > 1 -E, (2.8)
0112

where 111/11 denotes the £2-norm of v. That is, ct, must approximately preserve the lengths of
k-sparse vectors whose non-zero locations match those of xs. This condition is known as the
Restricted Isometry Property (RIP)[14]. The utility of Equation 2.8 is limited since the locations
of the k non-zero entries of xs are not known.

A sufficient (but not necessary) condition for k-sparse signal reconstruction is that szt, satisfies
Equation 2.8 for an arbitrary 3k-sparse vector v.

A closely related property is known as incoherence[26]. Let T denote matrix transposition and G
denote the Gram matrix G = 434). Then, assuming the columns of (I) are normalized to unity
t2-norm, the coherence p (D) is given by

p (c13) = max G (k,

where the entries of G are denoted via G(k, j). Incoherence applies when p (0) is small relative
to unity. When (I) is incoherent, CS reconstruction is possible via the solution to Equation 2.7.
More specifically, if

1
(4)) < 2k — 1

then the solution to Equation 2.7 is unique and can be found [20].
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Approximate Recovery of Compressible Signals

Most signals of interest are not sparse. However, they are often compressible in some basis set.
That is, we can represent a non-sparse signal x E RNX1 via basis functions lifi with

N

x= E oti • vi
i=1

(2.11)

where ai is the coefficient of the i-th basis function. We can represent this more efficiently by
constructing an array E riVxN whose i-th column is equal to tvi and a E RNx1 is a column vector
constructed from the coefficients (Xj. In this case we can write

x = (2.12)

Since we have assumed that x is compressible in the basis set defined by ‘11, then the coefficient
vector a is nearly sparse. That is, only k < N elements of a are significant.

The formal definition of compressibility is that, when we arrange the coefficients ai in order of
decreasing magnitude such that I al I? loc21 > la31 > • • • > laNI, then

la, < C•rrs, (2.13)

where C is a constant and s > 1 is another constant [62]. If a satisfies Equation 2.13 and if we
reconstruct a signal xk from only the k largest coefficients via

k

Xk = E a/Ai.]
j= 1

(2.14)

then the error between xk and x also follows a power law:

Ilxk — x11 C'k—(s4 (2.15)

We combine the sparsity transform and the measurement array (12, via A = VP. We can then
write

y = cDx = ctsklia = Aa. (2.16)

Similar to Equation 2.8, a necessary and sufficient condition for some E > 0 for a compressible
signal is that

1+E > 
0 1122 

> 1 -6, (2.17)
—

and the RIP is that the matrix A satisfies Equation 2.17 for any arbitrary 3k-compressible vector v.
The definition of coherence provided in Equation 2.9 holds as well provided the matrix G is
defined via G = AT A. Incoherence in this case means that the measurement vectors(I)i cannot be
sparsely represented by the sparsity vectors ivi.
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We obtain the solution to 2.16 by solving the minimization problem

a = argminllall 1 such that y = Aa.

The signal is then reconstructed using .i = 'Pa.

Noise will be present in a real system. This is handled by adding a noise term to this equation
such that

where n E
is

(2.18)

y=Aa+n, (2.19)

1 is a vector representing the noise term. In that case, the optimization problem

a = argminlIalli such that y — Aa < 8, (2.20)

where 8 is a parameter that is not usually known a priori. This problem is known as basis pursuit
denoising.

2.3. Reconstruction Techniques

A wide variety of reconstruction algorithms are available to solve the basis pursuit and basis
pursuit denoising problems. A popular library of algorithms for MATLAB [22] is fi— MAGIC by
Emmanuel Candes and Justin Romberg [19]. This library provides second-order cone program
solutions to seven problems of interest to compressive sensing.

Another popular algorithm for MATLAB is SPGL1 [72, 73]. SPGL1 can be used to solve the
basis pursuit or basis pursuit denoising problems.

The Two-step Iterative Shrinkage/Thresholding Algorithm (TwIST) [7, 8] algorithm is widely
used. MATLAB code for it is available as well.

Research into reconstruction algorithms is ongoing. Recent research has investigated the use of
neural networks to perform compressive sensing reconstructions [9].
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3. SINGLE-FRAME SUPER-RESOLUTION VIA A CODED APERTURE

AND COMPRESSIVE SENSING

The potential to increase resolution of a signal has drawn the interest of the imaging community.
For medical imaging modalities this has the potential to both shorten collection times and reduce
dosages, providing benefits to both providers and patients. For synthetic aperture radar systems
CS provides the potential to perform image reconstruction at reduced sampling rates without a
loss in image quality. For electro-optic systems CS provides the potential to produce high quality
imagery from smaller, simpler detectors.

Multi-frame super-resolution techniques can be used to combine multiple low-resolution images
into a single high-resolution image [30, 31, 39, 61]. These techniques can potentially provide
significant improvements in image resolution, but they require collecting multiple,
laterally-displaced low-resolution so that aliased spatial frequencies can be unwrapped.

Other single-frame super-resolution techniques rely on using self-similarity [63, 77], information
learned from dictionaries [58, 78], or deep learning algorithms trained on large volumes of
imagery [71, 79]. At best these techniques provide relatively minor enhancements to image
sampling. Furthermore, they introduce risk that artifacts added to the imagery will be artificial,
present only in other areas of the same image or in the dictionary/training data.

The single-frame super-resolution technique employed here was developed by Marcia and
Willett [54, 55, 56, 76]. This technique addresses the reconstruction of a high-resolution image
from a single low-resolution measurement. For example, an NxN pixelated detector could be used
to reconstruct an image of size 2Nx2N. This potentially results in a system that results in reduced
size, weight, and power due to the reduced data collection and transmission needs.

The technique relies on generating placing a coded aperture in the pupil plane of an imaging
system. A coded aperture is a mask with a user-specified distribution of transmittance and/or
phase to manipulate light in a meaningful fashion. Coded apertures have been used to perform
tasks such as depth of field extension [27], depth estimation[51], and imaging without
lenses [23].

Marcia and Willett demonstrate how to calculate a coded aperture that allows single-frame
super-resolution reconstruction. This technique builds upon theoretical work on Toeplitz-structure
matrices for compressive sensing [3]. This theoretical work showed that when compressive
sensing systems use a random circulant matrix as the system matrix, exact recovery is possible.
Marcia and Willett demonstrate how to generate an imagery geometry that leverages this
advancement.

Figure 3-1 shows the system architecture. An input scene is imaged with the coded aperture
imaging system onto a pixelated array of size nxn. The measured image looks little like the input
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Figure 3-1. Coded Aperture Compressive Sensing Super-Resolution Architecture

scene. A compressive sensing reconstruction is performed to recreate an image of resolution
2nx2n.

The reconstruction of the high-resolution image from the low-resolution measurement is
computationally-intensive. Furthermore, the reconstruction does not add information to the
system; all of the information present in the system is captured by the focal plane array. The
reconstruction serves to put the information into a form that a human can understand. So if a
machine learning task is going to be performed, does the reconstruction need to be performed at
all?

Computer simulations were performed to investigate this question. The images used for this
analysis come from the MNIST database of handwritten digits [40]. This database consists of a
training set of 60,000 examples and a test set of 10,000 examples of handwritten digits in the
range 0 to 10. These are grayscale images of size 28x28 pixels.

The simulation was performed assuming a pixelated detector of size 14x14 pixels. Classification
was performed on four different data sets. The first data set was the original 28x28 MNIST
imagery. Classification of this data set is used as comparison. The second data set was a
traditional imaging system using 14x14 images that were downsampled from the original
imagery. The third data set was the measured 14x14 raw compressed sensing images (i.e., without
reconstruction). The last data set was the 28x28 image resulting from the compressive sensing
reconstruction of the third data set.

The magnitude and phase of the coded aperture is shown in Figure 3-2. The average transmittance
of the coded aperture is only 6%. This would be detrimental in a real-world application with noise
as compared to a traditional imaging system without a mask. The radiometric throughput of the
compressive sensing system is significantly reduced, thereby reducing the total system
signal-to-noise ratio.

Figure 3-3 shows the point-spread function generated by the coded aperture imaging system.

First an investigation into the reconstruction error was performed. Figure 3-4 shows
representative images of each class and their compressed sensing measurements.

Figure 3-5 shows the quality of the compressive sensing reconstructions as compared to the
interpolation reconstructions. For each reconstruction technique the normalized mean square
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error (NMSE) is defined via

Ig(x,y)- f (x,Y)I2
NMSE =  'Y (3.1)

Ex,y f (x,y)I2

where (x,y) denote the pixel coordinates, f denotes the original MNIST image, and g denotes the
reconstructed image. In Figure 3-5 the black dots indicate the median error, the upper black line
extends from the 75%th percentile to the highest point not considered an outlier, the lower black
line extends from the 25%th percentile down to the smallest value not considered an outlier, and
the red dots are statistical outliers. This figure demonstrates that a more accurate reconstruction of
the original image is obtained with a 14x14 compressive sensing measurement as compared to a
14x14 traditional measurement followed by interpolation.

Classification was performed with a small convolutional neural network (CNN). Table 3-1 shows
the network geometry for the case of classifying N x N images, where N is either 14 or 28.
Table 3-2 show the classification results. The result from classifications based on the raw
compressively sensed data is in line with the result from classifying the original imagery.
Interestingly, classifications based on the downsampled imagery are in line with these other
results as well. This is an indication that the images do not contain much information that would
not be captured by a 14x14 sensor.

These results do indicate that the reconstruction is not necessary to perform the classification task.
There are features in the compressive space that the CNN can find and use for accurate
classification even though the images in this domain are not recognizable to a person.
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Table 3-1. This table shows the network geometry for classifying NxN images.

