SANDIA REPORT

SAND2020-9607 Sandia
Printed Click to enter a date National _
Laboratories

Sandia GNU Radio Utilities

Jacob A. Gilbert
Peter A. Knee

Sam H. Whiting
Brian H. Adams

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.
Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-Mail: reports(@osti.gov

Online ordering: http://www.osti.gov/scitech

Auvailable to the public from
U.S. Department of Commerce
National Technical Information Setrvice
5301 Shawnee Rd
Alexandtia, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@atis.gov

Online order: https://classic.ntis.cov/help/order-methods

JINNSE

National Nuclear Security Administration

ABSTRACT

The Sandia Utilities form an RF toolkit extending the GNU Radio framework for
straightforward interaction with bursty RF systems which can be cumbersome using built in
capabilities of the framework or other open source extensions. Motivated by the abstract
exercise of responding to a modulated burst of information with a unique modulated burst of
information, the Sandia Utilities provide several dozen additional debug and signal processing
blocks through four software modules. These blocks manifest their utility through a new
general concept of operation for GNU Radio applications and extend many existing streaming
capabilities to the PDU-based message passing API. Using these concepts and tools, it is
straightforward to develop software capabilities to interact with existing and new bursty RF
devices.

CONTENTS

1.

55701 <ouia 51 aTG RSO RSTRIT 8
1.1 Docamertt OFEANTAGHOT mssmsmomsmsnmsamso s resmsis s s s s s s A s SR 8
e) Rl v s n nB1 i A R — 9
&l GR PDLU Utilittes (o irobm obihe) s s s oo s s mimmsst s 9
da, SR Tibmitye 'Utilitics (orf-Tbnmtnge Tl s s imssessonsotsssoscsn s o0 s sa st s S 9
2.5, GR HESS Ll (ob-Himse LS o oo s conssmnisssioo i oo oo o5 b oo g 9
2.4. GR Sandia Utilities (gr-sandia_utils)ccoevuviimiiimiiiiiiniiiinicicicsesssesssenns 10
Streaming To Message CONVEISION ...t senas 11
3.1, Burst Tagging Methods......ccociiiiiiiiiiiiiiiiiciiicii s ssaes 12
3.1.1. Start and End of Burst Tag@ingccoeueeiciriniieininiieinicieiieeieiessieiensceeeseesseseeenenaes 12

3.1.2. Broadband Energy Burst Tag@ingccccoeicicuiininiiiniiciciiiiiccecsisccceeesieenes 12

3.1.3. Additional PDU TechNiqUesccoceuiiiimiiiiiiiiiiciciicisiciisicn s 13

Key Signal Processing BIOCKS.........cociiiiiiiiiiniiiiiccn s 14
4.1. Key Blocks from the GNU Radio PDU Ultilities Modulecccouceeuevennniniccreninniccnennn 14
4.1.1. Tags to PDU BlOCK.....ccccoviiiiiiiiiiiiciiiicciccscen e 14
4.1.1.1. Basic USAZE ..ot 14

41,12, Optional Burst Tdentification, PArSiietErst. cummmemsvmemomnwmsmn i 14

$13.5. Advasced Tinity Dol cemsmmasmmssmassmrosssymssmsssss sy 14

£1.04, Deteetion Bl SuIOTI08 corusnmmssums s s iomssom s 14

412 ke Skip 50 PIIL BBk cwemummmmmmmmmrmessmonssn s s s s s s sens 15
4.1.5. PDU o Busgts Block cuwamcmmammsansesmmsmsss e sy 15
3.3 . BaBIe USRS cnmmomeromoicnmsmnsviesmssasinsssis 6aomes s s sis i issasd s i 15

41,32, Titvied THABSITISTIONE: ormasuvmmsommnssssesnsiss s mss s s e eesss s s 15

4.14. Tag Messape Trigger Blockuwusmsumssorssssssmsrsrsmsmmsrsinsrssssssamssossesisssossssessysassassnsiass 15

TN TS TR = T P ——— 15

4142, Basic Tag Based Messaoe ESSION: ssmimssmmmmsssamssasmmssmasmniasss 15

4.1.4.3. Usage of the Arming and Re-trigger Holdoff:cccovveirnivncrvnicnrinnnnn. 16

4144, Timed PIN Modes susnmuammsimnmsmmarmsosmmassmmams s 16

4145 Transtaission. LTt s s somsssmm s vmessnsimossnss sssomensss 5655658 6653551565 550 5555385533555 16

415, PDLU] Pack Unpack Block s s s 16

dolb: P fadd Netse: Bloekaomses s omos moomsmm o i i i i o aes 16

dld: PRI Clack Berorreiy BIomsls. s mmmmmmn i omimsimms o o s s xi s 17
4.1.8. PDU Blocks From grifiltercccciiiiiiiiiiiiiiiiciicisicccscssse e 17
4.1.8.1. PDU FIR Filter BlocK......ccocouiiniiiiiiiiiiiiiciiiccicecsessnnens 17

4.1.8.2. PDU PFB Arbitrary Resampler BIOCKccouviuiiviiiriniiiiiciiiiciiccciicne, 17

4.1.9. PDU Flow Controller BIOCKccccoviviiiiiiiiiiiiciiiriccccceicsceens 17

4.2. Key Blocks from the GNU Radio Timing Utilities Module........cccocvviniiinnniciiicinicnnn, 17
4.2.1. Wall Clock Time BlOCKccccoviiiiiiiiiiiiiiiiicicciccssie s 1#

