SAND2020- 10141R

Using Neural Architecture Search for Improving Software
Flaw Detection in Multimodal Deep Learning Models

Alexis Cooper ACOOPE@SANDIA.GOV
Xin Zhou XZHOU1@SANDIA.GOV
Scott Heidbrink SHEIDBR@SANDIA.GOV
Daniel M. Dunlavy' DMDUNLA@SANDIA.GOV

Sandia National Laboratories
Albuquerque, NM 87123, USA

Abstract

Software flaw detection using multimodal deep learning models has been demonstrated as a
very competitive approach on benchmark problems. In this work, we demonstrate that even
better performance can be achieved using neural architecture search (NAS) combined with
multimodal learning models. We adapt a NAS framework aimed at investigating image
classification to the problem of software flaw detection and demonstrate improved results
on the Juliet Test Suite, a popular benchmarking data set for measuring performance of
machine learning models in this problem domain.

Keywords: multimodal deep learning, neural architecture search, software flaw detection

1. Introduction

Most current approaches for software flaw detection rely on analysis of a single representa-
tion of a software program (e.g., source code or program binary compiled in a specific way
for a specific hardware architecture). Recent work using multiple software representations
and multimodal deep learning illustrates the benefits of leveraging both source and binary
information in detecting flaws [5]. However, when using deep learning models, determining
the most effective neural network architecture can be a challenge. Neural architecture search
(NAS) is one way to perform an automated search across many different neural network ar-
chitectures to find improved model architectures over manually-designed ones. In this work,
we use a gradient-based NAS method that leverages a differentiable architecture sampler
(GDAS) [2], which was identified as the best NAS method across 10 popular approaches
when applied to image classification problems [3].

The remainder of this report is organized as follows. In Section 2, we provide an overview
of the multimodal deep learning and NAS methods used to create flaw detection models.

(f) Corresponding author.

//é“'.l—"b"«}% U.S. DEPARTMENT OF Q,‘r
@ ENERGY NAYSH

Sandia National Laboratories is a multimission laboratory managed and operated by =
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary Natlonal
of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-NA0003525. I.aboratﬂnes

In Section 3, we define the set of experiments conducted to assess performance of these
models over the baseline of not using NAS. In Section 4, we present the results of these
experiments on a standard benchmark data set used in flaw detection research. And, finally,
in Section 5, we summarize our conclusions and provide suggestions for future work in this
area.

2. Methods

In this section, we describe the Joint Autoencoder (JAE) multimodal deep learning model
for software flaw detection [5] and the cell-based neural architecture search (NAS) approach
used to determine an optimal architecture for that model.

2.1 Multimodal Deep Learning for Software Flaw Detection

The neural network architecture selected for these experiments is an early fusion multi-
modal learning model called Joint Autoencoder (JAE) [4]. JAE was originally developed
for learning multiple tasks simultaneously based on sharing features that are common to all
tasks. Figure 1(a) illustrates the architecture of the original JAE model, which contains 2
encoder/decoder components per modality and a single mixing component that combines
the output from one of the encoders associated with each modality. The components that
do not interact with the mixing component are referred to as private branches [4]. Note that
each of the components depicted in the image (i.e., each box in the image) can contain one or
more traditional neural network layers. Recently, an adaptation of the JAE model, referred
to here as the JAE Classifier Model, was developed for classifying software functions as to
whether or not they contain flaws/bugs [5]. Figure 1(b) illustrates the architecture of the
JAE Classifier Model, where we remove the decoders and use a linear layer to concatenate
the outputs from previous layers. In the JAE Classifier Model, we use one or more linear
layers with LeakyReLU activation for encoders and the mixing components. In the first
linear layer, the number of input features will be the total length of two private branch
encoders plus the number of output features from mixing component, and the number of
output features is fixed as 50. In the final linear layer, a classifier layer is used, mapping 50
input features to the number of classes. In the flaw detection models used here, we use two
classes, flawed and not flawed.