Layer # Type Description
1 Image Input NxNx1 images with 'zerocenter' normalization
2 Convolution 32 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
3 ReLU Rectified Linear Unit
4 Convolution 64 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
5 ReLU Rectified Linear Unit
6 Max Pooling 2x2 max pooling with stride [1 1] and padding [0 0 0 0]
7 Dropout 25% dropout
8 Fully Connected 128 node fully connected layer
9 Dropout 50% dropout
10 Fully Connected 10 node fully connected layer
11 Softmax Softmax classifier
12 Classification Crossentropyex

Table 3-2. linage classification accuracies

Imagery Classification
Accuracy (%)

28 x 28 traditional images 98.56
14 x 14 downsampled traditional images 98.82

14 x 14 raw compressively sensed (CS) images 97.14
28 x 28 reconstructions from CS images 98.78
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4. COMPRESSIVE SENSING SNAPSHOT IMAGING SPECTROMETER

Compressive sensing techniques have application to a wide range of imaging modalities,
including spectrometry. Whereas in the last chapter we considered the case of imaging, in this
chapter we investigate the use of compressive sensing for spectrometry and imaging
spectrometry.

Previous work demonstrated that a single liquid crystal retarder could be used in conjunction with
a point detector to create a compressive sensing spectrometer [2]. They measured 1024 spectral
bands by making only 108 measurements. Their measurements were made by temporally varying
the voltage across the liquid crystal cell. Hence this approach does not directly translate to a
snapshot spectrometer (i.e., a device capable of measuring spectral information in a single data
collect).

However, if the spectral filter system were spatially tiled with a small number of cells and each
cell were to have a different voltage, a Bayer-filter-like sensor could be created. A Bayer-filter,
shown in Figure 4-1, is the type of spectral filter used in the vast majority of digital cameras. It
consists of a 2x2 tiling of red, green, and blue spectral filters (generally two green filters are
used). Spatial resolution is traded for spectral capability. With a traditional Bayer filter 4
measurements are used to obtain 3 spectral bins. In a traditional spectrometer M measurements
results in M spectral bins; with compressive sensing we aspire to obtain N > M spectral bins.

The trade-off with a Bayer filter geometry is that spectral resolution is obtained at the expense of
reduced spatial resolution. The spatial resolution of the system is governed by the size of the
super-pixels rather than the individual pixels.

This tiled geometry is shown in Figure 4-2. This geometry is referred to as the Compressive
Sensing Snapshot Imaging Spectrometer (CSSIS). Broadband light is incident on an array of fixed
spectral filters. In this figure a 4x4 geometry is shown, corresponding to 16 measurements. This

Figure 4-1. Traditional Bayer Filter Geometry
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4x4 pattern defines a super-pixel and the pattern repeats across the entire detector array. In this
chapter a "pixel" corresponds to the pattern seen by a single filter element. A "super-pixel"
corresponds to a block containing a complete set of spectral filters.

The spectral filters need not be liquid crystal filters. They can also be Fabry-Perot filters [60],
form birefringence filters, nano-antenna array filters, or any other type of device which can vary
its transmittance (or reflectance) as a function of wavelength.

This approach has several benefits. First, it is a true snapshot spectrometer; spectra are captured at
the sample rate of the detector. This allows for spectral analysis of fast transient events.
Furthermore, no temporal scanning or physical motion is required. Next, the system optical
throughput is high. A traditional tiled spectrometer system employs narrow-band spectral filters
that reject most of the light, leaving relatively little to be detected. The average transmittance of
each filter in the CSSIS is much higher, perhaps 50%. Radiometric efficiency is significantly
increased as much more light strikes the detectors. Lastly, since compressive sensing techniques
can be used, the number of spectral bins is greater.

4.1. CSSIS Trade Space

The traditional tiled-spectrometer geometry is used for a variety of commercial applications.
Commercial devices with array sizes of 4x4 and 5x5 are available [21]. Employing compressive
sensing techniques dramatically changes the trade space in designing such systems.

26



4.1.1. lmproved Spectral Resolution with Constant Spatial Resolution

One way this system could be leveraged is to provide increased spectral resolution while
maintaining a constant spatial resolution. Consider replacing a 4x4 traditional filter array from an
existing commercial system with a 4x4 compressive sensing filter array. Both of these systems
have degraded the resolution of the imaging system by 4X since a 4x4 grid is used.

The traditional system uses its 4x4 filter array to obtain 16 spectral bins. However, the
compressive sensing system could potentially use its 4x4 filter array to obtain 80 spectral bins.
Thus the spectral resolution has been increased by 5X while maintaining the same spatial
resolution.

4.1.2. lmproved Spatial Resolution with Constant Spectral Resolution

The compressive sensing architecture could also be used to increase area coverage while
maintaining spectral resolution. Consider replacing a 5x5 traditional filter array from an existing
commercial system with a 3x3 compressive sensing filter array. The traditional system has
degraded the resolution by 5X while the compressive sensing system has degraded the resolution
by only 3X.

The traditional system obtains 25 spectral bins from its 25 spectral filters. The compressive
sensing system could likewise obtain 25 spectral bins from its 9 spectral filters. Thus the spatial
resolution of the compressive sensing system is better while the spectral resolution is the same.

4.1.3. lmproved Area Coverage with Constant Spectral and Spatial Resolutions

Consider extending the previous example of a 5x5 traditional filter array and a 3x3 compressive
sensing filter array. The compressive sensing system could be flown at a higher altitude so that its
spatial resolution matches that of the traditional system. By flying the compressive sensing
system 60% higher than the traditional system, the resolutions of the two systems would match.
However, the area coverage of the compressive sensing system would be 2.56X the area coverage
of the traditional system. Hence the compressive sensing system could see more of the ground at
one time.

4.2. Spectral Super-Resolution

First, a study to determine the ability to obtain more spectral bins than measurements was
conducted. A geometry using a 7x7 array of Fabry-Perot spectral filters was assumed, yielding M
= 49 measurements. All filters were assumed to have the same light incident upon them (i.e., no
spatial variation). The wavelength regime considered was in the long-wave infrared (LWIR): 7.8
to 12.7 pm. The reflectance of the mirrors of the Fabry-Perot etalons were assumed to be 80%.
The mirror separations were constrained to be in the range of 40 to 100 pm and were optimized to
minimize the system matrix coherence when the Daubechies-8 wavelets were used. Figure 4-3
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shows the filter thicknesses and Figure 4-4 shows the spectral transmittances as a function of
wavelength.

Two spectra were simulated. Spectrum 1 consists of a Gaussian centered at a wavelength of
10.24 pm with a full-width half-maximum (FWHM) of 0.191 pm. Spectrum 2 consists of a pair
of Gaussians with the same FWHM of 0.191 pm but also separated by 0.191 pm centered about
11.49 pm. Both spectra were normalized to have unity energy. Figure 4-5 shows these two spectra
sampled with N = 196 data points.

When these spectra are downsampled to 64 spectral bins, the spectral resolution is diminished
such that the dip in Spectrum 2 is no longer resolved. Figure 4-6 shows the results of the
downsampling operation.

Measurement with the CSSIS was simulated and the results are shown in Figure 4-7. Note that 64
measurements are made, the same number as in the downsampled case.

Reconstructions from the measurements shown in Figure 4-7 are shown in Figure 4-8. As can be
seen from this figure, the information about the dip is preserved. This indicates that more
information is stored in the compressive sensing data than in the traditional spectrometer data.

Next, the impact of spatial variations was investigated. An optical imaging system with an
f-number(defined as the ratio of the focal length to the aperture diameter) of 15 was used. The
focal plane pixels were assumed to be 12 pm in size. The system point-spread function as a
function of wavelength was modeled using standard Fourier optics theory. Figure 4-9 shows the
PSF at a central wavelength at high spatial resolution. Figure 4-10 shows the PSF at a resolution
of 12 pm, the size of an individual filter. Figure 4-11 shows the PSF at a resolution of 84 pm, the
size of a super-pixel. The ensquared energy in a super-pixel ranges from 35.9% at the shortest
wavelength to 16.5% at the longest wavelength.
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A very simple spatial distribution of these two spectra was assumed. This distribution is shown in
Figure 4-12. There is no variation in the Y-direction and a discontinuous change from Spectrum 1
to Spectrum 2 in the X-direction. These spatial distributions are convolved with the
monochromatic point-spread functions to create spectral images at each wavelength. These
spectral images are then sensed by the spectrometer.

Two spectrometers were simulated. The first is the CSSIS configuration described above. The
second is a traditional spectrometer with 49 non-overlapping, perfect square-wave narrowband
filters. The raw measurements from these systems are shown in Figures 4-13 and 4-14.

Spectral reconstructions shown across a slice in the X-direction are shown in Figures 4-15 and
4-16. Reconstructions in the Y-direction are not shown since there is no variation in the spectra in
that dimension. These figures show that the CSSIS system is able to reconstruct the spectra
accurately and that the effects of the spatial variation are localized to the spectral change
boundary.
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Figure 4-13. CSSIS Raw Image
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4.3. Spectral Classification

In the previous section we demonstrated that compressive sensing techniques can potentially store
more information in the same number of measurements as compared to a traditional spectrometer
system. In this section we explore how this impacts classification accuracy.

The Indian Pines data set is a hyperspectral image collected over the Purdue University agronomy
farm in West Lafayette, Indiana [5]. The 145 x 145 image contains 220 spectral bands in the range
0.4 pm to 2.5 pm measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
This data set includes ground truth data as well, making it useful for classification studies.

A different implementation of the CSSIS was used for this study. A 7x7 array of liquid crystal
devices (LCDs) were used rather than Fabry-Perot spectral filters. The change in index of
refraction of the LCD was varied between 0.001 and 1 in a linear fashion with an LCD thickness
of 15 pm. Figure 4-17 shows the spectral transmittances of the filters. The Haar wavelet basis set
was used.