4.2.2. Time Delta BlOCKcccouiiiiiiiiiiiiiiiiii e 18

4.3. Key Blocks from the GNU Radio FHSS Ultilities ModULEc..cccvuvieerviiecericirirerecernienn. 18
4.3.1. FFT Burst Tagger BlOCKcccoiiiiiiiiiiiiiiiicccccccccn e 18
43110 USAZE et 18

4.3.1.2. OPEratioN....ciiiiiiiiciiiiiiiis s 18

4.3.2. Tagged Burst to PDU BlOCKccouiiiiiiiiiiiciciiciiieiciciee e 19

4.3.3. FSK Burst Extractor Hiet BlOCK ... 19

4.4. Blocks from the GNU Radio Sandia Utilities MOAUIE.......cocvevvereverienirreeeeereeeeseeeeeseeeseeeveenns 20

4.4.1.
4.4.2.

Appendix A.

B3 LeYel < B20E G dcs ol 51 e Yol <R 20
SANAIA FILE T/ O BlOCKS .ttt ettt ettt eeseen et a s sesae s e saene 20
4.4.2.1. Sandia UtHHES FIle SOULCE..uiuiiitietieeteeee ettt eeeeeeeeeeeeeeeseeeeseesseeeseeseeeens 20
4.4.2.2. Sandia UHHHES FIle SINK coviiiiiiieiieieieeeteeeeeeee ettt eeve et st esvestesreseneseessesnne 20
Crmiplete List of GNU Radio Titllities. Bloeks .cwmmsosimommsmsamasssmrssmsmmonss 22

LIST OF FIGURES

Figure 1 - General Concept of PDU CONVELSION.......cooviiuiiiiriiiiiiciiisisicessse s 10
Figure 2 - PDU Receive Time TracKing......ccoccuiiiiviiiiiiiiiiiiiiicsice s esssessssssessssesesssses 10
Figure 3 - PDU Transmit Time Trackingcccococociiiiiiiiiiiiiiiiicccicccsceenes 10
Figure 4 - Examples of Using SOB/EOB Burst Tagg@ing.........cccccvuuiuniunimrimniiniinieninineisieesissseseesseesesaeenns 11
Figure 5 - Broadband Energy Detection of BUrstscccciiiiiiiiiciicicciccsccennnens 11
LIST OF TABLES

Table T - List Of BIOCKS.....cciiiiiiiiiiciii s 19

This page left blank

ACRONYMS AND DEFINITIONS

Abbreviation

Definition

API Application Programming Interface
EOB End of Burst

FHSS Frequency Hopping Spread Spectrum
GNU “GNU’s Not Unix” — recursive acronym representing large collection of free software
GR GNU Radio

QA Quality Assurance

PDU Protocol Data Unit

PMT Polymorphic Type

RF Radio Frequency

SDR Software Defined Radio

SOB Start of Burst

1. BACKGROUND

The Sandia GNU Radio Utilities are a series of software modules that Sandia has developed
for the GNU Radio Software Defined Radio framework to support development of software
defined RF systems. GNU Radio operates on two basic data flow models supported by the
Streaming API and the Asynchronous Message Passing APIL. A robust set of processing blocks
are included (“in tree”) with the GNU Radio framework for use with the Streaming API, but
despite providing a very capable structure for representing data as Protocol Data Units, an
internal structure for metadata and vector data, there is only a significantly reduced set of
blocks for the Message Passing API primarily focused on debugging and control as opposed to
signal processing.

Using only in tree components from GNU Radio, it is very challenging to accomplish many
fairly straightforward tasks that are extremely common for RF communication systems such as
‘receive a burst of data on an arbitrary frequency in a given band’ or ‘respond to modulated
data in a burst of energy with other modulated data in a new burst of energy’.

The Streaming API is a useful SDR paradigm for both continuous and bursty RF systems as
the data from the software radio is generally continuous. The Message Passing API is well
suited for higher layer protocols where data is refined into discrete blocks of information,
albeit substantially relying custom blocks to convert the initially streaming data to a packetized
format. Message passing remains preferable when working with RF signals for which data are
organized into bursts or chunks as opposed to a continuous stream, and various benefits can
be realized when doing this conversion early in the processing chain.

GNU Radio leaves the non-trivial task of bridging the Streaming and Message Passing
paradigms primarily to the end user. The Sandia Utilities modules provide several methods for
accomplishing this translation, as well as substantial enhancements of the basic set of
Messaging Passing API blocks with signal processing functions found within the in-tree
Streaming API as presented at the GNU Radio Conference in 2019 [1.

1.1. Document Organization

This document summarizes the conversion schema provided, the overall structure of the
extension modules, and covers information about some of the key blocks included in the
toolkit.

2. SOFTWARE STRUCTURE

The Sandia GNU Radio Utilities are organized into four primary software extensions to GNU Radio
developed as Out of Tree (OOT) modules. These are separate software projects that are managed
through the git version control system and have a branch structure that mirrors that of the upstream
GNU Radio project. The maint-x.Y branches represent the latest supported code that are
compatible to the upstream GNU Radio framework version X .Y, while the master branch is
intended to track the latest GR master codebase. Due to the maintenance burden of managing
multiple branches, the latest maint-x.Y branch receives the most up-to-date support.