Modality 1 Modality 2

| Decoder | | Decoder | | Decoder | | Decoder | Linear Layer
_
| Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder | | Encoder |
(a) Original JAE Model (b) JAE Classifier Model

Figure 1: JAE Structure

2.2 Neural Architecture Search

The JAE architectures described in the previous section were designed manually and thus
may not be optimal for the learning tasks to which they are applied. To address this
potential issue, we leverage a Neural Architecture Search (NAS) strategy to determine an
optimal architecture for the flaw detection task. The specific form of NAS we employ here
is based on cell-based search, in which a cell represents a portion of the architecture and is
defined using a densely-connected directed acyclic graph (DAG) [3]. The edges of the DAG
represent architecture layers and the nodes represent sums of the feature maps output from
each of those layers. The search is performed over a set of operations (i.e., network layers)
and the weights associated with those operations. Optimization of the cell structure and
weights is performed within each iteration of the overall model training.

In this work, we define the macro skeleton, i.e., the full NAS architecture, as the JAE
Classifier Model and the cell as the mixing layer with that model. Figure 2 illustrates the
macro skeleton architecture (left), example DAG instances of the cell (center), and the cell
operations used in our work (right). As noted in the image, the cell operations consist of
single linear layers of sizes 25, 50, and 100 (i.e., the number of nodes in the layer). Details
of the interpretation of the cell examples as sums of the feature maps of the operations can
be found in [2].

We adapt the Automated Deep Learning (AutoDL) NAS comparison framework!:, which
implements the NAS-BENCH-201 [3] image classification benchmark, for use with our flaw
detection classification problem. As recommended in the NAS-BENCH-201 experiments
on images and confirmed in preliminary experiments with the JAE Classifier Model, we
use the GDAS search strategy [2] in the work presented here. GDAS is a gradient-based
search method using differentiable architecture sampler to optimize the cell search, and it
has been demonstrated to be one of the more efficient NAS techniques that relies on more
than simple random sampling for the cell search.

Optimization of the weights in the cell layers is performed using stochastic gradient
descent (SGD) [8] and the overall macro skeleton architecture model fitting is performed
using the ADAM optimizer [6], both as implemented in the AutoDL framework.

Macro Skeleton (JAE) Cell: Predefined operations:

Linear Layer

| Encoder | | Encoder | | Encoder [| Encoder |

Figure 2: JAE Structure

=== Linear Layer - Size 25

=—p Linear Layer - Size 50

» Linear Layer - Size 100

Left: the macro skeleton of JAE architecture
Middle: examples of the cell with 5 nodes
(4 layers). Each edge is associated with an
operation from predefined operations in
directed acyclic graph.

Right: predefined operation set.

1. https://github.com/D-X-Y /AutoDL-Projects

3. Experiments
In this section, we describe the experiments we performed to answer the following questions:

e Are there differences between handcrafted JAE structure and selected structure from
NAS?

e Are there improvements on flaw detection performance after implementing NAS?

3.1 Data

As we are measuring potential improvements when using NAS on the JAE Classifier Model,
we use the same subset of the Juliet Test Suite data [7] from the software flaw detection
experiments performed in [5]. The Juliet Test Suite [7] is a collection of test cases in the
C/C++ language, providing pairs of functions with and without software flaws. The test
cases laws are organized into collections based on the Common Weakness Enumeration
(CWESs) of the specific flaws exhibited in each function. Table 1 lists the test case CWE
collections used in this work. This set of test cases represents a wide range of the types of
flaws found in real-world software systems. We use the features extracted from this data as
defined in [5].

In our experiments, we split each CWE collection into three data sets: 80% train, 10%
validation, and 10% test. For cell search, we use the train and validation data sets to search
for the best cell.