For reconstructions, the -norm of the total variation (TV) of the wavelet coefficients was
minimized rather than the ti -norm of the coefficients themselves. The total variation of a signal is
the root-sum-square of the horizontal and vertical discrete gradients. Let Doj (f) denote the
horizontal discrete gradient of the signal f. Similarly let Dv;i7j (f) denote the vertical discrete
gradient f. We define Dkij (f) and Dv;i (f) via

and

fi+1.,i- fi,j
Dh;i,j 

0

{pv;ij (f) fij+1 - fij
0

The total variation is then defined via

i n

i = n

j n

j = n

TV (f) = E,V(Dh;j,;(f))2+ (Dv;i,j (f))2 •
i,j

(4.1)

(4.2)

(4.3)

By minimizing the total variation of the wavelet coefficients, we force them to go to a constant
value. Since we know the signal is sparse, this value is zero. This optimization technique worked
better for this study than minimizing the ii-norm of the coefficients themselves.

A representative signal for each of the 17 classes in the Indian Pines data set was calculated by
averaging all spectra assigned to that class. Figure 4-18 shows these spectra (blue lines) along
with the CSSIS reconstructions (red lines). A compression factor of 4 was used, meaning that the
49 spectral measurements were used to produce 196 spectral bins.
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Next, a classification study was conducted. The performance of the CSSIS system was compared
with the performance of a traditional 7x7 tiled spectrometer array. In the traditional spectrometer
the spectral filters were again considered to be ideal, non-overlapping square-wave filters with
unity transmittance. The detector modeled for this analysis was assumed to have a 12-bit
analog-to-digital converter (ADC) and full well depth corresponds to 100,000 electrons. A read
noise of 4 electrons was assumed and the signals were nominally set to fill the well halfway. A
Gaussian background noise was assumed to be present as well, with standard deviations of 0, 5,
10, 15, or 20 counts. For each class in the Indian Pines data set, 1,000 measurements were
simulated. 70% of these were used for training purposes and 30% of these were used for testing
purposes.

Classifications were performed on three different data sets. The first was the traditional
spectrometer with 7x7 non-overlapping, ideal narrowband spectral filters. The second was the
CSSIS raw data, consisting of 49 measurements through the CSSIS filters. The third was the
CSSIS reconstruction into 196 spectral bins. In this case, the noise was added to the CSSIS data
prior to reconstruction to simulate the physics of the device.

The classification algorithm was k-Nearest Neighbor classification where 5 nearest neighbors
were used in the predictors. Figure 4-19 shows the results of these classifications. The
classification accuracy is highest when performed on the CSSIS raw data. Performing
classification on the reconstructed data reduces the accuracy somewhat in the presence of noise.
The traditional spectrometer performed the poorest.

One reason for the relatively poor performance of the traditional spectrometer in the presence of
noise is the narrowband nature of the filters. The average transmittance across the spectral band
for each filter is 1/49 = 2.04%. The average transmittance for the CSSIS spectral filters is roughly
50%. Therefore the CSSIS has a significant advantage in radiometric throughput over the
traditional spectrometer. This is shown in Figure 4-20. In this case we define the signal-to-noise
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20

ratio (SNR) of the system as the mean of the spectral signal divided by its standard deviation. The
CSSIS raw data has a significantly higher SNR in this sense that the traditional spectrometer or
the CSSIS reconstruction.

The traditional spectrometer performance could likely be increased by increasing the integration
time, but in that case the temporal performance of the spectrometer is reduced.

This study demonstrated that classification can be performed on the CSSIS raw data. In fact, the
classification accuracy is higher for the CSSIS in the presence of noise as compared to an
idealized traditional pixelated spectrometer.
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4.4. Indian Pines Data Set with Intraclass Variation

The previous study demonstrated that the CSSIS could distinguish between the classes in the
Indian Pines data set. Intraclass variation was artificially induced via simulated read noise and
Gaussian noise. Next, a study with the actual intraclass variation present within the Indian Pines
data set was used.

The same CSSIS system as the previous section was used. The data used were the 145x145
spectral measurements in the Indian Pines data set. Ran et al, demonstrated that the Indian Pines
data set can be effectively classified using a combination of an adaptive weighted filter (AWF)
followed by a local Fisher discriminant analysis(LFDA) and K-nearest-neighbor (KNN)
classification[65]. That same approach was used here, with one change. The AWF was modified
to also include a Gaussian spatial weight distribution in the same manner as traditional bilateral
filtering used for noise removal in digital images [70]. This filter is referred to here as the bilateral
adaptive weighted filter (BAWF). The filter used a window size of 7 pixels and a spatial Gaussian
distribution with a 1/e-width of 3 pixels.

The Indian Pines data set were corrupted with noise in a manner similar to that previously
described. For this simulation, noise was added directly to the Indian Pines data, though, rather
than to the averages of the spectra of the distinct classes. 70% of the 145x145=21,025 pixels were
used as the training set while the rest were used for testing. The following measurements were
analyzed:

• Traditional: A traditional pixelated spectrometer using the BAWF-LFDA-KNN algorithm
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• CSSIS Raw Data: The CSSIS spectrometer using the BAWF-LFDA-KNN algorithm on the
raw CS data without reconstruction

• CSSIS Recon before Filtering: The CSSIS spectrometer where TV-reconstruction was
performed and then followed with the BAWF-LFDA-KNN algorithm

• CSSIS Recon after Filtering: The CSSIS spectrometer where the BAWF algorithm was
performed on the TV-recontructed spectra; LFDA-KNN were then performed on the
reconstructed spectra.

Figure 4-21 shows the classification accuracy as a function of noise level for the different
measurement techniques considered. For all noise levels the performance is best when the data
processing and classification are performed directly on the data in the compressed space. If the
reconstruction is needed, the classification task works better if the total variation reconstruction is
performed prior to the filtering operation.
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4.5. Conclusion

The benefits of a compressive sensing snapshot imaging spectrometer have been demonstrated.
This study demonstrated that a tiled array spectrometer based on compressive sensing techniques
can outperform a traditional tiled array spectrometer. The CSSIS can be used to reconstruct
spectral features that are lost in a traditional spectrometer. It also provides a radiometric
throughput advantage that results in more light striking the imaging sensor.

These benefits directly impact performance of a classification task. Spectral signatures can be
more accurately classified with a CS system than a traditional system, especially in the presence
of noise.
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5. COMPRESSIVE HYPERSPECTRAL IMAGING USING TOTAL

VARIATION MINIMIZATION

5.1. Introduction

Hyperspectral imaging provides a key capability for diverse applications, including remote
sensing and biomedical imaging [29, 67]. Sensors can measure spectral signals directly or
indirectly. Direct methods include gratings that disperse light and filters that select wavelength
bands. Indirect techniques, such as infrared Fourier Transform and Hadamard spectroscopy [59],
multiplex or encode bands and can improve signal-to-noise ratio at the cost of a less intuitive
sensor design and more intricate post-processing.

Compressive sensing shows promise for sensors that collect fewer samples than required by
traditional Shannon-Nyquist sampling theory [25]. Recent sensor designs modulate light with
spatial light modulators, liquid crystal phase retarders, and Fabry-Perot resonators [1, 60]. These
sensors encode spectra with less measurements than the number of bands in the signal, making
reconstruction an underdetermined problem [48, 47]. A single measurement consists of an inner
product of the transmission profile of the spectral modulator (e.g., a Fabry-Perot resonator) with
the spectral signal. The modulator filters incoming light according to the transmission.
Reconstruction algorithms like basis pursuit [75] assume that the unknown signal is sparse
relative to a basis such as the wavelet transform.

We propose a reconstruction algorithm for hyperspectral images encoded through spectral
modulators. Our approach constrains pixels to be similar to their neighbors in space and
wavelength, as natural images tend to vary smoothly [12]. It combines L1 minimization in the
wavelet domain to enforce sparsity, as inspired by compressive sensing, and total variation in the
image domain for smoothness. Our algorithm constrains encoded, compressed hyperspectral
images to be smooth in their reconstruction.

5.2. Theory

5.2.1. Notation

We represent the hyperspectral image x as a tensor of size X x Y x B, where X and Y are the
number of pixels in the x and y directions respectively, and B is the number of spectral bands. xij
denotes pixel (i, j) of the hyperspectral image, and it is a vector of length B. Taking the wavelet
transform of each pixel results in :i of size X x Y x C, where C is the number of wavelet
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coefficients per pixel. .Xj,i denotes the wavelet coefficients at pixel (i, j), and it is a vector of
length C. The matrix W transforms the wavelet coefficients back to the spectral signal:

(5.1)

Table 5-1 summarizes the notation used in this paper.

Table 5-1. The counting variables are integers, while the optical and optimization variables consist of real

numbers.

Type Variable Description Shape

B Number of spectral bands 1
C Number of wavelet coefficients 1

Counting M Number of measurements 1
variables X Number of pixels in the x direction 1

Y Number of pixels in the y direction 1

d Gap width between Fabry Perot mirrors M x 1
F Optical finesse 1

Optical A, Wavelength 1
variables n Index of material between Fabry Perot mirrors 1

R Mirror reflectivity 1
9 Incident angle of light 1

A System model M x C
a Total variation weights: ax, ay, and ax 3 x 1
bid Variable used in updating x B x 1

11 Penalty term in the augmented Lagrangian 1
n Noise XxYxM
p Dual variable X x Y x B

PLJ Dual variable from pixel (i, j) of p B x 1
T Fabry perot transmissions M x B

Optimization W Discrete wavelet transform B x C
variables x Hyperspectral image X x Y x B

xij Spectrum from pixel (i, j) of x B x 1
.'i Wavelet coefficients X x Y x C

."ki j Coefficients from pixel (i, j) of .5c' C x 1
y Measurements X x Y x M

yij Measurements from pixel (i, j) of y M x 1
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Figure 5-1. The filter array consists of Fabry-Perot resonators, and the detector array can be a focal plane array.
The Fabry-Perot resonators modulate the spectrum of each pixel. A single measurement results from the inner

product of the filter transmission and the light spectrum. The resonators filter incoming light according to the

transmission. Our filters vary with time because the Fabry-Perot resonators modulate their mirror spacing to

produce different transmissions and measurements. Alternatively, the filters can vary in space; a cluster or

"superpixel" of filters can provide measurements of one area, enabling snapshot hyperspectral imaging.