The specific intention of the various modules is discussed in subsequent sections. Blocks are
coarsely categorized into functional groupings and are maintained in different modules to simplify
software deployment and build overhead. Over time as requirements evolve some blocks become
outliers and may not fit well in the prescribed module, these are eventually adjusted but because of
backward compatibility concerns this may take some time to happen.

21. GR PDU Utilities (gr-pdu_utils)

This GNU Radio module contains tools for manipulation of PDU objects. There are blocks to
translate between streams and PDUs while maintaining timing information, several self-explanatory
blocks that emulate the behavior of some in-tree stream blocks for messages and PDUs, and some
other features. This module is complimentary to the gr-timing utils module and some of the
advanced timing features require blocks there. Many of the gr-pdu_utils blocks are message-
based analogs of streaming API blocks found in-tree to support software development.

This module underpins all the burst software and thus has some software requirements levied. All
non-hier blocks are written in C++ and make use of the gr: : 1og API with no stdout output. There
is minimal PMT symbol interning at runtime, and blocks should be thread safe. QA code exists for
all blocks, and when bugs are fixed QA is updated to catch the errors. Code should be clang-format
applied with the GR clang style file.

2.2. GR Timing Utilities (gr-timing_utils)

This GNU Radio module contains tools for various time related functions. This module is
complimentary to the gr-pdu_utils module and contains a variety of generally useful blocks
related to time management or analysis within GR applications. This module has become smaller
over time and may eventually be replaced entirely as the contained features become obsolete or
moved to more appropriate modules.

Blocks in this module that are not hierarchical blocks should be written in C++, have minimal
stdout output, and have QA written.

2.3. GR FHSS Utilities (gr-fhss_utils)

This GNU Radio module contains tools for processing frequency hopping spread spectrum signals,
as well as known and unknown bursty signals in general. Blocks derived from the gr-iridium project
exist to detect narrowband bursts within wideband signals and down-convert and center them.
Metadata is tracked through this process enabling reconstruction of where the bursts originated in
time and frequency.

The module is named ‘FHSS Utilities’ due to the original application being frequency hopped signal
reception, but despite this the concept of operation has many applications beyond FHSS systems. It
has direct application to any need to extract bursty energy from a band with unknown time or
frequency. This module is not well suited for situations where bursts of energy rely on process gain
for reception as the detection sensitivity is around 6-8dB when properly tuned, below which false
alarms tend to overwhelm valid detections.

Blocks in this module that are not hierarchical blocks should be written in C++, have minimal
stdout output, and have QA written.

24, GR Sandia Utilities (gr-sandia_utils)

This GNU Radio module contains a variety of blocks that do not fit well within the PDU, timing, or
FHSS utility modules. Often these are improved or fixed duplicates of in-tree blocks awaiting
upstreaming, python proof-of-concept blocks that will eventually be moved into other modules,
blocks for which usage is complicated or likely to result in user error, or blocks with niche use.

Blocks in this module do not require meeting the same standards as the other modules, though they
should have at least basic instantiate-and-start QA.

10

3. STREAMING TO MESSAGE CONVERSION

The general concept of PDU conversion using this module is shown below in Figure 1.

SDR Source —{ j'—} Burst Tagging P TagstoPDU f----- P PDUProcessing f----- P PDU To Stream ‘b|i]—} SDR Sink

Figure 1 - General Concept of PDU Conversion
The start and end of a burst is tagged via some means (see below) and the Tags to PDU block will
emit a PDU with the PMT vector as the data between the tags. Some basic metadata is provided,
and advanced options exist for timing reasons. Once turned into a PDU, the data can be processed,
and if desired the data can be turned back into a stream with tx sob and tx eob tags for
transmission with a UHD-style sink.

Advanced timing modes for RX are included that allow for coarse timing (+/- a couple symbols)
which is enough for most communications applications. This timing is not intended for precision
timing, rather as an option for relatively good timing through rate changes without too much
overhead. This is particularly well suited for low-order digital signals; however, the general concept
can be used for displaying all sorts of data. If End-of-burst cannot be practically tagged, it is possible
to configure the Tags to PDU block to emit a fixed-length PDU and downstream processing can
handle the fine details.

UHD RX Time Tags UHD RX Time Tags +SOB / EOB Tags PDU Timestamp

Sent on retunes, overflows Sent periodically, every n samples Mark burst (PDU) boundaries Metadata dictionary field

! ! / /
SDR Source ‘>|: :I—P Tag UHD Offset 4{ :l—} Burst Tagger P TagstoPDU |[----p»| PDU Processing

Signal conditioning, demod, etc; Clock recovery, symbol to bits,
fixed rate-change DSP only etc; arbitrary rate changes OK

Figure 2 - PDU Receive Time Tracking
UHD-style receive time tags are emitted by the source and recorded by the Tag UHD Offset block
which will periodically emit updated UHD-style time tags. The rate at which these are emitted is
controllable; which is necessary if any arbitrary-rate-change blocks are present between the source
and the Tags to PDU block. Burst tagging works as in the basic mode, and the Tags to PDU block
will automatically use the UHD-style time tags to determine burst time. It is important that blocks
propagate tags correctly through rate changes. Clock recovery is a step for which this can be
complicated; the new (as of 3.7.11) Symbol Sync block is a good option for CR as it propagates tags
correctly when the output SPS is set to 1.

Timed transmission is also supported via UHD-style tx sob and tx_eob tags as shown below.