CWE | Flaw Description # Flawed | # Not Flawed
121 Stack Based Buffer Overflow | 6346 16868
190 | Integer Overflow 3296 12422
369 Divide by Zero 1100 4142
377 | Insecure Temporary File 146 554
416 Use After Free 152 779
476 NULL Pointer Dereference 398 1517
590 | Free Memory Not on Heap 956 2450
680 | Integer to Buffer Overflow 368 938
789 | Uncontrolled Mem Alloc 612 2302
78 OS Command Injection 6102 15602

Table 1: Juliet Test Suite Data Summary

3.2 Methods used in Experiments

We compare flaw detection results using the JAE Classifier Model and application of the
GDAS to the cell-based macro skeleton described in the previous section. The manually-
designed JAE Classifier Model used a mixing component with a single linear layer consisting
of 50 nodes, and we refer to this model as the JA E-Mizing-50 model. In our experiments, we
also investigated the use of a larger layer of size 100, and we refer to that model here as the
JAE-Mixing-100 model. The GDAS-based model is referred to here as the NAS-GDAS-JAE
model.

3.3 Measurements used in Comparing Methods

For each of the Juliet Test Suite CWE collections, we performed N x 2 cross validation [1]
with IV = 5. We use this form of cross validation as it provide a pessimistic estimate of the
generalization error; when training models for operational use, we often use more than 50%
of our training data to fit the final model. We use class-averaged accuracy—the average of
the accuracies of instances from each class, normalized by the size of each class—to adjust
for the skew in the sizes of the flawed and not flawed instance (see Table 1 for details). This
approach addresses skew by not favoring classification results from either of the classes when
they are not equal in size. For each method, we compute and report the sample mean and
sample standard deviation of the class-averaged accuracy results for each method on each
CWE collection.

3.4 Cell Structure Optimization

As mentioned earlier, in the NAS-GDAS-JAE model, cell search is performed using SGD
optimization. The specific parameters used in the AutoDL implementation of SGD are
provided in Table 2.

Parameter | Value

scheduler cos

LR 0.0005
eta_min 0.001
epochs 100
optim SGD
decay 0.000001
momentum | 0.9
nesterov 1
criterion Softmax

batch_size 32

Table 2: NAS-GDAS-JAE Parameters for SGD Cell Search

3.5 Cell Structure Representation

The result of the cell search in the NAS-GDAS-JAE model is a DAG representing several
linear layers of different sizes (based on our defined cell operations). The AutoDL framework
in which we implemented NAS-GDAS-JAE represents a DAG instance using a string to
define the specific cell operations and sums of feature maps. Figure 3 illustrates the string
output of an example DAG, which is

[10070] + |5070/10071| + [2570|5071|5072| + [2570|10071]2572|5073|

This summands in the string represent the sums of the feature maps associated with
different cell operations. Each sum is defined inside the “| |” delimiters, where each cell
operation and the edge source node is listed. For example, the summand in the example

above of “|2570|50~1150~2|” represents the sum of the feature maps of three cell operations
(i.e., linear layers) at node 3 as depicted in the image—the green edge (size 25) from node
0, the blue edge (size 50) from node 1, and the blue edge (size 50) from node 2.

|100~0] + [50~0]100~1| + |25~0|50~1|50~2| + | 25~0|100~1]|25~2|50~3|

Cell:

Predefined operations:

== Linear Layer - Size 25
=P Linear Layer - Size 50

—p Linear Layer - Size 100

Figure 3: Example Cell Structure in the NAS-GDAS-JAE Model

4. Results

In this section, we present the results of our experiments leveraging multimodal learning
models and neural architecture search to address the question of software flaw detection.

4.1 Optimized Cell Structure of NAS-GDAS-JAE Models

The optimized cell structure of the NAS-GDAS-JAE models for each of the Juliet Test Suite
data sets can be found in Table 3. Note that none of the final cell structures across the
difference data sets are the same.