5.2.2. Measurement model

Hyperspectral imagers can measure light directly or indirectly. Direct methods include narrow
band spectral filters and gratings to disperse light. In contrast, indirect techniques, such as
infrared Fourier transform spectroscopy and Hadamard coding spectroscopy [59], multiplex or
encode spectral bands, and they can improve signal-to-noise ratio at the cost of a less intuitive
sensor design and more intricate post-processing. Compressive sensing shows promise for
sensors that collect fewer samples than required by traditional Shannon-Nyquist sampling theory
[44, 46]. Recent sensor designs modulate light with spatial light modulators, liquid crystal phase
retarders, and Fabry-Perot resonators. These sensors encode spectra with less measurements than
the number of bands in the signal, making reconstruction an underdetermined problem.

Mathematically, spectral moduators compute an inner product between their transmission and a
spectral signature, resulting in a single measurement. Changing the transmission profile creates a
different measurement. The modulator filters incoming light according to the transmission. The
analysis in this work applies to spectral modulators in general. We model the transmission of a
spectral modulator through a transmission matrix T, and different transmission profiles will
change the T matrix, as described in this section.

Figure 5-1 illustrates the concept of a hyperspectral imager using a filter array and detector array.
In this paper, the hyperspectral imager consists of Fabry-Perot resonators on top of a focal plane
array or detector array. A Fabry-Perot resonator modulates each pixel of the focal plane array [1].
We simulate a measurement on one pixel by computing an inner product between the resonator
transmission and the spectral signature. The resonators filter incoming light according to the
transmission. Changing the mirror spacing in a resonator, as described in this section, results in a
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different transmission profile, and hence a new measurement. Our filters vary with time because
the Fabry-Perot resonators modulate their mirror spacing to produce different measurements.
Alternatively, the filters can vary in space; a cluster or "superpixer of filters can provide
measurements of one area, enabling snapshot hyperspectral imaging. The superpixel approach
trades a loss of spatial resolution for a gain in temporal resolution (snapshot imaging).

In a Fabry-Perot resonator, two partially reflective mirrors create constructive and destructive
interferences at periodic wavelengths. Piezo-controlled actuators control the precise spacing
between the mirrors, with response rates of hundreds of Hertz. Let R be the reflectivity of both
mirrors in the Fabry-Perot resonator. The finesse F is

4R
F= 

(1 —R)2*

Let n be the refractive index of the material between the mirrors, d be the distance between the
mirrors, 0 be the angle of incidence of light, and X, be the wavelength of light. The optical
thickness 8 is

(5.2)

8(di, = 
21c(2nd)cos(0) 

. (5.3)
A,

The transmission of the Fabry-Perot resonator depends on d and X. For the ith measurement, we
set the mirror spacing to be di. The transmission profile of the ith measurement is

ti(di, X) =   (5.4)
1 +Fsin2 

1 

(8(di,X)/2)

The transmission matrix T consists of the transmission profiles from all measurements. Each of
the M rows represent one measurement, and each of the B columns signify a different
wavelength:

ti(di,ki) .. . ti (di , A43)

T = •. • •. . (5.5)

tyi(dm,ki) • • • 61(41,4)

The matrix W relates the spectral signal xij and its wavelet coefficients zi,j, as described in Eq.
(5.1). The matrix A combines the transmission and wavelet transforms:

A = TW . (5.6)

y denotes the tensor of measurements of size X x Y x M. yi j is the measurement at pixel (i, j),
and it is a vector of length M. The matrix A relates the measurements and the wavelet coefficients
of the spectral signal:

(5.7)

A more realistic model is to add noise to the measurements:

yi = (5.8)

where n is a tensor of size X x Y x M. For example, the entries of n may be independent and
identically distributed Gaussian random variables.

This model reduces the original hyperspectral data cube of size X x Y x B into a smaller data cube
of size X x Y x M. For each pixel, we take M measurements to reconstruct B bands, for a
compression ratio of B/M, where M <B.
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5.2.3. lnverse problem formulation

Our goal is to reconstruct a spectral signal with B bands from M measurements, where B < M. To
solve this underdetermined system, we constrain the spectral signal to be sparse with a wavelet
representation, according to Eq. (5.1). A penalized least-squares formulation matches the
measurement yi j with the model Aki j while minimizing the L1 norm of the wavelet coefficients
j:

minimize
2 -11Mij' 

2 
13ux +i,j111.

To solve for the full hyperspectral image, we sum over all pixels:

X Y

minimize — Yi,j113+ 11 1.
x j=1 j=1

(5.9)

(5.10)

This optimization can be performed in parallel, where each pixel is treated independently, but it
does not account for relations between pixels. In natural images, pixels vary smoothly in space
and wavelength. Pixel differences quantify smoothness in each dimension:

and

(Vx.X)i,j,k = Xi+1,j,k Xi,j,k,

(V yX)i,j,k = j+1,k -

(V kx)i, = Xi ,j,k+1 -

The total variation term measures the pixel differences over the entire image:

where

X Y B

TV(x, a) = E E, E cvxx)i,j,k1 + ayl(V yx)i,j,k1
j=lk=1

iT
a = [ ax, ay, lax _I •

We add the total variation term to the penalized least-squares problem:

1
minimize 2

 E —yi,J113+1311k,./111+ TV(x, a)
i=li=1

subject to xij = Wxi, 1, 1 < i < X, 1 < j G Y

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

In our formulation, we minimize the L1 norm in the wavelet domain and the total variation in the
hyperspectral image domain. Since we combine elements of compressive sensing and total
variation, we use the abbreviation "CSTV" for our algorithm
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5.2.4. Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) breaks the objective into more tractable
sub-problems. It combines dual decomposition and the augmented Lagragian [11] to solve
equality constraints in convex analysis. To solve (5.16), we write the augmented Lagrangian as

X Y

Lri (MA, {xi,J}, {PO) = E E -yi,;112+1311ii,;111
i=1 i=1

+ + 1 -
+ Tv(x, a)

where {pi : 1 < i < X, 1 < j < Y} are dual variables,ll > 0 is a penalty term, and (•, •)
denotes an inner product. If a and b E NAT,

(5.17)

N

(a, b) = ai • bi (5.18)
i=i

where the subscript i indicates the ith element of a vector. ADMM updates the variables
iteratively, in an alternating order:

iri71 = argmin {KA) for 1 < i < X, 1 < j < Y, (5.19)
54,)

= argmin Lri({.41P}I {xj,/}71/97,j1), (5.20)

and
prit-j _ ± (x7v _ ) for 1 < i < X, 1 < j <Y, (5.21)

where the superscript n denotes the nth iteration. We can simplify the expressions for the
updates:

= argmin — yi,J112+1311:ii,i111
xj,)

+ - + 112 114; - wki,i112
and

1 X Y 2 1xrt+1 a •rgmm — 2_, 1 lxi,i — b7,./11 + —TV(x, a),x 2 i=l j=1 11

where

(5.22)

(5.23)

bn = - - p7 j+ v v 1711 . (5.24)

The updates for xi j and pij are independent of other pixels and can be calculated in parallel.
These updates can be calculated by convex solvers and proximal algorithms [24, 4]. Section 5.4
derives a simplification of the expression for the update of the hyperspectral image x. Algorithm 1
summarizes the procedure.
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Algorithm 1. CSTV: Reconstruction for compressive hyperspectral imaging using total variation
minimization
1: Inputs:

1. Measured compressed hyperspectral data y

2. Parameters p and and total variation weights lax, a, , ax

3. Measurement model A

2: Reconstruct each pixel of x independently according to Eqs. (5.1) and (5.10). Set x° to the
initial reconstruction. Set x-1 so that all entries are greater than E compared to the initial
reconstruction.

3: Set pc' to all zeroes.
4: n 0

5: while —f-1112 >E do
6: Update .XTV for each (i, j) according to Eq. (5.22).

7: Update f+1 according to Eq. (5.23).
8: Update pri l for each (i, j) according to Eq. (5.21).
9: n n 1

10: end while
11: x xn

12: Output: The hyperspectral image x.
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Table 5-2. For each class label, we choose an example pixel location from the full 145 x 145 image, listed in

(row, column) format. Later we plot spectra from each class at these example pixel locations.

Class label Description Example pixel location (row, column)

0 Background (0, 20)
1 Alfalfa (63, 96)
2 Corn: no till (16, 11)

3 Corn: min (0, 0)
4 Corn (31, 3)
5 Grass/Pasture (6, 25)

6 Grass/Trees (42, 26)
7 Grass/Mowed pasture (72, 108)
8 Hay, windrowed (32, 126)

9 Oats (61, 22)
10 Soybeans: no till (6, 28)
11 Soybeans: min (0, 97)

12 Soybeans: clean (1, 28)
13 Wheat (117, 24)
14 Woods (8, 120)

15 Building-Grass-Tree-Drives (0, 71)
16 Stone-steel towers (12, 46)
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5.3. Results

The Indian Pines data set is a hyperspectral image over the Purdue University agronomy farm in
West Lafayette, Indiana [5]. The 145 x 145 image consists of B = 220 bands, as measured by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for a data cube of size
145 x 145 x 220. Figure 5-2 displays the Indian Pines scene, labeled by crops or materials. Table
5-2 describes each class label and provides an example pixel location on the 145 x 145 image of
each class. Later we plot example spectra from each class based on these pixel locations.

Figure 5-3 shows transmission plots of the Fabry-Perot resonators at four mirror spacings. The
Fabry-Perot mirror reflectivity is R = 0.8, and the mirror spacings range from 2 pm to 32 pm.
Wavelengths vary from 0.4 pm to 2.5 pm in the Indian Pines dataset. Figure 5-4 plots the
transmission over all mirror spacings and wavelengths simulated in this paper. The matrix T from
Eq. (5.5) contains these transmissions. We simulate a measurement on one pixel by computing an
inner product between the transmission and spectral signature. The resonator filters incoming
light according to the transmission. To produce M = 160 measurements per pixel, we vary the
mirror spacing for each measurement, which results in different transmission profiles. With
B = 220, the compression ratio is 1.4. Hence, the measured data cube y has size 145 x 145 x 160.
Our goal is to recover the original hyperspectral data cube of size 145 x 145 x 220 from the
measured data cube.