PDU Timestamp tx_sob and tx_eob Tags
Metadata dictionary field UHD Style, burst boundary identification

j |
v
----p»| PDU Processing F----- P PDUToStream —P .. SDR Sink

Filtering or modulation
if necessary

Figure 3 - PDU Transmit Time Tracking
When the metadata dictionary key tx time is provided with UHD-style tuple of {uint64 seconds,
double fractional seconds}, this value will be added to a tx_time tag on the tx_sob sample. This
allows for timed transmission with UHD-style transmit blocks.

11

3.1.

Conversion between the Streaming and Messaging APIs using the Sandia Utilities require that
signals be localized temporally and spectrally in order to be further processed. There are several ways
to tag bursts that work well with this type of data that are presented here.

Burst Tagging Methods

3.1.1.

To identify Start-of-Burst, a very simple way is to do a basic energy detection threshold and tag
according to energy level, however this is not very robust. Another straightforward method is to run
an open-loop demodulator and use a Correlate Access Code - Tag block to detect the preamble and
start of unique word to delineate and tag SOBs. Alternately, a correlation-based method can be used
if this is already implemented for preamble detection.

Start and End of Burst Tagging

End of Burst tagging can be trickier as there are several ways RF protocols indicate end-of-burst.
Generally, the best way is to write a custom block that detects SOB tags, parses the RF header for
length information, and automatically tags EOB's accordingly. Sometimes RF protocols will specify
a detectable EOB sequence which can be detected with a second Correlate Access Code - Tag block
directly. For fixed length bursts an EOB is not necessary and the block can be configured by the
maximum length parameter to effectively set the EOB. Example processing flow for this type of
tagging is shown below in Figure 4.

Timed Clock Recovery MM

Omega: 4 Correlate Access Code - Tag Correlate Access Code - Tag
—»f o;':::‘::ﬁ"'::'"""" Quadrature Demod Gain Omega: 7.65625m po——— Access Code: 11001...10011000 Access Code: 1111111011111 J':':: ::;1 B-
s oo IR Galn: 254648 Mu: 500m Threshold: 0 Threshold: 0 amal ey
Gain Mu: 175m Tag Name: BURST Tag Name: END
Omega Relative Limit: Sm
‘ Timad Clock Recovery MM —
Correlate Access Code - Tag £0B Tagger
—» n:""‘""" S - Quadrature Demod r.n o-.. 7.65625m Access Code: 1100110011000 Golay?: 0 [] 7o0s 7o Pou
S Gain: 254648 i S - Threshold: 0 — 9> 55 Tag Name: surst i 1 Start Tag: 8uRt [I}--
nnmen pass 2(20. 4 2 _ﬂu-ﬂ- [0
o b 175m Tag Name: BURST EOB Tag Name: END
| Omega Relative Limit: Sm

Figure 4 - Examples of Using SOB/EOB Burst Tagging

3.1.2.

SOB/EOB sequence detection requires knowledge of the modulation scheme and details about the
time/frequency medium access scheme and the signal protocol framing, and quickly breaks down
for signals in which one or more of these features are not known. The FHSS Utilities module
provides a different way to isolate bursts based on broadband energy detection. The general
processing flow for this model of burst detection is shown in Figure 5.

Broadband Energy Burst Tagging

f1t_burst_tagger
Center Frequency: 16248G
FFT Size: 4.096k

Sample Rate: 411 tagged_burst_to_pdu burst_downmix ‘
Max Bursts: 0 Max Burst Size: 100k Sample Rate: 4M

——{J] Pre Burst Samples: 4,096« Relative Center Frequency: 0 Search Depth: 175k -
Post Burst Samples: 32.768k Relative Span: 1 [} ——————— - 9| Hard Max Queue Length: 1k |
BurstWidth:40 | [Relative Sample Rate: 1 Input Taps: input._fiter P
Threshold: 7 Maximum Outstanding Bursts: 500 Start Finder Taps: start f.. s
History Size: 512 Drop Overflowing Bursts: False Handle Multiple Frames Per Burst: Folse :
Debug Output: false

Bursts Tagged in Input Data Stream

Broadband Time-Sliced Bursts

Figure 5 - Broadband Energy Detection of Bursts

12

Decimated and
Centered Bursts

In this model, time domain data representing a broadband digitized signal is passed through a
processing block which makes time and frequency estimates for energy using the Discrete Fourier
Transform and applies tags in the output data stream. The next block isolates these tagged start and
end of bursts in time, of which there can be many simultaneously, and emits each individually as a
PDU with metadata indicating the approximate center frequency estimation. The final block in this
processing chain uses the center frequency estimate to decimate the block in frequency, re-estimate
the center frequency, and perform fine frequency correction prior to emitting the signal data that has
been time/frequency isolated.

Many such detections can happen simultaneously as would be observed in real-world congested
multi-user bands such as the various unlicensed ISM bands.

3.1.3. Additional PDU Techniques

There are other possibilities for burst tagging that are not included within the Sandia Ultilities
modules and more tools may be included in the future. It is also not a requirement that PDUs be
generated only on bursty signals. Many continuous signals contain frame sync data or other in-band
signaling that can be used to break down signals into discrete units that are more suitable for PDU
processing. It is also possible for out-of-band information to be processed and used to segment a
signal into PDUs. Added functionality will be included for Streaming to Message API conversion in
the future as requirements are identified.

13

4, KEY SIGNAL PROCESSING BLOCKS

The concept and usage of a few significant blocks is described in this section. Many blocks are
omitted as their behavior is straightforward or documented in the GRC YAML sufficiently.