Table 3: GDAS-JAE Search Results

CWE | Cell Structure (string representation of DAG)

121 [100~0| + | 50~0|100~1| + | 25~0| 50~1| 50~2| + | 25~0]100~1| 25~2| 50~3|
190 | 50~0| + [100~0| 25~1| + | 25~0| 25~1] 50~2| + |100~0| 50~1]100~2| 25~3|
369 | 25~0] + | 25~0/100~1] + | 25~0|100~1| 25~2| + | 50~0| 25~1| 25~2]100~3|
377 | 50~0| + | 25~0| 25~1| + | 50~0| 25~1]100~2| + |100~0|100~1| 50~2| 25~3|
416 | 25~0| + | 50~0[100~1| + | 50~0[100~1]100~2| + | 25~0]100~1]|100~2| 50~3|
476 [100~0| + [100~0| 50~1| + | 25~0| 50~1| 25~2| + | 50~0| 25~1| 50~2| 50~3|
590 [100~0| + | 50~0| 25~1] + | 50~0|100~1]100~2| + |100~0| 25~1| 50~2|100~3|
680 [100~0| + [100~0| 50~1] + | 50~0|100~1]100~2| + | 50~0| 50~1| 50~2| 25~3|
78 [100~0| + | 50~0[100~1] + [100~0|100~1| 50~2| + [100~0| 50~1| 25~2| 50~3|
789 | 25~0| + | 26~0| 25~1| + | 25~0| 50~1]100~2| + | 50~0| 50~1]100~2|100~3|

The differences in cell structures may be due to the fact that the cell search is a global
optimization problem, but the SGD method is only guaranteed to find a local optimizer.
Or this may be due to the differences between the data associated with the different flaw
types. More work is needed to better understand the source for these differences. To
illustrate some of the differences, we present plots of the convergence behaviors of the

cell search (search) and macro skeleton architecture (eval) optimizations in Appendix A.
Over 100 epochs, we see a wide range of behaviors, maximum accuracy values achieved,
and search/eval differences across the various data sets. More work is needed to better
understand how these convergence behaviors impact the flaw detection results in general.

4.2 Flaw Detection Results

Table 4 shows the flaw detections results using the three models descried above. The two
JAE-Mizing-N models (with N = 50 and N = 100) are considered baselines for the NAS-
GDAS-JAE model, as they use the manually-designed architecture described in previous
results [5]. The results listed in the table are the sample means and sample standard
standard deviations of the class averaged accuracy per Juliet Test Suite data set. The
boldfaced results indicate the best mean class-averaged accuracy for each data set (i.e., per
row). Note that many of the differences between the means are not separated by more than
a single sample standard deviation (across methods/columns), and thus the improvements
using NAS may not be statistically significant. More work is need to determine if these
improvements generalize and are statistically significant.

Table 4: Sample means and standard deviations of class averaged accuracy using 5 x 2 cross
validation (boldfaced results are best across methods for each data set)

CWE | JAE-Mixing-50 | JAE-Mixing-100 | NAS-GDAS-JAE
121 0.9972+0.0009 0.9975+0.0008 0.9970£0.0012
190 0.9867+0.0068 0.9907+0.0059 0.9884+0.0067
369 0.9485+0.0206 0.9500+0.0203 0.9703+0.0220
377 0.9309+0.0614 0.9285+0.0420 0.9514+0.0410
416 0.9074+0.0620 0.9359+0.0471 0.9468+0.0400
476 0.9991+0.0019 1.0000=0.0000 1.0000=0.0000
990 1.0000-£0.0000 1.0000=+0.0000 1.0000=+0.0000
680 0.9344+0.0139 0.9356£0.0115 0.94174+0.0197

78 0.9398+0.0110 0.9360£0.0143 0.942740.0155
789 0.9672+0.0201 0.9630+0.0183 0.9683+0.0215

5. Conclusions

In this work, we implemented a cell-based neural architecture search strategy to improve
upon a manually-designed multimodal learning model for software flaw detection. Our
results indicate that NAS leads to improved multimodal models that are specific to the
software data being analyzed. These preliminary results provide a starting point for lever-
aging NAS for such a problem, as there are many open questions that still need to be
addressed. In the work presented here, we used a cell that replaces only a small part of the
JAE Classifier Model from [5]. However, larger, more complicated cells could lead to more
pronounced improvements, but this would come at increased optimization and training cost
as well. Determining the trade-offs between cell complexity and computational cost could
be a useful research activity.