To test our algorithm's robustness to noise, we add noise to each measurement, as described by
Eq. (5.8). The noise tensor n has distribution

9Cp = 0, 6 = 3) (5.25)

where AL(p, a) is a normal distribution with mean p and standard deviation a, and nij for
1 < i < X and 1 < j < Y are independent and identically distributed, and they share the same units

as the data. Note the hyperspectral data represents radiance values with units of 
cm2 nm sr

We set the L1 weight p = 1 and the penalty parameter = 10. For the total variation weights,
a, = 0.1, ay = 0.1, ax = 3. The wavelet transform W from Eq. (5.1) represents the Daubechies 8
(db8) wavelet coefficients. We run our proposed Algorithm 1 until it converges, as plotted in Fig.
5-5.

Figure 5-6 compares ground truth, the initial reconstruction, and the reconstruction using the
proposed Algorithm 1 ("CSTV"). We plot spectral signatures from selected pixels for each class
from the Indian Pines dataset; Table 5-2 lists the class descriptions and pixel locations of each
class plotted here. For the initial reconstruction, we solve a penalized least squares problem as
described by Eq. (5.10) for each pixel independently. Our proposed algorithm, labeled as
"CSTV," combines compressive sensing and total variation to produce a more accurate and
noise-robust reconstruction, as shown by the magenta line.

Figure 5-10 compares spectral images from ground truth, the reconstruction from the proposed
Algorithm 1 ("CSTV"), and the initial reconstniction. We display the 145 x 145 Indian Pines
scene at selected bands from the 0.4 pm-2.5 pm range of the dataset. Compared to the initial
reconstruction, our proposed algorithm produces more accurate and noise-robust reconstructions.
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Figure 5-2. The label numbers correspond to different farm crops as described in Table 5-2. Each pixel of the
145 x 145 scene represents B = 220 bands, for a data cube of size 145 x 145 x 220. We will take M measure-
ments per pixel, where M < B, and reconstruct the original B bands.

The total variation term constrains each pixel to be similar to its neighbors in space and
wavelength, so the algorithm converges to a more physically meaningful solution.
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Figure 5-3. The transmission also depends on the mirror spacing of the resonator, and each of the four plots

represents a different mirror spacing. We simulate a measurement on one pixel by computing an inner prod-

uct between the transmission and spectral signature. Each measurement corresponds to a different mirror

spacing. The resonator filters incoming light according to the transmission.

54



Mi
rr

or
 s
p
a
c
i
n
g
 (
p
n
i
)
 

5

10

3_5

20

25

30

Fabry-Perot Transrnissicin

1.25 1.50

(prn)

•

0 8

0 6

Figure 5-4. In our simulations, the mirror spacing ranges from 2 pm to 32 pm. The ground truth for the Indian

Pines dataset measures wavelengths from approximately 0.4 pm to 2.5 pm, as plotted here.

600 -

500 -

-0 400

+.J
C 300 -
cm
ra
200 -

100 -

0-

0 10

Error: Ilxn xn

20 30 40 50 60

Iteration number
70 80

Figure 5-5. Convergence of our proposed Algorithm 1. The reconstructed hyperspectral data cube x converges
in less than 80 iterations.
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Figure 5-6. We plot spectral signatures from selected pixels for each class from the Indian Pines dataset; Table
5-2 lists the class descriptions and pixel locations of each class plotted here. Our goal is to reconstruct the
hyperspectral data cube of size 145 x 145 x 220 from the measured data cube of size 145 x 145 x 160. For the
initial reconstruction, we solve a penalized least squares problem as described by Eq. (5.10) for each pixel
independently. Our proposed algorithm, labeled as "CSTV," combines compressive sensing and total variation
to produce a more accurate and noise-robust reconstruction, as shown by the magenta line.
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Figure 5-7. Continued: Comparison of ground truth, the initial reconstruction, and the reconstruction using the
proposed Algorithm 1 ("CSTV").
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Figure 5-8. Continued: Comparison of ground truth, the initial reconstruction, and the reconstruction using the

proposed Algorithm 1 ("CSTV").
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Figure 5-9. Continued: Comparison of ground truth, the initial reconstruction, and the CSTV reconstruction.

59



E

o

o

II

Truth

Truth

Truth

CSTV

(a) Spectral images at X = 0.50 pm.

CSTV

(b) Spectral images at X = 0.78 pm.

CSTV

(c) Spectral irnages at X = 1.07 ym.

Initial

Initial

Initial

•

.  

Figure 5-10. Our goal is to reconstruct the hyperspectral data cube of size 145 x 145 x 220 from the measured
data cube of size 145 x 145 x 160. The initial reconstruction solves the penalized least squares problem from
Eq. (5.10) for each pixel independently. CSTV produces more accurate and noise-robust reconstructions.
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Figure 5-10. Continued: Comparison of spectral images from ground truth, the reconstruction from the pro-
posed Algorithm 1 ("CSTV"), and the initial reconstruction.
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Figure 5-10. Continued: Comparison of spectral images from ground truth, the reconstruction from the pro-
posed Algorithm 1 ("CSTV"), and the initial reconstruction.

5.4. Simplifying the update of the hyperspectral image

In this section, we simplify the expression of the update for the hyperspectral image x:

xn+1 = argmin

1 X Y
= argmin (p7,1,xj,1 - vvntl) +2 xj,j — Winij+1112 +TV(x, a).

i=l i=1

The inner product term can be further simplified:

(1 4.P.xij + 11, b7J112 C

where c is a constant, and

bZ1 --P7 • + id •

Hence, the update for x becomes

1 x
xn
+1 
= argmin E • 112+ 1TV(x, a).2 i=l i=1

5.5. Conclusion

(5.26)

(5.27)

(5.28)

(5.29)

We have presented a reconstruction algorithm for hyperspectral images encoded by spectral
modulators. The hyperspectral imager takes fewer measurements than the number of bands in a
spectral signal using principles of compressive sensing. To solve this underdetermined problem,
we constrain the spectral signal to be sparse in its wavelet coefficients. Our algorithm also
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constrains pixels to be similar to their neighbors in space and wavelength, as natural images tend
to vary smoothly. It combines L1 minimization in the wavelet domain to enforce sparsity and total
variation in the image domain for smoothness. The alternating direction method of multipliers
(ADMM) simplifies the optimization procedure. Our algorithm constrains encoded, compressed
hyperspectral images to be smooth in their reconstruction and increases robustness to noise. We
have simulated a hyperspectral imager consisting of Fabry-Perot resonators on top of a focal
plane array. Our goal is to reconstruct the original hyperspectral data cube of size
145 x 145 x 220 from measurements of size 145 x 145 x 160, for a compression ratio of 1.4 per
pixel. As a reference, we reconstruct each pixel independently using a penalized least-squares
formulation. The compression ratio and the simulated noise results in a grainy image where the
underlying scene can be hard to distinguish. In contrast, our algorithm converges to a more
physically meaningful solution because it constrains each pixel to be similar to its neighbors in
space and wavelength. This work improves the reconstruction of hyperspectral images from
encoded, multiplexed, and sparse measurements.
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6. DEEP NEURAL NETWORKS FOR COMPRESSIVE

HYPERSPECTRAL IMAGING

6.1. Background: Compressive Hyperspectral Imaging

Compressive hyperspectral imaging reduces measurements

Hyperspectral imagers typically require scanning across a scene to collect spectral measurements.
A snapshot hyperspectral imager reduces the number of measurements and avoids the need for
spatial scanning. It requires reconstruction algorithms to recover the hyperspectral image from
measurements. The reconstruction becomes an underdetermined inverse problem: the number of
measurements is less than the number of bands. Regularization techniques such as total variation
minimization help to make the problem less ill-posed by adding physical constraints such as
smoothness along the spatial and spectral dimensions [49]. However, these compressive sensing
algorithms demand heavy computation [49, 48, 41, 47, 44, 46], while greedy algorithms may
converge to local minima [50, 45]. In this work, we explore neural networks for two tasks:

1. Reconstruct the hyperspectral image from compressed measurements.

2. Classify the hyperspectral image from compressed measurements.

For Task 2, we compare two inputs for classification: the compressed measurements, and the
reconstructed hyperspectral image from the compressed measurements. These tasks address our
research questions:

1. Can neural networks reduce computation time for reconstruction?

2. Can neural networks improve classification accuracy for hyperspectral images, either from
compressed measurements or reconstructed spectra, compared with traditional classifiers
like support vector machines?

3. How does classification performance compare using compressed measurements as input,
versus using reconstructed spectra as input?

Filter light by varying spectral transmissions

The proposed compressive hyperspectral imager filters light before the detector array, as shown in
Fig. 6-1. Each measurement corresponds to a different spectral transmission on the filter array.
Examples of filter arrays include spatial light modulators (liquid crystal displays) and Fabry-Perot
resonators, where spectral transmittance varies by applying a digital signal or voltage. This paper
will consider Fabry-Perot resonators, in which mirror spacing can vary to control the spectral
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Figure 6-1. The proposed compressive hyperspectral imager filters light before the detector array [49]. Each
measurement corresponds to a different spectral transmission on the filter array.
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Figure 6-2. Examples of spectral transmissions of a Fabry-Perot resonator. The spectral transmission depends
the mirror spacing in the resonator.
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Figure 6-3. Spectral transmission as a function of mirror spacing and wavelength. The number of measure-
ments equals the number of mirror spacings.

transmission. Figure 6-2 shows examples of spectral transmissions at four different mirror
spacings. Figure 6-3 displays the spectral transmittance with mirror spacings ranging from 2 pm
to 32 pm over wavelengths from 0.45 pm to 2.5 pm. Compressive hyperspectral imagery is
hyperspectral imagery collected from compressive sensing measurements. We refer to Lee [49]
for more details on the proposed compressive hyperspectral imager.