A complete listing of blocks as of this document is shown in Appendix A.
41. Key Blocks from the GNU Radio PDU Utilities Module
4.1.1. Tags to PDU Block

41.1.1. Basic Usage

The Tags to PDU block will accept a stream input and produces a PDU output. The start of a PDU
is indicated by a configurable GR stream tag (only the Key matters), and the end of a PDU can be
defined by a configurable tag, or by a configurable maximum length; when the maximum length is
reached, the PDU will be emitted. If a second start-of-burst tags is received prior to an end-of-burst
tag or the maximum length being reached, the block will discard data from the first tag and reset the
internal state starting with the latest start-of-burst tag. The block also accepts a Prepend vector
argument, which allows for data elements to be included at the start of each PDU. This is useful for
byte alignment, or when correlating against a complete or partial Unique Word, and it is desirable to
have the complete UW represented in the output. The elements in this vector count toward the Max
PDU Size parameter.

4.1.1.2. Optional Burst Identification Parameters:

The Tags to PDU block can be configured to only accept EOB tags in discrete relationships to the
SOB tag position through the EOB Alignment and EOB Offset parameters. This will ensure that
valid EOB tags are only at n * EOB Alignment item indexes, and the EOB Offset can be used to
slew that value if the SOB tag is not suitably located. Additionally, a Tail Size can be specified and
that number of items after the EOB tag will be included in the PDU if allowable.

4.1.1.3. Advanced Timing Features:

As described above, this block can be used with UHD-style time tags to provide a reasonably
accurate burst timestamp (within a few symbols / bits) with relatively minimum overhead. The key
for these tags can be modified but is normally rx_time and the data consist of a two element tuple
of uint64 seconds followed by double fractional seconds in range [0, 1). This timing works by
knowing the sample rate of the block and keeping track of the last known time-tagged sample and
it's offset. Time is then propagated forward assuming the sample rate is exactly precise. As this can
drift over time for a variety of reasons, it may be desirable to time-tag samples periodically upstream
(e.g.: on burst detections) to improve accuracy and address clock drift, variable block ratios, or
dropped samples; the Tag UHD Offset block from the gr-timing utils module can be used to
assist with this. The block also supports the ability to generate boost timestamps in seconds from
Unix epoch format. This is helpful for debugging but generally less accurate and may carry a greater
processing penalty.

4.1.1.4. Detection Emissions:

The block can be configured to emit a message every time a SOB tag is detected. This is useful when
a low-latency reaction is necessary to incoming data, though it must be used with caution as it is

14

prone to false detections. The emission is simply a uint64 PMT containing the offset of the received
SOB tag.

4.1.2. Take Skip to PDU Block

This block is a much simpler case of the Tags to PDU Block for which a PDU is generated of length
M every N samples. If M=N then this block is a direct conversion from stream to PDU.

4.1.3. PDU to Bursts Block

4.1.3.1. Basic Usage:

The PDU to Bursts block accepts PDUs of user-specified type and emits them as streaming data.
The original intent of this block was to allow USRP based transmission of data originating from
PDU-based processing from data converted to PDUs by the Tags to PDU block for half-duplex
transceiver applications. As such, the block will automatically append tx_sob and tx_eob tags
around streaming output data to indicate the start and end of valid data to the SDR. The block is
simple to use; configuration is limited to type and behavior when new PDUs are received while the
data from a current PDU is still being emitted. The data can either be appended to the current burst,
dropped, or the block can throw an error ('Balk’). The latter two modes were implemented for very
specific cases and generally '"Append' mode is the best choice. The number of PDUs that can queue
up waiting for transmission is also configurable to bound memory usage (though the individual
PDUs can be large).

4.1.3.2. Timed Transmissions:

The PDU to Bursts block also supports UHD-style timed transmissions. If a PDU metadata
dictionary key tx time exists, and the value is a properly formatted UHD time tuple, a tx_time tag
will be added along with the tx sob tag to the first item in the PDU, which will be recognized as a
timed transmission by downstream blocks. Late bursts will be handled according to the behavior of
the downstream processing elements, and may be dropped, sent immediately, or potentially errors
caused. It is also necessary to be careful with setting timestamps too far in the future as this can
result in issues due to backpressure in the DSP chain.

4.1.4. Tag Message Trigger Block

4.1.4.1. Overview:

The Tag Message Trigger block emits PDUs based on certain input conditions observed on either
stream or message inputs and supports operating with or without an arming step prior to triggering.
This block is more complicated and powerful that it looks, though it has utility in many
straightforward applications also. The initial intention of this block was to allow for a stream tag to
emit a PDU immediately. This has been expanded upon to support several additional modes of
operation which are described here.

4.1.4.2. Basic Tag Based Message Emission:

The most basic mode of this block looks for a tag and emits a message (can be a PDU but does not
have to) when it is identified. This was expanded on to allow the concept of a separate 'arming' tag,
and an internal armed/disarmed state; the block will only emit a message when armed. If the arming

15

key is set to PMT NIL, the block is always armed and operates in the simple mode of emitting a
message when a key is seen.

4.1.4.3. Usage of the Arming and Re-trigger Holdoff:

The arming status can also be set to automatically disarm after a certain number of samples which is
the Holdoff parameter. An internal counter will track samples from the arming event, and a trigger
event that occurs after the arming offset + holdoff will have the same behavior as a trigger event
when the block is disarmed. The holdoff value will also set the shortest interval for which the
triggering action can happen, even when the block is set to always be armed. A second trigger event
that is less than holdoff samples from the previous trigger event will be treated as though the block
is disarmed. If the holdoff parameter is set to zero it will have no effect.