References

[1]

2]

Thomas G. Dietterich. Approximate statistical test for comparing supervised classifica-
tion learning algorithms. Neural Computation, 10(7):1895-1923, 1998.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours.
arxiv:1910.04465, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations, 2020.

Baruch Epstein, Ron Meir, and Tomer Michaeli. Joint autoencoders: a flexible meta-
learning framework. https://openreview.net/forum?id=S1tWRJ-R~, 2018.

Scott Heidbrink, Kathryn N. Rodhouse, and Daniel M. Dunlavy. Multimodal deep
learning for flaw detection in software programs. arXiv:2009.04549, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

NIST. Juliet test suite for C/C++ v1.3. https://samate.nist.gov/SRD /testsuite.php,
2017.

Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747, 2016.

Appendix A. NAS-GDAS-JAE Cell Search Results

acc_at_1

acc_at_ 1

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

0.800

—— search_acc_at 1
—— eval_acc_at 1

1.000

] 20 40 60 80 100

n-th epoch

(a) CWE-121

0.975

0.950

0.925 -

0.900

0.875

0.850

0.825

0.800

—— search_acc_at_1
—— eval_acc_at_1

0 20 40 60 80 100

n-th epoch

(c) CWE-369

acc_at_ 1

acc_at_ 1

1.000

0.975

0.950 1

0.925

0.900

0.875

0.850

0.825

0.800

1.000

0.975

0.950

0.925 -

0.900 -

0.875

0.850

0.825

0.800

>) ——

—— search_acc_at_1

—— eval_acc_at_1
0 2‘0 4‘0 Gb Bb 160
n-th epoch
(b) CWE-190
'l VIVY ¥ ¥y

b1,

—— search_acc_at_ 1
—— eval_acc_at_1

0

20 40 60 80 100
n-th epoch

(d) CWE-377

Figure 4: NAS-GDAS-JAE Cell Search Results - Part 1

acc_at_ 1

acc_at_1

acc_at 1

1.000

0.975
0.950 -
0.925
0.900 -
0.875
0.850 -
—— search_acc_at_1
08231 —— eval_acc_at 1
0.800 T T ™ ™
] 20 40 60 80 100
n-th epoch
(a) CWE-416
1.000
w
0.975
0.950 -
0.925
0.900 -
0.875
0.850
—— search_acc_at 1
08231 —— eval_acc_at 1
0.800 T T T T ™ T
0 20 40 60 80 100
n-th epoch
(¢) CWE-590
1.000
0.975
0.950
0.925 -
0.900 -
0.875
0.850
—— search_acc_at_1
08231 —— eval_acc_at_1
0.800 T T T T

v T
40 60 80 100
n-th epoch

(e) CWE-T78

acc_at 1

acc_at 1

acc_at_1

1.000

0.975

0.950

0.925

0.900 -

0.875

0.850

0.825

—— search_acc_at_1
—— eval_acc_at_ 1

0.800

20 2 60 80 100
n-th epoch

(b) CWE-476

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

—— search_acc_at_1
—— eval_acc_at_1

0.800

T T
20 40 60 80 100
n-th epoch

(d) CWE-680

1.000

0.975

0.950

0.925

0.900

0.875

0.850 4

0.825

—— search_acc_at_1
—— eval_acc_at_ 1

0.800

u T
20 40 60 80 100
n-th epoch

(f) CWE-789

Figure 5: NAS-GDAS-JAE Cell Search Results - Part 2