6.2. Experiments

6.2.1. Dataset

The Indian Pines dataset is a hyperspectral image of 145 x 145 pixels with a 20 m spatial
resolution and 10 nm spectral resolution over the range of 400-2500 nm, divided into 220 bands
[5]. The filter array of the hyperspectral imager modulates all of the 220 bands, including the
water absorption region. Each pixel label corresponds to a farm crop as shown in Fig. 6-4. Note
that each crop exhibits intraclass variation.

6.2.2. Task 1: Reconstruction of compressive hyperspectral images

This task aims to reconstruct compressive hyperspectral images using neural networks, which will
help reduce computation time with fast inference.

Data augmentation with randorn spectra and additive noise helps to prevent overfitting
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Figure 6-4. Labels of the Indian Pines hyperspectral image. Each label corresponds to a type of farm crop.

Task 1 draws from two datasets:

1. Indian Pines dataset

2. Random spectra dataset

For the second dataset, we generate random spectra with 220 bands from a normal distribution
with zero mean and unit variance. Then we apply a Hanning filter with window sizes that vary
from 11, 21, 31, and 41. This random dataset contains 145 x 145 = 21025 spectra, the same
number as the Indian Pines dataset.

For each dataset, we reserve 60% for training, 20% for validation, and 20% for testing,
maintaining the class imbalance between each split. Note that each split contains equal amounts
of each dataset.

For the training split, we add random noise to the Indian Pines dataset, generated from the saeme
process as the second dataset. The additive noise and the second dataset help to prevent
overfitting, so that the neural network does not memorize the training data. We normalize each
dataset to zero mean and unit variance.

Multilayer perceptrons reconstruct compressive hyperspectral images

In our experiments, the compressed signal length varies from 160, 80, 40, 20, to 10
measurements. The goal is to reconstruct 220 bands, so the number of measurements is less than
the length of the original spectrum.

We investigate multilayer perceptrons to reconstruct compressive hyperspectral images. The input
layer maps the compressed input signal to 220 outputs, with ReLU activation. Then K hidden,
fully-connected layers follow, each with ReLU activation. The last layer is linear and outputs the
reconstructed spectrum. Applications in video compression have utilized multilayer perceptrons
for reconstructing compressive sensing measurements [35].
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In our experiments, we vary the number of hidden layers: K = 1, 2,4,7,14. The multilayer
perceptron iterates over each pixel to reconstruct the entire hyperspectral image.

6.2.3. Task 2: Classification of compressive hyperspectral images

Evaluate classifier performance on compressed inputs

This task aims to answer the questions

• Can neural networks improve classification accuracy for hyperspectral images, either from
compressed measurements or reconstructed spectra, compared with traditional classifiers
like support vector machines?

• How does classification performance compare using compressed measurements as input,
versus using reconstructed spectra as input?

We evaluate a variety of classifiers: support vector machines, K nearest neighbors, and three
different neural networks, as described below. The input size varies from 160, 80, 40, 20, to 10
measurements, which are less than the full size of 220 bands.

3D convolutions extract spatial and spectral features

We consider two different 3D convolutional neural networks (CNNs). The first 3D CNN extracts
blocks of size 5 x 5 x I, where I is the input size, which varies from 220, 160, 80, 40, 20, to 10 in
our experiments. Then two convolutional layers follow, with sizes of 3 x 3 x 7 and 3 x 3 x 3,
respectively, each followed by ReLU. Next a fully connected layer reads a flattened feature vector
and outputs a feature vector with the classification scores for the 16 classes. We train the model
with Adagrad and cross-entropy loss. We refer to Li [52] for more details.

The second model is a multiscale 3D CNN. The input patch has size 7 x 7 x I, where I is defined
above. It passes through a convolutional layer with 16 3 x 3 x 11 kernels, followed by ReLU. A
special layer consists of 16 parallel 3D convolution blocks, each of sizes 1 x 1 x 1, 1 x 1 x 3,
1 x 1 x 5, and 1 x 1 x 11, which are summed and passed through ReLU. A second, identical
parallel layer follows. Next is a convolutional layer with 16 kernels of size 2 x 2 x 3, followed by
ReLU, 2 x 2 x 3 pooling, and dropout. A fully connected layer outputs a score for each class. We
refer to He [33] for more details.

Previous approaches have applied principle components analysis to the spectral dimension,
independently of the spatial dimension. Performing convolutions in 3D can simultaneously
extract spatial and spectral features.

Recurrent networks characterize spectral correlations
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Figure 6-5. Example reconstructions from varying numbers of measurements with a single layer perceptron.

The input to the recurrent neural network (RNN) is a hyperspectral pixel. The recurrent layer
reads one band, while the next band is input simulataneously. The RNN predicts the label of the
pixel after looping through the entire hyperspectral pixel sequence. We consider a model with
gated recurrent units of size 64, followed by batch norm and tanh activation. A final fully
connected layer outputs scores for each class. Note that this model considers spectral correlations
but not spatial relations between neighboring pixels. We refer to Mou [57] for more details.

6.3. Results

6.3.1. Task 1: Reconstruction of compressive hyperspectral images

Moderate compression (160 / 220) results in small reconstruction error

For Task 1, we study the reconstruction error as the number of measurements decreases from 160,
80, 40, 20, to 10, and the reconstructed spectra has 220 bands. The error also depends on the
number of layers in the multilayer perceptron. Figure 6-5(a) shows examples of reconstructions
with 160 measurements using a single layer perceptron. Both the Indian Pines and random
spectra resemble ground truth closely at a moderate compression ratio (160 measurements of 220
bands).

Larger compression (10 / 220) results in larger reconstruction error

Figure 6-5(b) shows examples of reconstructions with 10 measurements using a single layer
perceptron. The error increases in both datasets: the random spectra shows the most error in the
higher frequencies, and the Indian Pines dataset shows some bias in bands 0-30 and artifacts near
the water absorption region near band 130. As expected, a larger compression (10 measurements
of 220 bands) results in larger reconstruction errors.
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Figure 6-6. Reconstructions of each class/crop from 10 measurements using a single layer perceptron, after

running 2000 epochs. The plots show the average spectra with confidence intervals of one standard deviation,
which shows intraclass variation. GT: Ground Truth. NN: Single layer perceptron.

Figure 6-6 shows the reconstruction distribution of the Indian Pines classes from 10
measurements using a single layer perceptron, after running 2000 epochs. The plots show the
average spectra of each class with confidence intervals of one standard deviation, which indicates
intraclass variation in reconstruction error.

Overall R2 shows too many layers increases error

Figures 6-7(a) and 6-7(b) show the overall R2 with standard deviation as a measure of similarity
of the reconstruction with the ground truth. The heatmap illustrates the reconstruction quality as
the number of measurements and the number of layers vary. Note the training, validation, and
testing sets remain fixed, and the standard deviation measures the variation in error over the entire
testing set. If the number of layers is too large (e.g. 14 layers), the model begins to memorize the
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Figure 6-7. R2 for reconstructions over two datasets (Indian Pines and random spectra).

waveforms in the training set and does not generalize well to the testing set. Consequently, the
overall R2 degrades compared to models with fewer layers.
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Figure 6-8. R2 for reconstructions over two datasets (Indian Pines and random spectra).

Single layer shows least overfitting

Figures 6-7(c) and 6-7(d) show R2 with standard deviation over the Indian Pines dataset,
excluding the random spectra dataset. Figures 6-8(a) and 6-8(b) show R2 with standard deviation
over the random spectra dataset, excluding the Indian Pines dataset. A high R2 value in one
dataset may indicate overfitting if the other dataset has a corresponding low R2. For example,
when the number of layers is 2, 4, and 7, the Indian Pines R2 is relatively high for 10
measurements, but the corresponding R2 over the random spectra dataset is much lower. We find
that the single layer perceptron shows the least overfitting based on comparing R2 values between
the two datasets.

Regularize the model to further reduce overfitting

Regularization may help to reduce overfitting on the Indian Pines dataset. For example, dropout
may be added to the multilayer perceptron. Other random spectra or additive noise may further
augment the training dataset. Comparing the reconstruction of the random spectra with the Indian
Pines dataset helps to measure how much the model overfits one dataset compared to the other.

6.3.2. Task 2: Classification of compressive hyperspectral images

Recurrent networks perform best on compressed inputs

We split the Indian Pines dataset into training, validation, and testing according to 60/20/20
proportions. All the experiments below use the same split throughout. The standard deviation in
the accuracies reflect the variance caused dropout in the neural networks.
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Figure 6-9. Comparison of classifier accuracy with varying numbers of measurements (compressed signal
length). The inputs to the classifiers are the compressed (non-reconstructed) measurements. The number of
bands in the hyperspectral image is 220, and the compression ratio is the number of measurements divided
by the number of bands. Note that the 3D CNN from He does not accept inputs of size 10, so these values are
empty. Each model runs 20 times, with 100 epochs per run.

Figure 6-9 shows the overall accuracy with varying input size from 220, 160, 80, 40, 20, to 10
measurements. Note the number of measurements is less than or equal to the number of bands B
in the hyperspectral image (B = 220 corresponds to the full or uncompressed spectral input). The
heatmap compares different classifiers: support vector machines (SVM), K nearest neighbors
(KNN), and three types of neural networks as described in Section 6.2.3. For SVM on
compressed inputs, we use a radial basis function (RBF) kernel with C = 1000 and 7 = 0.001, as
determined by grid search. For KNN, we search over K = 1,3,5,10,20. In most cases, K = 10
performed best (e.g. for compressed sizes of 10 and 160).

The recurrent neural network (RNN) from Mou [57] performs the best on compressed inputs.
Figure 6-10 shows the average class accuracies using the RNN from Mou.