41.4.4. Timed PDU Mode:

The Tag Message Trigger block can operate in two fundamental message modes. In 'Message' mode,
the block will emit whatever PMT it has been configured to directly. The alternative, "Timed PDU'
mode allows for the block to add a tx_time metadata dictionary value that is a user definable
amount of time in the future. The block will automatically track time of samples in the same way the
Tags to PDU block does, and the tx time key will be a UHD time tuple Delay Time seconds from
when the trigger tag was received. This is useful for automatically transmitting a known signal
whenever a qualified trigger event is detected.

4.1.4.5. Transmission Limit:

A final feature that is not exposed to the GRC is the concept of transmission limits. This value can
be updated by callback, and if it is not set to TX UNLIMITED it will be decremented each time the
block triggers. When it reaches zero, trigger events will be treated as though the block is disarmed.

4.1.5. PDU Pack Unpack Block

The PDU Pack Unpack block is primarily used to convert between U8 PDUs representing one bit
per element, and U8 PDUs representing 8 bits per element. The block can also convert bit order for
packed U8 data. The usage is straightforward, specify pack/unpack/reverse and declare the bit
order, however it is included in this section due to the usefulness.

This block could also be extended to support other options (higher order modulation packing,
conversion to U160, etc) if necessary but a use case as not yet been identified. If this happens
appropriate test code should be added to exercise such conditions.

4.1.6. PDU Add Noise Block

This block can be used to add uniform random values to an input array of uint8, float, or complex
data; other PDU types will be dropped with a WARNING level GR_LOG message. This is
straightforward; however, it is included here as the block also the non-obvious capability to scale
and offset the input data PDU as well. This is done through the following logic:

out[ii]=(input[ii]+((d_rng.ranl()*2-1)*d noise level))*d scalet+d offset
Which is to say that the order of operations is to apply the random data first, then scale the data,
then offset it. Generally useful for debugging and testing, and as such it has not seen extensive use

so there may be some issues. Noise profiles are not supported, only uniform random data from the
ranl() function within gr: : random. It could be argued that these should be separate blocks entirely,

16

but to reduce the overhead of converting data to and from PMT it was implemented this way to
allow all three operations to be done at once.

4.1.7. PDU Clock Recovery Block

This block performs clock synchronization and symbol recovery on 2-ary modulated data using
algorithms from M. Ossmann’s WPCR project . The block accepts soft and unsynchronized data
and uses a zero-crossing detector to effectively recover data sampled between 4 and 60 samples per
symbol, though it does perform better below 16 samples per symbol. Compared to in-tree options,
this block has several advantages, primarily that it operates on PDU formatted data enabling it to
work within the Message Passing API. Because the block operates on PDU data, it can make use of
the entire packet to aid in data synchronization improving sensitivity. Additionally, the block does
not require precise configuration or tuning which results in reduced user-error and increased
capability when processing signals for which exact parameters are unknown.

4.1.8. PDU Blocks From gr::filter

Several blocks reproducing in-tree filter functionality have been built to enable PDU based filtering
and resampling. This allows eatly conversion to PDUs and the benefits therein.

4.1.8.1. PDU FIR Filter Block

This block mirrors the in-tree FIR filter block and uses the same underlying VOLK optimizations.
The use of this block has uncovered several invalid operations due to the pointer logic used which
do not manifest themselves when used with the streaming API but are a problem with the filter
kernels in general. Upstream issues have been filed and workarounds built into the blocks.

These blocks do not use FFT based filters as the FFT kernels are not yet templatized. This may be
added as an option to this block in the future as the FFT implementation of discrete filters is more
efficient for large numbers of taps.

4.1.8.2. PDU PFB Arbitrary Resampler Block

This block mirrors the in-tree arbitrary resampling block reusing the undetlying kernel and operates
similarly. Included here for awareness.

4.1.9. PDU Flow Controller Block

The GNU Radio Asynchronous Message Passing API has no concept of flow control or
backpressure. A slow block in the processing chain will cause an unbounded backup of messages
which can in turn result in software failures as messages are never dropped, and the publish method
does not block.

This block will check the message queue size for subscribed blocks, and it will drop messages over a
configurable maximum queue size. Dropping data is not always preferred, so this should only be
used in situations where data loss is acceptable.

4.2, Key Blocks from the GNU Radio Timing Utilities Module
4.2.1. Wall Clock Time Block

The wall clock time block is very simple, it adds the wall clock time to a user defined key in the PDU
metadata for every PDU it receives. The time is pulled in from boost::get system time () This

17

This is very helpful when it comes to debugging message passing performance, as the conventional
in-tree tools for performance evaluation of Streaming API blocks are not all usable with the Message
Passing API. Non-PDU type messages are dropped.

4.2.2. Time Delta Block

This block is designed to be used downstream from the Wall Clock Time block and will use the
system time to evaluate the difference between the time in the PDU metadata and the current time.

This is done with the same boost: :get system time () call and is added to a new user defined
PDU metadata key.

To compute the nominal time a PDU is taking to process through a message-based GR flowgraph,
the Wall Clock Time block should be placed upstream of the block under test, and the Time Delta
block downstream. The resulting metadata will accumulate the time difference across the block
under test as the flowgraph executes.

4.3. Key Blocks from the GNU Radio FHSS Utilities Module
4.3.1. FFT Burst Tagger Block

4.3.1.1. Usage

The FFT Burst Tagger block accepts an input stream of data, generally a wideband recording, and
emits an identical stream of data with the addition of metadata stream tags representing energy
detections within the stream. The stream tags are one of two types: new burst with a PMT key of
new burst or end of burst tags with a PMT key of gone burst. Both tags have a PMT value of a
dictionary with a burst_id entry to correlate the start and end of bursts. New burst tag value
dictionaries, in addition to the burst identifier also have the following additional fields:

e Relative Burst Frequency Estimate
e Input Stream Center Frequency

e Magnitude Estimate

e Noise Power Estimate

e Input Stream Sample Rate

e Bandwidth Estimate

This block requires a significant amount of output buffer be available in the upstream block, and
due to some GNU Radio oddities, this cannot effectively be set internally. Thus, it is necessary to set
the minimum output items of the upstream block to a large value. If this is not possible due to the
upstream block behavior, and intermediate block such as the Multiply Constant (7=1) block may
need to be used.

4.3.1.2. Operation

Configuration of this block is complicated in the sense that misconfiguration can cause very poor or
unexpected performance. Most configuration issues can be avoided by understanding a few
important concepts.

18

First, the block operates on £ft size blocks of data, which is user configurable at instantiation.
The smallest internal unit of time this block can manage is fft size/sample rate seconds and
setting this value large can result in problems particularly when the before-burst and after-burst
lengths are small. Bursts must be observed on one or more contiguous FFT bins above the
configured threshold for a user specified number of FFTs (quantized duration) before what in
internally termed a ‘pre-burst’ will be tagged as a burst.

The decision of whether an FFT bin has crossed the threshold or not is made based on a dynamic
noise floor estimation based on a user configurable amount of historical data known as the

history size. Upon startup or reset, the block will acquire at a minimum history size FFTs of
data to establish a noise floor estimate. Energy present will be factored into the noise floor, and as
such initial bursts will be missed by design. The noise floor of each bin is managed individually, and
adjacent energy is not factored into the calculation, and this calculation is only updated when a bin is
not declared to contain a burst of energy to prevent spectral desensitization. There is a hard-coded
hysteresis factor of 50% on the threshold to declare a burst gone.

A small amount of energy on either side of the detected burst is generally useful, and the
pre burst lengthand post burst length accomplish this. If these values are set too large,
temporally adjacent but spectrally aligned bursts may become combined into single detections.

4.3.2. Tagged Burst to PDU Block

The tagged burst to PDU block accepts a tagged input stream, either from the FFT Burst Tagger
block or another block with compatible burst tagging structure. It accesses metadata from the value
dictionary of the the in-band stream tags to understand the non-temporal composition of each burst
and applies this data to the task of centering the burst and decimating the signal in bandwidth.

This metadata is limited in precision and accuracy, and thus must have some additional refinement
done. In order to ensure that filtering is not removing burst spectral components, decimation is
done as a two-stage process where each burst is initially decimated to twice the rate requested by the
user defined output decimation, and a second more precise center frequency estimation is computed
followed by additional frequency translation and decimation by a factor of 2 is done to arrive at the
defined output data rate (decimation). Time-domain inaccuracies due to the FFT-length duration
precision of the input tags are expected to be adjusted downstream via magnitude or correlation.

This block is based off existing work where the PDU aggregation and burst decimation are
accomplished separately. This block combines these to reduce converting large vectors to PMT
objects and provides a mechanism to use multiple threads to accomplish the expensive filtering and
down sampling operations required when many bursts are contained within a given work function.

4.3.3. FSK Burst Extractor Hier Block

The FSK Burst Extractor Hier block demonstrates the FHSS Utilities concept of operation with the
following blocks preconfigured and connected for convenience when processing 2-ary FSK signals.

\ FFT | \ Tagged | | Fine | | Fine
T3] Burst |] Burst To |—-——=->| Burst | =5t | Time | =——=> Out
| Tagger | | PDU | | Measure | | Measure |

19

Shared configuration parameters are derived from the same input configuration source, and most
values with units of FFT's are unwrapped to seconds. This block formerly contained the PDU
Quadrature Demod and PDU Clock Recovery blocks making it 2-FSK specific, but it is significantly
more general now.

44. Blocks from the GNU Radio Sandia Utilities Module
4.4.1. Block Buffer Block

The Block Buffer is a unique streaming block that is useful in situations where underflows are likely
(ot even possible) and the system requires guaranteed continuous data. This block internally buffers
a user defined number of samples watching for UHD style stream tags which can indicate an
overflow, sample rate change, or frequency changes from the source. Data generated from this block
is guaranteed to have no overflow, rate or frequency change discontinuities in the data, at the
expense of being lossy.

A BLOCK tag is output with the first sample of each block. The value of the tag is the number of
samples which have been skipped since the last block (not counting any skips from source
overflows).

An example use case would be to place this block immediately after a source, proceeded by a
throttle. Then, the source can be set to a high sample rate, while the processing is done at a lower,
configurable rate. Only connect one block to the output of this block as odd behavior has been
observed with multiple connected blocks due to the scheduler.