3D CNNs perform best on reconstructed spectra

We test classifier performance on reconstmcted inputs as a comparison with the compressed
inputs. Figure 6-11 shows the classifiers' accuracies with varying numbers of measurements. The
compressed signal length denotes the number of measurements used to reconstruct the
hyperspectral images. The number of bands in the reconstructed hyperspectral image is 220, and
this reconstructed image is the input to the classifiers. We use the single layer perceptron to
calculate the reconstructed spectra, since it shows the least overfitting. Each model runs 20 times,
with 100 epochs per run.

The multiscale 3D CNN from He performs the best over reconstructed inputs, based on the
comparison from Fig. 6-11. Figure 6-12 shows the class accuracies on the reconstructed inputs
using the multiscale 3D CNN from He [33]. Note that the values at 220 are empty in the table
since the original signal length is 220.
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Figure 6-10. Class accuracies with varying numbers of measurements (compressed signal length) using the
recurrent neural network from Mou. The inputs to the classifier are the compressed (non-reconstructed) mea-
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Figure 6-11. Comparison of classifier accuracy with varying numbers of measurements (compressed signal
length). The inputs to the classifiers are the reconstructed hyperspectral images. The compressed signal
length denotes the number of measurements used to reconstruct the hyperspectral images. The number of
bands in the reconstructed hyperspectral image is 220. Each model runs 20 times, with 100 epochs per run.
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Figure 6-12. Class accuracies with varying numbers of measurements (compressed signal length) using the
multiscale 3D convolutional neural network from He. The inputs to the classifiers are the reconstructed hyper-
spectral images. The number of bands in the reconstructed hyperspectral image is 220. The compressed signal
length denotes the number of measurements used to reconstruct the hyperspectral images, so the values at
220 are empty in the table since the original signal length is 220.
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Accuracy improves on reconstructed inputs

Figure 6-13 compares the accuracy of four different classifiers: support vector machines, K
nearest neighbors, the RNN from Mou, and the multiscale 3D CNN from He. Each plot compares
two inputs to the classifier: the compressed (non-reconstructed) measurements, and the
reconstructed spectra. Note that the reconstructed spectra has full size (220 bands), and the x-axis
denotes the number of compressed measurements before reconstruction. The size of 220
corresponds to the full spectral input to the classifier. Each model runs 20 times with 100 epochs
per run.

The compressed input may lose spatial context, so 3D convolutions may not be as effective.
Neighboring pixels that share the same class may look different in compressed space.
Compressive sensing can be an unstable, underdetermined inverse problem, where the number of
measurements can be far less than the size of the signal to be reconstructed. As a result, the
classifiers that do not account for spatial context perform better on compressed inputs, or the
performance is comparable to reconstructed inputs. For example, support vector machines and the
RNN from Mou only consider spectral correlations.

Classifiers that consider both spatial and spectral correlations, such as KNN or 3D CNNs,
perform better on the reconstructed spectra, which more closely resemble physical signals. These
classifiers exhibit a large divergence between reconstructed and compressed inputs, which
indicates that the compressed inputs provide poor spatial context for these algorithms. The single
layer perceptron from Task 1 produces fairly accurate reconstructions even with large
compression ratios, boosting performance on Task 2.
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Figure 6-13. Accuracy comparison of four different classifiers. Each plot compares two inputs to the classi-
fier: the compressed (non-reconstructed) measurements, and the reconstructed spectra. Note that the recon-
structed spectra has full size (220 bands), and the x-axis denotes the number of compressed measurements
before reconstruction. The size of 220 corresponds to the full spectral input to the classifier. Each model runs
20 times with 100 epochs per run.
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6.4. Additional Reconstruction Metrics

We present other metrics, in addition to R2, for reconstructing hyperspectral images from
compressive sensing measurements. The mean squared error (MSE) is another way to measure
the difference between the reconstructed spectra and ground truth. Figure 6-14 shows the average
MSE for both datasets, while Fig. 6-15 shows the average MSE for each dataset separately
(Indian Pines and random spectra).
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Figure 6-14. Mean squared error (MSE) in the reconstruction with varying input size and number of layers in
the perceptron. The training/validation/testing split is fixed at 60/20/20, and the standard deviation measures

the variance across all spectra in the testing set.
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Figure 6-15. Mean squared error (MSE) for each dataset with varying input size and number of layers in the

perceptron. The training/validation/testing split is fixed at 60/20/20, and the standard deviation measures the

variance across all spectra in the testing set.

6.5. Additional Classification Metrics

We present other classification metrics, in addition to overall accuracy, for classifying
compressive hyperspectral images. The average accuracy is an average of the class accuracies.
Figure 6-16 shows the average accuracy from two types of inputs: either compressed
measurements or reconstructed spectra. Figure 6-17 shows the average kappa for these two types
of inputs. Both figures compare different classifiers over a varying number of measurements.
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Figure 6-16. Average accuracy of classifying compressive hyperspectral images. The training/validation/testing

split is fixed at 60/20/20, and the standard deviation measures the variance of the models that use dropout.

Each input (either compressed measurements or reconstructed spectra) compares different classifiers and

varying input sizes. The reconstructed spectra have 220 bands, and the input size denotes the number of

measurements before reconstruction.
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Figure 6-17. Average kappa from classifying compressive hyperspectral images. The training/validation/testing

split is fixed at 60/20/20, and the standard deviation measures the variance of the models that use dropout.

Each input (either compressed measurements or reconstructed spectra) compares different classifiers and
varying input sizes. The reconstructed spectra have 220 bands, and the input size denotes the number of

measurements before reconstruction.
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6.6. Conclusion

Neural networks can reconstruct and classify compressive hyperspectral images

We have demonstrated a two step process for hyperspectral image classification using
compressive sensing measurements. The first step is to reconstruct the hyperspectral image from
compressive sensing measurements. We investigated varying the number of layers in a multiayer
perceptron and found that a single layer minimizes overfitting. The second step is to classify the
reconstructed image. We compared support vector machines, K nearest neighbors, and three
neural networks (3D CNNs, multiscale 3D CNNs, RNNs). Classifier accuracy improves using
reconstructed spectra compared to raw compressed measurements. This work shows how neural
networks can reconstruct and classify compressive hyperspectral images, which reduces the
number of measurements and speeds acquisition time.
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7. MATRIX COMPLETION FOR COMPRESSIVE SENSING USING

CONSENSUS EQUILIBRIUM

7.1. Introduction

Cameras are now able to capture data exceeding > 1 gigapixel, > 10,000 frames per second, and
> 100 color channels. Data rates can potentially reach 1 x 1015 pixels per second. Such high data
rates make real-time processing difficult.

Efficient sensing takes advantage of low-dimensional structure in signals. Two areas of research
explore prior structured knowledge: compressive sensing and matrix completion. Compressive
sensing permits few linear measurements of a signal with nearly exact reconstruction. Matrix
completion aims to estimate incomplete observations living in a low rank subspace.

We propose to recover an uncompressed tensor from incomplete compressive measurements by
combining these techniques [43]. Consensus equilibrium breaks the reconstruction problem into
subproblems to solve for the high-dimensional tensor. This framework allows us to apply two
constraints on the statistical inversion problem. First, matrix completion enforces a low rank
constraint on the compressed data. Second, the compressed tensor should be consistent with the
uncompressed tensor when it is projected into the lower dimensional space. We validate our
method on the Indian Pines hyperspectral dataset with varying amounts of missing data. This
work opens up new possibilities for data reduction, compression, and reconstruction. This section
introduces some key concepts used in this paper.

Compressive sensing exploits the inherent structure and redundancy within an acquired signal.
Image and video compression algorithms operating on commercial 10 megapixel cameras can
achieve compression ratios of 100:1 or higher for visualization or classification tasks, illustrating
the redundancy in natural images.

Suppose a vector has N components, and S < N components are non-zero. We wish to take M
measurements using a random sensing strategy. Compressive sensing theory says that if M is
approximately greater than S log N, we can recover the N components with high probability [66].
The signal may be S-sparse under a transform, such as the Discrete Cosine Transform or wavelet
transform [47]. Applications include digital holography [44], video coding [53], optical
polarimetry [41, 48], image processing [28], and communications.

A key notion in compressive sensing is the restricted isometry property (RIP) [16]. If a matrix A
satisfies the RIP, then A approximately preserves the Euclidean length of S-sparse signals. This
implies that all pairwise distances between S-sparse signals must be well preserved in
measurement space. In other words, the distance between two low-dimensional subspaces remain
almost unchanged after projection by a random matrix with overwhelming probability. We

84



hypothesize that low-rank matrices remain low-rank after projection. Under this hypothesis, we
can perform matrix completion on the compressive measurements.

Matrix completion finds applications in signal processing, computer vision, and control theory. It
aims to generate a completed matrix from missing entries. Observed entries may be corrupted by
erasures and transmission errors, scene occlusions, deliberate omissions, or bad pixels [64].
Candes and Tao provide a theoretical guarantee for exact matrix retrieval under nuclear norm
convex relaxation [17]. Other formulations factor a matrix A = UV with gradient updates for U
and V [36]. In this work, we are not directly interested in recovering the missing entries from the
compressive measurements. Rather, the end goal is to reconstruct the uncompressed tensor from
incomplete compressive measurements.

Statistical inversion techniques minimize an objective involving data fidelity and regularization
terms using the maximum a posteriori estimate [46]. Efficient minimization methods such as
alternating direction method of multipliers (ADMM) can apply different proximal maps in
sequence [10, 49]. However, many inverse problems cannot be framed in terms of a explicit
objective [12, 42, 50, 45]. Consensus equilibrium is an optimization-free generalization of
regularized inversion that can fuse multiple sources of information [13]. Applications include
tomography and denoising [68]. Here we demonstrate a novel problem of reconstruction from
incomplete compressive measurements.