4.4.2. Sandia File I/O Blocks

Several file blocks representing similar in-tree functionality. These blocks are functionally equivalent
to the in-tree file source block with the only architectural difference being a message port extension
to specify a new input file, and the ability to process MIDAS style bluefiles if the bluefile
library is found at build time, raw files with or without a header, or message files.

4.4.2.1. Sandia Utilities File Source

If the 'Force New File' option is chosen, the current file being processed will be closed and the new
file opened when commanded. Adding file tags will cause the stream tags available based on the file
type to be added to the output stream at the first sample of the file. Similarly, if the beginning tags
are populated, the first sample of every file will contain that tag. The PDU sink port allows remote
control of the file to be played, the PDU metadata must contain a key of fname. The value
associated with fname is the file name that will be replayed.

4.4.2.2. Sandia Utilities File Sink

This block supports dynamic file name based on signal parameters for sampling rate, frequency, and
start time. It also supports manual or triggered based file saving, rolling output files based on
specified file size (samples), and alignment of start of file to nearest second boundary. If a file length
of 0 is specified, it will result in a single file being generated. Successive files increment time and file
number accordingly and a new folder can be generated at the start of a new collect. The folder
name will have the format: YYYYMMDD/HH MM SS. Additionally, file names can be customized using
all conversion specifications supported by strftime.

20

REFERENCES

[1] Gilbert, J. A. (2019, September 16-20) The GNU Radio PDU Ultilities [Conference Presentation)].
GNU Radio Conference 2019, Huntsville, AL, United States.
https:/ /www.onuradio.ore/orcon/orconl9/presentations/the _onu radio pdu_utilities

[2] Ossmann, M. https://github.com/mossmann/clock-recovery/blob/master/wpct.py

21

APPENDIX A. COMPLETE LIST OF GNU RADIO UTILITIES BLOCKS

This is accurate as of publication but is subject to change as development continues.

Table 1 - List of Blocks

Module Block Name Status
pdu_utils extract_metadata active
pdu_utils message_counter active
pdu_utils message_emitter active
pdu_utils message_gate active
pdu_utils message_keep 1 in_n active
pdu_utils msg_drop_random active
pdu_utils pack_unpack active
pdu_utils pdu_add_noise active
pdu_utils pdu_align active
pdu_utils pdu_binary_tools active
pdu_utils pdu_burst_combiner active
pdu_utils pdu_clock_recovery active
pdu_utils pdu_complex_to_mag2 active
pdu_utils pdu_downsample active
pdu_utils pdu_fine_time_measure active
pdu_utils pdu_fir_filter active
pdu_utils pdu_flow_ctrl active
pdu_utils pdu_gmsk_fc active
pdu_utils pdu_head_tail active
pdu_utils pdu_length_filter active
pdu_utils pdu_logger active
pdu_utils pdu_pfb_resamp active
pdu_utils pdu_preamble active
pdu_utils pdu_quadrature_demod_cf active
pdu_utils pdu_range_filter active
pdu_utils pdu_round_robin active
pdu_utils pdu_set_m active
pdu_utils pdu_split active

22

Module Block Name Status

pdu_utils pdu_to_bursts active

pdu_utils gt_pdu_source active

pdu_utils sandia_message_debug deprecated
pdu_utils tag_message_trigger active

pdu_utils tags_to_pdu active

pdu_utils take_skip_to_pdu active

pdu_utils upsample active
timing_utils add_usrp_tags active
timing_utils edge_detector_bb active
timing_utils edge_distance active
timing_utils interrupt_emitter active
timing_utils retune_uhd_to_timed_tag active
timing_utils system_time_diff active
timing_utils system_time_tagger active
timing_utils tag_uhd_offset active
timing_utils thresh_trigger f active
timing_utils timed_cordic_emulator active
timing_utils time_delta active
timing_utils timed_freq_xlating_fir deprecated
timing_utils timed_tag retuner deprecated
timing_utils uhd_timed_pdu_emitter active
timing_utils usrp_gps_time_sync active
timing_utils wall_clock_time active

fhss_utils cf_estimate active

fhss_utils coarse_dehopper active (GRC hier)
fhss_utils fft_burst_tagger active

fhss_utils fft_peak active (GRC hier)
fhss_utils fine_dehopper active (GRC hier)
fhss_utils fsk_burst_extractor_hier active (GRC hier)
fhss_utils s_and_h_detector active (GRC hier)
fhss_utils tagged_burst_to_pdu active

23

Module

Block Name

Status

fhss_utils fsk_burst_extractor_hier active (Python hier)
sandia_utils block_buffer active
sandia_utils burst_power_detector active
sandia_utils complex_to_interleaved_short active
sandia_utils compute_stats active
sandia_utils csv_reader active
sandia_utils csv_writer active
sandia_utils file_archiver active
sandia_utils file_monitor active
sandia_utils file_sink active
sandia_utils file_source active
sandia_utils interleaved_short_to_complex active
sandia_utils invert_tune active
sandia_utils max_every_n active
sandia_utils message_file_debug active
sandia_utils message_vector_file_sink active
sandia_utils message_vector_raster_file_sink active
sandia_utils python_interface_sink active
sandia_utils python_message_interface active
sandia_utils rftap_encap active
sandia_utils stream_gate active
sandia_utils tag_debug deprecated
sandia_utils tag_debug_file active
sandia_utils tagged_bits_to_bytes active

24

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Simon Palfery 05334 simon.palfery@sandia.gov
Technical Library 01977 sanddocs@sandia.gov

25

This page left blank

26

This page left blank

27

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