7.2. Theory

7.2.1. Notation

Throughout this paper, we follow standard tensor notation from Kolda [38]. Let X E 1" MxNxB

denote a three-way tensor with dimensions M x N x B. The mode-3 unfolding of this tensor is

X := X(3) E rBx(MxN). (7.1)

Let A E RRxB denote a matrix that encodes the measurement of X. Here B represents the signal
length, while R is the number of measurements, with R < B. Denote y E RM><NXR as the tensor
of measurements. It is a compressed version of X:

y = x x3A (7.2)

where x3 is a tensor 3-mode product. Define Y as the mode-3 unfolding of this tensor:

Y
:= 

Y(3)E RRX(Mx/V).

Here the third dimension of X is compressed from size B to size R. The compression ratio is

R
K = B.

We index the complete set of rneasurements as

S2= {1,2,...,MxNxR}.
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Define 0) as the set of observations, which may not include all of the possible measurements:

c S2= {1,2,...,M x N x R}.

If entry (i, j, k) is unobserved, we use the shorthand that (i, j, k) (0. The fraction of missing
entries is

= 1 M><N><R

Notice that the original tensor X is reduced in the number of entries through two steps:

1. Compression by A to yield y, and
2. Projection onto a set of observations to yield Pw(y) E RAI)<NxB, where the sampling

operator P(0(.) returns the original tensor but with the (i, j ,k) entry denoted as missing if

(i,

After these steps, the total number of measurements ti becomes

(7.6)

7.2.2. Compressive sensing

(7.7)

ti = —p). (7.8)

The goal is to recover X from gio(y). We consider the subproblems of reconstructing the
mode-3 fibers xi E RB for i = 1,2, ... ,M x N. Let W E RB><B denote the inverse of a transform
which represents a signal in terms of sparse coefficients. It may represent wavelet or Fourier
transforms, for example. Write the coefficients as zi E NB for i = 1, 2, ... ,M x N. The
corresponding measurements are the mode-3 fibers of y: yi E R for i = 1,2, ... ,Mx N. A
solution to this problem is provided by basis pursuit with denoising parameter a:

minimize

subject to

A111

CY.

(7.9)

We adapt the spectral projected gradient algorithm presented by van den Berg and Friedlander
[74]. Algorithm 2 formalizes the optimization problem to recover X.

7.2.3. Matrix completion

The problem of matrix completion is to recover a matrix Y e RRX(M)<N) of rank k with missing
entries. This rank k constraint allows the matrix Y to be factored into two matrices, U E RB)‹k and
S E Rkx(mxN). Here U represents a rank k subspace, and S are the k features for each pixel. We
can solve the following optimization problem for Y:

minimize minimize 1 E V. 11U 113)
1142=1 U R

subject to Y = US.
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Algorithm 2. Basis pursuit with denoising

1: procedure BP(ÿ, A, W,
2: for i = 1,...,MxNdo
3: Solve for zi according to

minimize

subject to

4: xi <—W zi
5: end for
6: return X
7: end procedure

IIxiIIl

yi I I 2< G

Various solutions to the matrix completion problem have been proposed. We will utilize the
projected gradient descent implementation presented by Bertsimas and Li [6]. Algorithm 3
formalizes the optimization problem to recover Y.

Algorithm 3. Matrix completion

1: procedure mc(y, k, y, 52, (0)
2: Solve for Ý according to

minimize minimize ( E (ki1—YiJ)2+-1 11ulliu )11s112=1 R
(i,j)En

subject to Y = US

3: return Y
4: end procedure

The measurements Pw(ÿ) contain missing entries. We can define the following constraints on the
full measurement tensor y:

1. Consistency constraint using projections. Suppose the uncompressed tensor Xo is given.
Then y should satisfy

or equivalently,

We set the missing entries as

Yproj = Xo X 3 A

Yproj = AXO.

PnVo(Y) /952\o)(Yproj)

(7.11)

(7.12)

where n \ co is the set of missing entries. Basis pursuit provides an estimate X from the
projected measurement tensor. The two tensors X and Xo should be consistent. Algorithm
4 describes an implementation of this consistency constraint using projections.
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Algorithm 4. Consistency constraint using projections

1: procedure BP-PROJ(Xo; Y, A, W, S2, co)
2: Yproj —AX0

3: PnVo(Y) q2\0)(Ypro1)
4: X <— BP(ÿ,A,W,a)
5: return X
6: end procedure

2. Low rank constraint using matrix completion. We impose a constraint on the measurement
tensor y to be low rank. The matrix completion algorithm produces Ymc. We set the
missing entries as

PnVo(Y) = /h\co(Y1\1c)• (7.13)

Basis pursuit produces the uncompressed tensor X from the matrix completion estimate.
Algorithm 5 implements this low rank constraint based on matrix completion. The
procedure BP-MC takes Xo as a dummy argument. It will become a mathematical
convenience for later use.

Algorithm 5. Low rank constraint using matrix completion

1: procedure BP-MC(Xo; Y, A, W, to, SZ)
2: Ymc mc(y, k, y, co, S2)
3: PS)*(Y) /h\œ(YMC)
4: X <— BP(y,A,W,a)
5: return X
6: end procedure

7.2.4. Consensus equilibrium

Consensus equilibrium is a framework to break a reconstruction problem into subproblems that
can be solved separately. We define the tensor valued maps, F1, F2 : xNxB

and

where Vi , v2 C 11:

Fi(Vi) := BP-proj(Vi;Y,A,W,S2,(0) (7.14)

F2(V2) BP-MC(V2;17,A,W,k,y, ~, (0) (7.15)

MxNxB and Y,A,W, k, y, S2, co are given. Further, let us concatenate the tensors
and maps using the following notation:

and

V =
v2

E RMxNxBx2 (7.16)

[
F (V) = Fi(V1) E MxNxBx2 (7 .17)

F2(V2) R
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RIMxNxBx2 asDefine another tensor valued map G : RMxNxBx2 

Here

G(V) = [ 
V

V = —
2 
(Vi + V2)

(7.18)

(7.19)

where addition and multiplication are pointwise. Let

T = (2G — I)(2F — I). (7.20)

We are looking for a solution V* E rilixNxBx2 that satisfies

T (V*) = V. . (7.21)

This fixed point yields the uncompressed tensor:

X* = (7.22)

Mann iterations can help to evaluate the fixed point:

Vk+l = (1 - p)vk + pT(Vk) (7.23)

for a fixed parameter p E (0,1). Addition and multiplication are defined pointwise. Algorithm 6
outlines this procedure to apply consensus equilibrium for compressive matrix completion.

Algorithm 6. Consensus equilibrium for compressive matrix completion

1: Initialize V° e RMxNxB x2 to any value.
2:

3: while not converged do
4: Vk+1 <— (1 — p)vk + pT(Vk)
5: k<—k+1
6: end while
7: X V

To compare two tensors /I and V of the same size M x N x B, we define the mean squared error
as

1
MSE(U, V)=

MxNxB\

where bli,j,k denotes the (i, j, k) entry of U.
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7.3. Experiment

The Indian Pines dataset is a hyperspectral image over the Purdue University agronomy farm in
West Lafayette, Indiana [5]. It consists of a 145 x 145 image with B = 220 bands, as measured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The uncompressed tensor X is
reduced to a size of 5 x 5 x 220 by uniformly downsampling the original dataset by a factor of 32
along the spatial dimensions. This smaller size enables faster computations while still illustrating
the concept.

We take R = 110 measurements to encode B = 220 bands for a compression ratio of lc = 50%.
The sampling matrix A E Ri" has uniformly distributed entries:

— U(0,1). (7.25)

According to compressive sensing theory, random matrices satisfy the restricted isometry
property with high probability. This enables a solution to be recovered with convex optimization.
Other matrices may be substituted for A depending on the measurement system.

For basis pursuit, the spectra are compressed in Daubechies 8 (db8) wavelet coefficients. We set
the denoising parameter a = 0.01.

For matrix completion of the compressive measurements, we fix the rank k = 6. The
regularization parameter y = 1 x 106, and the consensus equilibrium parameter p = 0.5. All
parameters are fixed in the simulations.

The amount of missing data in the compressive measurements varies from p = 10% to p = 90% in
increments of 10%. Missing entries in y are selected randomly with probability p. In real
systems, missing data may result from transmission errors or deliberate subsampling of data.
Figure 7-1 shows spectral reconstructions of one pixel from the Indian Pines hyperspectral data.
Each plot varies the amount of missing data, including p = 10% through p = 71%. The
compression ratio is fixed at lc = 50%. We use the metric for mean squared error defined in Eq.
(7.24). This metric measures the difference between the ground truth for the uncompressed tensor
and the reconstruction. Error increases with the amount of missing data in the compressive space,
as plotted in Figure 7-2. The reconstructions show reasonable agreement with ground truth even
though a majority of the data has been compressed or removed.
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Figure 7-1. Reconstruction of compressive measurements with missing data. The plots show the spectra from
one pixel of the Indian Pines hyperspectral data. µ denotes the fraction of missing data. In all simulations, the
compression ratio lc = 50%. Radiance is in units of [W cm-2 nm-I sr-I].
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Figure 7-2. Error increases with the amount of missing data in the compressive space. In all simulations, the
compression ratio x = 50%.
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7.4. Conclusion

We have proposed a technique for reconstruction from incomplete compressive measurements.
Our approach combines compressive sensing and matrix completion using the consensus
equilibrium framework. The algorithm imposes two constraints on the solution. First, the
compressed tensor should be consistent with the uncompressed tensor X when it is projected
onto the low-dimensional subspace. Second, the measurements should live in a low rank subspace
when the missing entries are completed. These constraints allow us to solve for the uncompressed
tensor when data is missing in the compressive space. We validate our approach on the Indian
Pines hyperspectral dataset. The spectra are first compressed by 50%, and then tensor elements
are randomly removed. The reconstructions show reasonable agreement with ground truth even
though a majority of the data has been compressed or removed. This work opens up new
possibilities for data reduction, compression, and reconstruction.
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